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A. Transition State Theory
e Transition State Theory (TST) or Activated Complex Theory (ACT) is a
reaction mechanism originally developed to describe gas phase collision
reactions. It has the general reaction scheme:

A+B—=(AB) — > AB (20.1)
Where the reactants A and B collide to first form a Energy
transition state or activated complex which is iansition stale
designated (AB)". The idea behind TST is that the ™\
transition state is an unstable, short-lived complex. \
In the case of a simple diatomic collision the / \
transition state (AB)' consists of the A-B pair / \
joined by a very weak bond. The colliding \
molecules A and B are assumed in “equilibrium” product
with the transition state where reaction coortinale

K= (20.2)

e This equilibrium notation however involves the transition state which
actually exists at a energy maximum and is thus transitory in nature, as
its name implies.

e For the diatomic reaction mechanism the rate is given by

rate =k'[ AB" | =k'K{ [A][B] =k, [A][B] (20.3)
e To evaluate the rate constant k,, we can apply statistical methods
to K'
;
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where the partition functions of A, B, and AB' are ga, s, q'ag,
respectively .

e The treatment of g, requires some explanation. It is assumed that
when A and B form the transition complex the complex acquires

translation, rotational, vibrational and electronic motions, which all
must be reflected in the partition function, i.e.
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e In 20.5 the mass of the transition state in the translational partition
function is just m" =m, +m, . In the rotational partition function

m,m .
where the reduced mass y=—=2-2 | :/J(RT)2 is the
m, +m,

moment of inertia of the transition complex and . The term g, is
the degeneracy of the ground electronic state of the transition
complex and D] = D] — is the dissociation energy of the
transition complex.

e The vibrational motion is treated in the following way. We assume
as A and B come together to form the transition complex that
translational motion along the reaction coordinate is eventually

converted in part to a vibrational motion of the bond also directed
along the reaction coordinate. We use the notation
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function.
Now the vibrational of the bond in the transition complex is assumed
to occur at a very low frequency such that
1 N 1 kT
1-e et 1-(1-hv'/k,T) hv'
In other words the bond vibration is calculated in the high temperature
limit. Now we also assume that the transition complex is converted to

product AB within a vibrational period so that k" ~v". Using this
expression and equation 20.7 we obtain
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This is called the Eyring equation. To equation 20.8 is added ad hoc a
constant x <1. This is called the transmission coefficient and
expresses the fact that not all collisions result in the formation of the



transition complex. Normally 0.5 < x <1, but k can be quite small for
atomic collisions. The final form for the Eyring equation is

K, ~ Xl gy (20.9)
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where K = Jresransdanror g;/e™"" is absent the degree of

Uads
vibrational freedom treated in the high temperature limit and giving rise to

the factor of k;T .

¢ Reaction rates are normally measured as per mole quantities so
equation 20.9 is multiplied by Avagadro’s number

k keT K'V = K‘% K'v (20.10)

2m = Nk

B. Examples of Diatomic Transition State Calculations
e For the collision of two atoms we have
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Qs = g, (20.11)
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e Then we obtain for the rate constant
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e If D] is reported in units of Joules per mole we must write:

T t
K, = /87IkBT K‘(RT)Z gl ' QDI/RT (20.13)
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C. More Complicated reactions: Ternary Complexes
e The simplest example of a ternary transition complex is the isotope exchange
H,+D—HD+H (20.14)

e The transition complex has linear form H---H ---D where the bonds lie along the
reaction coordinate. The rate constant has the form:
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where AD] = D] — D;'2. The partition functions for gp and gy, are obtained as usual

for atomic and diatomic species. The transition complex partition function g, is

treated as follows. The transition complex is linear so it has a single moment of

inertia and rotations are calculated by the same procedure used for a linear triatomic

like CO, except that =1 for HHD.

e The vibrational partition function is treated as follows. Note for a linear triatomic
there are four vibrational modes in the partition function corresponding to
symmetric and asymmetric stretches and two equivalent bending modes

1
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e The asymmetric stretch contributes to the reaction coordinate, is therefore treated
in the high temperature limit and yields the kgT/h term in the Eyring equation.
The other three vibrational modes remain in the transition complex partition
function
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. Gibbs Energy of Activation
e Returning to the general expression for the reaction rate k, = K'kBTT K¢, we define

formally the Gibbs energy of activation

AG" =-RT InK/ (20.17)
e Using equation 28.15 we now define the kinetic constant as:
K, =K khT AGH/RT (20.18)

e Using the corresponding relationship between the Gibbs energy, enthalpy and
entropy...AG" = AH" —TAS" we further obtain:

k2 _ kBTTeAGT/RT _ KkBTTeAs*/Re—AH*/RT (20.19)
e Now for an ideal gas

AG =AU +A(PV)—TAS =AU +RTAN-TAS =—-RT InK
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e Also for ideal gases AH = AU +A(PV ) =AU +RTAn. For the reaction
A+B — AB , An=-1. Therefore
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olnk, 1 AU" RT AH"+RT AH"+2RT
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e The Arrhenius/van’t Hoff equation is for comparison
olnk, =E_az (20.23)
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e We conclude E, =AH" +2RT for An=-1. More generally
E,=AH"+(1-An)RT (20.24)

e Using 20.24 we write out the Arrhenius rate law for An=-1:

k2 _ KkBTTeAsT/Re—(Ea—ZRT)/RT _ Kez kBTTeAST/ReEa/RT (20.25)



