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A. Transition State Theory   
• Transition State Theory (TST) or Activated Complex Theory (ACT) is a 

reaction mechanism originally developed to describe gas phase collision 
reactions. It has the general reaction scheme: 
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Where the reactants A and B collide to first form a 
transition state or activated complex which is 
designated (AB)†. The idea behind TST is that the 
transition state is an unstable, short-lived complex. 
In the case of a simple diatomic collision the 
transition state (AB)† consists of the A-B pair 
joined by a very weak bond. The colliding 
molecules A and B are assumed in “equilibrium” 
with the transition state where 
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• This equilibrium notation however involves the transition state which 

actually exists at a energy maximum and is thus transitory in nature, as 
its name implies.  

• For the diatomic reaction mechanism  the rate is given by  
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• To evaluate the rate constant k2, we can apply statistical methods 
to †K  
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where the partition functions of A, B, and AB† are qA, qB, q†
AB, 

respectively . 
• The treatment of †

ABq requires some explanation. It is assumed that 
when A and B form the transition complex the complex acquires 
translation, rotational, vibrational and electronic motions, which all 
must be reflected in the partition function, i.e.  
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• In 20.5 the mass of the transition state in the translational partition 
function is just †

A Bm m m= + . In the rotational partition function  

where the reduced mass A B

A B

m m
m m

µ =
+

 , ( )2† †I Rµ=  is the 

moment of inertia of the transition complex and . The term †
1g  is 

the degeneracy of the ground electronic state of the transition 
complex and †† †

0 2
h

eD D ν= −  is the dissociation energy of the 
transition complex. 

• The vibrational motion is treated in the following way. We assume 
as A and B come together to form the transition complex that 
translational motion along the reaction coordinate is eventually 
converted in part to a vibrational motion of the bond also directed 
along the reaction coordinate. We use the notation 
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 is a reduced vibrational partition 

function.  
• Now the vibrational of the bond in the transition complex is assumed 

to occur at a very low frequency such that 
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• In other words the bond vibration is calculated in the high temperature 
limit. Now we also assume that the transition complex is converted to 
product AB within a vibrational period so that † †k ν≈ . Using this 
expression and equation 20.7 we obtain 
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• This is called the Eyring equation. To equation 20.8 is added ad hoc a 

constant 1κ < . This is called the transmission coefficient and 
expresses the fact that not all collisions result in the formation of the 



transition complex. Normally 0.5 1κ< < , but κ can be quite small for 
atomic collisions. The final form for the Eyring equation is  
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vibrational freedom treated in the high temperature limit and giving rise to 

the factor of Bk T
h
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• Reaction rates are normally measured as per mole quantities so 
equation 20.9 is multiplied by Avagadro’s number 
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B. Examples of Diatomic Transition State Calculations 
• For the collision of two atoms we have 
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• Then we obtain for the rate constant 
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• If †
0D is reported in units of Joules per mole we must write: 
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C. More Complicated reactions: Ternary Complexes 
• The simplest example of a ternary transition complex is the isotope exchange 

 2H D HD H+ → +  (20.14) 
• The transition complex has linear form H H D  where the bonds lie along the 

reaction coordinate. The rate constant has the form: 
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where 2† †
0 0 0

HD D D∆ = − . The partition functions for qD and qH2 are obtained as usual 
for atomic and diatomic species. The transition complex partition function †

HHDq  is 
treated as follows. The transition complex is linear so it has a single moment of 
inertia and rotations are calculated by the same procedure used for a linear triatomic 
like CO2 except that σ=1 for HHD.  
• The vibrational partition function is treated as follows. Note for a linear triatomic 

there are four vibrational modes in the partition function corresponding to 
symmetric and asymmetric stretches and two equivalent bending modes 
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• The asymmetric stretch contributes to the reaction coordinate, is therefore treated 
in the high temperature limit and yields the kBT/h term in the Eyring equation. 
The other three vibrational modes remain in the transition complex partition 
function 
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.C. Gibbs Energy of Activation 
• Returning to the general expression for the reaction rate †

2
B

C
k Tk K
h

κ= , we define 

formally the Gibbs energy of activation 
 † †ln CG RT K∆ = −  (20.17) 

• Using equation 28.15 we now define the kinetic constant as: 
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• Using the corresponding relationship between the Gibbs energy, enthalpy and 
entropy... † † †G H T S∆ = ∆ − ∆  we further obtain: 
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• Now for an ideal gas 
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• We can now apply equation 20.20 to the equation †
2

B
C

k Tk K
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κ=  to obtain 
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• Also for ideal gases ( )H U PV U RT n∆ = ∆ + ∆ = ∆ + ∆ . For the reaction 
A B AB+ →  , ∆n=-1. Therefore  
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• The Arrhenius/van’t Hoff equation is for comparison 
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• We conclude † 2aE H RT= ∆ +  for ∆n=-1. More generally  
 ( )† 1aE H n RT= ∆ + −∆  (20.24) 

• Using 20.24 we write out the Arrhenius rate law for ∆n=-1: 
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