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A. The Molecular Partition Function for Larger Molecules
e To construct a partition function for molecules, the partition function for
translational, rotational, vibrational, and electron motions are combined. For a
diatomic molecule this is:
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e Equation 17.1 is only valid for diatomic molecules. The presence of more
bonds complicated the rotational and vibrational partition functions. The
simplest polyatomic molecule is carbon dioxide CO,, which is linear but has
two bonds. With two bonds CO; has four vibrational modes as shown in

Figure 17.1:
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e The molecular partition function for CO; is now:
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e And the internal energy of CO; is from equation 17.3:
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e The first term is the total energy from translations and rotations, both in the
classical limit.. The summation in the second term is over the four vibrational
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modes. The last term is the contribution to the internal energy from electronic

motions.
e From equation 17.4 the heat capacity is:
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e For linear polyatomic molecules we need the moment of inertia | = uR?,

the partition function is g, _T and U, = Nk;T or just RT for one
Ol
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mole of rigid rotors. For a non-linear molecule three moments of inertia
are required to describe the rotation of the molecule. The three moments
of inertia identify the center of mass around which the molecule rotates
and are designated la, Ig, and Ic. Therefore a non-linear molecule has three
rotational temperatures designated 04, 6, and O¢. The rotational partition
function for a non-linear molecule is
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e Note there are three degrees of rotational freedom for a non-linear
molecule and according to equation 17.6 the internal energy and heat
capacity associated with this rotation are
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B. Statistical Description of Equilibria
e Here we learn how to use statistical principles to calculate equilibrium
constants for gas phase chemical reactions. Consider a gas phase reaction
of the following general form:

VA+vgB=v.C+v,D (17.8)
e Now the condition for equilibrium is
Vallp + Vgl = Ve e +VpHlp (17.9)

where the chemical potentials are x = (%j . We have already shown
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that using the statistical definition of the Helmholtz energy A=—-k,T InQ
and the definition of the partition function for a gas Q = % the statistical
definition of the chemical potential is: .
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e Now putting the statistical expression for the chemical potential from
equation 17.10 into equation 17.9 we get
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We can remove the logarithms, rearrange equation 17.11 and divide all
terms by the volume V to get:
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Equation 17.12 is the statistical expression for the equilibrium constant.
Using the ideal gas law we can expression the equilibrium constant in
terms of pressures
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We now define the equilibrium constant KP as the ratio of equilibrium
pressures:
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We can finally write out the equilibrium constant in terms of pressure
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Example: For the equilibrium H, +10, = H,0O calculate the equilibrium constant Kp at

T=1000K. Calculate AG® and determine if the formation of water is thermodynamically
favorable at this temperature. Assume V=1m?®. The following data are available:

e  ForHy 6, =6215K, 6, =85.3K, D, = 457.6kJmol *, g, =1.

! rot

e ForOy 6, =2256K, 8, =2.07K, D, =503kJmol*, g, = 3.
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° For H»>0O there are three vibrational motions shown
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to the right. The three vibrational temperatures are: @
in1 =9360K, 6, , =9160K, 6,,, ; = 2290K . [\,I/j

Because water is non-linear the three rotational

temperatures are: O ® 0 O
Qrm’l =40.1K, Hvib,z =20.9K, Hvibﬁ =13.4K \/ \/
For water also: De=940kJmol™?, g;=1, and 5=2. " T
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This problem is far more challenging than anything you will encounter in
regular course work. However, given the right data, obtaining an equilibrium
constant is simply a two stage process. First, you calculate the relevant
partition function for each molecule. Then you plug these values into the
equilibrium constant equation.

Be careful not to let the big numbers scare you into thinking you have made a
mistake. Partition functions for molecules are large numbers due to the
translational degrees of freedom.

Be careful with the dissociation energy exponent. If you use values of D in kJ
per mole be sure to divide by RT not kgT. And convert the kJ to Joules
because R uses Joules.

The equilibrium constant has units because | did not divide by a standard state
pressure. If I had done that the equilibrium constant would be unitless.



