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A. Introduction 

• For problems where Schroediner’s equation cannot be solved exactly, a 
form for the wave function is proposed. A common starting point is a 
linear combination of atomic orbitals (LCAO). 

• Then the Viral Theorem of Quantum Mechanics states that the best we can 
do with an approximate wave function of this nature is obtain an upper 
bound to the true energy. The energy is calculated with the trial wave 

function Ψ using E E
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• We applied this approach to the hydrogen molecule ion H2
+ with 

Hamiltonian: 
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and referring to the coordinate system at the right. 
• We approximate the ground state wave 

function as the LCAO 
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• With this wave function we obtain the energy expression: 
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• HAA=HBB, HAB and SAB are integrals. We examined the easiest one which 
is SAB.  
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∫ ∫  

• SAB =1 if R=0 and SAB=0 if R approaches infinity. SAB is called the 
overlap integral. It measures the degree to which the two atomic wave functions 
overlap in the molecule. 



 
B. Variational Principle: Bonding and Anti-bonding Orbitals…  

• Applying the variational principle, the energy of the electron in H2+ can be obtained 
by minimizing the variational energy with respect to the constants cA and cB… 

• We obtain two secular equations: 
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• Solving these two equations for the energy we get two solutions… E
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where we have used the fact that HAA=HBB.  
• Substituting each of these energies back into the secular equations we obtain two 

solutions A Bc c± ±= ± . This yields two orbitals…each with a different energy… 
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• Bonding Orbital: Ψ+ = +
+
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given the shorthand σ1s. The bonding orbital σ as an energy E
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• The Coulomb integral HAA has the form… 
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The Coulomb integral is therefore: 
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• Because R>a0, D>0. The first two terms in the Coulomb integral are negative and  
reflect the stabilization of the molecule as a result of the attraction of the electron 
for the second nucleus, and  would be expected to result in a more stable orbital 
energy than the isolated hydrogen atom. But as the atoms approach the nuclear 



repulsion term 
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Rπε
 grows larger and hence the net contribution of HAA to 

stabilization is small.  
• The stabilization of the H 2+ ion derives from the so-called resonance integral:  
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• Physically HAB is the stabilization deriving from the fact that the electron can 

shift from the ψ 1s
B  orbital to the ψ 1s

A  orbital. It is called the resonance integral 
because of the resemblance to the coupling or resonance of two classical 
oscillators. As a result of the negative resonance integral, the energy of an 
electron in the bonding orbital of H2

+ is less than the energy of the electron in 
the 1s atomic orbital of a hydrogen atom. 

• Combining our expressions for HAB and HAA we get 
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• The Anti-bonding Orbital: 1 1
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•  This energy will be higher than the energy of an isolated hydrogen atom. This means 
that if the electron were in the σ∗1s orbital of H2

+, the molecule would be less stable 
than the separated hydrogen atom and ion.  

 
 

• A plot of E
+
  and E

−
, the energies of the σ1s molecular bonding orbital 

and anibonding orbitals as  functions of the internuclear distance R/a0 are 
shown below, right. 
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