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“There are three kinds of lies: lies, damned lies, and statistics”  
From “Chapters from my Autobiography”, Mark Twain 1906. 

 
A. Microscopic vs. Macroscopic Properties of Physical Systems 

• Any large scale system contains an enormous number of molecules. 
Example: A liter of oxygen contains at STP about 1.82x1022 molecules.  

• In Chemistry 452 we learned about the thermodynamic properties of large 
scale systems: P, V, T, S, U, G, etc. Individual molecules however are 
characterized by their physical coordinates, velocities, and the kinetic and 
potential energies that are functions of these quantities. 

• One of the important goals of Chemistry 453 is to show you how to relate 
properties of individual molecules to macroscopic properties observed for 
large scale systems.  

• As the diagram below shows, because of the “big data” sets associated 
with large scale systems, we cannot keep track of all the microscopic 
properties and deduce directly from them the macroscopic properties.  

• We require therefore statistical techniques to relate the properties of 
individual molecules to the properties of large scale systems, including in 
particular thermodynamic properties. This field is called Statistical 
Mechanics. 

 
Figure 1.1: Statistical Mechanics relates molecular properties to thermodynamic 
properties 

 
B. Basic Statistical Mechanical Concept: Kinetic Energy vs. Internal 

Energy 
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• In Chemistry 452 we learned for an ideal gas of monatomic particles the 

internal energy U is 3
2
RTU = . We have also learned that for an individual gas 

molecule the kinetic energy is 
2

2
mvE = . Temperature T appears only in U 

while velocity v appears in E. How are these two types of energy related? 
• From the Kinetic Theory of Gases we know that in a mole of gas there exists a 

distribution of velocities. The distribution changes with temperature.  See 
Figure 1.2 

 
Figure 1.2: Distribution of 
molecular velocities x 
(arbitrary units) as a function 
of temperature a (arbitrary 
units).  
 
 
 
 
 
 
 
 
 
 
 
 
 
• From the Kinetic theory of Gases, the internal energy per molecule is equal to 

the average of E. In equation form this is  

 ( )2 233 ,
2 2 2 2

B
n n

nA A

k TU RT m mE v f v T v
N N

= = = = = ∑  (1.1) 

 NA is Avagadro’s number and R is the universal gas constant 
 Boltzmann’s constant is the ratio of R and NA: 
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−= = = ×
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 The notation O  indicates the average of property O 

 ( ),nf v T  is the fraction of molecules that have velocity vn at 

temperature T. ( ),nf v T is called a velocity distribution 
function. It is equivalent to the probability of selecting from an 
ensemble of molecules at a given T, a molecule with velocity 
vn.  

 The curves shown in Figure 1.2 are velocity distribution 
functions. 
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C. Form for the Velocity Distribution Function: Simple Kinetic 
Derivation 
• Distribution functions are used to calculate many types of averages, but the 
velocity distribution function is especially easy to calculate and can be derived 
from a simple physical model.  
• Consider a dilute ideal gas. The gas is so 
dilute that only pairs of gas molecules have 
any chance of colliding. Such a collision is 
shown in Figure 1.3. 

 
Figure 1.3: A bimolecular collision. Prior to the 

collision the red and blue coded molecules have 
velocities u and v, respectively. After the collision 
the velocities are u’ and v’.  

 
• Assuming the two molecules have the same masses, suppose this collision 

has the following properties, 
o Momentum is conserved: mu mv mu mv′ ′+ = +  

o Kinetic energy is conserved; 
2 2 2 2

2 2 2 2
mu mv mu mv′ ′

+ = +  

o The probability of two molecules colliding with velocities u and v 
is equal to the probability of two molecules colliding with 
velocities u’ and v’. This means that occurrence of the reverse 
collision has equal probability to occurrence of the forward 
collision. Mathematically this “time reversal symmetry” is 
expressed as ( ) ( ) ( ) ( )f u f v f u f v′ ′=  

• Suppose we take the logarithm of the time reversal conditional so that  
 ( ) ( ) ( ) ( )ln ln ln lnf u f v f u f v′ ′+ = +  (1.2) 

o We can make a very educated guess about the form of the 
distribution function that will satisfy equation 1.2 and the 
conservation of energy condition: 

 ( )
2

exp
2

muf u α β
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (1.3) 

where α and β are constants to be determined. You should satisfy yourself 
that equation 1.2 leads to the conservation of energy. The exponent has a 
negative sign in its argument because the probability must diminish as the 
velocity increases, see Figure 1.2.  

o The constant α is called a normalization constant and must be 
determined from the properties of f(u) as a probability.  

o Now u is a velocity vector in three dimensions so that from the 
Pythagorean theorem: 2 2 2 2

x y zu u u u= + + . The x, y, and z 
components of u may assume any values between −∞  and +∞  
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o Because f(u) has the meaning of a probability, if we sum (i.e. 
integrate) over all possible values of the ux, uy, and uz, the 
result must be 1. In equation form this means: 

 ( ) 1x y zdu du du f u
+∞ +∞ +∞

−∞ −∞ −∞

=∫ ∫ ∫  (1.4) 

• Evaluating the integral in (1.4) requires some thought. First, substitute the 
expression for f(u) into (1.4) 

 ( )
2

exp 1
2x y z x y z

mudu du du f u du du du α β
+∞ +∞ +∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞ −∞ −∞

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
∫ ∫ ∫ ∫ ∫ ∫  (1.5) 

• We now put the relationship 2 2 2 2
x y zu u u u= + +  into (1.5) 

( )2 2 22

exp exp 1
2 2

x y z
x y z x y z

m u u umudu du du du du duα β α β
+∞ +∞ +∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞ −∞ −∞

⎛ ⎞+ +⎛ ⎞
⎜ ⎟− = − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ ∫ ∫ ∫ (1.6) 

• We now use the property of exponentials to produce of product of three integrals: 

 

( )2 2 2

22 2

exp
2

exp exp exp 1
2 2 2

x y z
x y z

yx z
x y z

m u u u
du du du

mumu mudu du du

α β

α β β β

+∞ +∞ +∞

−∞ −∞ −∞

+∞ +∞ +∞

−∞ −∞ −∞

⎛ ⎞+ +
⎜ ⎟−
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − − − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

∫ ∫ ∫
 (1.7) 

• Except for the x, y, and z subscripts these integrals are equal. We can use the 
symmetry property for the integral of an even function and the standard integral 
expression : 

 
2 2

0

2ax axdxe dxe
a
π+∞ +∞

− −

−∞

= =∫ ∫  (1.8) 

• Using (1.8) we can solve for the normalization constant a in (1.7): 

 

22 2

3

1 exp exp exp
2 2 2

2

yx z
x y z

mumu mudu du du

m

β β β
α

π
β

+∞ +∞ +∞

−∞ −∞ −∞

⎛ ⎞⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ ∫
 (1.9) 

 or  

 
3/2

2
mβα
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (1.10) 

 so that the velocity distribution function is: 

 ( )
3/2 2

exp
2 2
m muf u β β
π

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (1.11) 

• The parameter β can be determined from the expression for the average 
translational energy of an ideal monatomic gas molecule: 
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( )
3/22 2 23 exp

2 2 2 2 2
B

x y z x y z
k T mu mu m muE du du du f u du du du β β

π

+∞ +∞ +∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞ −∞ −∞

⎛ ⎞⎛ ⎞= = = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ ∫ ∫ ∫
 (1.12) 

• The integral in (1.12) is best evaluated in a spherical coordinate system. We use 
the relationship between the unit volumes in Cartesian and spherical coordinates:  

 2sinx y zdu du du d d u duϕ θ θ=  (1.13) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.4: Relationships between velocities in Cartesian and spherical coordinates 
 

• Using the relationship (1.13) and standard integral ranges we obtain 
 

3/2 3/222 2 2 2

0 0 0

3/2 2
4

0

exp sin exp
2 2 2 2 2 2

34 exp
2 2 2 2

x y z

B

mu m mu mu m mudu du du d d du

k Tm m muu du

π πβ ββ ϕ θ θ β
π π

βπ β
π

+∞ +∞ +∞ +∞

−∞ −∞ −∞

∞

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞= − =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ ∫ ∫ ∫

∫
 (1.14) 

• Solving the integral we find that 1

Bk T
β =  and the velocity distribution function 

is: 
 

 ( )
3/2 2

exp
2 2B B

m muf u
k T k Tπ

⎛ ⎞ ⎡ ⎤
= −⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

 (1.15) 
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⎝ ⎠
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• Equation (1.15) is called the Maxwell-Boltzmann velocity distribution function. It 

is the fundamental tool of the Kinetic Theory of Gases.  
 
 
 
 
 
 
 
 
 
Figure 1.5: James Clerk Maxwell (1831-1879, left) was a Scottish physicist, considered by many 
to be one of the greatest physicists of all time, after Newton and Einstein. His crowning 
achievement was development of electromagnetic theory. He also developed independent of 
Ludwig Boltzmann, the kinetic theory of gases. Ludwig Boltzmann (1844,-1906, right) was an 
Austrian physicist who developed independently the kinetic theory of gases, statistical mechanics, 
and promoted in the late 19th-early 20th century, against considerable opposition, atomistic 
physics.  


