Homework Assignment 4
Due at 5 p.m. on Wednesday 2/5/14. Show calculations as well as answers.

1) For a polypeptide composed of N monomers that undergo C to H transitions non-cooperatively, the structural state of each monomer can be treated as a two level system. The energy of the C structure will be $\varepsilon_C = 0$ and the energy of the H structure will be $\varepsilon_H = \varepsilon$. Then the partition function for a single monomer is $Q = 1 + e^{-\varepsilon/k_BT} = 1 + s$. The partition function for a polypeptide composed of N monomers is

$$Q_N = \left(1 + e^{-\varepsilon/k_BT}\right)^N = (1 + s)^N \text{ where } s = e^{-\varepsilon/k_BT}.$$

a) Calculate the Internal Energy divided by T i.e. $\frac{U}{T}$ for this peptide if N=100 and s=1.5.

Note the internal energy U is negative. That is because we set the energy of the coil as zero...but because $s=1.5=[H]/[C]$, the helix is more stable. So its energy is lower than the energy of C... and that makes it negative.

b) Using your result from part a, calculate the entropy S for this peptide if N=100 and s=1.5.

c) Suppose s changes (i.e. the temperature changes) from 1.5 to 5. Calculate the change in helical fraction Δf_H, and the change in entropy ΔS. Explain these changes.

2) As shown in the text (see section 23.11, equations 23.121 and 23.122) and in the lecture notes, the Zipper model has a simple equation for the partition function that can be used to determine helicity f_H: $q = q_0 \left(1 + \sigma \sum_{k=1}^{N} (N-k+1)s^k\right)$ where the term $N-k+1$ is the number of way you can arrange k contiguous H monomers in a peptide chain N monomers long.

a) From the partition function equation given above for the zipper model, it is easily shown that the probability of observing a helical sequence of length k in a peptide N monomers long is:

$$p_k = \frac{q_0\sigma}{q} (N-k+1)s^k$$
For $N=30$, $s=1.0$, and $\sigma=0.0001$, determine the relative probability of observing a helical sequence of length $k=10$ versus $k=25$. Repeat the calculation for $s=5.0$.

b) For $N=30$ and $s=1.5$, and $\sigma=0.001$, what is the most probable helical length k. What is the most probable helical length k if s changes to 5?

c) In the text (see equations 23.121-23.123) it was stated that starting with the expression $q = q_0 \left(1 + \sigma \sum_{k=1}^{N} (N-k+1)s^k \right)$, it can be shown that the partition function for the zipper model can be written as:

$$q = q_0 \left(1 + \frac{\sigma s^2 (s^N + Ns^{-1} - (N + 1))}{(s-1)^2} \right)$$

Using this form for q obtain an expression for the helical fraction $f_H = \frac{1}{N} \frac{s}{q} \frac{\partial q}{\partial s}$. Recall the rule for differentiating the quotient of two functions:

$$\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right) = -\frac{1}{g^2(x)} \left(f(x) \frac{dg(x)}{dx} - g(x) \frac{df(x)}{dx} \right)$$

d) Using your expression for f_H obtained in part c, determine f_H for $N=30$, $s=1.5$, $\sigma=0.001$.

Note: You may get some pretty serious looking expressions if you just plow ahead with differentiating q and then take the ratio of dq/ds and q to get f_H. That will be a lot of really hard and UNNECESSARY work. Because note...for $s=1.5$ and $N=30$, q and dq/ds simplify because terms like s^{N+2} and s^{N+1} are a lot bigger than everything else in the expressions for q and dq/ds. So before you start substituting in numbers...SIMPLIFY q and dq/ds ...and then take their ration and simplify the expression for f_H.

3) In the lecture notes we did not obtain a general expression for the partition function for the Bragg-Zimm model. We constructed q for this model by the laborious process of determining all the conformations and their corresponding statistical weights. In fact the Bragg-Zimm model has an expression for the partition function, but it involves matrix algebra. The Bragg-Zimm partition function equation uses a 2x2 matrix \hat{M} called the statistical weight matrix to generate q. \hat{M} has the following four elements:

i) the upper left hand element of the matrix (i.e. the CC matrix element) is the statistical weight assigned in the partition function to a C monomer that follows another C monomer. This weight is 1.
ii) Similarly in the lower left hand corner (i.e. the HC element) is the statistical weight assigned in the partition function to a C that follows a H. This is again a statistical weight of 1.

iii) In the upper right hand corner (i.e. the CH element) of the matrix is the statistical weight assigned in the partition function to a H that follows a C. This weight is σ.

iv) In the lower right hand corner (i.e. the HH element) is the statistical assigned to a H that follows another H. This weight is s.

With these rules the statistical weight matrix \tilde{M} has the form:

$$\tilde{M} = \begin{pmatrix} 1 & \sigma s \\ 1 & s \end{pmatrix}.$$

To obtain the partition function for a peptide N monomers long we use the expression:

$$\frac{q}{q_0} = (1, 0) \tilde{M}^N (1, 1)$$

where $(1, 0)$ is a row vector with elements 1 and 0 and $(1, 1)$ is a column vector.

For example: Obtain the partition function for a Bragg-Zimm dimer ($N=2$):

Solution:

$$\frac{q}{q_0} = (1, 0) \tilde{M}^2 (1, 1) = (1, 0) \begin{pmatrix} 1 & \sigma s \\ 1 & s \end{pmatrix} \begin{pmatrix} 1 & \sigma s \\ 1 & s \end{pmatrix} (1, 1)$$

$$= (1, \sigma s) (1, \sigma s) (1, 1) = (1 + \sigma s, \sigma s + \sigma s^2) (1, 1) = 1 + \sigma s + \sigma s + \sigma s^2 = 1 + 2\sigma s + \sigma s^2$$

Therefore the partition function is:

$$q = q_0 (1 + 2\sigma s + \sigma s^2)$$

a) Using statistical matrix approach as illustrated above for a Bragg-Zimm dimer, obtain the partition function for a Bragg-Zimm tetramer ($N=4$).

b) Using your expression for a Bragg-Zimm tetramer from part a, calculate the fractional helicity f_H for $s=1.0$ and $\sigma=0.0001$.

c) As mentioned in lecture, for very large values of N, there is a simple form for the Bragg-Zimm partition function: $q \approx \frac{\lambda_1^{N+1} (1 - \lambda_2)}{\lambda_1 - \lambda_2}$, where

$$\lambda_{1,2} = \frac{1 + s \pm \sqrt{(1-s)^2 + 4\alpha s}}{2}.$$ Assumming $N=10000$, $s=1$, $\sigma=0.0001$, justify the approximation $\ln q \approx N \ln \lambda_1$.

d) Calculate the average number of helical monomers $\langle n \rangle$ and the fractional helicity f_H assuming, $N=10000$, $s=1.0$, $\sigma=0.0001$.

4) For a protein with four ligand binding sites the general expression for the binding polynomial Q is:

$$Q = [P](1 + 4k_1[L] + 6k_1k_2[L]^2 + 4k_1k_2k_3[L]^3 + k_1k_2k_3k_4[L]^4)$$

where the
microscopic equilibrium constants $k_1, k_2, k_3,$ and k_4 correspond to equilibria between the
ligand L and the four partially filled or completely filled polymers.

a) In lecture we showed that if $k_1=k_2=k_3=k_4=k$ we obtain the expression for non-
cooperative binding $Q = \left[P\right](1 + k[L])^4$. Calculate the average number of sites bound
\(\langle \nu \rangle\) for $k=100$ and $[L]=0.01\text{M}$. Repeat for $k=100$, $[L]=0.001\text{M}$ and $[L]=0.0001\text{M}$

b) A model used to simulate cooperative binding in hemoglobin is to assume
$$
k_1 = \alpha^3 k; \quad k_2 = \alpha^2 k; \quad k_3 = \alpha k; \quad k_4 = k$$
The parameter $\alpha<1$ and so as more sites are filled with oxygen, the binding
affinity for the remaining sites increases. Using these forms for the microscopic
equilibrium constants, obtain an expression for Q and the average number of sites
bound $\langle \nu \rangle$.

c) Using your results from part b and assuming $k=100$ and $\alpha=0.1$, calculate $\langle \nu \rangle$
for $[L]=0.01\text{M}$, 0.001M, and 0.0001M. Compare to the results for part a.

5) The cooperative binding of oxygen to tetrameric hemoglobin (Hb) is sometimes
represented by the empirical equation
$$f_B = \frac{KP_{O_2}^{\alpha_H}}{1+KP_{O_2}^{\alpha_H}}$$
where P_{O_2} is the pressure of oxygen over a solution of Hb, K is an equilibrium constant
associated with oxygen binding to Hb, and α_H is the Hill constant. For Hb $\alpha_H \approx 2.9$.

a) P_{50} is defined as the pressure of oxygen at which the binding sites on Hb are half
filled i.e. $f_B = 0.5$. For Hb $P_{50}=0.0343\text{ atm}=26\text{ Torr}$. Calculate the equilibrium
constant K.

b) The partial pressure of oxygen in the lungs is 0.13 atm. Calculate the fraction of
sites bound f_B for Hb in the lungs using the equation above.

c) Perform the same calculation as in part b only assume oxygen binds to Hb non-
cooperatively. Explain why we may have evolved a cooperative binding mode for
Hb.

6) Evaluate the translational partition function for Ar confined to a volume 1000cm^3 at
$T=298\text{K}$. At what temperature will the translational partition function of Ne be the same
as Ar in the same volume?