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SUMMARY

Stream health is often measured by the multimetric benthic index of biotic integrity

(B-IBI). For Puget Sound Lowland (PSL) streams, the B-IBI comprises ten metrics

which quantify the well-being of benthic inhabitants of the stream. Each metric

is converted to a score of 1, 3, or 5, where a higher value indicates a healthier

stream with respect to the metric. Summing the metric scores yields the B-IBI.

Stream health is then rated as very poor, poor, fair, good, or excellent according

to the index value.

Different metrics may be measured on different scales. A scoring scheme is

therefore required to standardize values across metrics. Conventional scoring for

the B-IBI metrics requires subjective and space/time-dependent input on the cut-

off points for discretizing each metric. In contrast, simple statistical standard-

ization (centering and division by the standard deviation) appears to be more

natural, is non-study-specific, and maps the metric space onto a continuous scale

centered at 0. Comprising the same ten metrics of the PSL B-IBI, our stream

health index for the Puget Sound Lowland (SHIPSL) is the sum of all statistically

standardized scores. We use benthic taxonomy data on field samples from 1997 to

develop a SHIPSL-based rating scheme of grades A to F for stream health. We also

discuss an alternative version of SHIPSL defined using “gold-standard” values.

Bootstrap simulations are used to compare the performance of the two ver-

sions of SHIPSL to B-IBI in reflecting PSL stream health. Results show that both

versions of SHIPSL are more efficient in measuring stream health. Without sacri-

ficing information on underlying biological conditions, SHIPSL reduces bias and

variability of the health index, and eliminates sensitivity of the rating to slight

changes in the metric scoring scheme.

KEYWORDS: biomonitoring, biotic integrity, stream health, metric scoring, bias

and variability reduction
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1 INTRODUCTION

Monitoring the biological well-being of ecological systems over time is key to the

preservation of our natural environment. The practice is often known as biomoni-

toring. It involves assessment of a non-human biological system for changes due to

human activities. For the Puget Sound Lowland (PSL) of Washington state, mon-

itoring stream health has been an integral part of local environmental research.

Karr (1981) first developed the multimetric index of biotic integrity (IBI) for

assessing the health of Midwestern freshwater systems by quantifying biological

conditions of fish communities. The term “biotic integrity” generally refers to the

state of well-being of an ecological system that has undergone minimal human in-

fluence (Karr, 1999; Karr and Chu, 1999). The IBI was developed to gauge health

relative to this reference point. Ever since, the IBI has been refined (Karr et al.,

1986), localized (Environmental Protection Agencies of coastal and inland states;

other countries, e.g. Australia, Canada, France, Mexico), and adapted to examin-

ing other animal communities (e.g. benthic invertebrates (Kerans and Karr, 1994),

birds (Canterbury et al., 2000)). All such versions of the index retain the multi-

metric structure of the original IBI. Conventional methods of selecting metrics to

compose the index combine scrutiny of a qualitative nature and simple statistical

analyses to screen a large pool of candidate metrics before arriving at a final sub-

set (Karr and Chu, 1999). For PSL streams, Karr (1998) adapted the benthic IBI

(B-IBI) by Kerans and Karr (1994) to include ten metrics (Table 1), while Bunea

et al. (1999) propose a screening procedure that is statistical and can be entirely

automated, although extremely computer intensive.

Most PSL B-IBI metrics (e.g. total number of taxa) yield count data over a

large range, while some give percentages over a continuous scale from 0 to 100.

To combine health information provided by various metrics measured on different

scales, Karr et al. (1986) devised the following metric scoring scheme:
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• from the study region, identify reference sites, i.e. sites along streams that

are least impacted by human activities;

• for a given metric:

– rank all field samples from reference sites (often multiple samples from

same sites) from worst to best health with respect to the metric;

– if necessary, adjust this ranking for its relationship with stream size;

– trisect the resulting ranking;

– use this reference trisection to determine cutoff values on the metric

scale for assigning a score of 1 (worst), 3, or 5 (best).

As the set of metrics is specific to a certain study region (Brinck, 2002), local

scoring criteria are recalibrated only under unusual circumstances. For example,

many PSL benthic species that were taxonomically identified as non-long-lived in

the mid-1990’s have recently been identified as long-lived. Thus, the scoring crite-

ria for 1994 are different from those used for, say, 1997 for all ten metrics (Table 1).

Once the scoring criteria are considered appropriate for a given year, each PSL

stream site being studied receives a B-IBI value equal to the sum of its ten metric

scores. Therefore, the PSL B-IBI is an even number between 10 and 50.

Devising a metric scoring scheme as above is, by design, subject to personal

judgment and local policy preferences (Boulton, 1999; Lackey, 2003). This is par-

ticularly true in selecting metrics and reference sites (McCormick et al., 2001)

and trisecting stream rankings. While the former relies on the knowledge of and

painstaking efforts by experts in the subject matter, the latter often involves fitting

lines by eye through points on a graph (Karr et al., 1986; Harris and Silveira, 1999;

Karr and Chu, 1999; USDA-NRCS, 2003). Moreover, there has been concern over

the arbitrariness of the score values, so that other discrete or continuous scales
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have been proposed for the scoring (USDA-NRCS, 2003). Nevertheless, this pro-

cess of calibrating scoring criteria continues to be widely practiced for IBI metrics.

For the PSL, Bunea et al. (1999) propose two statistically based “trisection”

schemes that entirely remove subjectivity and appear to perform no worse than the

traditional trisection method. However, it remains unclear what values are most

sensible for metric scores. Our goal here is to introduce a new health index for PSL

streams whose metric scoring mechanism eliminates subjectivity and painstaking

efforts, and, at the same time, is statistically sensible. We will also discuss the

desirable statistical properties of this index.

2 SHIPSL: A NEW STREAM HEALTH

INDEX

Our new Stream Health Index for the Puget Sound Lowland (SHIPSL) comprises

the same ten metrics as the PSL B-IBI (Table 1). (We do not attempt to discuss

the appropriateness of these metrics in this article.)

Let there be a total of n sites in the study, and let yijk denote the i-th site’s

value for metric j in the k-th replicate sample, i = 1, . . . , n, j = 1, . . . , 10, and

k = 1, 2, 3. (Each PSL stream site is commonly sampled three times per study.)

Thus, the data can be arranged as

Yk =




y1,1,k y1,2,k . . . y1,10,k

y2,1,k y2,2,k . . . y2,10,k

...
...

...
...

yn,1,k yn,2,k . . . yn,10,k


 , k = 1, 2, 3,

and each row comprises the ten metric values for that site’s k-th replicate sample.

In the spirit of the B-IBI, we average the yijk’s over k, and denote the resulting

data by Y =
[
yij

]
, where yij = (1/3)

∑
k yijk. Note that for B-IBI, “# long-

lived taxa” and “# intolerant taxa” are pooled instead of averaged over replicates

— i.e. the metric value is that of a super-sample formed by combining all three
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replicate samples — then scored as 1, 3, or 5. For SHIPSL, however, metrics are

always averaged over replicates for the sake of consistency.

2.1 Standardization: simple and natural

A statistician’s most natural metric scoring scheme is simple standardization.

For example, metrics that are positively associated with stream health (all but

“% tolerant taxa” and “% three most dominant taxa”) are scored as

zij = j-th metric score for i-th site =
yij − yj

sj

(1)

where yj and sj are the mean and sample standard deviation (SD), respectively, of

column j of Y. For the two metrics that are negatively associated with health, zij is

the negative value of the standardized yij. Similar to B-IBI, we take the i-th site’s

SHIPSL value to be the sum of it’s metric z-scores and denote it by wi =
∑

j zij.

In general, should the association between metric j (for some j) and stream size

be deemed significant, raw metric values yijk’s may be adjusted via, say, regression,

before being averaged over k then converted to zij’s (see Section 4). However,

information from available sources (e.g. Morley, 2000; SalmonWeb) indicates that

PSL streams considered in recent B-IBI studies fall in the “small” or “low stream

order” category, and correction for stream size is apparently unnecessary.

Simple standardization is a statistically-based calibration method that is sys-

tematic and eliminates personal judgment. The same method can be equally

applied in any geographical region and under any time frame regardless of the

current / local protocol for taxonomic definitions. While spatial and temporal

scales affect the metric score values through the mean and SD that appear in

the scoring equation, the scoring method is entirely scale-independent. This is an

advantage over calibration methods, such as those employed by different versions

of the IBI, which require experts’ input that may greatly differ over time and

space. Moreover, metric z-scores are continuous and centered at 0, and similarly
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for SHIPSL values, wi’s, by definition. One can expect most SHIPSL values to fall

within ±20 based on the properties of standardized scores. Therefore, the sign

and magnitude of a metric z-score or SHIPSL value immediately provide intuitive

information about the site’s condition relative to all other sites being studied.

Note that the definition of SHIPSL eliminates the need for reference sites if

one is interested in comparing sites within a single study, or if the same set of sites

is monitored over time. When a value is standardized, it is automatically scored

against the extreme values of the dataset. As least- and most-impacted sites are

expected to produce extreme values for most metrics, SHIPSL z-scores should be

no less effective than B-IBI metric scores in distinguishing between healthy and

unhealthy sites, so long as both kinds of extremes are included in the study.

2.2 Gold-standard SHIPSL for monitoring health over time

For monitoring a single site i over subsequent years without collecting new data

from other sites, the same field data on all sites from the current year may be used,

with data on site i replaced by newly collected data. Metrics are then rescored

over all sites and new SHIPSL values computed. This way, all sites from this year

except site i act as “reference sites” in subsequent years.

A similar approach involves using “gold standard” values for the metric mean

and SD in the scoring formula. Denoted by µj and σj, these pre-determined gold

standards respectively replace yj and sj of (1). The resulting metric score is

z
(g)
ij =

yij − µj

σj

. (2)

The SHIPSL index thus defined is referred to as the gold-standard SHIPSL (GS-

SHIPSL). GS-SHIPSL for site i is then w
(g)
i =

∑
j z

(g)
ij .

Much like the speed of light relative to which the world’s fastest traveling ob-

jects are gauged, gold standard mean and SD provide pivot points upon which

metric values are weighed. Such gold standards may be computed using, say, ob-
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servations from a randomly chosen year made on “reference” sites which are ran-

domly chosen from a nation-/continent-wide census-enumeration-type database.

One may then reuse the same gold standards, or compute new values from resam-

pled year-site combinations, neither of which involves a subjective definition of

reference. (The idea of gold standards is not restricted to SHIPSL but possibly to

other multimetric biological indices.) Section 3.6 below examines the performance

of GS-SHIPSL. The reader may refer to Chiu and Guttorp, 2004 for a more de-

tailed discussion of the properties of GS-SHIPSL. The non-gold-standard version

of SHIPSL will be referred to as “ordinary SHIPSL” or simply “SHIPSL” in the

remainder of this article.

2.3 SHIPSL versus B-IBI: a case study

To compare B-IBI’s and SHIPSL’s performance in reflecting stream health, we

apply these indices to the 1997 and 1998 datasets taken from Morley, 2000. Rock

Creek and Thornton Creek were sampled in both years. Respectively, they are

among the least- and most-impacted streams of the PSL region (Karr, 1998).

Therefore, we expect the SHIPSL metric scoring scheme to be reasonable here.

As universal values of metric mean and SD are currently rare in practice, GS-

SHIPSL is excluded from this comparison.

Figure 1 shows the distributions of B-IBI and SHIPSL values (upper two pan-

els), as well as their scatterplots (lower panel). Although they reside on different

scales, the two indices are highly correlated (0.965 and 0.979, respectively, for 1997

and 1998) and have similar distributional shapes. The scatterplots show that the

high correlation is not solely driven by the streams on the extremes of the B-IBI

and SHIPSL scales. Moreover, SHIPSL’s continuous scale removes some of the

clustering in B-IBI values, as is apparent in the tails of the histograms and the

center of the scatterplots where many data points are vertically aligned. Alto-

gether, SHIPSL is shown here to reflect most of the information carried by the
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conventional B-IBI while being more naturally intuitive and much easier to be

localized (see Section 2.1 above).

Two more scatterplots are shown in Figure 2. Each has an x-axis of “percent-

age of land cover (urbanized area) for the stream’s basin.” Morley (2000) uses

this variable to measure the degree of impact on streams. The y-axis is “index

value,” although the SHIPSL plotted is rescaled to have a similar range as B-IBI

on the plot. This way, the features of the indices’ relationships with impact are

overlaid and can be easily compared. Again, we see that both B-IBI and SHIPSL

reflect similar information, and in particular, the dependence between stream

health and human influence. However, the middle region of the lower plot (1998)

shows a tighter clustering of SHIPSL values, i.e. SHIPSL yields a smaller dispar-

ity among mid-ranked streams. This phenomenon is clear for Little Bear Creek

Basin (x=54), Laughing Jacobs Basin (x=59), and Swamp Creek Basin (x=70).

Streams on the extremes of the health scale can be easily rated by a knowl-

edgeable naturalist without the use of any health index. Thus, the importance of

a stream health index lies in how accurately and precisely it reflects the condi-

tions of streams around the center of the health distribution. Besides 1998, does

SHIPSL generally portray these mid-ranked streams as less variable than does

B-IBI? If so, is SHIPSL not reliably reflecting the underlying state of nature, or is

B-IBI too prone to chance variation, yielding unnecessary disparity between sites

of similar health? We investigate this in Section 3 below.

3 EFFICIENCY AND SENSITIVITY:

A BOOTSTRAP STUDY

Fore et al. (1994) conduct several bootstrap simulations to investigate statistical

properties of the IBI. The desirable properties reported include approximate nor-

mality and constant variance, and efficiency in distinguishing sites (high power in

9



pairwise t-tests). A negative property reported is the index’s biasedness. These

results have since been extrapolated to other versions of IBI (Karr and Chu, 1999).

In this article, we employ bootstrapping in a different setup. Only one boot-

strap simulation of 10,000 samples is obtained. Subsequently, all comparisons

between B-IBI and SHIPSL are made based on the same bootstrap samples.

Our investigation is broken down as follows. The field data from which boot-

strap samples are drawn are described in Section 3.1. In Section 3.2, biasedness

of B-IBI is further investigated and contrasted against SHIPSL’s unbiasedness.

Additionally, the precision of the two indices is compared. In Section 3.3, the

indices’ efficiency in detecting pairwise differences between sites is examined. In

Section 3.4, we investigate the performance of the B-IBI five-point classification

scheme of stream health, and its sensitivity to field noise. A new SHIPSL-based

six-point grading scheme is proposed and studied in Section 3.5. Finally, Sec-

tion 3.6 summarizes some findings of Chiu and Guttorp (2004) about GS-SHIPSL.

3.1 The data

Our bootstrap study is based on the 1997 PSL data of Morley, 2000. Three

replicate field samples were obtained from each of 18 sites (see Note (3) below).

Benthic organisms were taxonomically identified. Thus, metric values can be

computed for each replicate field sample and converted to B-IBI metric scores (1,

3, or 5) and SHIPSL z-scores. These scores are then summed accordingly to yield

B-IBI and SHIPSL values. We refer to these as the observed index values.

Bootstrap samples are drawn from each replicate field sample to retain the

structure of within-site variability. For a field replicate containing n benthic or-

ganisms, a bootstrap replicate is obtained by randomly sampling n individuals

with replacement. Metric values, B-IBI and SHIPSL metric scores, and B-IBI

and SHIPSL index values are subsequently computed from the bootstrap repli-

cates. We obtain 10,000 sets of bootstrap replicates per site. The consistently
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high correlations between bootstrap B-IBI and SHIPSL values (between 0.92 and

0.99, with mean 0.96) confirm the notion from Section 2.3 that SHIPSL preserves

exceptionally well the biological information contained in B-IBI.

Notes. (1) Only metric scores and final B-IBI values are reported in Morley,

2000. We separately obtained the corresponding raw benthic taxonomy data that

were required for the bootstrap analysis. (2) Our computation using these raw

values yields a slight discrepancy in the Plecoptera metric score for site LB4 (1

instead of 3 as in Morley, 2000). (3) The raw data include different replicate sets

for Thornton Creek (TH1): a set of only two replicates observed on an earlier

date, and a set of three replicates observed on a later date. One can verify that

Morley bases her TH1 values on the earlier set. Instead, we use the later set for

our bootstrap study so that there are three replicates for all 18 sites.

3.2 Bias in sample mean and standard deviation

In their bootstrap study, Fore et al. (1994) show that IBI is significantly biased.

They argue that it is likely due to the discrete three-point scale for metric scores.

Our results confirm that the PSL B-IBI also exhibits this biasedness, as shown

by the upper left histogram of Figure 3. It suggests that for a bootstrap field

sample, the 18 sites have an expected mean B-IBI of around 26.95, which is 2.77

standard errors below the observed sample mean of 27.67. This underestimation

is highly significant. In contrast, SHIPSL has zero mean by definition; hence, all

bootstrap samples have mean SHIPSL values that are exactly 0 (Figure 3, lower

left histogram). Therefore, using SHIPSL in place of B-IBI entirely eliminates

bias of the sample mean.

We can also consider biasedness for individual sites. The mean of a given site’s

bootstrap B-IBI or SHIPSL distribution differs from the site’s observed index value

(Figure 4; Table 2) due to chance variation and possibly bias. Fore et al. note

that site-wise bias for IBI is negatively correlated with index value. Using Table 2,
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we see that this is also true for the PSL B-IBI (r = −0.63 with all sites, one-sided

p = 0.00; r = −0.41 with most influential site removed, one-sided p = 0.05), but

unlikely so for SHIPSL (r = −0.23, one-sided p = 0.19).

Statistical accuracy or unbiasedness is less relevant if bias can be efficiently

estimated and corrected for accordingly. However, the overall effectiveness of a

measure (after bias correction, if necessary) in reflecting underlying conditions de-

pends heavily on the measure’s precision: the higher its variability or uncertainty,

the less precise it is. Figure 3, right panel shows the distributions of sampling

variability (standard deviation) for B-IBI and SHIPSL bootstrap field samples,

respectively. Note that the histogram’s SD is approximately the standard error of

the SD of a field sample.

The upper histogram’s central value is 8.46, which is 1.72 standard errors

below the actual SD of 9.06 for the observed field sample in 1997. This indicates

that B-IBI’s true variability is significantly underestimated (5% level), and hence,

is more severe than what can be measured from a field sample. Ignoring this

negative bias would be unwise. For instance, hypothesis testing may be used to

compare the health conditions between sites (Fore et al., 1994; Karr and Chu,

1999). As the technique involves division by SD, a minor difference in health may

be mistaken to be significant due to a sample SD that is falsely small. Similar logic

applies to confidence intervals (C.I.’s) for an underlying IBI value. In contrast,

the underestimation is minimal for SHIPSL (the lower histogram’s central value

is less than half a standard error below the observed field sample SD), and could

well be due to the artificial resampling environment of the bootstrap.

A proper comparison between B-IBI’s and SHIPSL’s precision involves correc-

tion for bias in the bootstrap SD’s (BSD’s) and transformation onto a common

scale. The former merely requires adding a correction factor equal to the absolute

difference between the mean of the BSD histogram and the observed field sample

SD. However, it is unclear what is required for the latter. An ad hoc transfor-
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mation similar to the rescaling for Figure 2 is to (i) divide the bootstrap B-IBI

index values by the mean of the 10,000 BSD’s, and similarly for SHIPSL; (ii) pro-

duce BSD histograms for these rescaled B-IBI and SHIPSL distributions (both

are now centered at 1); and (iii) correct these histograms for bias. The resulting

distributions are shown in Figure 5(a). We see that the intrinsic variability is

1.07 for B-IBI and 1.01 for SHIPSL. That is, B-IBI appears to be more variable

than SHIPSL by a factor of 1.06 or an extra 6%. Figure 5(a) also shows a smaller

spread for the SHIPSL BSD’s, suggesting that the sample SHIPSL SD is a more

reliable measure of variation.

In practice, variability or uncertainty in a measure translates to inefficiency or

weak power in detecting the true state of nature, and insensitivity to true change.

Section 3.3 below further investigates this issue.

Another way to perceive a measure’s uncertainty is its sensitivity to random

noise. Aside from the intrinsic variability of a measure, chance variation exists

in field data, such as the differences among replicate samples taken from the

same site. Therefore, if a field dataset exhibits extra noise, B-IBI can potentially

show extra fluctuation that does not necessarily represent disparity in true health

among sites. In this case, the health rating for a stream based on its B-IBI value

may be less reliable. This aspect is further discussed later in Section 3.4.

3.3 An ad hoc power analysis

To determine how much more readily SHIPSL is in detecting a difference be-

tween sites than is B-IBI, we examine the two indices’ empirical coverage of 95%

bootstrap C.I.’s for pairwise differences in mean.

First, suppose we knew the joint probability distribution of B-IBI measure-

ments for all 18 sites, and likewise for SHIPSL. Then, for both indices, we could

develop an exact formula for a 95% C.I. for mean difference (i.e. difference in

mean) between any two sites, and compute the actual power of rejecting the null
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hypothesis of no difference when 0 is excluded from the C.I.

In reality, we approximate the marginal B-IBI and SHIPSL distributions by

their respective bootstrap distributions (Figure 4). Moreover, as we do not have

the theoretical formula for the C.I. for mean difference, we compute it based on

the bootstrap distribution of difference in measurement between two sites.

Let δ denote the mean difference between two bootstrap distributions. Each

distribution yields a single bootstrap C.I. which does not allow assessment of power

given δ. Proper analysis of power as a function of δ would involve bootstrapping

the bootstrap (resampling many times from a bootstrap distribution) which is

extremely computer-intensive due to the large number of sites. Instead, we con-

sider the power of detecting various non-zero δ’s as a whole. For each of B-IBI

and SHIPSL, there are a total of 153 pairwise comparisons over the 18 sites,

and hence, 153 distinct non-zero values of δ. (The set of B-IBI-δ’s is, of course,

different from the set of SHIPSL-δ’s. See Table 2.) Our ad hoc power analysis

considers the coverage of the 153 bootstrap C.I.’s computed at an individual confi-

dence level of 95% (Table 3). Coverages are 26.8% and 18.3%, respectively, for the

B-IBI and SHIPSL C.I.’s. That is, SHIPSL reduces coverage by over 8%, or, the

power to detect a non-zero difference between two sites is improved by almost 12%

(81.7/73.2−1) when SHIPSL is used in place of B-IBI for these data. Furthermore,

the off-diagonal entries indicate the index’s tendency to detect a difference which

the other index has missed, and SHIPSL is twice as efficient in this respect. Over-

all, improvement in power is likely due in part to a continuous scale for SHIPSL

instead of an even-numbered B-IBI scale which makes it difficult to detect a mean

difference of less than two. Weakened power due to scale compression is discussed

by Blocksum (2003) and summarized by Chiu and Guttorp (2004).

3.4 Stream health rating and its sensitivity to noise

The widely used five-point rating of “very poor” to “excellent” is adapted for PSL
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streams from the fish IBI-based classification by Karr et al. (1986). Due to B-IBI’s

weaker power, this rating scheme possibly underclassifies some pairs of sites with

significantly different B-IBI values. This phenomenon is analogous to a Type II

error in hypothesis testing.

While the goal in Section 3.3 was to examine how readily a C.I. could detect

a difference in health between any two given sites, here, we instead consider the

the set of health ratings for all 18 sites as a whole. Therefore, all 153 pairs of

sites are compared simultaneously at a family-wise 5% significance level. Table 4

shows simultaneous 95% C.I.’s for the mean difference of those pairs in 1997 that

are underclassified by the B-IBI rating scheme. (See Remark 1 below for the

computation of such C.I.’s.) Note that no sites are underclassified by the SHIPSL

six-point grading scheme, which will be discussed in Section 3.5 below.

One may expect overclassification (analogous to a Type I error) to be not

serious when underclassification is predominant. However, note the pairwise com-

parisons that yield different ratings based on this scheme, despite 0 being covered

by the simultaneous 95% C.I.’s of mean differences (top half of Table 5).

Moreover, as noted in Section 3.2, this five-point classification is potentially

highly sensitive to extra field noise. To this end, we make slight changes to all

cut-points in the metric scoring criteria and investigate the resulting changes in

health rating. Although not equivalent to adding extra noise to the field data,

jittering the cut-points in the metric scoring criteria suggests how sensitive the

B-IBI-based rating scheme could be to increased variability in field samples.

For each of the eight metrics whose replicate values are averaged before scoring,

noise that is small relative to the original 1-3 and 3-5 cut-points is independently

generated from a normal distribution, then added to the cut-points. For the two

metrics (long-lived and intolerant taxa counts) whose values are obtained from

pooled replicate field samples, similar noise — but from a Poisson distribution —

is added to the corresponding cut-points. (See Remark 2 below for more details.)
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The resulting “jittered” scoring criteria are shown in Table 1.

Figure 6 shows examples that demonstrate the sensitivity of the five-point rat-

ing to these changes. Points outside the diagonal blocks indicate stream health rat-

ings that are altered by the jittered scoring criteria. (Those sites whose bootstrap

health ratings remain unaltered are JE1 (shown), BB2, BB3, BB4, LB1, LB3, and

MI1 (not shown).) Note that each plot consists of 10,000 bootstrap values, many

of which overlap due to the discrete scale for B-IBI. To unmask the extent of

the alteration, we tabulate the off-diagonal elements in Table 6. The breakdown

suggests that stream health rating may change as often as 50% of the time, and

the change tends to move a site towards the middle category of “fair” health.

Remark 1

In previous sections, bootstrap C.I.’s at an individual 95% confidence level were

obtained by taking the 2.5-th and 97.5-th percentiles of the bootstrap distribu-

tions. Another way to obtain bootstrap C.I.’s is via the quantiles of bootstrap

Studentized values. Denote the bootstrap differences between sites i and j by δ∗ijk,

for i, j = 1, . . . , 18, i 6= j, and k = 1, . . . , 10 000. The Studentized differences are

tijk = (δ
∗
ijk − δ

∗

ij)/s
∗
ij, where δ

∗

ij and s
∗
ij are the mean and SD, respectively, of the

bootstrap sample of δ∗ijk’s. For fixed (i, j), let `ij and uij be the lower and upper

100(α/2)-th percentiles of the tijk’s. An individual 100(1−α)% bootstrap C.I. for

the unknown δij is then

[δ
∗

ij − uijs
∗
ij, δ

∗

ij − `ijs
∗
ij

]
. (3)

In this section, the quantiles `ij’s and uij’s need to be adjusted for a family-wise

confidence level of 95%. We wish to have

0.95 ≤ P
{
δ
∗

ij − uijs
∗
ij ≤ δij ≤ δ

∗

ij − `ijs
∗
ij for all i 6= j

}

= P

{
`ij ≤

δ
∗

ij − δij

s∗ij
≤ uij for all i 6= j

}

16



≤ P

{
min
i,j

`ij ≤
δ
∗

ij − δij

s∗ij
≤ max

i,j
uij for all i 6= j

}

= P

{
min
i,j

δ
∗

ij − δij

s∗ij
≥ min

i,j
`ij and max

i,j

δ
∗

ij − δij

s∗ij
≤ max

i,j
uij

}
. (4)

Write t
(0)
k = mini,j tijk, t

(1)
k = maxi,j tijk, ` = mini,j `ij, and u = maxi,j uij.

Then, the probability in (4) can be approximated by
(
#{t

(0)
k ≥ `} + #{t

(1)
k ≤

u}
)
/10 000. That is, ` can be approximated by the 2.5-th percentile of the t

(0)
k ’s,

and u, by the 97.5-th percentile of the t
(1)
k ’s.

The bootstrap distributions of tijk’s (not shown) exhibit heavy skewness and

bias for B-IBI for some (i, j) pairs, but are unbiased and nearly normal for SHIPSL

for all (i, j). Thus, for the former, the estimated quantiles should not be applied

to (3) uniformly over all (i, j). Instead, we take the estimated SHIPSL quantiles

of ̂̀ = −3.53658 (for upper C.I. limit) and û = 3.37374 (for lower C.I. limit),

and obtain the corresponding standard normal tail probabilities of 0.000203 and

0.000371. That is, simultaneous 95% C.I.’s for δij’s (B-IBI or SHIPSL) have ap-

proximate individual confidence levels of 99.9426%. Subsequently, such C.I.’s are

obtained by taking the 0.0371-st and 99.9797-th percentiles of the bootstrap δ∗ijk’s.

Remark 2

Small random noise was independently generated for all 20 cutoff points in the B-

IBI scoring criteria (Table 1). The distributions used were Normal(0.25, 0.052) for

Ephemeroptera, Plecoptera, Trichoptera, and clinger metrics; Normal(0.5, 0.12) for

total taxa; Normal(1, 0.22) for the percent tolerant and percent dominant metrics;

Normal(0.1, 0.022) for percent predators; and Poisson(1) for long-lived and intoler-

ant metrics. Generated values (all positive) were then multiplied by±1 at random.

3.5 A new SHIPSL-based rating

Based on the 18 bootstrap SHIPSL distributions for the 1997 data, we devise a
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scale of six grade points: A, B, C, D, E, and F, in descending order of health (Fig-

ure 7). (We leave the physical interpretation of each grade point to the expertise

of ecologists.) The cut-points for this scheme are chosen so as to minimize the

overlap of bootstrap distributions between grades. With the exception of a few

sites (possibly BB2 and JE1 for grades B and C, and BB1, LB2, and SW2 for

grades C and D), slight random noise added to the original field samples would

rarely cause the means of these SHIPSL distributions to fall into a different grade.

Consequently, sensitivity of the rating scheme to extra field noise is reduced.

Another goal of this new scheme is to reduce possible underclassification of

sites. Table 4 indicates that the six-point scale eliminates underclassification at a

5% family-wise significance level. However, the bottom half of Table 5 shows that

the SHIPSL grading overclassifies some sites where the B-IBI five-point scale does

not. This is likely due to a higher power in SHIPSL for detecting a true difference

between sites (see Section 3.3).

Note that our grading scheme is developed solely based on the 1997 PSL data.

Ideally, we would compare its performance in reflecting stream health across vari-

ous years. However, except for the years 1994 and 1998, we have difficulty obtain-

ing PSL data that are either published or accompanied by detailed documentation

of the data’s various attributes. As taxonomic identification of PSL benthic species

has recently changed (see Section 1), putting the 1994 data together with later

data poses a challenge: How would one assess the applicability of the same B-IBI

or SHIPSL rating scheme across years over which metric scales have changed?

This issue is somewhat analogous to that in Brinck, 2002, between metrics

identified by dataset-specific methods and the ten chosen B-IBI metrics. It is

suggested that data-specific metric sets are inconsistent from year to year; hence,

they may not properly reflect the underlying biological conditions being measured.

In contrast, the B-IBI metrics are calibrated such that they are constant over

time. From this, one may argue that the B-IBI scale is unaffected by changes in
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the metric scales over time, whereas it may not be so for SHIPSL.

Here, we compare the SHIPSL and B-IBI ratings over 1994, 1997, and 1998

through Figure 8. The minimum SHIPSL value in 1994 is somewhat larger than

that for the later years. This possibly suggests that the lower grades (E and F) of

the 1997-based SHIPSL grading are not appropriate for 1994. However, the rela-

tive positions of modes, valleys, and inflection points among the B-IBI distribu-

tions are highly comparable to those among the SHIPSL distributions aside from

the 1994 left tail. In addition, the “poor” and “fair” B-IBI categories closely re-

semble the “D” and “C” SHIPSL grades. Therefore, sites rated “very poor” by the

B-IBI scheme apparently can be further broken down into SHIPSL grades “E” and

“F”. Note that the SHIPSL scheme seems to assign an “A” grade to slightly more

sites than the B-IBI scheme would an “excellent” rating.

One may be tempted to conclude from Figure 8 that PSL streams have im-

proved in overall health since 1994. However, these are cross-sectional data which

cover different monitoring sites across different years. Sites along the same water

channel are seldom sampled again at exactly the same geographical locations as

previous years. Therefore, it is important to note that inference for health trend

should not be drawn from distributions of stream health indices unless the same

sites are involved over time.

3.6 Performance of GS-SHIPSL

As universal values are currently rare in practice, we treat {yj, sj} of the original

field sample from 1997 as {µj, σj} in the bootstrap version of (2). That is, for

each of the 10,000 bootstrap samples,

z
(g)∗
ij =

y∗ij − yj

sj

is the (i, j)-th bootstrap GS-SHIPSL metric score, where “∗” denotes a bootstrap

value (as opposed to an observed value from the field, denoted without “∗”). Below
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is a summary of the findings for GS-SHIPSL based on Chiu and Guttorp, 2004.

Result 1 On the surface, GS-SHIPSL appears to behave similarly to B-IBI with

respect to bias in sample mean and SD (see Figure 9, “before” curves) and to

a negative correlation between site-wise bias and index value. Fore et al. (1994)

attribute the latter phenomenon for B-IBI to heavy compression of extreme met-

ric values into scores of 1 and 5. However, it does not explain the correlation for

GS-SHIPSL, whose metric scores are allowed to move freely in either direction

of an unbounded, continuous scale. A closer look at the bootstrap resampling

mechanism reveals severe negative bias in bootstrap mean and SD for all seven

taxa richness (count) metrics, but not for percentage metrics (Table 7, “count”

columns). One reason for this bias is that a taxa richness metric tallies the pres-

ence of many different taxa, so that a taxon that is absent in an observed field

sample is always absent in a bootstrap resample. Consequently, the bootstrap

values of a taxa richness metric can never exceed the observed field value, and

their range is severely reduced. In the context of resampling from field samples,

this limitation of the bootstrap heavily distorts the randomness that occurs across

samples in practice.

Result 2 When bias adjustments are made to the bootstrap distribution for each

of the seven taxa richness metrics, GS-SHIPSL behaves more closely to SHIPSL

than B-IBI (see Figure 9, “after” curves). In particular, biases in sample mean and

SD are insignificant for GS-SHIPSL (one-sided p ≥ 0.4 for both), and so is the neg-

ative correlation between site-wise bias and index value (one-sided p = 0.2). For

B-IBI, although bias in sample mean is also insignificant here (one-sided p = 0.4),

bias in sample SD is borderline significant at a 10% level, and the negative cor-

relation remain highly significant (one-sided p = 0.1). Furthermore, (a) intrinsic

variability of B-IBI remains higher than both versions of SHIPSL, (b) intrinsic

variability is comparable between both versions of SHIPSL, and (c) the error
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in sample SD is smaller for GS-SHIPSL than B-IBI (and smallest for ordinary

SHIPSL; see Figure 5(b)). Thus, when artificial biases due to the bootstrap

mechanism are corrected for, general conclusions from Sections 3.2 and 3.3 (ex-

cept for the bias in B-IBI’s sample mean) can be generalized to include either

version of SHIPSL. Consequently, assuming that current protocols for collecting

and identifying benthic organisms from the field produce metrics which well re-

flect underlying population conditions, both versions of SHIPSL have statistical

properties that are (1) highly comparable, and (2) generally more desirable than

those exhibited by the B-IBI.

4 DISCUSSION

Biomonitoring largely involves the tracking of human-induced environmental degra-

dation over time. When subjectivity plays a major role in the monitoring scheme,

scientific integrity of any conclusion drawn from such studies may be sacrificed.

For example, ideas of what values of certain variables indicate a “healthy” ecosys-

tem could be influenced by local policy preferences, thereby differing across geo-

graphical regions. Thus, one should be cautious about the current popular use of

ecological health indices such as the IBI in devising public policy. Due to a lack of

protocols that unify expert opinions across nation (continent), existing methodolo-

gies for gauging ecological health perhaps should be modified to reduce protocol-

dependence. The SHIPSL scoring scheme is one such modification, as it removes

personal judgment from metric calibration.

For PSL streams, B-IBI values reportedly vary little from one year to the next

(Karr, 1998; Brinck, 2002); yet our findings in Section 3.2 indicate otherwise.

As a measure, B-IBI seems volatile: it underestimates stream health, and the

underlying amount of uncertainty (variability) in this measure is much higher than

what is portrayed by its values observed from field samples. The latter remains
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true even after bootstrap bias in metric mean and SD have been removed. Such

a property poses reliability questions about the SD values reported in, say, Fore

et al., 1994 and Karr and Chu, 1999. As the index varies widely over repeated

(bootstrap) sampling from the same site in the same year, a likely scenario is for

the stream’s underlying health to have greatly degraded in one year, and yet the

large uncertainty of the index produces very similar values for consecutive years.

Altogether, these undesirable properties make it questionable to rely heavily on

the B-IBI as a “report-card” measure when monitoring stream health over time.

We propose SHIPSL as an alternative. It employs standardization as a metric

scoring scheme. Standardization is a great improvement to the use of the discrete

1-3-5 scale or the continuous [0,1] or [0,10] scales, because it maps metric values

to an unbounded real line centered at 0, immediately providing an intuitive inter-

pretation of the metric z-scores or SHIPSL values. While no standard protocol

is available for the selection of IBI reference sites (USDA-NRCS, 2003), SHIPSL

reference sites and recalibration of its scoring mechanism are unnecessary regard-

less of time (when assessing the same set of sites) and space of the study. When

a single site is to be longitudinally gauged against some constant “reference,” we

propose the use of GS-SHIPSL which employs non-subjective gold standards in

its metric scoring scheme. Besides the selection of appropriate metrics, virtually

no human input is required in the development of a (GS-)SHIPSL-like index for

any geographical region.

We provide the following guideline for developing a localized version of (GS-

)SHIPSL for streams outside of the PSL:

1. Arrive at a final set of metrics that are deemed efficient indicators of eco-

logical health.

2. Ensure that least- and most-impacted sites are included in the study (ordi-

nary SHIPSL), or define census-based gold-standard mean and SD for each
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metric (GS-SHIPSL).

3. Collect the same number of replicate samples from all streams being studied.

4. Determine raw metric values from field samples.

5. Identify metrics that are associated with stream size or other obvious exter-

nal factors, then produce new metric values corrected for the association via

some form of regression (e.g. generalized linear models). Denote the final

set of metric values by Y∗.

6. As outlined in Section 2, average the values in Y∗ over replicate samples,

convert them into metric z-scores using sample metric mean and SD (ordi-

nary SHIPSL) or gold-standard counterparts (GS-SHIPL), then sum them

to obtain health index values w’s.

The advantages of either version of SHIPSL go far beyond ease of intuitive

interpretation and localization. Our results indicate that SHIPSL is comparable

to B-IBI in the information it carries about underlying biological conditions. Sta-

tistically, SHIPSL appears to be more reliable than B-IBI in measuring stream

health, as it removes bias and is less prone to chance variation, thus more ef-

ficiently reflecting the true state of health among streams. Most importantly,

SHIPSL achieves all of these without adding any technical requirement to con-

ventional biomonitoring.

However, two issues remain unresolved. Firstly, we have seen that bootstrap

index values can be distorted by bootstrap taxa richness which can never exceed

observed taxa richness from field samples. While conclusions for GS-SHIPSL are

drawn based on bias-corrected bootstrap distributions of taxa richness metrics, it

is unclear how one may verify that these corrections are appropriate for actual

field sampling practices. Concerns over bias due to the bootstrap are further

addressed by Chiu and Guttorp (2004), who propose the use of percentage-valued
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counterparts to replace conventional integer-valued taxa richness metrics. They

find that percentage richness is much less prone to bias in sample mean and

SD (Table 7), and is more highly correlated with urbanization. However, a health

index that employs percentage richness is found to remain sensitive to the few low-

abundance metrics, for which observed field counts of zero are treated as structural

zeros in the bootstrap. In practice, repeated sampling of benthic organisms may

be similarly affected. For instance, consider a taxon unobserved in a field sample

replicate. Although future replicates are not restricted to yield zero counts as

would bootstrap resamples, how may one determine, based on the observed zero,

whether this taxon is indeed present at the sampled site? If it is not, then there is

no variability or bias whatsoever in the frequency count. If it is but organisms are

not abundant, it may take many replicates before a positive frequency is observed,

and bias in a taxa richness metric involving this taxon is almost undoubtedly

negative among a small to moderate number of replicates. Therefore, conditions

gauged by such a metric are possibly irreproducible in a handful of field samples. It

appears that the practicality of metrics involving low abundance taxa as biological

indicators is questionable.

Secondly, current biomonitoring practices remain highly geographically de-

pendent. For example, the ten SHIPSL metrics may not be informative if used

in a health index for, say, eastern United States. Thus, any effort for enhancing

the index’s universality would be made in vain unless a common “language” for

describing and quantifying health is available to different geographical regions.
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metric averaged 1994 1997 1997 “jittered”
/ pooled 1 3 5 1 3 5 1 3 5

total # taxa averaged [0, 10) [10, 20) ≥20 [0, 14) [14, 28) ≥28 [0, 13.53) [13.53, 27.50) ≥27.50
(#Tx)

# Ephemeroptera averaged [0, 3) [3, 5.5) ≥5.5 [0, 3.5) [3.5, 7) ≥7 [0, 3.26) [3.26, 7.22) ≥7.22
taxa (#EphTx)

# Plecoptera averaged [0, 3) [3, 5.5) ≥5.5 [0, 2.7) [2.7, 5.3) ≥5.3 [0, 2.46) [2.46, 5.07) ≥5.07
taxa (#PleTx)

# Tricoptera averaged [0, 2) [2, 4.5) ≥4.5 [0, 2.7) [2.7, 5.3) ≥5.3 [0, 2.87) [2.87, 4.99) ≥4.99
taxa (#TriTx)

# long-lived pooled [0, 0.5) [0.5, 2) ≥2 [0, 4) [4, 8) ≥8 [0, 3) [3, 7) ≥7
taxa (#LLTx)

# intolerant pooled [0, 0.5) [0.5, 2) ≥2 [0, 2) [2, 4) ≥4 [0, 3) ≥3
taxa (#IntolTx)

% tolerant indi- averaged >50 (20, 50] [0, 20] >44 (27, 44] [0, 27] >45.16 (25.86, 45.16] [0, 25.86]
viduals (%Tol)

% predatory indi- averaged [0, 5) [5, 10) ≥10 [0, 4.5) [4.5, 9) ≥9 [0, 4.61) [4.61, 9.11) ≥9.11
viduals (%Pred)

# clinger averaged [0, 8) [8, 15) ≥15 [0, 8) [8, 16) ≥16 [0, 7.79) [7.79, 15.70) ≥15.70
taxa (#ClingTx)

% individuals in averaged >75 (50, 75] [0, 50] >75 (55, 75] [0, 55] >76.22 (54.16, 76.22] [0, 54.16]
3 most dominant
taxa (%Dom3)

Table 1: B-IBI metric scoring criteria for the 1994 and 1997 PSL data, taken from SalmonWeb and Morley,
2000, respectively. The “jittered” criteria contain independently generated random noise added to the 1997
cutoff points.
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site B-IBI SHIPSL

observed rating bootstrap observed rating bootstrap
mean bias 95% C.I. mean bias 95% C.I.

BB1 32 fair 30.52 -1.48 [28 , 32] 0.57 C 0.53 -0.04 [-0.96 , 1.86]
BB2 36 fair 34.74 -1.26 [32 , 36] 5.97 B 5.51 -0.46 [3.62 , 7.28]
BB3 32 fair 32.08 0.08 [30 , 34] 3.84 C 3.61 -0.23 [2.13 , 4.98]
BB4 34 fair 33.02 -0.98 [30 , 34] 2.93 C 3.13 0.20 [1.80 , 4.33]
BB5 28 fair 27.80 -0.20 [26 , 30] 3.70 C 3.83 0.13 [2.50 , 5.04]
BS1 26 poor 25.19 -0.81 [22 , 26] 2.00 C 1.72 -0.28 [0.14 , 3.16]
JE1 32 fair 32.02 0.02 [32 , 32] 6.19 B 5.55 -0.64 [3.60 , 7.29]
LB1 36 fair 33.79 -2.21 [32 , 36] 6.58 B 6.71 0.13 [ 4.75 , 8.41]
LB2 28 fair 27.96 -0.04 [28 , 28] 0.60 C 0.77 0.17 [-0.55 , 1.93]
LB3 22 poor 22.55 0.55 [22 , 24] -3.72 D -3.36 0.36 [-4.52 , -2.33]
LB4 16 v. poor 14.18 -1.82 [12 , 18] -9.48 E -9.35 0.13 [-10.54 , -8.26]
MA1 24 poor 23.93 -0.07 [22 , 24] -2.45 D -3.38 -0.93 [-5.22 , -1.65]
MI1 12 v. poor 11.61 -0.39 [10 , 14] -16.80 F -16.41 0.39 [-17.43 , -15.40]
RO1 48 excellent 44.24 -3.76 [40 , 48] 15.72 A 15.32 -0.40 [13.21 , 17.07]
SW1 28 fair 27.19 -0.81 [26 , 28] 1.71 C 2.49 0.78 [1.45 , 3.40]
SW2 26 poor 25.62 -0.38 [24 , 26] -1.01 D -0.98 0.03 [-2.18 , 0.13]
SW3 28 fair 27.75 -0.25 [26 , 28] 1.82 C 2.62 0.80 [1.42 , 3.64]
TH1 10 v. poor 10.93 0.93 [10 , 14] -18.16 F -18.29 -0.13 [-20.20 , -16.13]

Table 2: Observed B-IBI and SHIPSL values for 1997 PSL field samples, and their corresponding ratings and
bootstrap means, biases, and 95% C.I.’s.
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SHIPSL C.I.’s B-IBI C.I.’s

0 excluded 0 included Total
0 excluded 100 25 125

(65.4%) (16.3%) (81.7%)
0 included 12 16 28

(7.8 %) (10.5%) (18.3%)

Total 112 41 153
(73.2%) (26.8%) (100.0%)

Table 3: Coverage of 95% bootstrap C.I.’s for pairwise difference in mean between
two sites for the 1997 PSL data. The null hypothesis of no difference is rejected
at an individual 5% significance level when 0 is excluded from the C.I.
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sites B-IBI SHIPSL

95% C.I. for rating 95% C.I. for rating

mean diff mean diff

JE1−BB5 [2 , 8] fair [-2.37 , 5.61] B, C
BB2−BB5 [2 , 10] fair [-2.51 , 5.77] B, C
BB3−LB2 [2 , 8] fair [-0.51 , 6.46] C
JE1−LB2 [2 , 6] fair [0.87 , 8.77] B, C
BB2−LB2 [2 , 10] fair [0.71 , 8.62] B, C
LB1−LB2 [2 , 10] fair [1.87 , 9.55] B, C
BB3−SW1 [2 , 8] fair [-1.88 , 3.86] C
JE1−SW1 [2 , 8] fair [-0.72 , 6.59] B, C
BB2−SW1 [2 , 10] fair [-0.59 , 6.34] B, C
LB1−SW1 [2 , 10] fair [0.25 , 7.67] B, C
BB3−SW3 [2 , 8] fair [-2.20 , 4.11] C
JE1−SW3 [2 , 8] fair [-1.01 , 6.39] B, C
BB2−SW3 [2 , 12] fair [-0.93 , 6.39] B, C

Table 4: PSL sites from 1997 that are underclassified by the B-IBI-based five-point
rating at a simultaneous 5% significance level, and their corresponding SHIPSL-
based grades. Bold-faced ratings disagree with the rejection or non-rejection of
H0 : no mean difference based on the corresponding family-wise 95% bootstrap
C.I’s.

31



sites B-IBI SHIPSL

95% C.I. for rating 95% C.I. for rating

mean diff mean diff

SW1−MA1 [0 , 8] fair, poor [2.63 , 9.78] C, D
SW3−MA1 [0 , 8] fair, poor [2.49 , 9.70] C, D
BB5−MA1 [0 , 8] fair, poor [3.44 , 11.32] C, D
SW1−BS1 [-2 , 6] fair, poor [-2.31 , 4.12] C
SW3−BS1 [-2 , 6] fair, poor [-2.17 , 4.05] C
BB5−BS1 [-2 , 8] fair, poor [-1.34 , 5.82] C
LB2−BS1 [0 , 6] fair, poor [-4.19 , 2.74] C
BB1−BS1 [0 , 10] fair, poor [-4.79 , 2.61] C
SW1−SW2 [0 , 4] fair, poor [0.96 , 6.29] C, D
SW3−SW2 [-1 , 4] fair, poor [0.92 , 6.41] C, D
BB5−SW2 [0 , 6] fair, poor [1.67 , 7.85] C, D
LB2−SW2 [0 , 6] fair, poor [-1.11 , 4.67] C, D
BB1−SW2 [0 , 8] fair, poor [-1.75 , 4.54] C, D
SW2−BS1 [-4 , 4] poor [-6.09 , 0.75] D, C
JE1−BS1 [4 , 12] fair, poor [-0.05 , 8.22] B, C
BB2−BS1 [4 , 14] fair, poor [-0.67 , 8.28] B, C
JE1−SW1 [2 , 8] fair [-0.72 , 6.59] B, C
BB2−SW1 [2 , 10] fair [-0.59 , 6.34] B, C
JE1−SW3 [2 , 8] fair [-1.01 , 6.39] B, C
BB2−SW3 [2 , 12] fair [-0.93 , 6.39] B, C
JE1−BB5 [2 , 8] fair [-2.37 , 5.61] B, C
LB1−BB5 [0 , 10] fair [-1.14 , 6.52] B, C
BB2−BB5 [2 , 10] fair [-2.51 , 5.77] B, C
BB3−JE1 [-4 , 4] fair [-5.70 , 2.44] B, C
BB4−JE1 [-4 , 4] fair [-6.37 , 1.53] B, C
LB1−BB3 [-4 , 6] fair [-0.93 , 6.99] B, C
BB2−BB3 [-2 , 6] fair [-2.26 , 6.31] B, C
LB1−BB4 [-4 , 6] fair [-0.33 , 7.50] B, C
BB2−BB4 [-4 , 8] fair [-1.44 , 5.93] B, C

Table 5: Overclassification of sites for the 1997 PSL data. Bold-faced ratings
disagree with the rejection or non-rejection of H0 : no mean difference based on
the corresponding simultaneous 95% bootstrap C.I’s.
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site v. poor poor fair good excellent absolute

change

TH1 − <1 + <1 <1

LB4 −43 +43 43

BB1 − <1 + <1 <1
+ <1 − <1

MA1 − <1 + <1 <1

LB2 −2 +2 2

BB5 −13 +13 13

SW3 −7 +7 7
+ <1 − <1

SW2 −32 +32 32

SW1 −39 +39 39

BS1 −52 +52 52
+ <1 − <1

RO1 − <1 + <1 38
+ <1 − <1

−16 +16
+22 −22

Table 6: Approximate percentages of bootstrap samples differently classified due
to jittered cutoffs in the metric scoring. A “+” indicates a gain in occurrence of
the rating, whereas a “−” indicates a loss. No change of classification is observed
for sites BB2, BB3, BB4, JE1, LB1, LB3, and MI1.
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count richness percentage richness

taxa richness observed bootstrap p observed bootstrap p

metric bias bias

#Tx mean 23.26 −2.23 0.00
SD 6.65 −0.32 0.01 −−−−−−−−−−−−−−−−−

EphTx mean 4.74 −0.28 0.00 19.93 1.09 0.00
SD 1.76 −0.12 0.00 4.31 −0.06 0.42

PleTx mean 3.89 −0.37 0.00 15.58 −0.06 0.42
SD 1.66 −0.12 0.01 5.78 0.20 0.27

TriTx mean 4.00 −0.39 0.00 16.88 −0.18 0.34
SD 1.37 −0.06 0.19 2.83 0.51 0.19

LLTx mean 3.02 −0.37 0.00 11.94 −0.41 0.08
SD 1.47 −0.15 0.00 5.38 −0.14 0.26

IntolTx mean 0.20 −0.05 0.02 0.71 −0.14 0.07
SD 0.49 −0.10 0.04 1.61 −0.22 0.14

ClingTx mean 12.26 −1.19 0.00 50.35 −0.31 0.27
SD 4.46 −0.32 0.00 11.55 0.49 0.32

non-taxa richness observed bootstrap p

metric bias
%Pred mean 5.34 0.00 0.50

SD 3.76 0.00 0.33
%Tol mean 74.49 0.00 0.50

SD 14.24 0.00 0.46
%Dom3 mean 38.21 −0.01 0.06

SD 11.36 0.00 0.20

Table 7: Bias in mean and SD of SHIPSL metrics. One-sided p-values are
based on (1) normal approximations to the bootstrap distributions of metric mean
and SD, and (2) unrounded observed and bootstrap values. Numbers in bold are
significant biases at a 5% level.
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Figure 1: B-IBI and SHIPSL distributions for years 1997 and 1998, and the de-
pendence between the two indices.
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Figure 2: B-IBI (+) and SHIPSL (o), respectively, plotted against the percentage
of urbanized land (a measure of impact due to human activities). Here, SHIPSL
values are rescaled to have an approximate range of the B-IBI values observed.
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Figure 3: Distributions of sample statistics (mean and SD) for bootstrap field
samples of the 18 PSL sites of 1997. The histogram’s mean is marked by a dotted
line, next to which is the histogram’s SD (approximate standard error of the
sample statistic). A solid line marks the corresponding statistic of the observed
field sample (whose numerical value is given in Figure 1).
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Figure 4: Examples of site-wise distributions of 10,000 bootstrap B-IBI and
SHIPSL values. Observed index values are marked by a “ ^ ” along the x-axes.
A solid line marks the mean of the bootstrap distribution. Dotted lines delimit a
95% bootstrap C.I. for the underlying true index value.
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Figure 5: Bootstrap distributions for sample SD of B-IBI (—), SHIPSL (- - -),
and GS-SHIPSL (. . .), before ((a)) and after ((b)) biases in count-valued taxa
richness metrics have been corrected for. The means of the respective distributions
are marked by “ ^ ”, “+”, and “ | ”. Both panels show resulting index values that
have been rescaled to allow sensible comparison between the indices’ precision.
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Figure 6: Examples of scatterplots for bootstrap B-IBI values before (x-axis) and
after (y-axis) jittering the metric scoring criteria. Dotted lines delimit the five
classes of stream health. Points within the shaded blocks are from instances
where the health rating is unchanged.
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Figure 7: Bootstrap SHIPSL distributions (smoothed) and our six-point grading scale for stream health. Note
that the BB2 and JE1 distributions almost entirely coincide.
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Figure 8: B-IBI and SHIPSL distributions for 1994 ( . . ), 1997 (——), and
1998 (- - -), and the corresponding stream health rating schemes.
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Figure 9: Effect of bias correction for count-valued taxa richness metrics
on bootstrap sample mean and SD. Displayed are bootstrap distributions
of sampled mean (left) and sampled SD (right) before and after bias correction.
Vertical lines in gray denote values observed from 1997 field samples. Sample
mean for ordinary SHIPSL is 0 by definition, and is excluded from this figure.
Note that bias correction has virtually no effect on the sample SD for ordinary
SHIPSL.
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