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1. Introduction

Many disciplines from the biological sciences involve assessing underlying conditions with a single
number computed based on various measurable characteristics. We generically refer to these con-
ditions ashealththroughout this article. A familiar example is thebody mass index(BMI), which
combines a person’s height and weight measurements to yielda scalar-valued quantification of obe-
sity (perhaps a form of poor health). Scalar-valued assessments are naturally appealing for their
structural simplicity and supposed ease of interpretation, particularly in decision making contexts
such as disease diagnosis. However, how one should interpret BMI values in different situations
has long been a contentious issue (e.g. López-Alvarengaet al., 2003). To assess aquatic ecosys-
tem health, conventional indices such as thebenthic index of biotic integrity(B-IBI) (Kerans and
Karr, 1994) and its variants (e.g. McCormicket al., 2001) are similarly constructed by studying and
combining indicator variables, ormetrics, to reflect underlying health conditions of field sites in a
single spatial domain. Disadvantages of relying on these conventional indices have been well docu-
mented (e.g. Steedman and Regier, 1990; Chiu and Guttorp, 2004, 2006). IBI variants are a type of
reference-based health indices;observed-to-expected(O/E) indices via theriver invertebrate pre-
diction and classification system(RIVPACS) approach are another (see Hawkinset al., 2000). For
reference-based indices, test sites (sites whose health isunder scrutiny) are gauged against reference
sites that are ideally comparable to the test sites in every aspect except for their pristine “reference”
conditions. Sadly and realistically, however, so-called pristine sites either no longer exist due to
widespread environmental degradation across the globe, orare inaccessible to scientists due to their
remoteness. Consequently, the definition of reference criteria are often admittedly arbitrary (e.g.
Hawkinset al., 2000). For these three and perhaps other existing scalar-valued health indices, the
fundamental issue lies in the ambiguity of the scheme used toconstruct an index that allegedly
reflects unobservable conditions of interest.

Statistically speaking, conventional schemes could appear ad hocdue to a high degree of ar-
bitrariness and the lack of a unified approach in several stages of quantifying qualitative features.
Take the aforementioned reference-based indices, for instance. Stage 1 involves testing, analyzing,
and/or validating each of a potentially enormous pool of metrics using existing or training data. In
Stage 2, a final reduced set of metrics is agreed upon for use informing the index. Discriminant
analysis is popular for the screening of candidate metrics (e.g. Hawkinset al., 2000; Stoddardet
al., 2005), although some scientists caution against the use ofstandard multivariate statistical tech-
niques for this stage (e.g. see Brinck (2002), page 7), preferring less systematic (thereby potentially
arbitrary) approaches. However, how best to define and choose metrics is beyond the scope of our
article. The main concern of our work is the potential statistical inadequacies of an index that results
from the following stages.

In the calibration stage, common attempts to overcome the lack of truly pristine reference sites is
to use the best sites available in the context of the study, which themselves vary in quality (Clarkeet
al., 2003). This is true both within and across geographical-temporal domains. Yet, this variation is
not formally or systematically accounted for, as referenceconditions are often externally standard-
ized then treated as invariant (e.g. see MMI and O/E index in Stoddardet al., 2005). Admittedly,
such practice leads to arbitrariness / ambiguity / inconsistencies in the definition of reference-based
health indices. In particular, for the RIVPACS approach, the last stage of forming the O/E index
involves predicting the number of certain taxa, conditioned on the currently observed reference data
that often span across several ecoregions and time periods.Consequently, test sites from different
geographical-temporal domains could be identified as belonging to the same group with respect to
health. This may appear unsatisfying, as recognizable difference in space and time among sites
either plays no explicit role in how sites are categorized, or is a priori assumed insignificant.
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For IBI variants, the calibration stage further involves devising a standardization orscoring
scheme for converting the selected metrics into scores thatshare the same scale. However, there
is no universally accepted scheme here. For instance, the B-IBI scheme relies on qualitative ideas
of health to map metrics onto a discrete scale of{1, 3, 5}, while a more mathematical approach
is favoured by Stoddardet al. (2005) to map metrics onto a continuous scale of [0, 10] for their
multimetric index (MMI). Moreover, to this date, no obviousstrategy exists for ensuring that metrics
calibrated against reference sites from one domain would effectively reflect ecosystem health of
another. The last stage involves deciding on a weighting scheme for themetric scoresto form
the index. What constitutes an effective weighting scheme is traditionally an open-ended question.
Equal weighting is common, leading to an index that is the sumof all metric scores. However,
each metric reflects a different but not necessarily disjoint aspect of health, and the overlap in
informational content is not easily quantifiable (Ter Braak, 1987). Similar semi-qualitative practices
are common for gauging the health of ecosystems in general (e.g. see Jørgensenet al.(2005)). This
type of statisticallyad hocapproach poses extreme challenges to proper statistical assessment of the
indices and comparison of health across spatial and/or temporal domains. Despite the issues, IBI
variants remain popular among policy makers due to their structural simplicity, interpretability, and
high biological content in the form of subject-matter expertise from numerous scientists involved
in all four stages of index construction. To address the statistical inadequacies of the latter two
stages, Chiu and Guttorp (2006) propose the SHIPSL scheme for pooling metrics to form an index
that is also scalar. When compared to the conventional approach, this scheme reduces arbitrariness
and therefore improves statistical tractability of the resulting index. However, the SHIPSL scheme
retains some degree of qualitative involvement.

Other environmetricians prefer not to assess health explicitly. Billheimer et al.(1997) and Bunea
et al. (1999) directly model the metric-to-metric relationship,thereby removing all intermediate
stages, each of which could mask valuable information on health, resulting in artificial precision (as
in metric scores being restricted to 3 discrete values only)or unnecessary variability (as in sensitivity
to field noise discussed by Chiu and Guttorp, 2006). These statistical models, e.g. state-space and
graphical models, often expressed in a multivariate framework, can effectively describe underlying
conditions of an ecosystem. Ter Braak (1986) prefers eigenvalue-based multivariate analyses to
describe the relationship between species abundance and environmental variables. However, none
of these may be immediately useful to resource managers due to the complex messages embedded
in a multivariate system. Here, scalar-valued MMI’s appearmore appealing.

In this article, we investigate an entirely new approach forconstructing MMI’s. It combines
the statistical integrity of model-based techniques and the interpretability of conventional indices
such as the BMI and B-IBI. We focus on the freshwater ecosystem health assessment problem to
demonstrate our approach. For metrics that have been identified from Stage 2 as informative, we
model their interdependence by regressing them on univariate factors, one of which is latent health.
This latent, unobservable factor can be estimated statistically, thereby yielding a scalar, numerical
assessment of underlying health conditions. Other observable covariates may be included, such as
physical traits of the streams (e.g. stream order), the spatial and/or temporal locations of sites, and
human demographic variables that could directly influence site health. The resultinglatent health
factor index(LHFI) can then be compared to existing indices for the same data. If both are deemed
to contain similar information about health, then the model-based LHFI would be preferred in gen-
eral. This is because (1) the process undertaken to define theindex is based almost entirely on
standard modelling principles (hence, is much less arbitrary), (2) its performance is highly tractable
in the statistical sense, (3) it is expected to be much less sensitive to random variability (field noise)
since no intermediatead hocstages are present to distort valuable information, and (4)when covari-
ates appear in the model in a latent regression to explain thehealth factor, then (a) prediction of site
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Fig. 1. (a) Conventional indices: health measurement is driven by observable metrics; (b) latent
health factor modelling: a hierarchical framework in which metric responses are driven by unobserv-
able health, which, in turn, is influenced by auxiliary covariates

health and its inference are straightforward and unambiguous (unlike conventional methods), and
(b) the fitted model can help resource managers to identify external factors that have a direct influ-
ence on health. Specifically, the significance of their impact on health can be statistically assessed
and classified, thus readily providing policy makers with unambiguous guidelines for prioritizing
conservation measures. Indeed, both ranking sites with respect to health and classifying factors
according to their impact on health can be achieved in a single step of fitting the model.

The rationale and basic principles of our methodology are given in Section 2. Statistical infer-
ence for health, including its prediction, is discussed in Section 3. We illustrate our methodology in
Sections 4 and 5 by applying it to the 1997 Puget Sound Lowland(PSL) taxonomic data that appear
in Chiu and Guttorp (2006). Corresponding values of SHIPSL and B-IBI are compared to those
of LHFI, and their statistical and biological performance contrasted. (No documented O/E index
values exist for these data.) In Section 6, we suggest how in practice one may make biological inter-
pretations from a model-based LHFI without relying on external or prescribed reference conditions.
Overall findings and advice are summarized in Section 7. Sometechnical details omitted in the
text appear in the Appendices. The reader should note that the purpose of our article is to motivate
and demonstrate the methodology of latent factor modellingfor assessing health; it is not to use the
particular 1997 PSL data to build an ecosystem health index.

2. A fully quantitative modelling framework for the LHFI

Consider assessing freshwater ecosystem health, such as for streams. Typically, benthic taxonomic
data are collected by inserting some form of fixed-size shovel into the mud, separating the animals
from the collected mud, then sorting each animal into one of many taxa. This collection of animals
forms the field sample. It is common to collect replicate fieldsamples per site. Ecologists identify
various numerical aspects of the field sample composition toreflect ecosystem health. For example,
an abundance of animals from predatory taxa would reflect a healthy ecosystem that can sustain a
large number of predators. Similarly, a field sample rich in stress-sensitive taxa would point towards
an ecosystem that has been subject to minimal stress. These numerical indicators of health are
known as metrics when used to construct health indices. We rely on subject-matter expertise for
what constitutes a biologically meaningful metric. On the other hand, our statistical expertise may
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Table 1. Sites sampled from the PSL in 1997, and metrics identified in ecological studies to
be effective indicators of stream health for the PSL

site metric
name location label characteristic type

BB1 Big Bear Creek #Tx all taxa richness∗ (count)
BB2 #Eph Ephemeropterataxa richness
BB3 #Ple Plecopterataxa richness
BB4 #Tri Trichopterataxa richness
BB5 #LL long-lived taxa richness
BS1 Big Soos Creek #Intol intolerant taxa richness
JE1 Jenkins Creek #Cl clinger taxa richness
LB1 Little Bear Creek %Tol tolerant taxa abundance† (%)
LB2 %Pred predatory taxa abundance
LB3 %Dom3 3 most dominant taxa abundance
LB4
MA1 May Creek
MI1 Miller Creek ∗# distinct taxa of given characteristic appearing in field sample
RO1 Rock Creek
SW1 Swamp Creek †100× # animals of given characteristic in field sample
SW2 total # animals in field sample
SW3
TH1 Thornton Creek

play an important role in using these metrics to construct a biologically meaningful health index, as
the construction scheme must effectively account for the information that the metrics contain.

By combining metrics (scored or raw) to form a health index, conventional schemes for IBI
variants and O/E indices essentially regard health as the response variable and metrics as covari-
ates or driving factors of the health measurements (Fig. 1(a)). In reality, metrics are indicators
of health, i.e. the underlying health is what drives the metric measurements. Thus, in a statistical
model, metrics would appear more naturally as response variables, to be explained by health in
the form of a latent covariate (top two tiers of Fig. 1(b)). This role reversal is fundamental to the
scientific integrity of our index construction approach, asthe relationship between health and met-
rics is directly modelled in an intrinsically quantitativeframework without any ambiguous variable
manipulation. Moreover, our approach allows health to appear hierarchically in a latent regression
on auxiliary variables (e.g. urbanization, geography, year — bottom tier of Fig. 1(b)) that have a
potential impact on the field site’s overall health conditions. Altogether, this framework constitutes
a hierarchical model that relates health, metrics, and auxiliary covariates simultaneously.

To illustrate the concepts of our LHFI modelling approach for gauging ecosystem health, we
consider the 1997 PSL benthic taxonomic data as appear in Chiu and Guttorp (2006). These data
were collected from 18 sites scattered over 9 streams (Table1). Each site yielded 3 replicate field
samples. For the PSL, an animal in the field sample could belong to one of 80 taxa, and the animal
count per taxon could range from 0 to more than 1,000, but is typically equal or close to 0. Biologists
have previously identified 10 useful metrics for the PSL (seeTable 1), whose values are computed
based on the 80 counts. Here, all 10 metrics are highly correlated due to their definitions: 7 describe
taxa richness (count), and 3 describe relative abundance (%). To consider the relationship between
metrics and health, non-Gaussian multivariate-response models can easily account for both count
and % data types simultaneously, but such models often require complex parametrizations. Instead,
we take a simpler approach by using the principles of analysis of (co)variance (ANO(CO)VA).
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2.1. Building the latent health factor model
Researchers in various disciplines have employed the explicit statistical estimation of latent quan-
tities to assess unobservable traits of interest (e.g. Hayset al., 2000; Pietrobonet al., 2004; Rosas,
2008; Stock and Watson, 1989; Ward and Hoff, 2007). Here, we exploit the practical appeal of
this approach in biomonitoring and environmental policy making. Specifically, we aim to retain
the widely accepted soundness of the multimetric approach,and the popularity of scalar-valued
assessment among policy makers.

For benthic data, letYijk denote the (possibly transformed) value of thejth metric for theith
site’skth independent replicate, wherei=1,. . . ,n, j=1,. . . ,J , andk=1,2,. . . ,K. For the PSL, we have
n=18,J=7 or 9 (explained at the end of Section 2.2), andK=3. Naturally, the responseYijk can be
explained byHi — the underlying health of sitei, andβj — the block effect due to metricj, in an
analysis-of-variance (ANOVA) generalized linear mixed model (GLMM):

νij = Hi + βj (1)

whereνij=g
(
E[Yijk]

)
, andg( ) is an appropriate link function. For randomly chosen sites,the un-

observable health factorHi is considered random, and in turn can be explained in a latentregression:

Hi = fθ(xi) + εi (2)

wherexi is a vector of observable auxiliary covariates that may influence site health,fθ( ) is the re-
gression function with coefficientsθ, andεi’s are independent and identically distributed (iid) 0-
mean errors. Our main interest is inHi; its estimateĤi is obtained by fitting the model to the ob-
servedYijk ’s andxi’s. Although health itself is latent,̂Hi is an explicit quantification of site health.
For theβj ’s, we model them as 0-mean random-effects with an appropriate covariance structure.
Altogether, (1)–(2) constitute a hierarchical ANOCOVA GLMM.

2.2. Model for combining spatial and other types of domains
For the purpose of developing an ecological health index, neighbouring geographical domains may
be similar enough to share the same set of metrics yet different enough that traditional metric cali-
bration devised for one region may not effectively reflect the health conditions of another.

Suppose ourJ metrics are deemed adequate for spatial domains A and B, one or both of which
could lie within the PSL. The goal is to assess in one combinedstudy the ecological health of sites
a1, a2, . . . , am from Domain A andb1, b2, . . . , bn from Domain B. The traditional approach for
IBI variants would require recalibration of allJ metrics to account for the different spatial scales.
(Spatial differences are simply unaccounted for with O/E indices.) Painstaking effort aside, personal
preferences could play a heavy role in this recalibration, reducing scientific integrity of the resulting
index. The SHIPSL scoring scheme handles this problem by wayof metric standardization against a
mean and SD computed from allm+n pooled sites. However, a simple arithmetic mean overlooks
the fact that sitesai’s are more similar among themselves than when compared tobi’s. Chiu and
Guttorp (2006) advocate thegold standardscheme with pre-determined region-specific values to
replace the sample mean and SD, but warn that implementationcould be challenging in practice.

With our latent factor model, we can handle this issue properly, while avoiding the complexity
of so-called spatial models that directly address the spatial correlation patterns. In fact, based on our
experience and communications with various ecologists, the sparsity / large variability of ecologi-
cal data of this sort typically prevents any underlying spatial correlation pattern to be statistically
detectable. As formal applications of spatial models are impractical, a reasonable compromise,
without loss of biological or statistical integrity, may bethe following.
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Let Yijkℓ denote the value of thejth metric from replicate samplek in theith site within spatial
domainℓ. In the presence of auxiliary covariates, a spatial effect termλℓ can be an added as follows:

νijℓ = Hi(ℓ) + βj , Hi(ℓ) = λℓ + fθ(xiℓ) + εi(ℓ)

with i nested inℓ. Here, theλℓ’s may be modelled as random or fixed depending on the context.
If covariates are absent, then the termfθ(xiℓ) can be removed from the latent regression. In either
case, the simple addition of a spatial effect term in the latent factor model allows us to study the
health conditions by estimatingHi(ℓ) over all sites simultaneously and without ambiguity.

The same principles may be applied to contexts of multiple temporal domains, whereby one
would introduce a temporal effect term (e.g.year), possibly ordinal, to the model in a similar man-
ner as above. To account for both types of domains, a spatio-temporal interaction term may be
included. Similarly,stream order(size category of stream) could be considered a type of domain,
and modelled in a similar fashion.

Since we have experienced much difficulty in obtaining quality taxonomic data that span several
domains, we currently cannot demonstrate an application ofthis approach. Nevertheless, we are
unaware of existing articles on biomonitoring that accountfor spatial and temporal differences in
a truly sound manner; ours attempts to do so. Application of our methodology to inter-regional
and -temporal data are currently in preliminary stages, conducted in collaboration with aquatic
ecologists. In the remainder of the article, we will focus onfitting (1)–(2) only. In Section 4, we use
Poisson ANO(CO)VA models to construct LHFI’s for the PSL based on the 7 taxa richness metrics
only. In Section 5, we apply a natural transformation to these 7 metrics to form 6 new relative
richness metrics, combine them with the 3 relative abundance metrics, then model them altogether
as a logistic ANOCOVA in two different formulations.

3. Computing the LHFI: model inference by Bayesian estimati on

According to Gelman and Hill (2007), the hierarchical Bayesian framework is the most direct way
to handle models with latent structures, as each level of latent regression in themodel hierarchyhas
a direct correspondence to a specific level in theparameter hierarchy. Indeed, many existing works
on modelling latent quantities utilize Bayesian inference. As a bonus, unlike some classical tech-
niques, this framework does not rely on asymptotics that maybe inappropriate due to small sample
sizes and/or unbalanced designs that are common in ecological and other contexts. Here, we apply
Bayesian inference toHi’s and other nuisance quantities in our latent health factormodel (1)–(2).

Let H = (H1, . . . , Hn)T andβ = (β1, . . . , βJ)T . Let ν denote the vector ofνij ’s, Y denote
the vector ofYijk ’s, X denote the design matrix whose rows arexi’s, andΩ denote the vector of
remaining model parameters, includingθ and those from the distributions ofβ andεi’s. For our
model in a Bayesian context, all butX are considered random quantities.

Next, letP ( ) be the generic label for a probability distribution. Then,P (Ω) is the prior dis-
tribution ofΩ, P (Y |ν) or P (Y |H ,β) is the likelihood,P (H |Ω,X) is the distribution ofH, and
P (β|Ω) is the distribution ofβ. In the absence of concrete preconceptions ofΩ, a diffuse (nearly
flat) priorP (Ω) is commonly applied. Assumptions about[Y |ν], f( ), β, andεi’s determine the
remaining distributions. Bayesian inference forH, β, andΩ is made based onP (H ,β,Ω|Y ,X),
the joint posterior distribution ofH,β, andΩ. We assume independence ofH andβ, so that

P (H,β,Ω|Y ,X) ∝ P (Y |H,β,Ω,X)P (H,β|Ω,X)P (Ω,X)

= P (Y |H,β)P (H |Ω,X)P (β|Ω)P (Ω) . (3)
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EstimatingHi’s is our main interest; here, we take the posterior mean to beour LHFI (although
other relevant posterior statistics are possible, e.g. posterior mode). That is,

Ĥi ≡ Ĥi(Y ,X) = E(Hi|Y ,X) =

∫
Hi

∫ ∫ ∫
P (H ,β,Ω|Y ,X) dβ dΩ dH−i (4)

whereH−i is obtained by removingHi from H. Uncertainty in the estimation can be assessed by
highest posterior density(HPD) intervals, available through statistical packages such asboa in R
(Smith, 2007). Once the posterior in (3) is determined, obtaining HPD intervals is straightforward
and unambiguous. In contrast, confidence intervals for existing indices such as IBI and SHIPSL
variants rely on the non-parametric bootstrap, and are negatively biased in location and width in
general (Chiu and Guttorp, 2006).

Note that closed forms may not exist for (3) or (4). In this case, one can simulate samples from
(3) by numerical methods such as Markov chain Monte Carlo (MCMC), widely available in software
packages such as OpenBUGS (Thomaset al., 2006). Approximating (4) based on drawn posterior
samples is then trivial. The remaining nuisance quantitiescan be estimated in a similar fashion.

3.1. Predicting site health
Another disadvantage to monitoring ecosystem health with common indices is the inability to make
reasonable inference on the predictions of site health. ForIBI / SHIPSL variants and O/E indices,
one might predict an index value by inputting hypothetical raw richness / abundance counts or
the corresponding metric values. However, as metric valuesthemselves indicate health, the logic
behind this prediction appears to be circular. Alternatively, one may first compute the index values,
then regress them on auxiliary variables and make predictions of future site health via the fitted
regression. For this two-step approach, inference on predicted values depends on the assumptions
about the distribution of the index values. How might one incorporate into these assumptions the
variability of metrics that form the index? The answer is farfrom being clear.

In contrast, prediction of the LHFI at sitei and its inference is much more straightforward with
our hierarchical ANOCOVA model (1)–(2), via the posterior predictive distributionP (H∗|Y ,X,x∗),
where a “∗” denotes a future value. One can take the predicted LHFI for this site to beĤ∗ =
E(H∗|Y ,X,x∗). Specifically, first consider a single Monte Carlo sample from the joint posterior
(3). Extract from this sample those components ofΩ that are relevant to (2). Now, substitute these
components together withx∗ into (2) to simulate a Monte Carlo draw fromP (H∗|Y ,X,x∗). Re-
peat this process until a collection of simulated draws are obtained fromP (H∗|Y ,X,x∗). Then,
Ĥ∗ is approximated by the mean of this collection. Predictive HPD intervals based onP (H∗|Y ,X,x∗)
are also easily approximated using appropriate quantiles of the simulated posterior predictive draws.

The advantage of our predictive inference approach is that it accounts for the modelled rela-
tionship among metrics, health, and auxiliary variables simultaneously in an unambiguous fashion.

4. Three LHFI’s for the PSL based on taxa richness

We apply our modelling methodology described in previous sections to construct LHFI’s for the
PSL. To avoid handling metrics on different scales, we first restrict our attention to theJ=7 count-
valued richness metrics (Table 1). A Poisson likelihood appears to be appropriate here. Thus, a
possible initial model can be the simple ANOVA (1) that assumes site and metric effects to be
independent and normally distributed:

[Yijk|νij ]
ind
∼ Poisson(eνij ) , νij = Hi + βj , [Hi|α, σH ]

iid
∼ N(α, σ

2
H) , [βj |σj ]

ind
∼ N(0, σ

2
j ) . (5)
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Fig. 2. Distributions of relative richness and abundance metrics from the 1997 PSL benthic taxo-
nomic data

Note that (5) implicitly addresses possible overdispersion of taxa richness counts at the across-
site and across-metric level (McCulloch and Searle, 2001),which is the level of main concern for
overdispersion in biomonitoring studies. (Biomonitoringdata are typically too sparse for modelling
overdispersion on a finer scale.) Note also that the vast range of Var(Yijk) overj may be attributed
to a combination of non-constantσj ’s and the Poisson link (see Fig. 2, curves in dark grey and
black, corresponding to 100Yijk/Y1jk for i=2,. . . ,7, whereY1jk is #Tx; i.e. they are the percent-
age counterparts of the richness metrics currently being considered — see Section 5; although not
shown, the distributions of theYijk ’s are comparable to these six in shape and relative location).
The former assumption of metric effects heterogeneity can be removed in subsequent reduced fits if
it is deemed unncessary based on model diagnosis for (5).

Diffuse priors are given to the elements ofΩ = (α, σH , σ1, . . . , σ7):

α ∼ N(c1, c2) , σ2
H , σ

2
j ∼ inverse-gamma(c3, c4) ∀j (6)

wherec1=0, c2=100, andc3=c4=1 are hyperparameter values chosen to impose diffuseness.Other
values ofc’s that correspond to more diffuseness were also used, but they led to minimal change
in the model fit, and will not be discussed further. Similarly, we chose normal and inverse-gamma
priors for ease of implementation, but normality or otherwise generally plays little to no role in the
inference provided that the priorP (Ω) is diffuse.

Priors in (6) and Model (5) (and all subsequent models) were implemented with OpenBUGS
after partial hierarchical centring (see Appendix A). Based on two Markov chains of posterior draws
of (H ,β,Ω) generated from different initial values, all unknown quantities were well estimated.
We combine both chains to obtain̂Hi’s, labelled as LHFI(5). These index values and corresponding
95% HPD intervals appear in black in Fig. 3, top panel. Posterior summary statistics forΩ appear
in Table 2. Details of MCMC sampling appear in Appendix A.

In addition to metrics data for the 18 PSL sites, associated with each stream are data for auxiliary
covariates, taken from Morley (2000), that includeurbanizationand Global Positioning System
(GPS) co-ordinates. Urbanization is the percentage of total impervious area inthe sub-basin to
which the stream belongs. Thus, some sites share the same urbanization value. GPS co-ordinates
recorded with sensitive instruments appear as latitudes and longitudes that are unique to each site.
To additionally account for the potential influence of thesecovariates on health, we consider them
and LHFI(5) in scatterplots in Fig. 4. (Note that the latitude scale shown has been shifted by−47 and
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Table 2. Summary statistics of posterior draws for Poisson counts models
mean median 2.5th HPD %-ile 97.5th HPD %-ile MC error # draws

Model (5): DIC=1354.0

α 1.51 1.51 0.57 2.46 0.01 20 000
σ1 1.71 1.38 0.46 3.66 0.01
σ2 1.20 0.97 0.35 2.56 0.01
σ3 1.19 0.98 0.36 2.52 0.01
σ4 1.18 0.96 0.40 2.56 0.01
σ5 1.24 1.01 0.37 2.64 0.01
σ6 2.75 2.25 0.77 5.92 0.02
σ7 1.39 1.12 0.42 3.02 0.01
σH 0.60 0.59 0.41 0.80 0.00

Model (7): DIC=1353.0

α∗ 1.56 1.55 0.65 2.52 0.01 10 000
γ1 −2.06 −2.05 −3.44 −0.70 0.01 20 000
σ1 1.71 1.38 0.44 3.75 0.01
σ2 1.19 0.97 0.38 2.52 0.01
σ3 1.21 0.98 0.36 2.62 0.01
σ4 1.20 0.97 0.34 2.55 0.01
σ5 1.26 1.01 0.37 2.72 0.01
σ6 2.74 2.24 0.81 5.93 0.01
σ7 1.39 1.12 0.39 3.00 0.01
σH 0.50 0.48 0.34 0.68 0.00

Model (10): DIC=1353.0
(only diagonal elements ofΣ are given)

α 1.27 1.28 −2.11 4.57 0.02 10 000
γ1 −2.07 −2.06 −3.46 −0.67 0.01
σ2∗

1 28.63 3.39 0.09 62.91 7.26 5 000
σ2∗

2 17.93 1.87 0.09 34.32 5.47
σ2∗

3 16.32 1.77 0.08 34.90 4.20
σ2∗

4 17.85 1.79 0.07 36.00 4.59
σ2∗

5 17.82 1.78 0.07 37.88 5.21
σ2∗

6 87.49 6.66 0.08 114.80 37.13
σ2∗

7 17.11 2.40 0.06 44.96 2.08
σH 0.50 0.49 0.34 0.68 0.00 10 000

Note: Values for parameters with a ‘∗’ are based on one Markov chain only.
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longitude by−122.) An approximately linear relationship is seen betweenhealth and urbanization,
which is highly correlated with longitude. In contrast, latitude has little association with health.
Note the two most degraded sites (TH1 and MI1) with LHFI(5) values below 0.4. They appear
to drive the linearity between health and urbanization, andthe low correlation between health and
latitude. Nevertheless, disregarding these sites for the latent regression in (2) may be unwise in
contexts of, say, habitat conservation — one indeed expectsto find unhealthy ecosystems in highly
urbanized sites, making urbanization (at least on the high end of the spectrum) an important factor
in determining site health. To avoid regressing health on redundant or unnecessary variables, we
consider a single covariatexi, namely, urbanization. Altogether, we have the ANOCOVA model

[Yijk|νij ]
ind
∼ Poisson(eνij ) , νij = Hi + βj , Hi = γ0i + γ1(xi − x) ,

[
γ0i|α, σ

2
H

] iid
∼ N(α, σ2

H) ,
[
βj |σ

2
j

] ind
∼ N(0, σ2

j ) .
(7)

Here, the covariate in the latent regression is centred by subtracting the meanx, to remove depen-
dence betweenα andγ1. Forγ1, we take the same diffuse prior forα as in (6). That is,

γ1 ∼ N(c1, c2) . (8)

Model (7) with priors from (6) and (8) forΩ = (α, γ1, σH , σ1, . . . , σ7) were fitted to the data
via two Markov chains of posterior draws. The chains mixed exceptionally well except for minor
mixing problems forα; we combined the chains to produce LHFI(7). Posterior summary statistics
for Ω appear in Table 2. See Appendix A for sampling details. Incidentally, LHFI(7) and LHFI(5)
are virtually identical in value and 95% HPD interval (Fig. 3).

Finally, one might wish to consider as part of the model the dependency of the richness counts
over sites and metrics, for the following reason. The natureof the dependence between pairs of
richness counts is expected to vary by site and metric. Takei=BB1 andi′=BB2, for instance. Both
sites are located along Big Bear Creek, and thereforeYijk andYi′jk are highly dependent. Now,
takei=BB1 andi′=TH1, the latter located along Thornton Creek; hence,Yijk andYi′jk are possibly
independent. Similarly, takej=1 (#Tx) andj′=2 (#Eph). As #Tx is obtained by adding #Eph to the
number of other taxa,Yijk andYij′k are linearly correlated. Now, takej=2 andj′=7 (#Cl). Then,
the covariance structure betweenYijk andYij′k is intrinsically different and may not be linear, since
someEphemeropterataxa fall in the clinger category, while others do not.

In Appendix B, we show that the dependence of pairwise covariance on(i, i′) is already re-
flected by the latent regression of (2), and that having correlatedβj ’s can further allow us to ac-
count for the dependence on(j, j′). In particular, we replace theβj distributions from (7) with
β ≡ (β1, . . . , β7)

T ∼ MVN(0,Σ), whereΣ is the variance-covariance matrix whosejth diago-
nal element isσ2

j and off-diagonal(j, j′)th element isσjj′ . In principle, one may wish to impose
a covariance structure that is based on the conceptual relationship among metrics. However, ex-
cept for some special structures, it is often challenging toefficiently sample from the posteriors of
the covariance parameters (Westveld, 2007). Thus, we assume an unstructuredΣ here. Then, the
inverse-Wishart distribution is a popular choice for the prior of Σ:

Σ
−1 ∼ Wishart(S, c5) , (9)

parametrized in such a way thatE(Σ) ∝ S. Altogether, our third model is

[Yijk|νij ]
ind
∼ Poisson(eνij ) , νij = Hi + βj , Hi = γ0i + γ1(xi − x) ,

[
γ0i|α, σ

2
H

] iid
∼ N(α, σ2

H) , β ∼ MVN(0,Σ) ,
(10)
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with priors from (6), (8), and (9) forΩ = (α, γ1, σH ,Σ). For the hyperparameters in (9), we take
c5=7 andS to have diagonal values 1 and off-diagonal values 0.5. This reflects the prior notion
that all 7 metrics are positively associated with the latenthealth factor, and hence, with each other.
These hyperparameter values yield reasonably diffuse proper priors.

Again, two Markov chains of posterior draws were generated.However, despite hierarchical
centring, we encountered mixing problems for many matrix entries ofΣ (see Appendix A). Nev-
ertheless,Hi’s mixed well marginally, and hence, we can define LHFI(10) based on the combined
chain. Index values and 95% HPD intervals are shown in grey inFig. 3, top panel. Posterior sum-
mary statistics for selected elements ofΩ are in Table 2.

4.1. Discussion of results

As it turns out, pairwise correlations among the three LHFI’s are all equal to 1.00. However, while
we define an LHFI to be the posterior mean forHi, we must also consider the reliability of this as-
sessment of health. From Fig. 3, top panel, we see that latenthealth corresponding to LHFI(10) has
substantially more uncertainty (longer HPD intervals) than LHFI(5) and (7), the latter two showing
almost identical properties. In other words, although Model (10) in principle incorporates the natu-
ral correlation among metric values over sites and over metrics into the latent health factor model,
the extra complexity of the model did little in practice to improve our inference. Of course, this
larger model may prove to be beneficial when applied to other datasets.

For our 1997 PSL data, we prefer LHFI(5) and (7) based on simpler models. Despite nearly iden-
tical properties between the two indices, LHFI(7) from the hierarchical ANOCOVA model is more
appropriate in practice, as Model (7) (as well as (10)) yields statistical evidence that urbanization
has a negative impact on stream health: the 95% HPD interval for γ1 is below zero (approximately
−3.4 to−0.7; see Table 2). While this negative effect might have beena foregone conclusion from a
biological point of view, our ANOCOVA models provide directquantitative evidence to support this
biological notion. Such results indeed have profound implications in practice. A policy maker may
be presented with several factors that have potential impact on ecosystem health. Meanwhile, due to
limited resources, s/he may be forced to devise conservation policies in response to selected factors
only. For instance, consider a model that regresses latent health on both urbanization and latitude.
We fitted such a model in the framework of Model (7), but will not discuss the details except for the
inference on the latitude effects. The inclusion of latitude has virtually no impact on the posterior
distributions of theHi’s (or of other unknown quantities). In fact, a typical 95% HPD interval for
the corresponding coefficient includes 0, suggesting statistically insignificant effect on health due to
latitude. Thus, our latent factor hierarchical modelling approach provides the policy maker with a
scientific mechanism to classify factors according to theirimpact on health: a negative HPD interval
indicates detrimental effects, one that covers 0 indicatesundetectable impact, and a positive HPD
interval implies positive impact. (A technical note on thisranking scheme for multiple covariates
is that the HPD credible level may require adjusting in the context of multiple testing; see Westfall
et al. (1997), for instance.) Of course, as in any subject area, caution is required when interpreting
statistical results: a statistically significant impact may result from very dense data in the absence
of a true impact, although it is highly unlikely for ecological data as they are typically sparse; and a
statistically undetectable impact (e.g. due to sparsity) does not preclude an actual impact. Neverthe-
less, a hierarchical ANOCOVA modelling approach for constructing health indices indeed provides
some practical guidelines in cases where the effects of a number of factors must be assessed.
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4.1.1. Quantitative comparison of (5) and (7)

Besides the practical perspective, a quantitative comparison between the simple ANOVA approach
for LHFI(5) and the hierarchical ANOCOVA approach for LHFI(7) may be of interest.

A common basis of comparison is the use of the deviance information criterion (DIC). It assesses
how well theYijk ’s are predicted, and can be used to compare performance among models for
identical data (Spiegelhalteret al., 2002). For our models, DIC values are readily available from the
OpenBUGS output, and are shown in Table 2. (Theory behind theDIC is beyond the scope of our
article.) Here, the DIC is 1354.0 for Model (5) and 1353.0 forModel (7) (and (10); see Table 2).
Thus, there may be a slight gain in posterior predictive power by explaining health with a relevant
covariate.

Alternatively, a model’s predictive ability may be more concretely assessed by cross-validation
with out-of-sample predictions. To this end, we randomly divided the 1997 PSL data (18×7×3=378
observations in total) into nine disjoint subsets of 42 values each. Then, on each subset, the follow-
ing three-step procedure was performed: (i) The 42 values were removed from the data and treated
as missing values. (ii) Each of Models (5) and (7) was fitted tothe remaining 8×42=336 observa-
tions, with the 42 missing values imputed as unknown quantities within the Bayesian framework.
(iii) The mean of the posterior distribution for each imputed value was taken to be the “estimate”
for the missing observation; the mean is preferred over the median or mode here since a discrete
likelihood (Poisson) is considered for the observations, so that different models can yield the same
median or mode even if their means are quite different.

To pool this information from all nine subsets, an empiricalsum-of-squares-error (SSE) ratio,
defined as SSE(5)/SSE(7), is computed based on

SSE=
∑

{nine subsets}

∑

{y: missing values}

(
yestimated− ytrue

)2
.

Using a type of SSE ratio to assess predictive ability is favoured by Ward and Hoff (2007), for
instance. In theory, one could compare the two models by considering the respective posterior
predictive distributions over all possible combinations of missing values. As this approach is prac-
tically infeasible, the comparison based on nine randomly generated datasets thus serves as a pilot
study. Here, the SSE ratio is 0.97. Considering the variability inherent in a small pilot study, a 3%
difference in SSE is not enough evidence that Model (5) predicts better than Model (7). Combining
this result with that of the DIC, we conclude that both modelspredict observations equally well.

Aside from a model’s predictive ability, perhaps the precision of the health assessment is of
ultimate concern. Therefore, one may also compare the posterior distributions forσH , whose me-
dian is 0.59 with a 95% HPD interval of [0.41, 0.80] for the thesimpler Model (5), and 0.48 and
[0.34, 0.68], respectively, for the hierarchical Model (7)(see Table 2). That is, there is some (weak)
evidence that Model (5) contains more uncertainty, despitethe substantial overlap between HPD
intervals. This makes intuitive sense, as the variability in Hi unexplained byα in Model (5) is
further addressed byγ1 andx in Model (7). (Note thatσH is different from the dispersion of the
Hi posterior distributions.)

In summary, while both Models (5) and (7) have very comparable predictive ability, the hier-
archical Model (7) seems to contain slightly less uncertainty, and can provide guidelines on con-
servation measures, as already discussed in Section 4.1. Therefore, we will focus on LHFI(7) in
subsequent discussions of taxa-richness-based LHFI’s.
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Fig. 5. Scatterplots among various health indices for the 1997 PSL data

4.1.2. Comparing LHFI’s to existing health indices
For comparisons with documented values of B-IBI and SHIPSL,we refer to scatterplots in Fig. 5:
the upper-left 3×3 panels show pairwise relationships among LHFI(7), B-IBI,and SHIPSL. There
is a strong positive correlation (r>0.8) between our LHFI and either existing index, but the relation-
ship is curvilinear. The curvature can be explained by the non-linearity of the model that produces
LHFI(7), whereas both B-IBI and SHIPSL are linear combinations of metric scores. The strong cor-
relation demonstrates that LHFI(7) is no less informative about the sites’ health conditions, despite
our excluding 3 metrics in its definition. In the next section, we propose a comprehensive model
that accounts for all 10 metrics, thus improving the informational content of the LHFI.

5. Two comprehensive logistic LHFI’s based on relative rich ness and abundance

Among various models, Chiuet al. (2007) consider a one-way ANOVA with latent health as the
main factor for explaining sample cardinality,Nik (total number of animals in the field sample), as
the sole response. When fitted, this simple model demonstrates thatNik contributes some informa-
tion towards latent health, although it is traditionally not a metric in its own right. However,Nik

already appears implicitly as the denominator in the definition of relative abundance metrics. For the
PSL, these metrics are %Tol,%Pred, and %Dom3 (Table 1). Notethat some taxa are classified as nei-
ther tolerant nor intolerant; therefore, non-tolerant taxa are not necessarily intolerant. Furthermore,
%Tol and %Dom3 are negatively associated with health (Morley, 2000), and must be transformed
so that higher values of the index (LHFI/B-IBI/SHIPSL) correspond to higher values of any metric.
An obvious transformation is to take %NonTol=100%−%Tol and %NonDom3=100%−%Dom3.

Indeed, Chiu and Guttorp (2004) show that it is beneficial, atleast statistically, to convert taxa
richness (count) metrics to percentages also, before combining them with relative abundance metrics
to form a health index. They suggest removing #Tx from the metric list, but incorporating it as the
denominator for transforming the other 6 count metrics intorelative richnesspercentages, just as
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Table 3. Summary statistics of posterior draws for logit models
mean median 2.5th HPD %-ile 97.5th HPD %-ile MC error # draws

Model (11): DIC=4651.0

α −1.62 −1.63 −2.51 −0.68 0.01 20 000
γ1 −2.03 −2.03 −3.59 −0.43 0.01
σ1(1) = σ2(1) = σ3(1) 0.87 0.58 0.10 2.36 0.01
σ4(1)

∗ 2.31 1.03 0.12 7.21 0.08 10 000
σ5(1)

∗ 12.92 5.50 0.64 37.76 0.56
σ6(1)

∗ 4.35 1.92 0.16 13.91 0.18
σ1(2)

∗ 10.11 4.30 0.37 28.62 0.77
σ2(2)

∗ 4.30 1.85 0.15 12.99 0.17
σ3(2)

∗ 3.12 1.31 0.12 9.16 0.20
σH 0.58 0.56 0.40 0.79 0.00 20 000

Model (14): DIC=4606.0

α −1.07 −1.06 −1.97 −0.20 0.01 20 000
γ1 −2.08 −2.09 −3.64 −0.49 0.00
σ1(0) = σ2(0) = σ3(0) 0.86 0.57 0.10 2.37 0.01
σ1(1)

∗ 3.22 1.32 0.13 9.36 0.15 10 000
σ2(1)

∗ 17.41 7.02 0.78 47.77 0.85
σ3(1)

∗ 3.28 1.38 0.14 9.42 0.15
σ1(2)

∗ 7.55 3.22 0.25 22.43 0.39
σ2(2)

∗ 5.85 2.58 0.20 18.33 0.16
σ3(2)

∗ 2.71 1.00 0.12 7.08 0.22
σH 0.58 0.57 0.40 0.79 0.00 20 000

Note: Values for parameters with a ‘∗’ are based on one Markov chain only.

howNik is used to define relative abundance. This way, all 9 variables now share the same scale;
their distributions are shown in Fig. 2. Now, a GLMM similar in principle to those of Section 4
may be used to construct a comprehensive LHFI from these 9 metrics. To do so, each metric
may be considered an observedprobability of success, where “success” is an occurrence of the
taxon (towards richness) or animal (towards abundance) indicative of a healthy stream. Therefore,
it appears that logistic regression models are appropriatefor constructing a comprehensive LHFI.
Below, we will first consider one that is entirely binomial-based. We will then make use of the
disjointness of three of the richness metrics to formulate abinomial-multinomial model.

We focus on hierarchical models involving urbanization as acovariate for latent health. With
three extra metrics here, we have 3×3×18=162 additional observations for model fitting. However,
Σ — the dependence among the nine metric effects — now also involves more unknown param-
eters. Indeed, Chiuet al. (2007) fit logistic extensions of Model (10) with the extra metrics, and
demonstrate that the estimation ofΣ remains difficult. Therefore, here we will only discuss logistic
extensions of Model (7), with independently distributed metric effects.

Two groups of variables form our 9 metrics:J1=6 pertaining to richness, andJ2=3 pertaining
to abundance. Lets=1 denote the richness group, ands=2 the abundance group. Furthermore,
for replicatek from site i, let Yisjk denote the total number of successes for metricj in groups,
each success occurring with probabilitypisj�

, wherej=1,. . . ,Js. Finally, letνisj�
denote the logit-
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transformedpisj�
. Now, consider the GLMM

[Yisjk|Tis�k, pisj�
]

ind
∼ Binomial(Tis�k, pisj�

) ∀ k = 1, 2, 3, s = 1, 2 ,

ln
pisj�

1 − pisj�

≡ νisj�
= Hi + βj(s) , Hi = γ0i + γ1(xi − x) , (11)

[γ0i|α, σH ]
iid
∼ N(0, σ2

H) , [βj(s)|σj(s)]
ind
∼ N(0, σ2

j(s)) , Tis�k =

{
(#Tx)ik if s = 1
Nik if s = 2

.

This model stipulates that the probability of success is affected by site health and the metric, but
not by metric type (richness or abundance). Indeed, evidence from Chiuet al. (2007) (based on
the more complex model with dependent metric effects) suggests that metric type is insignificant.
Furthermore, their analyses also indicate evidence for a common variance for the metric effects of
Eph., Ple., andTri. taxa, often known collectively as EPT taxa. This agrees withthe distributions of
the EPT metrics (black in Fig. 2). Therefore, we additionally assumeσ1(1)=σ2(1)=σ3(1). The prior
distribution forΩ = (α, γ1, σH , σ1(1), σ4(1), σ5(1), σ6(1), σ1(2), σ2(2), σ3(2)) and hyperparameters
are as for Model (7).

Based on two Markov chains of posterior samples, all unknownquantities (includingpisj�
’s)

were very well estimated, except for non-EPTσj(s) ’s with similar mixing problems as forΣ en-
tries from Model (10); see Appendix A. As no such problem was encountered forHi’s, we define
LHFI(11) as the mean of theHi draws from both chains combined. Index values and correspond-
ing 95% HPD intervals appear in grey in Fig. 3, bottom panel. Posterior summary statistics for
Ω are given in Table 3. To investigate some assumptions about the latent regression in (11), we
refer to Fig. 6. As for the Poisson-based LHFI’s, we see no obvious violations of linearity between
urbanization and the logit-based latent health, nor do we see the need to regress health on latitude.

Note that the formulation of Model (11) is based entirely on binomial distributions associated
with the nine metrics. However, one could fine-tune the dependence amongYisjk ’s based on the
disjoint nature of #Eph, #Ple, and #Tri that define a quadrinomial variate. To incorporate this multi-
nomial distribution into a latent health factor model, we break down the group of richness metrics
into two subgroups by lettings=0 represent EPT richness metrics, ands=1 for the remaining three
richness metrics. The group of abundance metrics remains ass=2. Therefore, each group consists
of three metrics. As before,Yisjk ’s are binomial fors=1, 2. However, fors=0, we have

2
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) , (12)

wherepi0j�
is the probability of an observed taxon from sitei falling in thejth EPT category. Note

that all 6 richness metrics share the same margin, namely,Ti1�k, irrespective ofs=0 or s=1. As
large values ofpi01�

, pi02�
, and pi03�

are indicative of good stream health, we model them via a
multinomial logit link, so that

ln
pi0j�

1 −
∑3

j=1 pi0j�

≡ νi0j�
= Hi + βj(0) . (13)

Altogether, our binomial-multinomial mixture logit modelis

Equations (12)–(13) fors=0, Equation (11) fors=1,2, Js=3 for all s. (14)

The prior forΩ = (α, γ1, σH , σ1(0), σ1(1), σ2(1), σ3(1), σ1(2), σ2(2), σ3(2)) and hyperparameters are
all as for Model (11) above. Mixing for the two Markov chains of posterior draws here is virtually
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Fig. 6. The relationship between logit-based latent health and covariates for the PSL in 1997

identical as for the binomial-only model (see Appendix A). In the absence of mixing problems for
theHi chains, we combine both chains to form LHFI(14). Index values and corresponding 95%
HPD intervals are given in black in Fig. 3, bottom panel. Posterior summary statistics forΩ are in
Table 3.

5.1. Discussion of results
Since LHFI(11) and (14) are based on small variations of whatis essentially the same model, it
is not surprising that they exhibit perfect correlation empirically. (Such was also the case for the
Poisson-based LHFI’s.) Aside from being perfectly correlated, their posterior distribution of latent
health is also virtually identical in every aspect but for a location shift, as is apparent from the index
values and 95% HPD intervals in Fig. 3, bottom panel. However, for ranking sites relative to each
other’s health, this location shift plays no role whatsoever.

Fig. 5 shows a comparison among Poisson-based LHFI’s (represented by LHFI(7)), logit-based
LHFI’s (represented by LHFI(14)), and the existing B-IBI and SHIPSL. We see that B-IBI has a
stronger linear association with the logit-based LHFI’s than the Poisson-based counterparts. This
may be due to the use of all available metrics, and that the metrics share the same scale for B-IBI
or the logit models. Interestingly for these data, our logit-based LHFI’s are equally correlated with
B-IBI and SHIPSL, and SHIPSL is close to being equally correlated with either type of LHFI’s.

Similar to the earlier Poisson ANOCOVA models, both logit Models (11) and (14) have identi-
fied a significant dependence of health on urbanization; the 95% HPD intervals forγ1 range approx-
imately from−3.7 to−0.4 (Table 3). In Section 5.1.1 below, we discuss the evidence for preferring
Model (14), despite the additional multinomial structure incorporated into (14) appearing to have
little effect on the parameter estimates. The reader shouldalso note that with a large enough dataset
(which was not the case here), one would ideally retain a non-trivial dependence structureΣ for the
β’s to account for metric overlap.

5.1.1. Quantitative comparison of (7), (11), and (14)
To compare the performance between the binomial-only Model(11) and the mixture Model (14),
we first consider the posterior distribution ofσH . Respectively, the posterior medias are 0.56 and
0.57, and both 95% HPD intervals are [0.40, 0.79] (Table 3). In this regard, both models appear
equally effective. Next, we compute the SSE ratio from cross-validation; the ratio is 1.00. To
obtain this, we ran both models on 9 sets of incomplete data generated similarly as in Section 4.1.1;
with an additional three abundance metrics and the removal of one richness metric, we had a total
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of 486 observations, so that each incomplete subset involved 54 missing observations. The same
imputation procedure from before was employed, except thatthe multinomial part of our mixture
model was re-expressed as Poisson log-linear (see, for instance, Dobson (2001)) to allow easier
implementation in OpenBUGS. As before, a ratio so close to 1 is inconclusive due to the inherent
variability of a small-scale cross-validation exercise. Finally, we consider the DIC (Table 3), which
is substantially lower (with a difference of−45) for Model (14). In general, a larger DIC value
may not imply an inappropriate model but one that could be improved upon perhaps by additional
constraints to parameters (Gelman and Hill, 2007). Thus, inthis case, there appears to be a clear
advantage in placing the quadrinomial constraint on the EPTmetrics.

However, one question remains: which type of GLMM — Poisson for richness metrics only,
or logit for richness and abundance metrics — is preferable for monitoring stream health based on
the 1997 PSL data? We focus on Models (7) and (14) as representatives of their respective groups.
Note that neither the DIC nor out-of-sample predictions canbe used to compare models that involve
different data. To make a sensible comparison between types, we consider the posterior distribution
forHi’s between the two model types. Specifically, consider the HPD intervals from both panels in
Fig. 3, where Model (14) shows a larger fluctuation across sites for the posterior location (i.e. the
LHFI value), as opposed to the apparent flatness corresponding to LHFI(7). Thus, the logit models
demonstrate better distinction of sites than their Poissoncounterpart. Moreover, the width of a 95%
HPD interval is slightly less for the logit model (average width is 1.72 for (14), but 1.77 for (7)),
indicating a higher precision for latent health. Altogether, the inclusion of abundance metrics by the
logit models clearly led to additional ability for the LHFI to distinguish among sites. This increased
ability may have also resulted from having metrics share a common scale. This common-scale
principle has been used to develop all IBI and SHIPSL variants. However, for these earlier types
of indices and particularly for the IBI, the scheme used to map indicators to a single scale is more
controversial and causes potential loss of information, when compared to the minimal manipulation
of metrics before they are incorporated into the logit modelfor constructing a health index.

5.2. Remarks
The reader may notice that the models thus far considered forthe PSL data exhibit model uniden-
tifiability at the level of metric effects. Specifically, their (co)variances cannot be estimated based
onP (β|Ω) alone. However, unlike the frequentist paradigm in which unidentified parameters are
inestimable, Bayesian modelling allows proper estimationof parameter, identified or otherwise,
provided that the posterior is proper. In addition, Chiu (2008) shows that for the Poisson-based anal-
yses of the PSL data here, substantialBayesian learningis achieved for the (co)variances despite
unidentifiability. As the logit-based models are structurally identical to their Poisson counterparts,
the results by Chiu (2008) are expected to extend to Models (11) and (14).

6. Interpreting the LHFI in the absence of prescribed refere nce conditions

The numerical value of an IBI-type index is often believed tobe absolute, in the sense that a site’s
IBI is supposed to indicate its degree of degradation without the need for comparison to another site.
This is one of the reasons for the IBI’s popularity. However,one must not overlook the calibration
scheme that brings about this apparent advantage. As discussed in Section 1, this reference-based
scheme suffers from non-transferability between geographical and temporal domains, and relies
heavily on the availability of so-called pristine ecosystems, although they rarely exist. Hence, one
may wish to abandon the use of reference-based calibration altogether, and rely on a scheme of
relative rating among several sites included in a single study. As a compromise for the lack of a full
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Fig. 7. Posterior distribution of health for TH1 (HTH1), and corresponding normal QQ plot

spectrum of health conditions, it is perhaps more sensible to gauge health against a heavily degraded
ecosystem; sadly, it is not difficult to locate these days. When included in the study, a badly degraded
site then serves as the baseline for “internal referencing.” This concept was originally proposed by
Chiu and Guttorp (2006). Much in the same way as a one-way ANOVA assesses theeffectiveness
among several treatments relative to the least effective treatment, an inference-based comparison
among all sites can be conducted using the LHFI to assess their healthrelative to the least healthy
site; externally defined baseline or reference conditions thus become less relevant.

In particular, ratings can be defined relative to the posterior distribution of healthHworst for the
site identified (before or after fitting the LHFI model) as theworst degraded in the region. Let us
demonstrate this idea in the context of the 1997 PSL study. Ithas been well documented (e.g. local
news, residents’ forums) that the health conditions of Thornton Creek is commonly considered
“extremely poor,” even without the need to record physical measurements. Thus,Hworst=HTH1 here,
and it can act as a baseline value for other sites. To assess Site BB1 situated along Big Bear Creek,
a simple approach then is to compute az-score for its LHFI value (posterior mean ofHBB1) relative
to the posteriorP (HTH1|Y ,X). Assuming Model (14), we have

zBB1 =
E(HBB1|Y ,X) − E(HTH1|Y ,X)√

V ar(HTH1|Y ,X)
=

−0.788− (−2.272)

0.461
= 3.22 .

We can visualize this comparison in Fig. 7, left panel: the LHFI(14) value for TH1 is marked by a
solid line, and that for BB1 by a dashed line. A subject-matter expert may now translatez=3.22 back
to practical terms, and decide on the overall degree of degradation for BB1. Note that thez-score is
appropriate here, as[HTH1|Y ,X] is approximately normally distributed (Fig. 7, right panel).

Occasionally, the study may include healthier sites that are recognized as “nearly pristine.” In
this case, the above gauge could be replaced or used alongside its “mirror image,” i.e. the same
procedure but applied to the best site in the study. One couldextend this principle further by using
posterior quantiles for the best site in the study to define future “pristine” sites. For instance, a new
site may be added to the current study, and the LHFI model re-fitted. The earlier best site will now
have an updated posterior distributionP (H̃best|Ỹ , X̃) due to the inclusion of the new site, where
the tilde ‘∼’ indicates the update; but qualitatively, the site remains“nearly pristine.” Now, one
may declare that the new site is “pristine” if its LHFI value falls above, say, the 90th percentile of
P (H̃best|Ỹ , X̃). Similarly, the site could be labelled as “exceedingly degraded” if its index value
falls below, say, the 10th percentile ofP (H̃worst|Ỹ , X̃). Note that this approach is not restricted to
new sites taken from the same spatial or temporal domain as the others, so long as the model from
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Section 2.2 is applicable (i.e. extra domain-specific effect terms are estimable).
Gauging ecosystem health with this “internal referencing”scheme can reduce ambiguity in the

absolute definition of health that is inherent in popular reference-based methods. Of course, a minor
level of ambiguity is inevitable, such as in the percentile cut-offs used to define categories of health,
which should be left to subject-matter experts to decide. However, our proposed method reduces
the amount of ambiguity involved in as many stages of health index construction as it is feasible.

7. Conclusion

The methodology for constructing an LHFI demonstrated in this article is rooted in a simple sta-
tistical concept of ANOCOVA model building, and may be easily adapted to any context of health
assessment, be it ecological, medical, or otherwise. Once alist of relevant observable variables has
been identified, constructing an LHFI reduces to an exerciseof forming a statistical model that effi-
ciently describes the relationship among these variables and the unobservable or latent health factor.
Some variables may be explanatory to health, andvice versafor others. By applying such statis-
tical modelling principles, an effective comparison of health among sites can be achieved. Simply
through fitting the model, one can also readily and simultaneously determine (1) the statistical prop-
erties of the health assessment for current and/or future sites, as well as (2) the significance of the
impact on health for the observable factors under consideration. Although latent variable modelling
techniques have become widely popular in many sciences, itsuse to produce a direct quantitative
“report card” composite measure of overall health is apparently uncommon. Therefore, our method-
ology is a simple but universal and versatile scientific approach that is potentially far reaching to
any research discipline in which a scalar assessment of health is desirable.

In the ecological context, LHFI modelling attempts to retain the user-friendliness of conven-
tional scalar health indices, but overcome several hurdlesnot clearly addressed by conventional in-
dex building approaches. Specifically, to address the age-old difficulty encountered in inter-regional
and -temporal studies, we proposed the addition of adomain effectterm in the latent factor model,
which is a standard practice in many scientific contexts for comparison among strata. This also
avoids the complexity and impracticality of formal spatio-temporal models in biomonitoring stud-
ies. Building an LHFI for ecosystems involves virtually no qualitative procedures and deals directly
with the raw metrics and associated covariates; hence, it can easily incorporate auxiliary informa-
tion into the index and, unlike some others, can retain all the information directly available from
the metrics. Through the LHFI model, proper and tractable inference of current and predicted site
health is also practical and unambiguous. This is certainlynot the case for common ecological in-
dices. When pristine conditions are unavailable or inaccessible, the construction and interpretation
of reference-based health indices may become arbitrary. Toaddress this, we proposed “internal ref-
erencing” against badly degraded sites that can be easily included in a study. Scientific comparisons
via statistical modelling is universal, and constructing ahealth index as such is intended to achieve
the same purpose as reference-based techniques, but with few of the associated disadvantages.

In fact, thestatisticalprinciples used to construct the LHFI by no means diminish thebiological
worthiness of the resulting index, as subject-matter expertise remains vital in variable selection and
results interpretation before and after model fitting. To use the terminology of Fjelland (2002) page
168, here statisticians play the role of non-experts in the “extended peer communities” of ecologists,
and because they are naturally “closer to the problem” of developing quantitative methods, their
contribution can only enhance the overall value of the methodology in ecological applications.

For the 1997 PSL data, we explored two types of LHFI models: (A) Poisson models for taxa
richness count metrics only, and (B) logit models for relative richness and abundance metrics that
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reside on a common scale (0–100%) involving no ambiguous metric calibration whatsoever. Not
surprisingly, the more comprehensive Type (B) models perform better in their ability to distinguish
sites according to health. Generally, either type of LHFI contains biological information that is
highly comparable to that in the existing B-IBI and SHIPSL, but it carries the extra advantages as
discussed above. Of course, the same methodology could leadto very different results and con-
clusions when applied to another dataset. For example, a latent health factor model ideally would
account for informational overlap carried among metrics. However, for the 1997 PSL data, the co-
variance among metric effects was poorly estimated, likelydue to data sparsity. To reduce model
complexity, we assumed independent metric effects with unequal variances, and model parameters
were generally well estimated. Imposing a structure on a non-diagonal covariance matrix would
have been difficult in a Bayesian framework, and was therefore unattempted. Another example is,
despite statistical significance of the extra level of modelhierarchy (i.e. the latent regression) for
the Poisson model, it appears to have little impact on predictive ability. One can imagine that given
another dataset with more relevant covariates, predictiveability will be improved. Nevertheless, it
is always advisable to keep in the model any statistically significant covariate that subject-matter
experts have previously identified as potentially influential to health. Such a model incorporates ex-
pert knowledge in an unambiguous fashion, and it certainly provides a more comprehensive picture
of the relationship among metrics, factors, and latent health.

Irrespective of the dataset, the latent factor modelling methodology itself is systematic and un-
ambiguous for any study from a suitable health assessment context. The associated modelling prin-
ciples give our approach the versatility and adaptability to studies that involve multiple data types
observed on different macroscopic scales.

Acknowledgements

We thank Dr. John van Sickle, Environmental Protection Agency Western Ecology Division, for
sharing his ideas and providing some of his publications anddata as reference; the editor, associate
editor, and referees on an earlier version of this article for their invaluable comments that led to
further developments of our work. The corresponding authorthanks Dr. Melissa Dobbie, Mathe-
matical and Information Sciences Division, Commonwealth Scientific and Industrial Research Or-
ganisation, for sharing her experience in ecological health indices; and Professor Michael Dowd,
Department of Mathematics and Statistics, Dalhousie University, for stimulating discussions on
MCMC techniques and post-normal science.

Appendix A: Details of MCMC posterior sampling

To minimize MCMC mixing problems, we employed partial hierarchical centring to reformulate
parts of each model before implementation (see Appendix in Chiu et al., 2007, for the full rationale).
For example, the relevant parts of Model (5) become

[bj |α, σj ]
ind
∼ N(α, σ2

j ) , [νi1|b1, σH ]
iid
∼ N

(
b1, σ

2
H

)
,

νij = νi1 − (b1 − bj) ∀ j > 1 , Hi = α+ νi1 − b1 , βj = bj − α .

The same principle is applied to Models (7) and (10), except that

[νi1|b1, γ1,x, σH ] ∼ N
(
b1 + γ1(xi − x), σ2

H

)
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to account for the latent regression. For implementation ofModels (11) and (14), we explored
several formulations of partial hierarchical centring, one of which performed satisfactorily:

[H̃i|γ1,x, σH ] ∼ N(γ1(xi − x), σ2
H) ,

[
bj(s)|α, σj(s)

] ind
∼ N(α, σ2

j(s)) ,

νisj�
= H̃i + bj(s) , Hi = α+ H̃i , βj(s) = bj(s) − α .

For each of the models fitted to the 1997 PSL data, the posterior samples used for inference were
generated from two Markov chains. Each chain consisted ofM draws, reduced from removing a
burn-in ofb draws then thinning by a lag ofℓ. The chains started at two different randomly generated
initial values.

For Model (5),M=10,000,b=30,000 andℓ=2, and for Model (7),M=10,000,b=15,000 and
ℓ=1 (i.e. no subsequent thinning). Minor mixing problems forα in Model (7) appeared in the form
of a slight difference in location (mean / median / mode) between chains. Nevertheless, all other
features of the chains forα were highly comparable. Although the distribution of eachHi depends
onα, no mixing problems were observed forHi’s. Nor were mixing problems present for any of the
parameters in Model (5). Thus, in either case, the two chainswere combined to form one posterior
sample of size 2M to define the corresponding LHFI measures without ambiguity.

For Model (10),M=5,000,b=7,000 andℓ=20. The posterior samples forΣ were somewhat
volatile, in that both chains showed extreme skewness for theΣ entries with tail values on the order
of 105, and the chain dispersions were noticeably different; however, marginal posterior medians
were comparable between chains. Nor did the Brooks-Gelman-Rubin convergence diagnostic plots
(Brooks and Gelman, 1998) exhibit patterns that would causea great deal of concern. Indeed, it
is understandable that extensive coverage of the support ofan exceedingly diffuse posterior may
require an impractical number of simulated samples. Chiu (2008) also observes that this diffuseness
of the posterior is a direct result of the extreme diffuseness of the prior, combined with the limited
amount of data for estimating many parameters. In other words, our mixing problems could well
be an artefact of this phenomenon. In light of how well all non-Σ parameters were estimated, how
similar theΣ entries’ medians were between chains, and how well all parameters were estimated for
the smaller models (5) and (7), it appears that the mixing problems did not arise from an intrinsically
incorrect model. Thus, for the purpose of estimatingΣ, we restrict our attention to the chain that
yielded a larger posterior variability inΣ. The smaller variability for the rejected chain could have
resulted from an initial value that confined the Markov chainto a smaller subset of the parameter
space. However, no mixing problems were encountered forHi’s between chains. Hence, we define
LHFI(10) to be the mean of the posteriorHi samples based on the two chains combined.

We now come to the logistic Models (11) and (14), for each of whichM=10,000,b=5,000, and
ℓ=5. In both cases, mixing problems were encountered only forthe non-EPTσj(s) ’s. The problems
resemble those for theΣ entries from Model (10), with tail values on the order of 103 here. Again,
they may be explained by posterior diffuseness and limited data. Finally, as theHi chains mixed
exceptionally well for either model, combining them to formthe LHFI was justified.

Appendix B: The consequences of incorporating a latent regr ession and the depen-
dence among metric effects

In this appendix, we show that having (a) health regressed oncovariates and (b) correlated metric
effects in the latent health factor model can address the natural correlation among metric values over
sites and over metrics.



24 G.S. Chiu et al.

First, consider the potential shortcomings of Models (5) and (7) which assume independence
among metric effects. We do so through a Gaussian analogue ofModel (7):

Wijk ≡ lnYijk = Hi + βj + εijk , [εijk|σε]
iid
∼ N(0, σ2

ε) ,

[Hi|α, γ1,x, σH ]
iid
∼ N

(
α+ γ1(xi − x), σ2

H

)
, (15)

[βj |σj ]
iid
∼ N(0, σ2

j ) . (16)

Conditioned onΩ = (α, γ1, σH , σ1, . . . , σ7), the mean and covariance structures of the data coming
from sites(i, i′) and from metrics(j, j′) are

E(Wi′jk|Ω) = E(Hi′ + βj + εi′jk|Ω) = α+ γ1(xi′ − x) , (17)

E(Wijk |Ω) = E(Hi + βj + εijk|Ω) = α+ γ1(xi − x) = E(Wij′k|Ω) , (18)

Cov(Wijk ,Wi′jk|Ω) = Cov(Hi + βj + εijk, Hi′ + βj + εi′jk|Ω) = V ar(βj |σj) = σ2
j , (19)

Cov(Wijk ,Wij′k|Ω) = Cov(Hi + βj + εijk, Hi + βj′ + εij′k|Ω) = V ar(Hi|σH) = σ2
H . (20)

Now, take the priors from (6) and (8). Then, by the law of totalcovariance, one can easily show that
the marginal covariances become

Cov(Wijk ,Wij′k) = ψ + c2[1 + (xi − x)2] , (21)

Cov(Wijk ,Wi′jk) = ψ + c2[1 + (xi − x)(xi′ − x)] (22)

whereψ depends onc3 andc4 only. Thus, given sitei, (21) implies that the correlation between (the
log-values of) any pair of metrics is constant over metrics (i.e. independent of(j, j′)). However, as
discussed in Section 4, metric values could be naturally correlated over metrics and over sites. Con-
veniently, dependency over sites is addressed by regressing latent health on site-specific covariates
according to (22): given metricj, the correlation of metric values between any pair of sites depends
on (i, i′). However, this dependence would have been lost should the latent regression be removed
from (15), leaving (17), (18), (21), and (22) simply as

E(Wijk |Ω) = E(Wi′jk|Ω) = E(Wij′k|Ω) = α ,

Cov(Wijk ,Wi′jk) = Cov(Wijk ,Wij′k) = ψ + c2 .

Just as the latent regression introduces correlation over sites, dependence among metric effects
βj ’s conveniently incorporates correlation over metrics into the model, by replacing (16) withβ ∼
MVN(0,Σ). Adding this to the latent regression turns (21) and (22) into

Cov(Wijk ,Wi′jk) = c2 [1 + (xi − x)(xi′ − x)] + E(σ2
j ) ,

Cov(Wijk ,Wij′k) = c2
[
1 + (xi − x)2

]
+ ψ + E(σjj′ ) .

The hyperparameterS in the inverse-Wishart prior (9) can be specified such thatE(σ2
j ) andE(σjj′ )

— and hence, the covariances — depend onj and (j, j′), respectively. For the PSL data, we
tried various such priors, but all of them yielded somewhat ambiguous estimates due to mixing
problems as described in Appendix A. Finally, to reduce extra model complexity, we settled for an
exchangeable structure forS as described in Section 4. As it turns out, the posterior distribution of
Σ indeed provides some evidence, albeit weak, thatβj ’s are correlated.
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