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1. Introduction

Many disciplines from the biological sciences involve assgg underlying conditions with a single
number computed based on various measurable characteriéte generically refer to these con-
ditions ashealththroughout this article. A familiar example is thedy mass inde8Ml), which
combines a person’s height and weight measurements toag/sddlar-valued quantification of obe-
sity (perhaps a form of poor health). Scalar-valued assestsrare naturally appealing for their
structural simplicity and supposed ease of interpretapanticularly in decision making contexts
such as disease diagnosis. However, how one should int@&ptevalues in different situations
has long been a contentious issue (e.g. Lopez-Alvarehgh, 2003). To assess aquatic ecosys-
tem health, conventional indices such as Ileathic index of biotic integrityB-1BI) (Kerans and
Karr, 1994) and its variants (e.g. McCormiekal., 2001) are similarly constructed by studying and
combining indicator variables, anetrics to reflect underlying health conditions of field sites in a
single spatial domain. Disadvantages of relying on thesgaxtional indices have been well docu-
mented (e.g. Steedman and Regier, 1990; Chiu and Guttodg, 2006). IBI variants are a type of
reference-based health indicediserved-to-expectd®/E) indices via theiver invertebrate pre-
diction and classification syste(RIVPACS) approach are another (see Hawldhal,, 2000). For
reference-based indices, test sites (sites whose healtld& scrutiny) are gauged against reference
sites that are ideally comparable to the test sites in evagrga except for their pristine “reference”
conditions. Sadly and realistically, however, so-calledtme sites either no longer exist due to
widespread environmental degradation across the glola@ednaccessible to scientists due to their
remoteness. Consequently, the definition of referenceriaitire often admittedly arbitrary (e.g.
Hawkinset al, 2000). For these three and perhaps other existing scalaed health indices, the
fundamental issue lies in the ambiguity of the scheme usemtstruct an index that allegedly
reflects unobservable conditions of interest.

Statistically speaking, conventional schemes could apaédocdue to a high degree of ar-
bitrariness and the lack of a unified approach in severakstafi quantifying qualitative features.
Take the aforementioned reference-based indices, farinst Stage 1 involves testing, analyzing,
and/or validating each of a potentially enormous pool ofringtusing existing or training data. In
Stage 2, a final reduced set of metrics is agreed upon for ugermng the index. Discriminant
analysis is popular for the screening of candidate metggy. (Hawkinset al., 2000; Stoddaret
al., 2005), although some scientists caution against the usidard multivariate statistical tech-
niques for this stage (e.g. see Brinck (2002), page 7), piefgless systematic (thereby potentially
arbitrary) approaches. However, how best to define and ehwoesrics is beyond the scope of our
article. The main concern of our work is the potential statid inadequacies of an index that results
from the following stages.

In the calibration stage, common attempts to overcome tkedgtruly pristine reference sites is
to use the best sites available in the context of the studighithemselves vary in quality (Clarlat
al., 2003). This is true both within and across geographicalpieral domains. Yet, this variation is
not formally or systematically accounted for, as referezmaditions are often externally standard-
ized then treated as invariant (e.g. see MMI and O/E indexaddardet al, 2005). Admittedly,
such practice leads to arbitrariness / ambiguity / incaesw@es in the definition of reference-based
health indices. In particular, for the RIVPACS approacke ldst stage of forming the O/E index
involves predicting the number of certain taxa, condittboa the currently observed reference data
that often span across several ecoregions and time pei@mssequently, test sites from different
geographical-temporal domains could be identified as lgghgrto the same group with respect to
health. This may appear unsatisfying, as recognizableréifice in space and time among sites
either plays no explicit role in how sites are categorizeds a priori assumed insignificant.



Latent Health Factor Index 3

For IBI variants, the calibration stage further involvewidisng a standardization ascoring
scheme for converting the selected metrics into scoressttae the same scale. However, there
is no universally accepted scheme here. For instance, i8¢ 8&heme relies on qualitative ideas
of health to map metrics onto a discrete scald bf 3, 5}, while a more mathematical approach
is favoured by Stoddardt al. (2005) to map metrics onto a continuous scale of [0, 10] feirth
multimetric index (MMI). Moreover, to this date, no obviostsategy exists for ensuring that metrics
calibrated against reference sites from one domain wouéttdfely reflect ecosystem health of
another. The last stage involves deciding on a weightingreehfor themetric scorego form
the index. What constitutes an effective weighting schesrieaditionally an open-ended question.
Equal weighting is common, leading to an index that is the sdirall metric scores. However,
each metric reflects a different but not necessarily disjaspect of health, and the overlap in
informational content is not easily quantifiable (Ter Brab87). Similar semi-qualitative practices
are common for gauging the health of ecosystems in genegalgee Jgrgensetal. (2005)). This
type of statisticallyad hocapproach poses extreme challenges to proper statistsegseent of the
indices and comparison of health across spatial and/ordemhgdomains. Despite the issues, IBI
variants remain popular among policy makers due to thaicsiral simplicity, interpretability, and
high biological content in the form of subject-matter exjser from numerous scientists involved
in all four stages of index construction. To address thdssizdl inadequacies of the latter two
stages, Chiu and Guttorp (2006) propose the SHIPSL schenpe&ding metrics to form an index
that is also scalar. When compared to the conventional apprahis scheme reduces arbitrariness
and therefore improves statistical tractability of theutésg index. However, the SHIPSL scheme
retains some degree of qualitative involvement.

Other environmetricians prefer not to assess health attpliBillheimer et al.(1997) and Bunea
et al. (1999) directly model the metric-to-metric relationshipereby removing all intermediate
stages, each of which could mask valuable information otilheasulting in artificial precision (as
in metric scores being restricted to 3 discrete values amlyhnecessary variability (as in sensitivity
to field noise discussed by Chiu and Guttorp, 2006). Thesiststal models, e.g. state-space and
graphical models, often expressed in a multivariate fraomkycan effectively describe underlying
conditions of an ecosystem. Ter Braak (1986) prefers emapvbased multivariate analyses to
describe the relationship between species abundance sindrenental variables. However, none
of these may be immediately useful to resource managersodhe tomplex messages embedded
in a multivariate system. Here, scalar-valued MMI’s apprare appealing.

In this article, we investigate an entirely new approachdmnstructing MMI's. It combines
the statistical integrity of model-based techniques amdinterpretability of conventional indices
such as the BMI and B-IBI. We focus on the freshwater ecosystealth assessment problem to
demonstrate our approach. For metrics that have beenfiderftiom Stage 2 as informative, we
model their interdependence by regressing them on untedeators, one of which is latent health.
This latent, unobservable factor can be estimated statit thereby yielding a scalar, numerical
assessment of underlying health conditions. Other obbkremvariates may be included, such as
physical traits of the streams (e.g. stream order), theadatd/or temporal locations of sites, and
human demographic variables that could directly influeritgergealth. The resultintatent health
factor index(LHFI) can then be compared to existing indices for the saata.df both are deemed
to contain similar information about health, then the meaeded LHFI would be preferred in gen-
eral. This is because (1) the process undertaken to definiedk® is based almost entirely on
standard modelling principles (hence, is much less aryitré2) its performance is highly tractable
in the statistical sense, (3) it is expected to be much lessitsee to random variability (field noise)
since no intermediatad hocstages are present to distort valuable information, ana/én covari-
ates appear in the model in a latent regression to explainetakh factor, then (a) prediction of site
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Fig. 1. (a) Conventional indices: health measurement is driven by observable metrics; (b) latent
health factor modelling: a hierarchical framework in which metric responses are driven by unobserv-
able health, which, in turn, is influenced by auxiliary covariates
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health and its inference are straightforward and unamhigonlike conventional methods), and
(b) the fitted model can help resource managers to identifyreal factors that have a direct influ-
ence on health. Specifically, the significance of their inhpechealth can be statistically assessed
and classified, thus readily providing policy makers witlamniguous guidelines for prioritizing
conservation measures. Indeed, both ranking sites wipheotgo health and classifying factors
according to their impact on health can be achieved in asisiglp of fitting the model.

The rationale and basic principles of our methodology avergin Section 2. Statistical infer-
ence for health, including its prediction, is discussedéot®n 3. We illustrate our methodology in
Sections 4 and 5 by applying it to the 1997 Puget Sound Low(B&dl) taxonomic data that appear
in Chiu and Guttorp (2006). Corresponding values of SHIPSH B-IBI are compared to those
of LHFI, and their statistical and biological performan@ntrasted. (No documented O/E index
values exist for these data.) In Section 6, we suggest hovaictipe one may make biological inter-
pretations from a model-based LHFI without relying on eméor prescribed reference conditions.
Overall findings and advice are summarized in Section 7. Sewtenical details omitted in the
text appear in the Appendices. The reader should note thgittpose of our article is to motivate
and demonstrate the methodology of latent factor modelbngssessing health; it is not to use the
particular 1997 PSL data to build an ecosystem health index.

2. A fully quantitative modelling framework for the LHFI

Consider assessing freshwater ecosystem health, suchsieefams. Typically, benthic taxonomic
data are collected by inserting some form of fixed-size shiote the mud, separating the animals
from the collected mud, then sorting each animal into oneafiyrtaxa. This collection of animals
forms the field sample. It is common to collect replicate fightinples per site. Ecologists identify
various numerical aspects of the field sample compositioeftect ecosystem health. For example,
an abundance of animals from predatory taxa would refleca#itheecosystem that can sustain a
large number of predators. Similarly, a field sample richtiass-sensitive taxa would point towards
an ecosystem that has been subject to minimal stress. Theserical indicators of health are
known as metrics when used to construct health indices. Weoresubject-matter expertise for
what constitutes a biologically meaningful metric. On thiees hand, our statistical expertise may
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Table 1. Sites sampled from the PSL in 1997, and metrics identified in ecological studies to
be effective indicators of stream health for the PSL

site metric
name location label characteristic type
BB1 Big Bear Creek #TX all taxa richnés&ount)
BB2 #Eph Ephemeroptergaxa  richness
BB3 #Ple Plecopterataxa richness
BB4 #Tri Trichopterataxa richness
BB5 #LL long-lived taxa richness
BS1 Big Soos Creek #Intol intolerant taxa richness
JE1 Jenkins Creek #ClI clinger taxa richness
LB1 Little Bear Creek %Tol tolerant taxa abundah¢e)
LB2 %Pred predatory taxa abundance
LB3 %Dom3 3 mostdominanttaxa abundance
LB4
MA1 May Creek
Mil Miller Creek *# distinct taxa of given characteristic appearing in fielohgke
RO1 Rock Creek
SW1 Swamp Creek 1100 x # animals of given characteristic in field sample
SW2 total # animals in field sample
SW3
TH1 Thornton Creek

play an important role in using these metrics to construakgically meaningful health index, as
the construction scheme must effectively account for tharmation that the metrics contain.

By combining metrics (scored or raw) to form a health indeotywventional schemes for IBI
variants and O/E indices essentially regard health as $porese variable and metrics as covari-
ates or driving factors of the health measurements (Fig).1(a reality, metrics are indicators
of health, i.e. the underlying health is what drives the imetreasurements. Thus, in a statistical
model, metrics would appear more naturally as responsablas, to be explained by health in
the form of a latent covariate (top two tiers of Fig. 1(b)).idtole reversal is fundamental to the
scientific integrity of our index construction approachtfas relationship between health and met-
rics is directly modelled in an intrinsically quantitatiframework without any ambiguous variable
manipulation. Moreover, our approach allows health to appérarchically in a latent regression
on auxiliary variables (e.g. urbanization, geographyyyeabottom tier of Fig. 1(b)) that have a
potential impact on the field site’s overall health condigoAltogether, this framework constitutes
a hierarchical model that relates health, metrics, andianxicovariates simultaneously.

To illustrate the concepts of our LHFI modelling approachdauging ecosystem health, we
consider the 1997 PSL benthic taxonomic data as appear in& Guttorp (2006). These data
were collected from 18 sites scattered over 9 streams (TgblEach site yielded 3 replicate field
samples. For the PSL, an animal in the field sample could gamone of 80 taxa, and the animal
count per taxon could range from 0 to more than 1,000, bupis@ly equal or close to 0. Biologists
have previously identified 10 useful metrics for the PSL (Ba&igle 1), whose values are computed
based on the 80 counts. Here, all 10 metrics are highly aig@due to their definitions: 7 describe
taxa richness (count), and 3 describe relative abundangel@eonsider the relationship between
metrics and health, non-Gaussian multivariate-respormieta can easily account for both count
and % data types simultaneously, but such models oftenneeqoimplex parametrizations. Instead,
we take a simpler approach by using the principles of amabyfsjco)variance (ANO(CO)VA).
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2.1. Building the latent health factor model

Researchers in various disciplines have employed theaxglatistical estimation of latent quan-
tities to assess unobservable traits of interest (e.g. Eagk, 2000; Pietrobort al., 2004; Rosas,

2008; Stock and Watson, 1989; Ward and Hoff, 2007). Here, xpdo# the practical appeal of
this approach in biomonitoring and environmental policyking. Specifically, we aim to retain
the widely accepted soundness of the multimetric approact,the popularity of scalar-valued
assessment among policy makers.

For benthic data, leY;;; denote the (possibly transformed) value of jtile metric for theith
site’skth independentreplicate, wherel,. .. n, j=1,... J,andk=1,2,... K. For the PSL, we have
n=18,J=7 or 9 (explained at the end of Section 2.2), d3. Naturally, the responsg;, can be
explained byH; — the underlying health of sitg and3; — the block effect due to metrig, in an
analysis-of-variance (ANOVA) generalized linear mixeddab(GLMM):

vij = Hi + B; )

wherev;;=g(E[Y;;1]), andg() is an appropriate link function. For randomly chosen sities,un-
observable health factdf; is considered random, and in turn can be explained in a leggrgssion:

H; = fo(xi) + € ()

wherez; is a vector of observable auxiliary covariates that may erflee site healthyfy () is the re-
gression function with coefficien®, ande;’s are independent and identically distributed (iid) O-
mean errors. Our main interest is ify; its estimatef/; is obtained by fitting the model to the ob-
servedY;;;'s andx;’s. Although health itself is latenfi; is an explicit quantification of site health.
For theg;’s, we model them as 0-mean random-effects with an apprepeiavariance structure.
Altogether, (1)—(2) constitute a hierarchical ANOCOVA GM

2.2. Model for combining spatial and other types of domains

For the purpose of developing an ecological health indeighteuring geographical domains may
be similar enough to share the same set of metrics yet differgough that traditional metric cali-
bration devised for one region may not effectively refleethiealth conditions of another.

Suppose ouy metrics are deemed adequate for spatial domains A and B,rdy@toof which
could lie within the PSL. The goal is to assess in one combétedy the ecological health of sites
a1,az,.-.,a, from Domain A andby, b, ..., b, from Domain B. The traditional approach for
IBI variants would require recalibration of all metrics to account for the different spatial scales.
(Spatial differences are simply unaccounted for with Oftdas.) Painstaking effort aside, personal
preferences could play a heavy role in this recalibratieducing scientific integrity of the resulting
index. The SHIPSL scoring scheme handles this problem byofvaetric standardization against a
mean and SD computed from all+n pooled sites. However, a simple arithmetic mean overlooks
the fact that sites;’s are more similar among themselves than when comparégstoChiu and
Guttorp (2006) advocate thgold standardscheme with pre-determined region-specific values to
replace the sample mean and SD, but warn that implementadidd be challenging in practice.

With our latent factor model, we can handle this issue pilgpehile avoiding the complexity
of so-called spatial models that directly address the abatirelation patterns. In fact, based on our
experience and communications with various ecologisessgarsity / large variability of ecologi-
cal data of this sort typically prevents any underlying Edatorrelation pattern to be statistically
detectable. As formal applications of spatial models arprautical, a reasonable compromise,
without loss of biological or statistical integrity, may tiee following.
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Let Y; ;e denote the value of thigth metric from replicate samplein theith site within spatial
domain?. Inthe presence of auxiliary covariates, a spatial efeyehty, can be an added as follows:

vije = Hyoy + B, Hiwy = Mo + fo(Tie) + €ie)

with 7 nested ir/. Here, the\,'s may be modelled as random or fixed depending on the context.
If covariates are absent, then the tefgiz,,) can be removed from the latent regression. In either
case, the simple addition of a spatial effect term in thentafgctor model allows us to study the
health conditions by estimatinid;,) over all sites simultaneously and without ambiguity.

The same principles may be applied to contexts of multiphepieral domains, whereby one
would introduce a temporal effect term (eygar), possibly ordinal, to the model in a similar man-
ner as above. To account for both types of domains, a spatipdral interaction term may be
included. Similarlystream ordei(size category of stream) could be considered a type of dgmai
and modelled in a similar fashion.

Since we have experienced much difficulty in obtaining duadixonomic data that span several
domains, we currently cannot demonstrate an applicatidhisfapproach. Nevertheless, we are
unaware of existing articles on biomonitoring that accdontspatial and temporal differences in
a truly sound manner; ours attempts to do so. Applicationusfroethodology to inter-regional
and -temporal data are currently in preliminary stagesdooted in collaboration with aquatic
ecologists. In the remainder of the article, we will focudittimg (1)—(2) only. In Section 4, we use
Poisson ANO(CO)VA models to construct LHFI's for the PSL&xdsn the 7 taxa richness metrics
only. In Section 5, we apply a natural transformation to ¢h@smetrics to form 6 new relative
richness metrics, combine them with the 3 relative abunglametrics, then model them altogether
as a logistic ANOCOVA in two different formulations.

3. Computing the LHFI: model inference by Bayesian estimati on

According to Gelman and Hill (2007), the hierarchical Bagadramework is the most direct way
to handle models with latent structures, as each level eftatgression in theodel hierarchyhas

a direct correspondence to a specific level ingheameter hierarchylndeed, many existing works
on modelling latent quantities utilize Bayesian inferends a bonus, unlike some classical tech-
niques, this framework does not rely on asymptotics that beayappropriate due to small sample
sizes and/or unbalanced designs that are common in ecal@gid other contexts. Here, we apply
Bayesian inference t#l;’s and other nuisance quantities in our latent health faotdel (1)—(2).

LetH = (Hy,...,H,)" andB = (31,...,8,)T. Letv denote the vector af;;’s, Y denote
the vector ofYj;,.'s, X denote the design matrix whose rows ag¢s, and2 denote the vector of
remaining model parameters, includi@gand those from the distributions @f ande;’s. For our
model in a Bayesian context, all bXtare considered random quantities.

Next, let P() be the generic label for a probability distribution. Thé¥£2) is the prior dis-
tribution of Q, P(Y|v) or P(Y |H, 3) is the likelihood,P( H |2, X) is the distribution ofH, and
P(B|Q) is the distribution of3. In the absence of concrete preconception®pé diffuse (nearly
flat) prior P(£2) is commonly applied. Assumptions abddt|v], f(), 3, ande;'s determine the
remaining distributions. Bayesian inference #dr, 3, andQ2 is made based oR(H, 3, Q|Y, X),
the joint posterior distribution off, 3, andQ2. We assume independenceldfandg3, so that

P(H,,@,Q|Y,X) x P(Y|H,,@,Q,X)P(H,mQ,X)P(Q,X)
— P(Y|H,B) P(H|,X) P(B]2) P(€). 3
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EstimatingH;'s is our main interest; here, we take the posterior mean tousdHFI (although
other relevant posterior statistics are possible, e.gepios mode). That is,

H; = H;(Y,X) :E(Hi|Y,X):/Hi///P(H,ﬁ,mY,X)dﬁdQ dH_; (4)

whereH _; is obtained by removingl; from H. Uncertainty in the estimation can be assessed by
highest posterior densitfHPD) intervals, available through statistical packagehsasboa in R
(Smith, 2007). Once the posterior in (3) is determined, iobtg HPD intervals is straightforward
and unambiguous. In contrast, confidence intervals fottiagisndices such as IBl and SHIPSL
variants rely on the non-parametric bootstrap, and aretivegiabiased in location and width in
general (Chiu and Guttorp, 2006).

Note that closed forms may not exist for (3) or (4). In thiseggame can simulate samples from
(3) by numerical methods such as Markov chain Monte CarloNMDJ, widely available in software
packages such as OpenBUGS (Thoraiaal, 2006). Approximating (4) based on drawn posterior
samples is then trivial. The remaining nuisance quantit@sbe estimated in a similar fashion.

3.1. Predicting site health

Another disadvantage to monitoring ecosystem health withroon indices is the inability to make
reasonable inference on the predictions of site healthIBlorSHIPSL variants and O/E indices,
one might predict an index value by inputting hypothetigak richness / abundance counts or
the corresponding metric values. However, as metric valuiesselves indicate health, the logic
behind this prediction appears to be circular. Alterndyivene may first compute the index values,
then regress them on auxiliary variables and make preditid future site health via the fitted
regression. For this two-step approach, inference on giestlivalues depends on the assumptions
about the distribution of the index values. How might oneoporate into these assumptions the
variability of metrics that form the index? The answer isffam being clear.

In contrast, prediction of the LHFI at siteand its inference is much more straightforward with
our hierarchical ANOCOVA model (1)—(2), via the posterioegictive distributionP(H*|Y, X, x*),
where a %” denotes a future value. One can take the predicted LHFIHisr gite to beH* =
E(H*|Y,X,z*). Specifically, first consider a single Monte Carlo samplerfithe joint posterior
(3). Extract from this sample those componentSiahat are relevant to (2). Now, substitute these
components together with* into (2) to simulate a Monte Carlo draw from(H*|Y, X, z*). Re-
peat this process until a collection of simulated draws &taioed fromP(H*|Y, X, z*). Then,
H* is approximated by the mean of this collection. Predicti®EHntervals based oR(H*|Y,X,x*)
are also easily approximated using appropriate quantilbesimulated posterior predictive draws.

The advantage of our predictive inference approach is thetdounts for the modelled rela-
tionship among metrics, health, and auxiliary variablesutianeously in an unambiguous fashion.

4. Three LHFI's for the PSL based on taxa richness

We apply our modelling methodology described in previougises to construct LHFI's for the
PSL. To avoid handling metrics on different scales, we festrict our attention to thé=7 count-
valued richness metrics (Table 1). A Poisson likelihoodeapp to be appropriate here. Thus, a
possible initial model can be the simple ANOVA (1) that asearsite and metric effects to be
independent and normally distributed:

ind

[Y;jk|Vij] 1251 POiSSOer"”’j)’ Vij = H; +B] ) [Hi|0[, UH] u’\(} N(Oévo'?{)7 [ﬂj'o—j] ~ N(07 0—32) . (5)
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Fig. 2. Distributions of relative richness and abundance metrics from the 1997 PSL benthic taxo-
nomic data

Note that (5) implicitly addresses possible overdispergibtaxa richness counts at the across-
site and across-metric level (McCulloch and Searle, 200kijch is the level of main concern for
overdispersion in biomonitoring studies. (Biomonitoroega are typically too sparse for modelling
overdispersion on a finer scale.) Note also that the vaserahyar(Y;;;;) overj may be attributed
to a combination of non-constaa}’s and the Poisson link (see Fig. 2, curves in dark grey and
black, corresponding to 100Q;x /Y4, for i=2,...,7, wheré?,;, is #Tx; i.e. they are the percent-
age counterparts of the richness metrics currently beingidered — see Section 5; although not
shown, the distributions of th¥;;;’s are comparable to these six in shape and relative logation
The former assumption of metric effects heterogeneity @aremoved in subsequent reduced fits if
itis deemed unncessary based on model diagnosis for (5).

Diffuse priors are given to the elements@f= («,oq, 01, ..., 07):

a~ N(ci,c2), 0%, 07 ~ inverse-gamnas, cs) Vj (6)

wherec;=0, ¢o=100, andc3=c4=1 are hyperparameter values chosen to impose diffuse@siser
values ofc’s that correspond to more diffuseness were also used, bytléld to minimal change
in the model fit, and will not be discussed further. Similavie chose normal and inverse-gamma
priors for ease of implementation, but normality or otheewjenerally plays little to no role in the
inference provided that the prid?(£2) is diffuse.

Priors in (6) and Model (5) (and all subsequent models) weng@emented with OpenBUGS
after partial hierarchical centring (see Appendix A). Bhea two Markov chains of posterior draws
of (H,3,Q) generated from different initial values, all unknown qutes were well estimated.
We combine both chains to obtalfy's, labelled as LHFI(5). These index values and correspandi
95% HPD intervals appear in black in Fig. 3, top panel. Pastsummary statistics fof2 appear
in Table 2. Details of MCMC sampling appear in Appendix A.

In addition to metrics data for the 18 PSL sites, associatddeach stream are data for auxiliary
covariates, taken from Morley (2000), that includdbanizationand Global Positioning System
(GPS) co-ordinates Urbanization is the percentage of total impervious arethénsub-basin to
which the stream belongs. Thus, some sites share the salagization value. GPS co-ordinates
recorded with sensitive instruments appear as latitudédangitudes that are unique to each site.
To additionally account for the potential influence of theseariates on health, we consider them
and LHFI(5) in scatterplots in Fig. 4. (Note that the latiéatale shown has been shiftedb47 and
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Fig. 3. Ninety-five percent HPD intervals for Poisson-based LHFI's (top panel) and logit-based LHFI's
(bottom panel); a ‘—' denotes the observed index value
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Table 2. Summary statistics of posterior draws for Poisson counts models

mean median 2.5th HPD %-ile  97.5th HPD %-ile MC error # draws

«
01
02
g3
04
05
06
a7
OH

Model (5): DIC=1354.0

151 151 0.57 2.46 0.01 20000
1.71 1.38 0.46 3.66 0.01
1.20 0.97 0.35 2.56 0.01
1.19 0.98 0.36 2.52 0.01
1.18 0.96 0.40 2.56 0.01
1.24 1.01 0.37 2.64 0.01
2.75 2.25 0.77 5.92 0.02
1.39 1.12 0.42 3.02 0.01
0.60 0.59 0.41 0.80 0.00

Model (7): DIC=1353.0

1.56 1.55 0.65 2.52 0.01 10000
—-2.06 —-2.05 —-3.44 -0.70 0.01 20000
1.71 1.38 0.44 3.75 0.01
1.19 0.97 0.38 2.52 0.01
1.21 0.98 0.36 2.62 0.01
1.20 0.97 0.34 2.55 0.01
1.26 1.01 0.37 2.72 0.01
2.74 2.24 0.81 5.93 0.01
1.39 1.12 0.39 3.00 0.01
0.50 0.48 0.34 0.68 0.00

Model (10): DIC=1353.0
(only diagonal elements & are given)

1.27 1.28 —-2.11 4.57 0.02 10000
—-2.07 -2.06 —3.46 —0.67 0.01
28.63 3.39 0.09 62.91 7.26 5000
17.93 1.87 0.09 34.32 5.47
16.32 1.77 0.08 34.90 4.20
17.85 1.79 0.07 36.00 4.59
17.82 1.78 0.07 37.88 5.21
87.49 6.66 0.08 114.80 37.13
17.11 2.40 0.06 44.96 2.08
0.50 0.49 0.34 0.68 0.00 10000

Note: Values for parameters with & are based on one Markov chain only.

11
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longitude by—122.) An approximately linear relationship is seen betweesith and urbanization,
which is highly correlated with longitude. In contrast,itiatle has little association with health.
Note the two most degraded sites (TH1 and MI1) with LHFI(5luea below 0.4. They appear
to drive the linearity between health and urbanization, twedow correlation between health and
latitude. Nevertheless, disregarding these sites fordtent regression in (2) may be unwise in
contexts of, say, habitat conservation — one indeed expeditsd unhealthy ecosystems in highly
urbanized sites, making urbanization (at least on the highod the spectrum) an important factor
in determining site health. To avoid regressing health @umelant or unnecessary variables, we
consider a single covariatg, namely, urbanization. Altogether, we have the ANOCOVA elod

ind . Vs _
[Yije|vij] '~ Poissotte” ), v = Hi+B;, Hi=0i+7(z—7),
iid ind
[70”05,0'%{} ~ N(O‘7012'—I)7 [6]|0'32] ~ N(O7032)

Here, the covariate in the latent regression is centred byratting the meam, to remove depen-
dence betweea and~;. For~;, we take the same diffuse prior faras in (6). That s,

(7)

71 ~ N(e,ca) . (8)

Model (7) with priors from (6) and (8) fof2 = («,v1,0m,01,...,07) were fitted to the data
via two Markov chains of posterior draws. The chains mixedegtionally well except for minor
mixing problems forx; we combined the chains to produce LHFI(7). Posterior sumgrsiatistics
for ©2 appear in Table 2. See Appendix A for sampling details. letdlly, LHFI(7) and LHFI(5)
are virtually identical in value and 95% HPD interval (Fig. 3

Finally, one might wish to consider as part of the model theetelency of the richness counts
over sites and metrics, for the following reason. The natirdhe dependence between pairs of
richness counts is expected to vary by site and metric. 7aRB1 andi’=BB2, for instance. Both
sites are located along Big Bear Creek, and there¥ge andY; ;. are highly dependent. Now,
take:=BB1 andi’=TH1, the latter located along Thornton Creek; hengg, andY;. ;. are possibly
independent. Similarly, takg=1 (#Tx) and;j’=2 (#Eph). As #Tx is obtained by adding #Eph to the
number of other taxdy;;, andY;;;, are linearly correlated. Now, take2 and;j’=7 (#Cl). Then,
the covariance structure betwegg, andY;; . is intrinsically different and may not be linear, since
someEphemeroptersaxa fall in the clinger category, while others do not.

In Appendix B, we show that the dependence of pairwise camag on(i, ) is already re-
flected by the latent regression of (2), and that having tated 3;'s can further allow us to ac-
count for the dependence @, j'). In particular, we replace thg; distributions from (7) with
B = (B,...,0:)T ~ MVN(0,X), whereX is the variance-covariance matrix whogh diago-
nal element issz. and off-diagonalj, j/)th element is7;;». In principle, one may wish to impose
a covariance structure that is based on the conceptualbreship among metrics. However, ex-
cept for some special structures, it is often challengingfficiently sample from the posteriors of
the covariance parameters (Westveld, 2007). Thus, we @&sanmnstructure® here. Then, the
inverse-Wishart distribution is a popular choice for thimpof X:

»~! ~ Wishar(S, ¢s), 9)
parametrized in such a way th&t>) « S. Altogether, our third model is

ind . Vs _
[Yijk|vij] ~ Poissofe”), v;j =H;+8;, H;=n;+7(xi—7),

id

| (10)
[70i|05;0'%{] ~ N(Oé,O'%{), 6 ~ MVN (072)7
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with priors from (6), (8), and (9) fof2 = («, v1,0m, X). For the hyperparametersin (9), we take
c5=7 andS to have diagonal values 1 and off-diagonal values 0.5. Téfisats the prior notion
that all 7 metrics are positively associated with the latexgtlth factor, and hence, with each other.
These hyperparameter values yield reasonably diffusegpmors.

Again, two Markov chains of posterior draws were generatddwever, despite hierarchical
centring, we encountered mixing problems for many matrixies of 3 (see Appendix A). Nev-
erthelessH,;’s mixed well marginally, and hence, we can define LHFI(109dzhon the combined
chain. Index values and 95% HPD intervals are shown in gré&ygn3, top panel. Posterior sum-
mary statistics for selected element<bare in Table 2.

4.1. Discussion of results

As it turns out, pairwise correlations among the three LBBFe all equal to 1.00. However, while
we define an LHFI to be the posterior mean féy, we must also consider the reliability of this as-
sessment of health. From Fig. 3, top panel, we see that lagatth corresponding to LHFI(10) has
substantially more uncertainty (longer HPD intervalsyth&lFI(5) and (7), the latter two showing

almost identical properties. In other words, although Mdie) in principle incorporates the natu-

ral correlation among metric values over sites and overiogeinto the latent health factor model,
the extra complexity of the model did little in practice togmve our inference. Of course, this
larger model may prove to be beneficial when applied to otherskts.

For our 1997 PSL data, we prefer LHFI(5) and (7) based on ginmpbdels. Despite nearly iden-
tical properties between the two indices, LHFI(7) from therarchical ANOCOVA model is more
appropriate in practice, as Model (7) (as well as (10)) Wedthtistical evidence that urbanization
has a negative impact on stream health: the 95% HPD inteovai fis below zero (approximately
—3.4t0—0.7; see Table 2). While this negative effect might have laefenegone conclusion from a
biological point of view, our ANOCOVA models provide diregiantitative evidence to support this
biological notion. Such results indeed have profound iogtions in practice. A policy maker may
be presented with several factors that have potential ihgraecosystem health. Meanwhile, due to
limited resources, s/he may be forced to devise conservptticies in response to selected factors
only. For instance, consider a model that regresses lagatthhon both urbanization and latitude.
We fitted such a model in the framework of Model (7), but wilt déscuss the details except for the
inference on the latitude effects. The inclusion of latéudhs virtually no impact on the posterior
distributions of theH;’s (or of other unknown quantities). In fact, a typical 95%Diterval for
the corresponding coefficient includes 0, suggestingssiily insignificant effect on health due to
latitude. Thus, our latent factor hierarchical modellipgpeoach provides the policy maker with a
scientific mechanism to classify factors according to tmepact on health: a negative HPD interval
indicates detrimental effects, one that covers 0 indicatetetectable impact, and a positive HPD
interval implies positive impact. (A technical note on thégking scheme for multiple covariates
is that the HPD credible level may require adjusting in thetegst of multiple testing; see Westfall
et al. (1997), for instance.) Of course, as in any subject arediarais required when interpreting
statistical results: a statistically significant impactynnasult from very dense data in the absence
of a true impact, although it is highly unlikely for ecologialata as they are typically sparse; and a
statistically undetectable impact (e.g. due to sparsibgsctot preclude an actual impact. Neverthe-
less, a hierarchical ANOCOVA modelling approach for comsting health indices indeed provides
some practical guidelines in cases where the effects of dauof factors must be assessed.
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4.1.1. Quantitative comparison of (5) and (7)

Besides the practical perspective, a quantitative corapatietween the simple ANOVA approach
for LHFI(5) and the hierarchical ANOCOVA approach for LHF)(may be of interest.

A common basis of comparison is the use of the deviance irdbomcriterion (DIC). It assesses
how well theY;;,.'s are predicted, and can be used to compare performancegamodels for
identical data (Spiegelhaltet al., 2002). For our models, DIC values are readily availablenftbe
OpenBUGS output, and are shown in Table 2. (Theory behin®tleis beyond the scope of our
article.) Here, the DIC is 1354.0 for Model (5) and 1353.0Ntwdel (7) (and (10); see Table 2).
Thus, there may be a slight gain in posterior predictive pdeyeexplaining health with a relevant
covariate.

Alternatively, a model’s predictive ability may be more cogtely assessed by cross-validation
with out-of-sample predictions. To this end, we randomiyiaid the 1997 PSL data (k& x3=378
observations in total) into nine disjoint subsets of 42 galaach. Then, on each subset, the follow-
ing three-step procedure was performed: (i) The 42 values veenoved from the data and treated
as missing values. (ii) Each of Models (5) and (7) was fittetheoremaining & 42=336 observa-
tions, with the 42 missing values imputed as unknown quastivithin the Bayesian framework.
(iii) The mean of the posterior distribution for each implitelue was taken to be the “estimate”
for the missing observation; the mean is preferred over tediam or mode here since a discrete
likelihood (Poisson) is considered for the observationghst different models can yield the same
median or mode even if their means are quite different.

To pool this information from all nine subsets, an empirgain-of-squares-error (SSE) ratio,
defined as SSE(5)/SSE(7), is computed based on

SSE= Z Z (yestimated_ ytrue)2 )

{nine subsefs {y: missing value}

Using a type of SSE ratio to assess predictive ability is fiaed by Ward and Hoff (2007), for
instance. In theory, one could compare the two models byiderisg the respective posterior
predictive distributions over all possible combinatiofisnissing values. As this approach is prac-
tically infeasible, the comparison based on nine randorahegated datasets thus serves as a pilot
study. Here, the SSE ratio is 0.97. Considering the vaitglilherent in a small pilot study, a 3%
difference in SSE is not enough evidence that Model (5) ptedietter than Model (7). Combining
this result with that of the DIC, we conclude that both mogeé&lict observations equally well.

Aside from a model’s predictive ability, perhaps the priecisof the health assessment is of
ultimate concern. Therefore, one may also compare the pastistributions foro 7, whose me-
dian is 0.59 with a 95% HPD interval of [0.41, 0.80] for the gimpler Model (5), and 0.48 and
[0.34, 0.68], respectively, for the hierarchical Model (3¢e Table 2). That s, there is some (weak)
evidence that Model (5) contains more uncertainty, degpi#esubstantial overlap between HPD
intervals. This makes intuitive sense, as the variabilityd; unexplained by in Model (5) is
further addressed by, and« in Model (7). (Note that g is different from the dispersion of the
H,; posterior distributions.)

In summary, while both Models (5) and (7) have very compargibédictive ability, the hier-
archical Model (7) seems to contain slightly less uncetyaand can provide guidelines on con-
servation measures, as already discussed in Section 4erefdhe, we will focus on LHFI(7) in
subsequent discussions of taxa-richness-based LHFI’s.
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Fig. 5. Scatterplots among various health indices for the 1997 PSL data

4.1.2. Comparing LHFI’s to existing health indices

For comparisons with documented values of B-IBI and SHIR&t refer to scatterplots in Fig. 5:
the upper-left %3 panels show pairwise relationships among LHFI(7), B-Bid SHIPSL. There
is a strong positive correlation$0.8) between our LHFI and either existing index, but thetiefa
ship is curvilinear. The curvature can be explained by thelireearity of the model that produces
LHFI(7), whereas both B-IBI and SHIPSL are linear combioasi of metric scores. The strong cor-
relation demonstrates that LHFI(7) is no less informativewt the sites’ health conditions, despite
our excluding 3 metrics in its definition. In the next sectiare propose a comprehensive model
that accounts for all 10 metrics, thus improving the infotior@al content of the LHFI.

5. Two comprehensive logistic LHFI's based on relative rich ness and abundance

Among various models, Chiat al. (2007) consider a one-way ANOVA with latent health as the
main factor for explaining sample cardinality;; (total number of animals in the field sample), as
the sole response. When fitted, this simple model demoasttaat/V;;, contributes some informa-
tion towards latent health, although it is traditionallyt @ometric in its own right. Howevery,;,
already appears implicitly as the denominator in the dédimibf relative abundance metrics. For the
PSL, these metrics are %Tol,%Pred, and %Dom3 (Table 1). thatsome taxa are classified as nei-
ther tolerant nor intolerant; therefore, non-toleranttare not necessarily intolerant. Furthermore,
%Tol and %Dom3 are negatively associated with health (Mp#600), and must be transformed
so that higher values of the index (LHFI/B-IBI/SHIPSL) cespond to higher values of any metric.
An obvious transformation is to take %NonTol=108%Tol and %NonDom3=100%%Dom3.
Indeed, Chiu and Guttorp (2004) show that it is beneficidleast statistically, to convert taxa
richness (count) metrics to percentages also, before econgthem with relative abundance metrics
to form a health index. They suggest removing #Tx from therimést, but incorporating it as the
denominator for transforming the other 6 count metrics nelative richnesgercentages, just as
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Table 3. Summary statistics of posterior draws for logit models
mean median 2.5th HPD %-ile  97.5th HPD %-ile MC error  # draws

Model (11): DIC=4651.0

o -1.62 -1.63 —-2.51 —0.68 0.01 20000
Y —-2.03 -2.03 —3.59 —0.43 0.01

0'1(1) = 0'2(1) = 0'3(1) 0.87 0.58 0.10 2.36 0.01

ou” 2.31 1.03 0.12 7.21 0.08 1000
o51)" 12.92 5.50 0.64 37.76 0.56

o6(1)" 4.35 1.92 0.16 13.91 0.18

o2 10.11 4.30 0.37 28.62 0.77

Ta2)" 430 185 0.15 12.99 0.17

o32) " 3.12 131 0.12 9.16 0.20

oH 0.58 0.56 0.40 0.79 0.00 2000

Model (14): DIC=4606.0

o -1.07 -1.06 -1.97 -0.20 0.01 20000
Y1 —-2.08 -2.09 —-3.64 —0.49 0.00

01(0) = 02(0) = 03(0) 0.86 0.57 0.10 2.37 0.01

o11)” 3.22 1.32 0.13 9.36 0.15 1000
a1y 17.41 7.02 0.78 47.77 0.85

o31)” 3.28 1.38 0.14 9.42 0.15

o12)" 7.55 3.22 0.25 22.43 0.39

oa2) " 5.85 2.58 0.20 18.33 0.16

o3(2)" 2.71 1.00 0.12 7.08 0.22

OH 0.58 0.57 0.40 0.79 0.00 2000

Note: Values for parameters with & are based on one Markov chain only.

how N, is used to define relative abundance. This way, all 9 varsattsv share the same scale;
their distributions are shown in Fig. 2. Now, a GLMM similar principle to those of Section 4
may be used to construct a comprehensive LHFI from these fianetTo do so, each metric
may be considered an observebbability of successwhere “success” is an occurrence of the
taxon (towards richness) or animal (towards abundancé&atide of a healthy stream. Therefore,
it appears that logistic regression models are appropidateonstructing a comprehensive LHFI.
Below, we will first consider one that is entirely binomiadded. We will then make use of the
disjointness of three of the richness metrics to formuldigamial-multinomial model.

We focus on hierarchical models involving urbanization aoweariate for latent health. With
three extra metrics here, we have 3x 18=162 additional observations for model fitting. However,
3} — the dependence among the nine metric effects — now alsdveswanore unknown param-
eters. Indeed, Chiet al. (2007) fit logistic extensions of Model (10) with the extratnes, and
demonstrate that the estimation®fremains difficult. Therefore, here we will only discuss kg
extensions of Model (7), with independently distributedmeesffects.

Two groups of variables form our 9 metricg; =6 pertaining to richness, ang=3 pertaining
to abundance. Let=1 denote the richness group, asel the abundance group. Furthermore,
for replicatek from sites, let Y;,;, denote the total number of successes for metiit groups,
each success occurring with probability;., wherej=1,... J,. Finally, letv;,;, denote the logit-
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transformea;,;.. Now, consider the GLMM

[Yisjk|ﬂs.k;pisj.] i’rl‘(’i Binomial(ﬂs.kypisj.) Vk= 1, 2, 37 s = 17 2,
Disj. _
In— pj“j = Visj. = Hi + Bj(s) » H; =0 + (2 —7), (12)
iid ind #Tx);,, If s=1
[Yoilo, o] ~ N(0, J%—I) , [5j(s)|0j(s)] ~ N(0, 0]2'(3)) , T = { ( ik

This model stipulates that the probability of success iscffd by site health and the metric, but
not by metric type (richness or abundance). Indeed, evilénoen Chiuet al. (2007) (based on
the more complex model with dependent metric effects) ssiggbat metric type is insignificant.
Furthermore, their analyses also indicate evidence fomnanoon variance for the metric effects of
Eph, Ple., andTri. taxa, often known collectively as EPT taxa. This agrees thigdistributions of
the EPT metrics (black in Fig. 2). Therefore, we additionasumer; 1y=0y(1)=03(1). The prior
distribution for2 = (a,v1,0m,01(1), 04(1), T5(1), T6(1), T1(2), T2(2), T3(2)) and hyperparameters
are as for Model (7).

Based on two Markov chains of posterior samples, all unknquemtities (including;;.’s)
were very well estimated, except for non-EF],)’s with similar mixing problems as foE en-
tries from Model (10); see Appendix A. As no such problem wasogeintered foi;’s, we define
LHFI(11) as the mean of th&; draws from both chains combined. Index values and corraspon
ing 95% HPD intervals appear in grey in Fig. 3, bottom paneist€rior summary statistics for
Q are given in Table 3. To investigate some assumptions abeugtent regression in (11), we
refer to Fig. 6. As for the Poisson-based LHFI's, we see naaswiolations of linearity between
urbanization and the logit-based latent health, nor do welseneed to regress health on latitude.

Note that the formulation of Model (11) is based entirely amomial distributions associated
with the nine metrics. However, one could fine-tune the ddpeoe amongd’,;;'s based on the
disjoint nature of #Eph, #Ple, and #Tri that define a quadniabvariate. To incorporate this multi-
nomial distribution into a latent health factor model, wedidt down the group of richness metrics
into two subgroups by letting=0 represent EPT richness metrics, and for the remaining three
richness metrics. The group of abundance metrics remaiss2asTherefore, each group consists
of three metrics. As beforé;,;..’'s are binomial fors=1, 2. However, fog=0, we have

Yio1r piot.
Yoz T o ~ Multinomial(T; picz. ), (12)
Y;O3k iluks 2%02. iluks Pios. ’

Ti1k — 23:1 Yiojk 103 1-— 23:1 Dioj.

wherep,o;. is the probability of an observed taxon from sitlling in the jth EPT category. Note
that all 6 richness metrics share the same margin, narfigly, irrespective ofs=0 or s=1. As
large values 0p;01., pio2., @and p;p3. are indicative of good stream health, we model them via a
multinomial logit link, so that
Pioj.
3
1 =31 pioj.

Altogether, our binomial-multinomial mixture logit model

In = vioj. = Hi + Bj(0) - (13)

Equations (12)—(13) fos=0, Equation (11) fos=1,2, J,=3 for all s. (14)

The prior forQ2 = (o, 71,01, 01(0), T1(1): T2(1)> T3(1), T1(2)> T2(2), T3(2)) @nd hyperparameters are
all as for Model (11) above. Mixing for the two Markov chainfspmsterior draws here is virtually
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Fig. 6. The relationship between logit-based latent health and covariates for the PSL in 1997

identical as for the binomial-only model (see Appendix A)the absence of mixing problems for
the H; chains, we combine both chains to form LHFI(14). Index valaad corresponding 95%
HPD intervals are given in black in Fig. 3, bottom panel. Bdst summary statistics faR are in
Table 3.

5.1. Discussion of results
Since LHFI(11) and (14) are based on small variations of vidhassentially the same model, it
is not surprising that they exhibit perfect correlation émcglly. (Such was also the case for the
Poisson-based LHFI's.) Aside from being perfectly coteddiatheir posterior distribution of latent
health is also virtually identical in every aspect but fooedtion shift, as is apparent from the index
values and 95% HPD intervals in Fig. 3, bottom panel. Howedeeranking sites relative to each
other’s health, this location shift plays no role whatsoeve

Fig. 5 shows a comparison among Poisson-based LHFI's @epted by LHFI(7)), logit-based
LHFI's (represented by LHFI(14)), and the existing B-IBIdaBHIPSL. We see that B-IBI has a
stronger linear association with the logit-based LHFI'artlthe Poisson-based counterparts. This
may be due to the use of all available metrics, and that theicaethare the same scale for B-IBI
or the logit models. Interestingly for these data, our kigised LHFI's are equally correlated with
B-IBI and SHIPSL, and SHIPSL is close to being equally catesd with either type of LHFI’s.

Similar to the earlier Poisson ANOCOVA models, both logitdéds (11) and (14) have identi-
fied a significant dependence of health on urbanization;$8&€PD intervals fory; range approx-
imately from—3.7 to—0.4 (Table 3). In Section 5.1.1 below, we discuss the evidéncpreferring
Model (14), despite the additional multinomial structunedrporated into (14) appearing to have
little effect on the parameter estimates. The reader stadsitdnote that with a large enough dataset
(which was not the case here), one would ideally retain atrivial dependence structud for the
0’s to account for metric overlap.

5.1.1. Quantitative comparison of (7), (11), and (14)

To compare the performance between the binomial-only M@OEl and the mixture Model (14),
we first consider the posterior distribution @f;. Respectively, the posterior medias are 0.56 and
0.57, and both 95% HPD intervals are [0.40, 0.79] (Table 8)thls regard, both models appear
equally effective. Next, we compute the SSE ratio from cnaglation; the ratio is 1.00. To
obtain this, we ran both models on 9 sets of incomplete datargéed similarly as in Section 4.1.1;
with an additional three abundance metrics and the remdv@ai® richness metric, we had a total
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of 486 observations, so that each incomplete subset instddemissing observations. The same
imputation procedure from before was employed, exceptttretmultinomial part of our mixture
model was re-expressed as Poisson log-linear (see, famitest Dobson (2001)) to allow easier
implementation in OpenBUGS. As before, a ratio so close ®ihdonclusive due to the inherent
variability of a small-scale cross-validation exercismdfy, we consider the DIC (Table 3), which
is substantially lower (with a difference ef45) for Model (14). In general, a larger DIC value
may not imply an inappropriate model but one that could berawgd upon perhaps by additional
constraints to parameters (Gelman and Hill, 2007). Thughighcase, there appears to be a clear
advantage in placing the quadrinomial constraint on the mEefrics.

However, one question remains: which type of GLMM — Poissonrichness metrics only,
or logit for richness and abundance metrics — is preferafienonitoring stream health based on
the 1997 PSL data? We focus on Models (7) and (14) as repedisestof their respective groups.
Note that neither the DIC nor out-of-sample predictionslbansed to compare models that involve
different data. To make a sensible comparison between tymesonsider the posterior distribution
for H;'s between the two model types. Specifically, consider thB lifeervals from both panels in
Fig. 3, where Model (14) shows a larger fluctuation acrogsgir the posterior location (i.e. the
LHFI value), as opposed to the apparent flatness correspgi@lLHFI(7). Thus, the logit models
demonstrate better distinction of sites than their Poissamterpart. Moreover, the width of a 95%
HPD interval is slightly less for the logit model (averagedthi is 1.72 for (14), but 1.77 for (7)),
indicating a higher precision for latent health. Altogetltlee inclusion of abundance metrics by the
logit models clearly led to additional ability for the LHF tistinguish among sites. This increased
ability may have also resulted from having metrics sharerarnon scale. This common-scale
principle has been used to develop all IBI and SHIPSL vasiahktowever, for these earlier types
of indices and particularly for the IBI, the scheme used t@ inaicators to a single scale is more
controversial and causes potential loss of informatioremtompared to the minimal manipulation
of metrics before they are incorporated into the logit mddetonstructing a health index.

5.2. Remarks

The reader may notice that the models thus far consideretiéddPSL data exhibit model uniden-
tifiability at the level of metric effects. Specifically, ihnéco)variances cannot be estimated based
on P(3|?) alone. However, unlike the frequentist paradigm in whicidantified parameters are
inestimable, Bayesian modelling allows proper estimatibparameter, identified or otherwise,
provided that the posterior is proper. In addition, ChiuQ@shows that for the Poisson-based anal-
yses of the PSL data here, substarialyesian learnings achieved for the (co)variances despite
unidentifiability. As the logit-based models are strucliyrentical to their Poisson counterparts,
the results by Chiu (2008) are expected to extend to Modélsgiid (14).

6. Interpreting the LHFI in the absence of prescribed refere  nce conditions

The numerical value of an IBI-type index is often believedbéoabsolute, in the sense that a site’s
IBl is supposed to indicate its degree of degradation wittioeineed for comparison to another site.
This is one of the reasons for the IBI’'s popularity. Howewgre must not overlook the calibration

scheme that brings about this apparent advantage. As dexturs Section 1, this reference-based
scheme suffers from non-transferability between geodcapland temporal domains, and relies
heavily on the availability of so-called pristine ecosysse although they rarely exist. Hence, one
may wish to abandon the use of reference-based calibraltiogether, and rely on a scheme of
relative rating among several sites included in a singldystAs a compromise for the lack of a full
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Fig. 7. Posterior distribution of health for TH1 (Hx1), and corresponding normal QQ plot

spectrum of health conditions, it is perhaps more sengitgatige health against a heavily degraded
ecosystem; sadly, itis not difficult to locate these dayseWhcluded in the study, a badly degraded
site then serves as the baseline for “internal referericiftgs concept was originally proposed by
Chiu and Guttorp (2006). Much in the same way as a one-way AN@8sesses theffectiveness
among several treatments relative to the least effecteatrirent, an inference-based comparison
among all sites can be conducted using the LHFI to assesshiathrelative to the least healthy
site; externally defined baseline or reference conditibns become less relevant.

In particular, ratings can be defined relative to the postetistribution of healthH,,.s; for the
site identified (before or after fitting the LHFI model) as therst degraded in the region. Let us
demonstrate this idea in the context of the 1997 PSL studhadtbeen well documented (e.g. local
news, residents’ forums) that the health conditions of fitmr Creek is commonly considered
“extremely poor,” even without the need to record physicebsurements. ThuBors=HtH1 here,
and it can act as a baseline value for other sites. To assesBEl situated along Big Bear Creek,
a simple approach then is to compute-score for its LHFI value (posterior mean Bgg;) relative
to the posterio?( Hry1|Y', X). Assuming Model (14), we have

E(Hgg1Y,X) — E(Htm|Y,X)  —0.788 — (—2.272)

e — - —3.92.
BBt Var(Hra|Y,X) 0.461

We can visualize this comparison in Fig. 7, left panel: theFL{#4) value for TH1 is marked by a
solid line, and that for BB1 by a dashed line. A subject-nragig@ert may now translate=3.22 back
to practical terms, and decide on the overall degree of diagjien for BB1. Note that the-score is
appropriate here, 8¢/141|Y, X] is approximately normally distributed (Fig. 7, right panel
Occasionally, the study may include healthier sites thatracognized as “nearly pristine.” In
this case, the above gauge could be replaced or used alerigsithirror image,” i.e. the same
procedure but applied to the best site in the study. One aaukhd this principle further by using
posterior quantiles for the best site in the study to defiteréu pristine” sites. For instance, a new
site may be added to the current study, and the LHFI modetteztfiThe earlier best site will now
have an updated posterior distributiﬁ’ﬂiﬁbesd?, X) due to the inclusion of the new site, where
the tilde ‘~’ indicates the update; but qualitatively, the site remdimearly pristine.” Now, one
may declare that the new site is “pristine” if its LHFI valuel$é above, say, the 90th percentile of
P(Hpes{Y',X). Similarly, the site could be labelled as “exceedingly @elgd” if its index value
falls below, say, the 10th percentile B Hyors{ Y, X). Note that this approach is not restricted to
new sites taken from the same spatial or temporal domaireasttters, so long as the model from
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Section 2.2 is applicable (i.e. extra domain-specific ¢ffeans are estimable).

Gauging ecosystem health with this “internal referencisgfieme can reduce ambiguity in the
absolute definition of health that is inherent in populaerefce-based methods. Of course, a minor
level of ambiguity is inevitable, such as in the percentile affs used to define categories of health,
which should be left to subject-matter experts to decidewdl@r, our proposed method reduces
the amount of ambiguity involved in as many stages of healflex construction as it is feasible.

7. Conclusion

The methodology for constructing an LHFI demonstrated ia #iticle is rooted in a simple sta-
tistical concept of ANOCOVA model building, and may be easitlapted to any context of health
assessment, be it ecological, medical, or otherwise. Olised relevant observable variables has
been identified, constructing an LHFI reduces to an exedfiferming a statistical model that effi-
ciently describes the relationship among these varialpldshee unobservable or latent health factor.
Some variables may be explanatory to health, @nd versafor others. By applying such statis-
tical modelling principles, an effective comparison of lleamong sites can be achieved. Simply
through fitting the model, one can also readily and simubtast/ determine (1) the statistical prop-
erties of the health assessment for current and/or futtes, sis well as (2) the significance of the
impact on health for the observable factors under condiideraAlthough latent variable modelling
techniques have become widely popular in many sciencessé&go produce a direct quantitative
“report card” composite measure of overall health is app@y@ncommon. Therefore, our method-
ology is a simple but universal and versatile scientific apph that is potentially far reaching to
any research discipline in which a scalar assessment dhtisalesirable.

In the ecological context, LHFI modelling attempts to rettie user-friendliness of conven-
tional scalar health indices, but overcome several hurtdéslearly addressed by conventional in-
dex building approaches. Specifically, to address the &tjdificulty encountered in inter-regional
and -temporal studies, we proposed the addition@ddmain effecterm in the latent factor model,
which is a standard practice in many scientific contexts famgarison among strata. This also
avoids the complexity and impracticality of formal spatgmporal models in biomonitoring stud-
ies. Building an LHFI for ecosystems involves virtually naedjtative procedures and deals directly
with the raw metrics and associated covariates; hencenieaaily incorporate auxiliary informa-
tion into the index and, unlike some others, can retain &litiiormation directly available from
the metrics. Through the LHFI model, proper and tractabfierénce of current and predicted site
health is also practical and unambiguous. This is certainiythe case for common ecological in-
dices. When pristine conditions are unavailable or inagibés the construction and interpretation
of reference-based health indices may become arbitrargddioess this, we proposed “internal ref-
erencing” against badly degraded sites that can be easllyded in a study. Scientific comparisons
via statistical modelling is universal, and constructingealth index as such is intended to achieve
the same purpose as reference-based techniques, but witt fiee associated disadvantages.

In fact, thestatisticalprinciples used to construct the LHFI by no means diminigtbiblogical
worthiness of the resulting index, as subject-matter diggeremains vital in variable selection and
results interpretation before and after model fitting. Te tne terminology of Fjelland (2002) page
168, here statisticians play the role of non-experts in éxte€nded peer communities” of ecologists,
and because they are naturally “closer to the problem” otliging quantitative methods, their
contribution can only enhance the overall value of the netkagy in ecological applications.

For the 1997 PSL data, we explored two types of LHFI modelg: Kéisson models for taxa
richness count metrics only, and (B) logit models for retichness and abundance metrics that
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reside on a common scale (0—-100%) involving no ambiguousierelibration whatsoever. Not
surprisingly, the more comprehensive Type (B) models perfoetter in their ability to distinguish
sites according to health. Generally, either type of LHFhtams biological information that is
highly comparable to that in the existing B-IBI and SHIPSLt it carries the extra advantages as
discussed above. Of course, the same methodology coulddeasty different results and con-
clusions when applied to another dataset. For exampleeatlaealth factor model ideally would
account for informational overlap carried among metricewiver, for the 1997 PSL data, the co-
variance among metric effects was poorly estimated, likielg to data sparsity. To reduce model
complexity, we assumed independent metric effects witlquakvariances, and model parameters
were generally well estimated. Imposing a structure on adiagonal covariance matrix would
have been difficult in a Bayesian framework, and was theeafioiattempted. Another example is,
despite statistical significance of the extra level of mddetarchy (i.e. the latent regression) for
the Poisson model, it appears to have little impact on ptigdiability. One can imagine that given
another dataset with more relevant covariates, prediatiity will be improved. Nevertheless, it
is always advisable to keep in the model any statisticatipificant covariate that subject-matter
experts have previously identified as potentially influgirtt health. Such a model incorporates ex-
pert knowledge in an unambiguous fashion, and it certairdyides a more comprehensive picture
of the relationship among metrics, factors, and latenttheal

Irrespective of the dataset, the latent factor modellinghm@ology itself is systematic and un-
ambiguous for any study from a suitable health assessmat#xdo The associated modelling prin-
ciples give our approach the versatility and adaptabitgtudies that involve multiple data types
observed on different macroscopic scales.
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Appendix A: Details of MCMC posterior sampling

To minimize MCMC mixing problems, we employed partial hietsical centring to reformulate
parts of each model before implementation (see Appendikin & al., 2007, for the full rationale).
For example, the relevant parts of Model (5) become
bjla, 5] * N(eyo?),  [valbi,ou] = N (bi,0%) ,
I/ij:I/il—(bl—bj)Vj>1, H,=a+vy—by, ﬂjzb]‘—a.

The same principle is applied to Models (7) and (10), exdegt t

[Witlb, 1.2, 00) ~ N (b1 + y1(zi — T), 0%)
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to account for the latent regression. For implementatioMotlels (11) and (14), we explored
several formulations of partial hierarchical centringeai which performed satisfactorily:

I — ind
[Hiln,@,0m) ~ N(ni(zi = 7),0%), [bilesoje] = Ne,oj,)
Vij. = Hi +bj(sy, Hi=oa+H;, B =bjs — .

For each of the models fitted to the 1997 PSL data, the postanioples used for inference were
generated from two Markov chains. Each chain consistetf/ afraws, reduced from removing a
burn-in ofb draws then thinning by a lag éf The chains started at two different randomly generated
initial values.

For Model (5),1=10,000,b=30,000 and=2, and for Model (7),//=10,000,6=15,000 and
¢=1 (i.e. no subsequent thinning). Minor mixing problemsddn Model (7) appeared in the form
of a slight difference in location (mean / median / mode) lestw chains. Nevertheless, all other
features of the chains fer were highly comparable. Although the distribution of ed¢hdepends
ona, no mixing problems were observed fHg’s. Nor were mixing problems present for any of the
parameters in Model (5). Thus, in either case, the two chaére combined to form one posterior
sample of size 2/ to define the corresponding LHFI measures without ambiguity

For Model (10),A/=5,000,6=7,000 and/=20. The posterior samples f& were somewhat
volatile, in that both chains showed extreme skewness &¥thntries with tail values on the order
of 10°, and the chain dispersions were noticeably different; vawenarginal posterior medians
were comparable between chains. Nor did the Brooks-GelRwrin convergence diagnostic plots
(Brooks and Gelman, 1998) exhibit patterns that would caugeeat deal of concern. Indeed, it
is understandable that extensive coverage of the suppam ekceedingly diffuse posterior may
require an impractical number of simulated samples. CHI082 also observes that this diffuseness
of the posterior is a direct result of the extreme diffusseradghe prior, combined with the limited
amount of data for estimating many parameters. In other syaydr mixing problems could well
be an artefact of this phenomenon. In light of how well all f®Bparameters were estimated, how
similar theX entries’ medians were between chains, and how well all pararmwere estimated for
the smaller models (5) and (7), it appears that the mixingleras did not arise from an intrinsically
incorrect model. Thus, for the purpose of estimat¥igwe restrict our attention to the chain that
yielded a larger posterior variability it. The smaller variability for the rejected chain could have
resulted from an initial value that confined the Markov chaim smaller subset of the parameter
space. However, no mixing problems were encountered/far between chains. Hence, we define
LHFI(10) to be the mean of the posterifl; samples based on the two chains combined.

We now come to the logistic Models (11) and (14), for each oicWwid/=10,000,=5,000, and
£=5. In both cases, mixing problems were encountered onlthtonon-EPTo;(,)’s. The problems
resemble those for thE entries from Model (10), with tail values on the order of H&re. Again,
they may be explained by posterior diffuseness and limitgd.dFinally, as thé{; chains mixed
exceptionally well for either model, combining them to fotine LHFI was justified.

Appendix B: The consequences of incorporating a latent regr ession and the depen-
dence among metric effects

In this appendix, we show that having (a) health regressetbwariates and (b) correlated metric
effects in the latent health factor model can address theaatorrelation among metric values over
sites and over metrics.
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First, consider the potential shortcomings of Models (5 &) which assume independence
among metric effects. We do so through a Gaussian analogdeaé| (7):

Wijk =InYi = Hy + 35 + €ij [eijkloe] id N(0,02),
[Hilo,y1,@,00] % N (a+vi(z —7),0%), (15)
Bilos] X N(0,03). (16)
Conditioned orf2 = («,v1,0m, 01, - - -, 07), the mean and covariance structures of the data coming

from sites(i, ") and from metricgj, j') are

E(Wik|2) = E(Hy + 55 + €irji|R) = a+yi(zy —T), (7)

E(Wijk|Q) = E(H; + B + €5k |Q) = o+ 11 (2 —T) = E(Wiy[Q), (18)

COU(Wijk, Wirjk|ﬂ) = CO’U(Hi + ﬁj + Eijk, H; + ﬁj + €¢fjk|ﬂ) = Var(ﬁj|aj) = JQ , (19)
Cov(Wiji, Wijik|Q) = Cov(H; + B; + €ije, Hi + Bjr +€ijix|Q) = Var(H;log) = o3 . (20)

Now, take the priors from (6) and (8). Then, by the law of ta@fariance, one can easily show that
the marginal covariances become

Cov(Wijk, Wigrr) = ¢+ e[l + (2 —T)7, (21)
Cov(Wijie, Warzi) = ¥+ co[l + (2; — T) (2 —T)] (22)

wherey depends ors andc4 only. Thus, given site, (21) implies that the correlation between (the
log-values of) any pair of metrics is constant over metrigs (ndependent ofj, j')). However, as
discussed in Section 4, metric values could be naturallyetated over metrics and over sites. Con-
veniently, dependency over sites is addressed by reggessent health on site-specific covariates
according to (22): given metrif; the correlation of metric values between any pair of sitgsethds
on (4,4"). However, this dependence would have been lost should tibxet leegression be removed
from (15), leaving (17), (18), (21), and (22) simply as

E(Wijk|Q2) = E(Wir i |2) = E(Wij|Q) = o,
Cov(Wijn, Wirji,) = Cov(Wijn,, Wijr) =¥ +co.

Just as the latent regression introduces correlation ées;, slependence among metric effects
B;'s conveniently incorporates correlation over metrice itite model, by replacing (16) wit ~
MVN (0, ). Adding this to the latent regression turns (21) and (22) int

Cov(Wije, Wirje) = c2[l+ (2 —F)(zs —T)] + E(UJQ‘) )
COU(Wijkv Wl‘jlk)) = C2 []. + (fl:i - 5)2} + w + E(O'j]/) .

The hyperparameté&rin the inverse-Wishart prior (9) can be specified suchE(a;tf) andE(o;j)

— and hence, the covariances — dependjcand (j, j'), respectively. For the PSL data, we
tried various such priors, but all of them yielded somewhabiguous estimates due to mixing
problems as described in Appendix A. Finally, to reducearindel complexity, we settled for an
exchangeable structure fSras described in Section 4. As it turns out, the posterioridigion of

Y indeed provides some evidence, albeit weak, thatare correlated.
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