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Abstract and Keywords

We use the so-called bent-cable model to describe natural phenomena which

exhibit a potentially sharp change in slope. The model comprises two linear segments,

joined smoothly by a quadratic bend. The class of bent cables includes, as a limiting

case, the popular piecewise-linear model (with a sharp kink), otherwise known as the

broken stick. Associated with bent-cable regression is the estimation of the bend-

width parameter, through which the abruptness of the underlying transition may be

assessed. We present worked examples and simulations to demonstrate the regularity

and irregularity of bent-cable regression encountered in finite-sample settings. We

also extend existing bent-cable asymptotics which previously were limited to the

basic model with known linear slopes of 0 and 1, respectively. Practical conditions

on the design are given to ensure regularity of the full bent-cable estimation problem,

if the underlying bend segment has non-zero width. Under such conditions, the

least-squares estimators are shown (i) to be consistent, and (ii) to asymptotically

follow a multivariate normal distribution. Furthermore, the deviance statistic (or the

likelihood ratio statistic, if the random errors are normally distributed) is shown to

have an asymptotic chi-squared distribution.

Keywords: Asymptotic theory; Change points; Least squares; Maximum likelihood;

Segmented regression
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1. INTRODUCTION

In regression analysis, some natural phenomena call for models which exhibit a

structural change, sometimes in the form of a difference in slopes. In such instances,

the cause and onset of the change are often of major interest.

For example, Figure 1 portrays the declining abundance of sockeye salmon (On-

corhynchus nerka) in Rivers Inlet, British Columbia. By the year 2000, this popula-

tion had declined from being one of the largest in Canada to an endangered remnant.

(The data were obtained from Fisheries and Oceans Canada, Pacific Region.) To this

day, researchers remain uncertain over the timing and cause of the collapse, and the

abruptness of its onset. To address the former question, a resource manager would

commonly fit a piecewise-linear model, the so-called broken stick, to these data for

estimating the unknown change point. The estimated date of onset would sometimes

be used to assist in identifying the source of the decline.

Applications of the broken stick in biological studies for estimating the onset of

change also appear in, for instance, Naylor and Su (1998), Barrowman and Myers

(2000), and Neuman, Witting and Able (2001). This sharply kinked line is particu-

larly appealing in its structural simplicity. However, Chiu, Lockhart and Routledge

(2005) and others (e.g. Wigglesworth 1972; Brown 1987; Jones and Handcock 1991;

Routledge 1991) have pointed out that researchers are often tempted to conclude an

abrupt onset from a broken-stick fit, even when there is little solid theory to jus-

tify the abruptness. For example, the interpretation of an abrupt onset of decline in

species abundance made this way could lead to inappropriate conservation measures.

In this instance, it is important to assess the abruptness of change. Chiu et al.

(2002, 2005) propose using the bent-cable model to relax the a priori assumption of

abruptness associated with the broken stick. The bent cable generalizes the broken

stick while retaining its simple structure; therefore, it is a more flexible model for

describing natural phenomena that exhibit a change. This previously unnamed linear-

quadratic-linear model was invented by Tishler and Zang (1981) as a numerical device

to handle the broken stick’s non-differentiable kink. Chiu et al. (2002, 2005) have since

4



provided large-sample maximum likelihood (ML) and least-squares (LS) estimation

theory (assuming normal errors with known, constant variance for ML but otherwise

for LS) for the basic case whose linear phases have known, fixed slopes of 0 and 1,

respectively. However, practical settings call for the full bent cable with free slopes,

intercept, and transition parameters. Our article provides this extension and applies

it to illustrate the often unfounded abruptness assumption for real-life phenomena.

Bent-cable regression theory is complex due to non-differentiability of the model’s

(hence, likelihood’s) first partial derivatives. Some of the earliest authors to address

non-differentiability difficulties in regression were Hinkley (1969, 1971) and Feder

(1975). Hinkley acknowledged the presence of unidentifiable model parameters in

testing the null one-phase linear model against the broken stick, and suggested em-

pirical evidence of an asymptotic distribution for the classic F -statistic without formal

proof. Feder considered, somewhat unorthodoxly, a vast class of continuous models

in which the asymptotics are radically different depending on an odd or even order of

smoothness (number of continuous derivatives plus one) for the underlying function.

Recent articles on theory for segmented models include Bhattacharya (1990)

and Hušková (1998) for the broken stick; and Gallant (1974, 1975), Hušková and

Steinebach (2000), Ivanov (1997), Jarušková (1998a,b, 2001), and Rukhin and Va-

jda (1997) for multiphase non-linear models. All but Bhattacharya (1990) assume,

among other regularity conditions, a bounded or compact parameter space, and/or

evenly-spaced regressors. Ivanov (1997) and Rukhin and Vajda (1997) further as-

sume a twice-differentiable model. In contrast, we argue in Sections 2 and 3 that, with

slight modifications, the unbounded parameter space and the set of general and struc-

turally simple design conditions of Chiu et al. (2005) suffice to establish regularity for

the once-differentiable full bent cable. Under such conditions, a directional Hessian

(adapted from Chiu et al. 2005) is shown to overcome non-differentiability of the score

function in proving standard asymptotic results for the parameter estimator and de-

viance statistic. This directional Hessian is used repeatedly and meticulously through-

out the proofs, making the mathematics non-standard. For more concise proofs, the
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idea of differentiability in quadratic mean by Le Cam (1970) might be adapted to

the current context; see Pollard (1997) for a recent exposition of the technique in the

context of i.i.d. observations. Rather than seeking a general formulation of this idea

in a regression context, we instead pursue the direct approach of Chiu et al. (2005).

Chiu et al. (2002) have shown that the case of a missing bend segment in the

underlying cable defines an irregular boundary problem, with impractically complex

asymptotics and a convergence rate of no better than n−1/3. Therefore, our article

focusses on full bent-cable asymptotics assuming a non-zero underlying bend width.

Examples from Section 4 illustrate an alternative technique to formal hypothesis

testing for statistically distinguishing between a broken stick and a bent cable.

2. THE BENT-CABLE MODEL

We denote the bent-cable model by f , the covariate by x, and the vector of

regression parameters by θ = (β0, β1, β2, τ, γ). To construct f , first consider the basic

bent cable, q, from Chiu et al. (2005):

q(x; τ, γ) =
(x − τ + γ)2

4γ
1
{
|x − τ | ≤ γ

}
+ (x − τ)1

{
x > τ + γ

}
.

We write the full bent cable as

fθ (x) ≡ f(x; β0, β1, β2, τ, γ) = β0 + β1 x + β2 q(x; τ, γ) . (1)

Note that the parameterization (1) is linear in the βj’s, but non-linear in the transition

or bend parameters, τ and γ (center and half-width of bend, respectively). Given a

sequence of covariate values, {xi}n
i=1, our regression model is

Yi = fθ (xi) + εi , i = 1, . . . , n (2)

where the εi’s are i.i.d. random errors with mean 0 and variance σ2.

2.1 Making Inference

We estimate the underlying model parameter, θ0=(b0, b1, b2, τ0, γ0), by the LS estima-

tor (LSE), θ̂n, which minimizes over a domain Ω the error sum-of-squares (ESS) function,

6



Sn(θ) =
∑

i

∣∣Yi − fθ (xi)
∣∣2 .

In the Appendix, we prove the results of Section 3.3 for a bounded Ω=
∏3

j=0
[−Mj, Mj]×

[0, M4]. In practice, the unbounded Ω=R2×
∏3

j=2
[−Mj, Mj]×[0, M4] or Ω=[−M0, M0]×

R×[−M2,−ǫ2]∪[ǫ2, M2]×[−M3, M3]×[0,∞), where ǫ2(>0) is tiny, may be considered

without affecting the asymptotic properties (see Chiu 2002, pp. 99–105). In the case of

multiple minimizers of Sn, one can take the approach of Chiu et al. (2005) for defining

a unique θ̂n. For σ2 unknown, we estimate it by the minimized error mean-square,

σ̂2
n = Sn(θ̂n) =

1

n
Sn(θ̂n) . (3)

We first consider normally distributed εi’s, so that LS estimation of θ0 and vari-

ance estimation via (3) are equivalent to ML estimation. We can also then study the

behavior of the log-likelihood function,

ℓn,σ2(θ) ≡ ℓn(θ; σ2) = −1

2

{
1

σ2
Sn(θ) + n ln σ2 + ln(2π)

}
. (4)

As the nature of the transition is our main focus, we employ the method of pro-

filing (see McCullagh and Nelder 1989), and examine the so-called profile deviance

surface over the (τ, γ)-plane. For a given dataset, the profile likelihood is ℓP
n (τ, γ) ≡

maxβ0,β1,β2,σ ℓn,σ2(θ), and the profile deviance surface is 2[ℓP
n (τ, γ) − ℓP

n (τ̂n, γ̂n)]. The

height at any point on this surface is a deviance drop (negative). When evaluated at

the true but unknown (τ0, γ0), the absolute deviance drop (i.e. profile deviance statis-

tic) is asymptotically χ2
2-distributed under some conditions (see Section 3.3, Theo-

rem 3). Truncate the surface along the vertical axis at, for instance, -χ2
2(0.05)=-5.99,

and an approximate 95% confidence region (CR) for (τ0, γ0) is formed by all those

(τ, γ)-pairs enveloped under the truncation. This approximation is valid when the

truncated surface is quadratic (paraboloidal), although empirical evidence from Sec-

tion 5 suggests that an F2,n−2-based critical value may improve the coverage proba-

bility in such instances. Note that if W ∼ Fp,q for q large, then pW is approximately

χ2
p-distributed. This F -based adjustment is further justified for non-linear regression

in various articles cited by Cook and Weisberg (1990).
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The normality assumption can be removed without affecting the validity of this

method, provided that the sample is sufficiently large. The details are stated in

Theorems 2 and 3 of Section 3.3 below.

3. LEAST-SQUARES ASYMPTOTICS

Due to the impractical asymptotics in the case of γ0 = 0 (Chiu et al. 2002), we

only consider the case of a strictly positive γ0.

3.1 Parameter Space and Design Conditions

We consider the very practical open regression domain, X = R, and the parameter

space, Ω, of Section 2.1. Conditions [A] to [F] in Appendix A.1 are placed on the co-

variate design to ensure regularity for full bent-cable regression. In essence, these con-

ditions require the following: (1) Five detached regions containing non-trivial fractions

of data: one strictly in the bend, and two strictly in each linear phase (Conditions [A]

and [B]). This “{2, 1, 2}-configuration” is required for consistency. (2) No observa-

tions exactly at the join points (Condition [C]) or accumulation of data in any imme-

diate vicinity of a join point (Condition [D]). This condition guarantees an asymptot-

ically well-behaved second derivative, or Hessian, for the ESS function. (3) Reasonably

small average absolute and squared covariate values (Condition [E]). This condition

prevents the inclusion of extraordinarily influential covariate values, thereby ensur-

ing that the ESS gradient and its covariance matrix are asymptotically well-behaved.

(4) A strengthened version of (3) (Condition [F]), required if normality of the random

errors is not assumed: the largest x in absolute value must grow more slowly than the

square root of the sample size. (In general, asymptotic normality of the LSE comes

from an asymptotically normal ESS gradient function. However, the latter fails if

the furthest covariate value puts too much weight on an εi that is non-normally dis-

tributed.) In practice, (3) and (4) are satisfied if the x’s are, say, restricted within a

compact set, or generated from any probability distribution with a finite variance.

3.2 Notation

In addition to those defined in Section 2.1, the crucial quantities involved in the
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main theorems of this articles are: Un,σ2(θ) = ∇ℓn,σ2(θ), where ∇ is taken with

respect to θ; In,σ2(θ) = Covθ0

[
Un,σ2(θ)

]
; Ri+ =

{
θ ∈ Ω : γ = τ − xi

}
; and Ri− =

{
θ ∈ Ω : γ = xi−τ

}
. If the εi’s are non-normally distributed, then ℓn,σ2 is not the log-

likelihood function, but merely a label for the anti-derivative of Un,σ2 . Except for a

proportionality constant, Un,σ2 is essentially the gradient of Sn. Thus, we examine the

properties of Un,σ2 , whether we consider ML with normal εi’s or LS with i.i.d. non-

normal errors. Complexity arises from the non-differentiability of Un,σ2 along the

hyper-rays, Ri±’s. Similar to Chiu et al. (2005), we replace Vn,σ2 = ∇Un,σ2 by a

directional Hessian, V+

n,σ2 which is well-defined everywhere on Ω:

Suppress the dependence on σ2 in the notation and let

Unk(θ) =
∂

∂θk

ℓn,σ2(θ) , V +

n,jk(θ) = lim
h↓0

∂

∂θj

Unk(θ1, . . . , θj−1, θj + h, θj+1, . . . , θ5)

where θ=(θ1, . . . , θ5)=(β0, β1, β2, τ, γ). Then V+

n,σ2(θ) is the matrix whose (j, k)-th

element is V +

n,jk(θ).

Also needed in relevant lemmas are θ0=(θ01, . . . , θ05)=(b0, b1, b2, τ0, γ0), Θr=
{
θ :

|θ − θ0| ≤ r
}
, X0=[τ0 − γ0 + δ10, τ0 + γ0 − δ10], X−1=[τ0 − γ0 − δ12, τ0 − γ0 − δ11],

X1=[τ0 + γ0 + δ11, τ0 + γ0 + δ12], X r
−2=[−r, τ0 − γ0 − δ13], X−2=(−∞,−r) ∪ X r

−2,

X r
2 =[τ0+γ0+δ13, r], and X2=X r

2∪(r,∞), where δ1j’s are tiny constants from conditions

[A] and [B] of Appendix A.1, and r > 0 is arbitrary.

3.3 Formal Statements of Results

Theorems 1 to 3 below and their proofs (see Appendix A.3) are generalizations of

Theorems 1 and 2 in Chiu et al. (2005). Formal proofs of relevant lemmas appear in

Chiu (2002).

The first result is consistency, of which an essential ingredient is Lemma 1 which

implies that the bent-cable model is identifiable under design condition (1).

Lemma 1 (Identifiability). Given are wi ∈ Xi for all i = 0,±1,±2. Then,

fθ (wi) = fθ0
(wi) for all i = 0,±1,±2 implies θ = θ0.

To prove that fθ0
is identifiable by the wi’s in a {2, 1, 2}-configuration, consider all
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twenty-one five-point configurations for the candidate cable, fθ . Convexity and

smoothness constraints of a bent-cable function (i) prohibit fθ to go through the

given
(
wi, fθ0

(wi)
)
-pairs in any non-{2, 1, 2}-configuration, and (ii) together with (i),

force fθ and fθ0
to coincide everywhere.

Theorem 1 (Consistency). Under design conditions (1) and (3), θ̂n and σ̂2
n

are consistent estimators of θ0 and σ2, respectively.

The next result is asymptotic normality, which relies on the following lemmas.

Lemma 2 (Taylor-type expansion). For all θ ∈ Ω, we have

Un,σ2(θ) = Un,σ2(θ0) +

(∫ 1

0

[
V∗

n,σ2(θ, t)
]T

dt

)
(θ − θ0)

where the matrix components of V∗
n,σ2(θ, t) are those of V+

n,σ2, each evaluated at a

point of the form (θ1, . . . , θj−1, θ0j + t(θj − θ0j), θ0,j+1, . . . , θ05) for different values of

j = 1, 2, . . . , 5. The exact form of V∗
n,σ2 is given by (6) in Appendix A.2.

This one-term expansion handles the non-differentiability of Un,σ2 along the Ri±’s.

The use of V∗
n,σ2 (a variant of V+

n,σ2) replaces Vn,σ2 and its gradient which are often

required to exist in standard proofs of asymptotic normality for smoother models.

Lemma 3. Given are design conditions (1) to (3), and a sequence δn ↓ 0. Then,

∀ j, k = 1, . . . , 5, sup
θ ∈ Θδn

1

n

∣∣∣In,jk(θ0) + V +

n,jk(θ)
∣∣∣ P−→ 0 as n −→ ∞

where In,jk denotes the (j, k)-th component of In,σ2.

Lemma 4. Assume that ε1, . . . , εn are i.i.d. zero-mean random errors with con-

stant finite variance, σ2. Under design conditions (1), (3), and (4), the Lindeberg-

Feller Central Limit Theorem applies. That is, for all fixed non-zero w∈ R5,

wT Un,σ2(θ0)√
wT [In,σ2(θ0)]w

L−→ N(0, 1) as n −→ ∞ .

The key ingredient of the lemma is that under condition (4), the summands ofUn,σ2(θ0)
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satisfy the Lindeberg Condition in the multivariate sense. The other conditions ap-

pear in the lemma merely for a technical purpose: n−1In,σ2(θ0) must be positive

definite for all sufficiently large n (see Theorem 2, Assertion 1 below).

Theorem 2 (Asymptotic Normality). Under design conditions (1) to (3),

1. the matrix n−1In,σ2(θ0) is positive definite for all sufficiently large n, and simi-

larly, Pθ0

{
n−1In,σ2

(
θ̂n

)
is positive definite

}
−→ 1;

2. if εi
i.i.d.∼ N(0, σ2), then both

√
n
[
n−1In,σ2(θ0)

]1/2(
θ̂n − θ0

)
and

√
n
[
n−1In,σ2

(
θ̂n

)]1/2(
θ̂n−θ0

)
converge in distribution to a standard five-variate

normal random variable;

3. design condition (4) can replace the normality assumption in Assertion 2;

4. Assertions 1 to 3 hold true when σ̂2
n replaces σ2 in the expression of In,σ2.

Assertions 1 and 2 here are essentially Parts 1 to 4 of Theorem 1 in Chiu et al. (2005),

except for what is now a five-dimensional problem (assuming σ2 known). In Asser-

tion 3, normality of the εi’s is removed. However, the LSE, θ̂n, remains to be a solution

of Un,σ2 , and the Taylor-type expansion of Un,σ2

(
θ̂n

)
via Lemma 2 is unaffected. As

Un,σ2(θ0) is asymptotically normal by Lemma 4, Lemmas 2 and 3 (uniform closeness

of −V+

n,σ2 to In,σ2) imply an asymptotically normal θ̂n. Finally, the value of θ̂n does

not depend on σ2. Hence, Assertions 1 to 3 are affected by an estimated σ2 only

through the formula of In,σ2 . Then, Assertion 4 is true due to the consistency of σ̂2
n.

Theorem 3 (χ2-limit). Under design conditions (1) to (4), each deviance statis-

tic below has a limiting χ2 distribution, with its degrees-of-freedom in parentheses:

1. Gn,σ2 = 2
[
ℓn(θ̂n; σ2) − ℓn(θ0; σ

2)
]

(df=5), in the case of a known σ2;

2. Gn = 2
[
ℓn(θ̂n; σ̂2

n)− ℓn(θ0; σ̂
2
n)

]
(df=5), in the case of an unknown σ2 estimated

by σ̂2
n; and

3. Dn = n
[
ln

(
σ̂2

n
∗) − ln

(
σ̂2

n
′)]

under H∗ (df=p − q, 0 ≤ q < p ≤ 5) for testing H∗

vs. H ′ in the case of an unknown σ2, where p components of θ0 are estimated
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under H ′, and q, under H∗; and σ̂2
n
∗

= Sn(θ̂
∗
n), σ̂2

n
′
= Sn(θ̂

′
n).

If we assume normal εi’s here, then the three deviance statistics of Theorem 3 are

likelihood-based; hence, Assertion 1 is merely an extension of Theorem 2, Part 5,

in Chiu et al. (2005). That is, the χ2-limit of Gn,σ2 results from an approximately

quadratic deviance surface over a neighborhood of θ̂n. (The key is the substitution of

Lemma 2 into the usual one-term Taylor expansion of ℓn,σ2(θ̂n).) Again, condition (4)

here can replace the normality assumption for the εi’s without affecting the results of

Lemma 2. Further generalizations, based on a consistent σ̂2
n, to the case of an unknown

σ2 and the testing of full bent-cable hypotheses yield the latter two assertions.

Note that the overall tactic for proving Theorems 2 and 3 is largely standard; for ex-

ample, see Serfling (1980). However, the repeated application of Lemmas 2 and 3 here to

overcome non-differentiability in the majority of steps makes the proofs non-standard.

4. APPLICATIONS

To illustrate how bent-cable regression helps to assess the abruptness of change,

we apply the method to four typical sets of observations: the Rivers Inlet Sockeye

data previously shown in Figure 1, Sir Francis Galton’s famous family stature data,

exercise physiology data, and data from the physical sciences that provide a valuable

contrast. All are examples of the sorts of change-point problems in which researchers

have traditionally applied the broken-stick model.

Recall from Section 3.3 that large-sample ML theory is also valid for general

non-linear LS estimation without the normality assumption in (2). Without loss of

generality, below we give details based on the ML method only.

4.1 Abruptly Declining Salmon... Or Not?

Figure 1 depicts a relatively stable abundance of sockeye from 1980 until around 1993.

The population has declined drastically since then. Did the decline begin abruptly

around 1993? Or was it more gradual, possibly starting earlier?

Time series for abundance of Pacific salmon populations with fixed life spans often

have strong autocorrelation structure. However, the population being considered has
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a mixed life span of four to five years with large, unpredictable fluctuations in the age

distribution. Hence, the autocorrelations here are relatively weak. We thus proceed to

illustrate the method described in Section 2.1 and obtain the profile deviance surface

in Figure 2. This surface peaks at the ML estimates τ̂=1992 and γ̂=6. Hence, the

estimated bend ranges from 1986 to 1998. Note that the surface is truncated at -

χ2
2(0.05)=-5.99. Due to the surface’s irregularity, this nominal 95% confidence level

may not be trustworthy. However, the deviance values of the surface’s upper trian-

gular plateau roughly defined by the intersection of the regions τ − γ≤ 1986 (i.e. a

smooth transition beginning by 1986) and τ +γ≥ 1998 (i.e. a transition ending no ear-

lier than 1998) are so close to 0 that the corresponding (τ, γ)-pairs are almost certainly

consistent with the data. For example, (τ, γ)=(1990, 10) gives a purely quadratic fit,

i.e. a cable whose bend stretches over the entire range of the data. The plateau yields

many other models, including any cable whose bend begins at around 1986. Further-

more, the surface along the τ -axis (i.e. γ=0) has a peak at τ≈93. This local peak is

not far below the height of the triangular plateau, and hence, (τ, γ)=(1993, 0) — a

sharp change in 1993 — is also highly consistent with the data. Thus, the decline in

sockeye abundance could have been accelerating steadily over most of the time range

shown. Or it could equally well have begun abruptly around 1993.

4.2 Could Galton’s Bend be Smooth?

Wachsmuth, Wilkinson and Dallal (2003) cite the discovery by Hinkley (1971)

of a kink in the parent-to-child relationship exhibited by Sir Francis Galton’s family

stature data from the 19th century. They subsequently apply loess and broken-stick

fits to show non-linearity in similar data collected by Galton’s disciple Karl Pearson.

The authors argue that this “Galton’s bend” in both Galton’s and Pearson’s datasets

was due to the pooling of gender blocks. However, Hanley (2004) applies linear,

quadratic, and cubic regressions, respectively, to the reverse relationship (child-to-

parent) using Galton’s data, and finds no statistical distinction among the fits.

How does bent-cable regression compare when applied to these data? Figure 3 shows

Galton’s original data, as reproduced by Hanley (2004). Here, we have adopted Han-
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ley’s practice of (1) omitting Galton’s non-numerical entries, (2) multiplying female

heights by 1.08, and (3) averaging within each family the resulting parents’ heights.

Overlaid on the scatterplot are two broken-stick fits where τ̂=70.20 (solid lines) and

τ̂=71.50 (dotted lines), respectively; and a bent-cable fit where τ̂=70.97 and γ̂=1.13

(dashed lines). Judging by eye, all three fits virtually coincide. And statistically,

too, as indicated by the profile deviance surface in Figure 4(a). The deviance val-

ues for these three fits differ by less than 0.5. In fact, the overall best fit for these

data is the solid-line broken stick (corresponding to the peak of the surface at (τ , γ)=

(70.2, 0)); the next best fit is the dashed-line bent cable (rounded peak); and the third-

best is the dotted-line broken stick (peak at (τ , γ)=(71.5, 0)). Many purely quadratic

fits (upper triangular plateau, deviance around -2) are also consistent with the data.

Equally good are two-phase quadratic-linear fits (upper left ridge) whose bends end

at around 73”, and two-phase linear-quadratic fits (upper right ridge) whose bends

begin at around 69”. However, purely linear fits (lower plateaus, deviance around -7)

are significantly different from any of the above fits at an approximate 5% level. This

agrees with findings by Hinkley and Wachsmuth et al. in pointing towards a bend.

For the reverse (child-to-parent) regression, Figure 4(b) shows that deviance values

are within 0.8 for the best broken-stick fit (also best overall), the best bent-cable fit

(rounded peak on surface), and many purely quadratic fits (upper plateau) and linear-

quadratic fits (upper right ridge). Here, purely linear fits (lower plateaus, deviance

above -3) are also consistent with the data, thus agreeing with Hanley’s findings.

Altogether, our results are in line with the other authors’, although the so-called

“Galton’s bend” could well have been smooth instead of kinked.

4.3 An Anaerobic Threshold?

The notion of an abrupt change also appears in the physiological sciences. For

example, consider the relationship between blood lactate concentration versus oxygen

uptake for an athlete engaged in a progressively demanding physical activity. At lower

work intensities, one would expect a linear increase in lactate with increasing oxygen
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uptake. However, when the work intensity increases to the point where metabolic

homeostasis is disturbed, the slope of the lactate–oxygen relationship increases. The

point when this change occurs has been called the lactate threshold, and is a key focus

of training regimes (Antonutto and Di Prampero 1995; Weltman 1995). One currently

used method for estimating the lactate threshold involves visual inspection for the

point at which a plot of blood lactate concentrations versus some workload measure

begins to curve upwards (Weltman et al. 1994; Vachon, Bassett and Clarke 1999;

Moquin and Mazzeo 2000; Schneider, McLellan and Gass 2000). A more systematic

method is to fit a broken stick to a graph of blood lactate versus workload (Beaver,

Wasserman and Whip 1985; Kline 1997; Moquin and Mazzeo 2000), sometimes plot-

ted on logarithmic scales (Beaver et al. 1985; Moquin and Mazzeo 2000).

Until recently, it was widely believed that carbon dioxide output could also be used

to monitor what was then thought to be a similar “anaerobic threshold.” Associated

with this concept is a long-standing controversy over the abruptness of the anaerobic

threshold (Jones and Handcock 1991; Routledge 1991), particularly when a broken

stick is fitted to the data. The bent-cable model permits a direct evaluation of this

controversial abruptness. We present a worked example.

An athlete’s carbon dioxide output and oxygen uptake (mL/s) were monitored

while he ran on a treadmill whose incline was regularly increased
(
Figure 5(a)

)
. (The

experiment was conducted according to a ramped workload protocol on a treadmill

at the Science North Science Centre in Sudbury, Ontario. The data are available

from the current authors upon request.) The general increasing trend in the CO2–O2

relationship obscures any subtle features. To accentuate these, we present detrended

data, i.e. residuals from a linear fit
(
Figure 5(b)

)
. This graph points to a change in

the relationship somewhere in the vicinity of an oxygen uptake of 3,200. However, as

in the previous two examples, the deviance surface (not shown here; see Chiu 2002) is

irregular, and has an upper diagonal ridge roughly along τ −γ = 3, 350 for τ ≥ 3, 500,

again suggesting that numerous models are extremely good fits. One such fit has a

bend that begins at an O2-value of about 3,350 and continues through the remainder
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of the values. The values between 3,450 and 3,600 along the τ -axis — a broken stick

with a corner anywhere between such O2-values — are also consistent with the data.

The overall best fit is a cable whose bend ranges over O2-values from 3,353 to 3,721.

In this instance, the data do not favor a sharp break that would indicate an abrupt

anaerobic threshold for the athlete.

4.4 Convincing Evidence of a Smooth Transition

For comparison, we present data from a physics experiment in Figure 6, first

published in R. A. Cook’s Ph. D. thesis at Queen’s University, as cited by Seber and

Wild (1989). (The data have also been analyzed by Bacon and Watts (1971) with a

hyperbolic transition model and with other multiphase regression models discussed by

Seber and Wild (1989)). Cook’s experiment examines the behavior of stagnant-band-

height of water as it flows down an incline at different rates. The relationship between

band height and flow rate is known to exhibit a change, although the underlying

nature of the change is unknown.

The small amount of chance scatter in this graph (Figure 6) is common only in the

physical sciences. However, even with this improved resolution, it is hard to detect

the nature of the transition from a mere visual inspection of the graph. When a bent

cable is fitted to these data, we obtain overwhelming evidence for a smooth bend.

The profile deviance surface
(
Figure 7(a)

)
provides a vivid contrast in its regularity

to the previous examples, and it rules out any broken-stick fit (γ=0) at any reasonable

confidence level such as 95%. In fact, the surface remains highly paraboloidal and

well excludes γ=0 even for a cutoff value of -10 (not shown), which corresponds to a

χ2- or F -based confidence level of more than 98%. Hence, the evidence for a smooth

transition is overwhelming. The actual best-fitting cable has a bend ranging between

log-flow rates of -0.373 and 0.484
(
Figure 7(b)

)
.

4.5 Implications

The first three datasets are of a biological nature, and have at worst moderate

sample sizes (n=21, 934, 28, respectively) with typical amounts of chance scatter; yet,
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their deviance surfaces are highly irregular. In contrast, the physics data demonstrate

the applicability of precise asymptotics in the case of a sample whose size (n=29) is

large given the exceptionally small response errors. Thus, the asymptotic approxi-

mations appear not to be reliable for many datasets with sample sizes and residual

terms typical of biological applications. Nonetheless, the deviance surface may well

show in these instances that the data are thoroughly consistent with a broad range

of behavior around the hypothetical change point. The technique can therefore be

highly useful in assessing claims of an abrupt onset of change.

5. SIMULATIONS

We conducted two groups of simulations. The first group (5,000 experiments per

set) examined the empirical coverage of nominal 95% CRs for the transition parame-

ters, (τ0, γ0), when the profile deviance surface exhibited regularity (and the asymp-

totics were applicable). Two types of CRs were considered: one based on (A) the

profile deviance statistic with an approximate χ2-distribution deduced from Theorem

3, and another based on (B) a Wald statistic derived from Theorem 2. To assess the

effect of non-normality on coverage in finite-sample settings, CRs of the two types

were compared given response errors with normal, uniform, and t5 distributions, re-

spectively. The latter two were chosen to represent both lighter and heavier tailed

error distributions. In particular, a t-distribution with df=5 has tails that are heavy

enough to generate occasional outliers, but light enough to have a finite variance. The

second group (100 experiments each) was used to further explore the problem’s irreg-

ularity such as when observations exhibit moderate scatter. Each generated profile

deviance surface, truncated at a nominal 95% confidence level, was visually scruti-

nized. The small number of runs was due to the painstaking nature of this visual

inspection, but it suffices here for the purpose of illustrating a qualitative assessment,

instead of a quantitative measure, of the theoretical notion of regularity.

5.1 Group 1

The true model parameters were b0=b1=τ0=0, b2=1, and γ0=0.5. Similar to the
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band-height data of Section 4.4, each experiment consisted of n=31 observations,

where covariate values were placed between -1.5 and 1.5 at intervals of 0.1, and re-

sponse errors were sampled from a normal, uniform, or t5 distribution with mean 0 and

standard deviation (SD) 0.015. Altogether, 5,000 such experiments were run for each

type of error distribution. In each experiment, an approximated profile deviance sur-

face was produced over a fine Euclidean grid formed by ranging τ over -0.07 to 0.07 at

intervals of 0.005, and γ over 0.37 and 0.65 at intervals of 0.01. This gridding technique

produced (τ̃ , γ̃), an estimate of (τ, γ) to the nearest grid point (slightly less precise but

more readily obtained than (τ̂ , γ̂) produced by a Gauss-Newton algorithm); hence,

the deviance surface based on (τ̃ , γ̃) was an approximation (see Chiu 2002 pp. 14–

17). To produce a Type (A) CR in practice, this surface would then be truncated at

-χ2
2(0.05)=-5.99 or -2F2,n−2(0.05)=-6.655. To assess coverage, it was only necessary

to determine if the (approximated) deviance, evaluated at (τ0, γ0), exceeded these

critical values. For (B), consider θ̂ of an approximate five-variate normal distribution

with mean θ0 and covariance Sσ2(θ0)≡[In,σ2(θ0)]
−1. Thus, X2≡(θ̂-θ0)

T [Sσ2(θ0)]
−1(θ̂-

θ0) has an approximate χ2
5-distribution, and θ0 is covered by the F -based 95% CR

if X2≤5F5,n−5(0.05). In the simulations, we reduced the dimension from 5 to 2: θ0

was replaced by (τ0, γ0)=(0, 0.5); θ̂ by (τ̃ , γ̃); Sσ2(θ0) by the lower-right 2×2 subma-

trix of Sσ̃2(θ̃), where σ̃2 and θ̃ were from the five-parameter fit based on (τ̃ , γ̃); and

5F5,n−5(0.05) by 2F2,n−2(0.05). Also of interest was inclusion of broken sticks (γ=0)

by the CRs. To this end, in each experiment, profile deviance values for (A) and X2

values for (B) were produced for γ=0 over the above τ -range; any such deviance value

exceeding -5.99 or -6.655 would indicate a broken stick covered by the Type (A) CR,

and similarly by the Type (B) CR if any such X2 value was less than 6.655.

Type (A), or likelihood-ratio-based, CRs are often deemed more reliable than Type

(B), or Wald, CRs for non-linear regression parameters; see Cook and Weisberg (1990),

for instance. Our simulations confirm this notion: despite exceptionally tight scatter,

Table 1 shows a Type (B) coverage of 93.42% at best for a nominal 95% level, regard-

less of error distribution. On the other hand, Type (A) coverage was up to 93.94%
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when using the F -based cutoff and/or when errors were normal. (One may expect to

observe slightly different coverages for CRs obtained over a slightly different (τ, γ)-

grid.) Lower Type (B) coverages indicate that the Wald method perceived more in-

formation than what the data actually contained. This was further demonstrated by

the two cases in which broken sticks were covered by Type (A) CRs but excluded from

Type (B) CRs, when errors were t5-distributed. Both were borderline cases in that,

given γ=0, the respective maximum deviance values were -6.46 and -5.74. Finally,

we observed that all 15,000 profile deviance surfaces (not shown) were paraboloidal

regardless of error distribution. These confirm the regularity notion when design con-

ditions (1) to (4) are satisfied with n sufficiently large and/or σ sufficiently small.

5.2 Group 2

Here, the experiments were broken down into cases where the underlying model

was (i) a cable whose bend ranged over the middle one-third of the dataset, and (ii) a

broken stick whose kink divided the dataset equally. We ran Sets (i a), (ii a), and

(ii b): n=21 and σ=0.65 in (a) (similar to the sockeye data), and n=31 and σ= 0.015

in (b) (similar to the band-height data). Note that Set (i b) already appears in Group

1 above. To assess how estimation accuracy would be affected by proximity of data

to the underlying kink, Set (ii b) was further broken down into (ii b1), in which an

x-value coincided with the underlying τ0; and (ii b2), in which x-values from (b1) were

translated so that τ0 lay one-fifth of the distance between the middle two x-values.

Response errors in each set were sampled from a normal distribution. All sets had 100

runs, in each of which b0=b1=0, b2=1, and equidistant x-values ranged from 80 to

100 for (i a), 81 to 101 for (ii a), -1.5 to 1.5 for (ii b1), and -1.48 to 1.52 for (ii b2).

In addition, (τ0, γ0) was (90, 3.2) for (i a), (90, 0) for (ii a), and (0, 0) for (ii b).

All four sets of experiments were expected to exhibit irregularity: Sets (a) had

too much scatter (see Section 4.5), while Sets (ii b) had an n−1/3 convergence rate at

best (see Chiu et al. 2002). Thus, we focussed on three main aspects of the profile

deviance surfaces, truncated at the nominal 95% confidence cutoff of -5.99. First, we
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examined the shape of the surface, which provides a qualitative assessment of the

methodology’s regularity in practice. Second, we assessed the qualitative accuracy of

the best-fitting model (for example, γ̂ = 0 would yield a qualitatively incorrect best

fit for Set (i a)). This helps to identify the circumstances under which γ̂ alone is a

reliable indication of the abruptness of change. Third, we examined the coverage of

broken sticks by the 95% CRs for (τ0, γ0). This provides insight into the effectiveness

of formally assessing the abruptness of change via standard statistical means.

Table 2 provides a summary. In particular, when chance scatter was more substan-

tial (Sets (a)) — whether the underlying structure was kinked or smooth — over 60%

of the surfaces exhibited irregularity in the form of plateaus and/or ridges such as ap-

pear in Figures 2 and 4, pointing to vast collections of bent-cable fits (often includ-

ing broken sticks) which were highly consistent with the data. The remaining sur-

faces were mostly smooth “half-domes” naturally truncated along γ=0; thus, they all

included broken sticks. The overall rates of (1) exclusion of broken sticks and (2) qual-

itatively correct best fits were low. Altogether, these results reflect the inherent diffi-

culty in clearly distinguishing between abrupt and smooth changes from typical sets of

observations. When the underlying structure was kinked (Sets (ii)), the asymptotics

from Section 3 were inapplicable, and full paraboloids were not expected in this case.

For data with little chance scatter (Sets (ii b)), virtually all surfaces were half-domes

and thus included broken sticks. Under 70% of them yielded qualitatively correct best

fits. However, no ridges or plateaus were present. When a design point lay exactly at

the underlying kink (Set (ii b1)), the percentage of qualitatively correct best fits was

statistically higher than that when no design point coincides with the kink (Set (ii b2)).

This reflects a design condition for consistency when γ0=0 (Chiu et al. 2002, 2005).

6. CONCLUSION

Our simulation results and the analyses from Section 4 suggest the following. When

the underlying bent cable has a non-trivial bend segment, only data containing an ex-

ceptional amount of information about this smooth structure lead to a profile deviance

surface that exhibits the kind of regularity that can be used as evidence against a
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kinked structure. When either this information is deficient, or the transition is instan-

taneous, then the deviance surface will be irregular. In this case, the true structure of

the transition would be confounded, and claims of an abrupt threshold, premature.

In practice, uncontrollable fluctuations are more substantial in typical biological

situations; data of this sort cannot provide definitive evidence as did Cook’s data. In

such instances, both the broken stick and its generalization, the bent cable, tend to be

consistent with the data. Conventional practice then is to adopt the slightly more par-

simonious broken stick as an adequate description of the data. However, a broken-

stick fit may lead to misinterpretations where the investigator attempts to attribute

the estimated threshold to some source even in the absence of solid auxiliary evidence

supporting an abrupt change. As the existence of a sharp threshold cannot be tested

with any reliability, descriptions of distinct phases or regimes should be viewed simply

as partitions of convenience that are not supportable by statistical analyses. Much

more extensive data or other auxiliary evidence related to the potentially abrupt

change would be needed. For example, in the case of a declining fish population,

knowledge of an abrupt change in, say, the abundance of a predator known to feed

on this fish, or a key aspect of habitat quality affected by logging activity, could pro-

vide such auxiliary evidence. In contrast, a bent-cable fit for these data would suggest

numerous sources that took place over a period of years, or a single source whose con-

tinuous influence prompted a gradual decline. Thus, interpreting the decline onset as

abrupt without any solid evidence could lead to inappropriate conservation measures.

Bent-cable regression can be applied as an alternative to classic change-point

techniques which do not allow for possible smoothness in the transition between

phases. We recommend its use in cases which lack the auxiliary knowledge necessary

to support the intrinsic abruptness assumption of kinked models.

APPENDIX: MATHEMATICAL DETAILS

A.1 Design Conditions

For δ, δ1, δ2 > 0 and ξn ↓ 0, define
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bℓ(δ) = lim inf
n−→∞

1

n

∑
1
{
xi ≤ τ0 − γ0 − δ

}
,

bc(δ) = lim inf
n−→∞

1

n

∑
1
{
|xi − τ0| ≤ γ0 − δ

}

br(δ) = lim inf
n−→∞

1

n

∑
1
{

xi ≥ τ0 + γ0 + δ
}

cℓ(δ1, δ2) = lim inf
n−→∞

1

n

∑
1
{
xi ∈ [τ0 − γ0 − δ2, τ0 − γ0 − δ1]

}
, δ2 > δ1 > 0 ,

cr(δ1, δ2) = lim inf
n−→∞

1

n

∑
1
{
xi ∈ [τ0 + γ0 + δ1, τ0 + γ0 + δ2]

}
, δ2 > δ1 ,

ν(δ, p) = lim sup
n−→∞

1

n

∑
|xi|p 1

{
|xi| > δ

}
, p = 0, 1, 2, . . . ,

ζn(ξn) =
1

n

∑
1

{∣∣∣|xi − τ0| − γ0

∣∣∣ ≤ ξn

}
.

Then, the design conditions below provide regularity for full bent-cable regression. Con-

ditions [A], [C], and [D] are taken from Chiu et al. (2005) for the basic case. ([C] could

be eliminated at the cost of some notational complexity.) We have modified their con-

dition [B] for the full model here. The additional conditions for the full bent cable

are [E] and [F].

[ A ] ∃ δ10 > 0 such that c0 ≡ bc(δ10) > 0.

[ B ] ∃ δ13 > δ12 > δ11 > 0 such that

c−1 ≡ cℓ(δ11, δ12) > 0, c1 ≡ cr(δ11, δ12) > 0,

c−2 ≡ bℓ(δ13) > 0, and c2 ≡ br(δ13) > 0.

[ C ] xi 6= τ0 ± γ0 ∀ i = 1, . . . , n.

[ D ] ∀ ξn ↓ 0, ζn(ξn) −→ 0.

[ E ] ∃ a > 0 (finite) such that κ2 ≡ ν(a, 2) < ∞.

[ F ] max1≤i≤n

{
1√
n
|xi|

}
−→ 0.

A.2 Notation for Section A.3

In addition to the definitions from the text of the article, let fi(θ) = fθ (xi) and

dθ1, θ2
(x) = fθ1

(x) − fθ2
(x). Also let the vector-valued function ψ(�, �, �) be
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ψ(θ, t, j) =





θ1

...
θj−1

θ0j + t(θj − θ0j)
θ0,j+1

...
θ05





∀ t ∈ [0, 1], j = 1, . . . , 5 , (5)

and take ψ(θ, t, 0) = θ0. That is, given t ∈ [0, 1], the first j − 1 elements of ψ are

from θ, the last 5 − j from θ0, and the j-th element taken to be a value between θ0j

and θj defined by t. For example, ψ(θ, t, 3) =
[
β0, β1, b2 + t(β2 − b2), τ0, γ0

]
.

Now, let V +
n,j� be the j-th row of the directional Hessian, V+

n,σ2 . That is,

V +
n,j�(θ) =

[
V +

n, j1
(θ), V +

n, j2
(θ), . . . , V +

n, j5
(θ)

]
.

Using (5), we stack the row vectors, V +
n,j�

(
ψ(θ, t, j)

)
’s, to form the V∗

n,σ2 matrix in

the Taylor-type expansion of Lemma 2. That is,

V∗
n,σ2(θ, t) =





V +
n,1�

(
ψ(θ, t, 1)

)

V +
n,2�

(
ψ(θ, t, 2)

)

...
V +

n,5�

(
ψ(θ, t, 5)

)




. (6)

A.3 Theorem Proofs

Proof of Theorem 1

We prove the consistency of θ̂n only. Proving consistency for σ̂2
n is similar.

Step 1. Fix δ > 0. Let T ∗(θ, w−2, w−1, w0, w1, w2) =
∑2

i=−2

∣∣dθ0, θ (xi)
∣∣2 where

θ ∈ Dδ =
{
θ ∈ Ω : |θ − θ0| ≥ δ

}
, wi ∈ Xi for i = 0,±1,±2. As Dδ is compact, one

can show that there exists r > 0 so large that for any θ ∈ Dδ, T ∗ is non-decreasing as

w2 increases over [r,∞) given the other wi’s fixed, or as w−2 decreases over (−∞,−r]

given the other wi’s fixed. Hence, inf T ∗ over Dδ×
∏2

i=−2
Xi is no less than inf T ∗ over

Dδ ×
∏

i=0,±1
Xi

∏
i=−2,2 X r

i . Denote the latter infimum by η, which is strictly positive

by continuity, compactness, and Lemma 1. Re-label the xi’s so that xi1, . . . , xi,ni
∈
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Xi for i = 0,±1,±2 and disregard the rest. By [A] and [B], there exists N such

that for all n > N , mini ni ≥ nc∗ where c∗ = min{c0, c±1, c±2} > 0. Let Tn(θ) =

n−1
∑n

1

∣∣dθ0, θ (xi)
∣∣2 and Hn(θ) = Eθ0

[
Sn(θ)

]
. Note Hn(θ) = σ2 + Tn(θ). Then, for

all n > N , infDδ
Hn(θ) ≥ σ2 + n−1

∑nc∗

j=1
infθ ∈ Dδ

T ∗(θ, x−2,j, x−1,j, x0j, x1j, x2j) ≥
σ2 + ηc∗ > σ2. This proves that Hn is not asymptotically flat, and is uniquely

minimized at θ0.

Step 2. Fix p > 0 and θ′ ∈ Θp. Write di(θ) = dθ
′, θ (xi). Note ∇di(θ) =

−∇fi(θ). For all i, a one-term Taylor expansion about θ′ and the Cauchy-Schwarz

inequality give |di(θ)| = |di(θ) − di(θ
′)| ≤ |θ − θ′|

∫ 1

0

∣∣∇fi(θ
′ + t(θ − θ′))

∣∣dt. Recall

a from [E]. One can show that there exists r ≥ a so large that for all θ ∈ Ω,

|∇fi(θ)| ≤ 3
[
r1{|xi| ≤ r} + |xi|1{|xi| > r}

]
. Hence,

sup
θ ∈ Θp ∩ Ω

|dθ
′, θ (xi)| ≤ 3p

[
r1{|xi| ≤ r} + |xi|1{|xi| > r}

]
∀ p > 0, θ′ ∈ Θp . (7)

Step 3. Recall κ2 from [E] and Mj’s from Section 2.1. Let M = max4
j=0 Mj. Fix

θ ∈ Ω. By [E] and Chebyshev’s inequality, one can apply (7) to show that for all ǫ > 0,

Pθ0

{
n−1

∣∣∑ εidθ0, θ (xi)
∣∣ > ǫ

}
≤ (σ/ǫ)2

{
n−1

∑
|xi|≤r |dθ0, θ (xi)|2+

∑
|xi|>r |dθ0, θ (xi)|2

}
n−1 ≤

9(Mσ/ǫ)2(r2+κ2)n
−1 → 0 as n → ∞. Note Sn(θ)−Hn(θ) = n−1

∑
ε2

i +2n−1
∑

εidθ0, θ (xi)−
σ2 P−→ 0 as n → ∞.

Step 4. For any small δ > 0, we can define a finite cover of Ω by picking distinct

values θ1, . . . ,θR ∈ Ω, such that Bk = {θ : |θ − θk| ≤ δ} is the k-th subcover,

k = 1, . . . , R. By (7), the Cauchy-Schwarz inequality, and [E], there exists N such

that n > N implies that for all k

sup
Bk∩Ω

|Hn(θ) − Hn(θk)| ≤ 1

n

∑

i

(
|dθk, θ (xi)| + |dθ0, θ (xi)|

)
|dθ0, θ (xi)|

< 9δ(δ + M)(r2 + κ2) ,

sup
Bk∩Ω

∣∣∣∣∣
1

n

n∑

1

εidθk, θ (xi)

∣∣∣∣∣ ≤ 1

n

∑

|xi|≤r

|εi|
∣∣dθk, θ (xi)

∣∣ +

∣∣∣∣∣∣

∑

|xi|>r

εidθk, θ (xi)

n

∣∣∣∣∣∣

≤ 3δr

n

n∑

1

|εi| + 3δ
√

κ2

√√√√ 1

n

n∑

1

ε2
i

P−→ 3δ(rµ∗ + σ
√

κ2) ,
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where µ∗ = E(|εi|) for all i. Note
∣∣Sn(θ)−Sn(θk)

∣∣ ≤ 2
∣∣n−1

∑
εidθk, θ (xi)

∣∣+ |Hn(θ)−
Hn(θk)|. Recall Step 3. Then for n > N , supBk∩Ω

∣∣Sn(θ) −Hn(θ)
∣∣ ≤ supBk∩Ω

{∣∣Sn(θ)−
Sn(θk)

∣∣+
∣∣Sn(θk)−Hn(θk)

∣∣+
∣∣Hn(θk)−Hn(θ)

∣∣} ≤ W where W
P−→ 6δ(rµ∗+σ

√
κ2)+

18δ(δ+M)(r2+κ2). Since supΩ |Sn(θ)−Hn(θ)| = maxk supBk∩Ω

∣∣Sn(θ)−Hn(θ)
∣∣ and

δ is arbitrary, then Pθ0

{
supΩ |Sn(θ) − Hn(θ)| ≤ ǫ

}
→ 1 for all ǫ > 0. This uniform

convergence in probability of Sn to Hn and asymptotic curvature of Hn around θ0

from Step 1 imply consistency of θ̂n.

Proof of Theorem 2

Assertion 1. A compactness argument similar to that in Step 1 above, together

with [A], [B], and [E], ensures that n−1In,σ2(θ0) = n−1σ−2
∑

i

[
∇fi(θ0)

][
∇fi(θ0)

]T

has asymptotically finite and strictly positive eigenvalues. The assertion follows from

basic laws of linear algebra and the consistency of θ̂n.

Assertion 2. By Theorem 1, we may focus on an ever-decreasing neighborhood of

θ0, namely, Θξn
, where ξn ↓ 0 is some sequence such that Pθ0

{∣∣θ̂n − θ0

∣∣ ≤ ξn

}
→ 1.

Step 1. Fix n. Let θ1,θ2 ∈ Θξn
. Define hn,σ2(t) = ℓn,σ2(θ1 + t(θ2 − θ1)) for

t ∈ [0, 1]. With tedious algebra, one can show h′′
n,σ2(t) = (θ2−θ1)

T
[
V+

n,σ2(θ)
]
(θ2−θ1)

for all but isolated values of t which correspond to the intersections of the hyper-rays,

Ri±’s. Denote by An the event that n−1V+

n,σ2(θ) is negative definite uniformly over

Θξn
. Given An, h′′

n,σ2(t) < 0 for all but isolated t’s. As θ1 and θ2 are arbitrary, the

convexity lemma in Chiu et al. (2005, Lemma 4) then asserts that given An, ℓn,σ2 is

strictly concave over Θξn
. By Lemma 3 and Assertion 1, Pθ0

{
An

}
→ 1 as n → ∞.

Hence, Pθ0

{
θ̂n is the unique root of Un,σ2 over Θξn

}
→ 1 as n → ∞.

Step 2. Let
[
Mn,σ2(θ)

]T
=

∫ 1

0

[
V∗

n,σ2(θ, t) + In,σ2(θ0)
]
dt. By Lemma 3 and (6),

each component of Mn,σ2 is op(n) uniformly over Θξn
. By Lemma 2,

0 = Un,σ2(θ̂n) = Un,σ2(θ0) + n−1
[
Mn,σ2(θ̂n) − In,σ2(θ0)

]
n(θ̂n − θ0) . (8)

Apply the conclusion of Step 1, the exact normality of Un,σ2(θ0), and Theorem 1,

and the subsequent algebra is standard for proving the normality assertion.
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Assertion 3. Lemma 4 replaces the exact normality in the proof of Assertion 2.

Assertion 4. This is straight-forward due to a consistent σ̂2
n.

Proof of Theorem 3

Assertion 1. By a one-term Taylor expansion, ℓn,σ2(θ)=ℓn,σ2(θ0)+(θ−θ0)
T
∫ 1

0
Un,σ2

(

θ0+t(θ−θ0)
)
dt. Let Zn,σ2(s, t,θ) = V∗

n,σ2(θ0+t(θ−θ0), s)+In,σ2(θ0). By Lemma 2,

the integral isUn,σ2(θ0)+
{∫ 1

0

∫ 1

0
t
[
Zn,σ2(s, t,θ)

]T
ds dt−(1/2)In,σ2(θ0)

}
(θ−θ0). Note

that each component of Zn,σ2 is op(n) uniformly over [0, 1]2×Θξn
by Lemma 3 and (6).

Replace θ by θ̂n. Apply (8) and assemble. Then

Gn,σ2 = 2
[
ℓn,σ2(θ̂n) − ℓn,σ2(θ0)

]

=
[
n−1/2Un,σ2(θ0)

]T [
n−1In,σ2(θ0)

]−1[
n−1/2Un,σ2(θ0)

]
+ Wn , (9)

where Wn = op(1) by the properties of Zn,σ2 and Mn,σ2 , Theorem 1, and Theorem 2,

Assertion 2. Then Gn,σ2

P−→ χ2
5 by Lemma 4 and Theorem 2, Assertion 2.

Assertion 2. This is straight-forward due to a consistent σ̂2
n.

Assertion 3. This proof is mostly standard, except for the use of (9), whose prop-

erties hinge on the non-standard Lemmas 2 and 3. In particular, let θ∗ be the pa-

rameter value under the null hypothesis, H∗; and let G′
n = 2

[
ℓn(θ̂

′
n; σ̂2

n)− ℓn(θ∗; σ̂2
n)

]

and G∗
n = 2

[
ℓn(θ̂

∗
n; σ̂2

n) − ℓn(θ∗; σ̂2
n)

]
. Differentiate ℓn,σ2 with respect to the q un-

known parameters under H∗ to obtain U
q
n,σ2 . Then, by (9) and consistency of

σ̂2
n, G∗

n =
[
n−1/2U

q
n,σ2(θ

∗)
]T [

n−1I
q
n,σ2(θ

∗)
]−1[

n−1/2U
q
n,σ2(θ

∗)
]

+ op(1), where I
q
n,σ2 =

Cov
[
U

q
n,σ2

]
. Similarly, for the p-dimensional estimation problem of H ′, G′

n =
[
n−1/2×

U
p
n,σ2(θ

′)
]T [

n−1I
p
n,σ2(θ

′)
]−1[

n−1/2U
p
n,σ2(θ

′)
]

+ op(1). With some standard algebraic

manipulation, one can show that under H∗, Dn = G′
n−G∗

n = ZT
n,σ2Qn,σ2Zn,σ2 +op(1),

where Zn,σ2 =
[
n−1I

p
n,σ2(θ

∗)
]−1/2[

n−1/2U
p
n,σ2(θ

∗)
]
, and Qn,σ2 is idempotent with rank

p − q. The limiting χ2
p−q distribution for Dn follows by applying Theorem 2, Lemma

4, and the Fisher-Cochran Theorem.
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Table 1. Empirical Coverage of Nominal 95% CRs from Group 1 Simulations.

(τ0, γ0) γ=0
normal uniform t5 normal / uniform t5

CR type

(A): χ2 92.02% 91.78% 91.70% 0% 0.02%
(A): F 93.94% 93.34% 93.62% 0% 0.04%
(B): F 93.42% 93.00% 93.18% 0% 0 %

NOTE: Coverage is based on 5,000 simulated bent-cable datasets with response errors
from a normal, uniform, or t5 distribution, scaled to have SD=0.015. Type (A) CRs
are based on the deviance (likelihood ratio) statistic using χ2

2(0.05)- and 2F2,n−2(0.05)-
cutoffs. Type (B) CRs are based on the Wald statistic using a 2F2,n−2(0.05)-cutoff.
Entries under “(τ0, γ0)” are rates for a CR covering the true transition parameters,
and those under “γ=0” are rates covering a broken stick.

Table 2. No. of Simulated Deviance Surfaces (out of 100) Truncated at -5.99
Exhibiting Various Characteristics.

Shape Best Fit Broken-
ridges/ half- parabo- qualit. qualit. Stick

plateaus dome loidal correct incorrect in out
Set

(i a) 83 17 0 76 24 90 10
(ii a) 65 35 0 47 53 97 3

(ii b1) 0 99 1 67 33 99 1
(ii b2) 0 100 0 52 48 100 0

NOTE: Data were generated from (i) a smooth bent cable (γ0>0) and (ii) a broken
stick (γ0=0) with chance scatter that is typical in (a) biological studies and (b) ex-
periments in the physical sciences. One x-value coincided with the underlying kink
for (ii b1), and none for (ii b2). Set (i b) appears in Table 1.
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Figure Titles and Legends

Figure 1: Sockeye Data. When does the decline begin for Rivers Inlet sockeye

salmon (Oncorhynchus nerka), and how abrupt is the onset? The bent-cable model

can be used to address these questions.

Figure 2: Sockeye Deviance Surface. The profile log-likelihood deviance surface

vs. τ and γ (center and half-width of bend, respectively) for the data in Figure 1. All

values of τ and γ with deviance values in the upper plateau are consistent with the

data. For instance, these include a cable bend which ranges over the entire dataset,

and a broken stick with a corner at 1993.

Figure 3: Galton’s Data. What is the nature of “Galton’s bend”? Overlaid on

Galton’s famous family stature data (reproduced by Hanley 2004) are two broken-

stick fits (solid and dotted lines, respectively) and a cable fit with a bend of half-width

1.13 inches (dashed lines). Here, kinked and smooth bends seem equally plausible.

Figure 4: Deviance Surfaces for Galton’s Data. In his analysis, Galton assumed

a parent-to-child linear relationship. Here, we provide profile deviance surfaces for

bent-cable regression of mid-parent height on child’s height (panel (a)) and vice versa

(panel (b)). For (a), the two peaks close to (τ , γ)=(71, 0) and the rounded peak

nearby correspond to the fits shown in Figure 3, which (along with many others,

including purely quadratic fits corresponding to the upper plateau of the surface) are

equally consistent with the data. Similar conclusions can be made to the surface in

(b) for the reverse regression. In addition, single-phase linear fits corresponding to

the lower flat regions of this surface are also consistent with the data here.

Figure 5: Anaerobic Data. (a) Carbon dioxide (CO2) output vs. oxygen (O2)

uptake in mL/s for an athlete on a treadmill with a continually increasing incline.

(b) The same dataset with the best linear least-squares fit removed. These data are

consistent with either an abrupt threshold or a wide smooth bend.

Figure 6: Band Height Data. A plot of log(stagnant-band-height) vs. log(water

flow rate), as cited by Seber and Wild (1989). Does the graph exhibit an abrupt

break or a smooth transition?
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Figure 7: (a) Deviance Surface. The log-likelihood deviance surface vs. τ and γ

for the data in Figure 6. All deviance values above -5.99 (χ2-based) are consistent

with the data at an approximate 95% confidence level. All these values lead to cables

with a long smooth bend. The same is also true when the nominal 95% cutoff is taken

to be -6.71 (F -based). (b) Best-Fitting Bent Cable. The true bend is estimated

to range over log-flow rates of -0.373 to 0.484 (dotted lines).
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