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Abstract: Motivated by time series of atmospheric concentrations of certain pollutants the authors develop

bent-cable regression for autocorrelated errors. Bent-cable regression extends the popular piecewise linear

(broken-stick) model, allowing for a smooth change region of any non-negative width. Here the authors

consider autoregressive noise added to a bent-cable mean structure, with unknown regression and time

series parameters. They develop asymptotic theory for conditional least-squares estimation in a triangular

array framework, wherein each segment of the bent cable contains an increasing number of observations

while the autoregressive order remains constant as the sample size grows. They explore the theory in

a simulation study, develop implementation details, apply the methodology to the motivating pollutant

dataset, and provide a scientific interpretation of the bent-cable change point not discussed previously.

1. INTRODUCTION

The breadth of applications of the bent-cable regression methodology has been demonstrated
by Chiu, Lockhart & Routledge (2006). The bent cable is a continuous segmented function with
three phases: the incoming and outgoing linear phases, joined smoothly by a quadratic bend of
non-negative width. Smoothness is a result of imposing continuity on the first derivative of the
bent-cable function, with respect to the univariate argument of the function, or to any of the five
function parameters (regression coefficients); they are the incoming intercept and slope, β0 and β1,
respectively, the change in slope between the linear phases, β2, the centre of the bend, τ , and the
half-width of the bend, γ. Taking θ=(β0, β1, β2, τ, γ)′ and q(x; τ, γ)=(x−τ+γ)2/(4γ)11{|x−τ |≤γ}+
(x−τ)11{x>τ+γ}, the bent-cable function is

f(x;θ) = β0 + β1x + β2 q(x; τ, γ) . (1)

To model the dependence of response Yt on covariate xt by bent-cable regression, we write

Yt = f(xt;θ) + Wt (2)

where Wt’s are response errors, or noise, with mean 0.
Chiu, Lockhart & Routledge (2006) give an extensive list of work using conventional continuous

change-point models. A popular one is the piecewise-linear (broken-stick) model, which, as dis-
cussed by these authors, can be inappropriate in the absence of clear scientific theory or evidence
that supports an abrupt change as presumed by the model’s kink. In contrast, the bend of the

1



bent cable allows for a smooth transition from one regime to the other, without ruling out abrupt-
ness that may be indicated by the data. This extra flexibility makes the bent cable an appealing
alternative to kinked models in many practical settings.

Chiu, Lockhart & Routledge (2006) develop least-squares (LS) estimation theory for bent-cable
regression when Wt’s are independent and identically distributed (iid). Despite intrinsic irregular-
ity of the estimation problem due to a non-differentiable score function, they show that standard
asymptotic results (consistency and asymptotic normality for parameter estimators, and asymp-
totic chi-squared distribution for deviance statistics) apply to LS estimation (equivalent to maxi-
mum likelihood (ML) estimation when Wt’s are normal) of the regression coefficients, θ. However,
many practical applications of bent-cable regression may involve time-series data. One example is
the pattern of atmospheric concentrations of chlorofluorocarbons (CFCs) over recent decades. Fig-
ure 1(a) shows 152 monthly mean measurements of CFC-11 (a common type of CFC), recorded in
parts-per-trillion (ppt), starting with January 1988 as the zeroth month. (Data source: National
Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL),
ftp://140.172.192.211/hats/cfcs/cfc11/insituGCs/RITS/monthly/f11mlomo.dat.) The data appear
to follow a bent cable, and clearly exhibit serial correlation. Thus, proper analysis of these data
calls for the modelling of the autocorrelation alongside the bent-cable mean structure.

Existing works, such as Hallin, Taniguchi, Serroukh & Choy (1999), discuss ML asymptotics for
estimates of both regression and time-series parameters, but only in the context of linear regres-
sion. Moreover, the bent cable is an irregular model not readily handled by standard asymptotic
approaches. Evidently, there is a need for asymptotic theory to be specially developed for bent-
cable regression involving serially correlated Wt’s. For the CFC data, the autocorrelation function
(ACF) of the detrended series, i.e. {Yt − f(xt; θ̂)} where θ̂ is the estimated bent-cable coefficient
assuming white noise, is given in Figure 1(b); the decay pattern suggests a roughly autoregressive
(AR) structure. Since the AR model is one of the most common in time-series, we focus on the
AR noise structure for bent-cable regression of serial data.

Details of the extended methodology to account for AR noise appear in Sections 2 and 3. Sec-
tion 3 develops large-sample theory in a triangular array asymptotic framework. Implementation
algorithms are proposed in Section 4. In Section 5, we apply our method to describe structural
characteristics of the CFC-11 data of Figure 1. We use these data in Section 6 to illustrate the
notion of the critical time point, a bent-cable “change point” previously not discussed by Chiu,
Lockhart & Routledge (2006). Simulations presented in Section 7 exemplify the performance of
the method for modelling finite time series in practice. We conclude with discussion in Section 8.

Note that we do not consider correlation structures other than AR. In many practical situa-
tions, the functional form of the regression model, i.e. the bent cable here, is of primary interest.
When serial correlation is non-negligible, we acknowledge this temporal dependency as a statistical
nuisance by assuming the stationary AR model as an approximation, then estimating the primary
bent-cable coefficients and secondary AR parameters given a reasonably chosen AR order. Of
course, alternative methods should be considered if the assumption of a stationary AR structure
and/or bent-cable model is deemed inappropriate.

2. BENT-CABLE MODEL WITH AR(p) NOISE

We focus on time-series contexts, in which a continuous response, Yt, is regressed on time, xt=t, as
the covariate. We consider equally spaced observations at times t=0, 1, . . . , T . Particularly, we
assume that the finite dataset Y =(Y0, Y1, . . . , YT )′ is generated by (2), where

Wt = φ1Wt−1 + φ2Wt−2 + . . . + φpWt−p + εt (3)

is a stationary zero-mean AR(p) series, i.e. εt are iid with E(εt)=0 and Var(εt)=σ2, and φ ∈
S≡{(φ1, . . . , φp)′ : φp 6=0,

∑p
i=1 φiz

i 6=1 for all complex z such that |z|≤1}. To be estimated are the
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Figure 1: (a) CFC-11 monthly means from January 1988 to August 2000, recorded at the
NOAA/ESRL station in Mauna Loa; (b) ACF plot for the detrended data (i.e. observed data
minus bent-cable ML fit assuming white noise); (c) PACF plot for the detrended data.

bent-cable parameter, θ, the AR parameter, φ, and the innovation variance, σ2; the latter two are
regarded as nuisance.

Note that despite having discrete covariate values, the underlying bent cable, f , is continuous
in t. Consequently, the transition parameters τ and γ are not restricted to being integer values.
Furthermore, we consider 0<τ − γ<τ + γ<T and β2 6=0, so that all three phases of the bent cable
are present and covered by the observed data.

3. CONDITIONAL MAXIMUM LIKELIHOOD ESTIMATION

For the purpose of defining the likelihood function, we consider normally distributed innovations,
εt’s, although normality is not necessary in practice (see Section 3.2). As we explain below,
our method can be referred to as conditional least-squares estimation irrespective of normality.
However, for convenience, we adhere to the “likelihood” nomenclature throughout this article.

To develop estimation theory, we require the distinction between the “true” model parameter,
(θ0,φ0, σ

2
0), and a candidate value, (θ,φ, σ2). As is common for AR(p) models, our estimation

of (θ0,φ0, σ
2
0) is based on the conditional log-likelihood function `T (θ, φ, σ2), with the first p
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observations y0, y1, . . . , yp−1 regarded as given. Let P ( ) denote a density function, and write
ft(θ)=f(t;θ). Then, ignoring irrelevant constants, `T (θ, φ, σ2)= ln Pθ,φ,σ(Yp, Yp+1, . . . , YT |y0, y1,
. . . , yp−1) =−(1/2)σ−2ST (θ,φ)− (T + 1− p) ln σ, where

ST (θ,φ) =
T∑

t=p

[
(
Yt − ft(θ)

)−
p∑

i=1

φi

(
Yt−i − ft−i(θ)

)
]2

(4)

is referred to as the conditional sum-of-squares error (CSSE). The conditional ML estimator
(CMLE) of (θ0,φ0, σ

2
0) is the argument that maximizes `T over the parameter space. The es-

timation of η0≡(θ0,φ0) does not depend on that of σ2
0 . Hence, we can first take σ2 as a constant,

compute the CMLE, η̂, then evaluate the CMLE for σ2
0 by

σ̂2 = ST (η̂) ≡ ST (η̂)
T + 1− p

. (5)

The purpose of our current work is to extend the existing ML / LS theory for bent-cable
regression of Chiu, Lockhart & Routledge (2006) who assume white noise. A direct extension to
the case of AR(p) noise is CML theory, since η̂ maximizes `T , and hence, minimizes the CSSE,
ST (i.e. conditional LS estimation). We do not consider theory for full ML where Pθ,φ,σ(Y ) is
maximized. While ML and CML are different approaches when p>0, they are asymptotically
equivalent for finite values of p.

In standard applications of order-(p, d, q) autoregressive integrated moving average (ARIMA)
models, none of p, d, or q is part of statistical inference (e.g. Brockwell & Davis 2002, 2006).
We follow this convention and develop our estimation theory for a given p. In practice, model
diagnostics can suggest a suitable choice of p, as illustrated in Section 5.

3.1 CML large-sample theory

Although ML asymptotics exist for linear models with AR noise and for bent cables with white
noise, extending these results to our current context is not straightforward. The reason is as follows.
The number of data points in the incoming phase is, up to rounding, τ0−γ0. These points provide
the information about the incoming slope. As a result, useful large-sample approximations must
require τ0−γ0 to be large. Similarly, the number of points in the bend is essentially 2γ0, and in the
outgoing phase, T−(τ0+γ0); both quantities, too, must be large. These three conditions cannot be
met simultaneously if we derive large-sample approximations by taking limits in which θ0 is fixed.
Instead, we take a limit in which the true parameter value, written as θ0,T , depends on T in such
a way that all three quantities above become large. The mathematics is simplest if the proportion
of observations in each phase stays away from 0 as T grows.

Thus, for large-sample theory, we regard data from (2) as the T th row in a triangular array:

Yt,T = ft(θ0,T ) + Wt (= ft(θ0) + Wt = Yt) . (6)

We let

θ̃ ≡ (β̃0, β̃1, β̃2, τ̃ , γ̃)′ , MT = diag{1, 1/T, 1/T, T, T} , θ ≡ θT =MT θ̃ (7)

so that θ0≡θ0,T =MT θ̃0. We introduce the notation

f̃t,T (θ̃0) = β̃0,0 + β̃1,0 t/T + β̃2,0 q(t/T ; τ̃0, γ̃0) .

Figure 2 illustrates the fact that due to (7),

f̃t,T (θ̃) = ft/T (θ̃) = ft(θT ) . (8)
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Hence, (6) can be expressed in terms of θ̃0 as

Yt,T = f̃t,T (θ̃0) + Wt . (9)

We develop asymptotics for CML estimation of η̃0≡(θ̃
′
0,φ

′
0)′ based on minimization of

S̃T (θ̃,φ) =
T∑

t=p

[
(
Yt,T − f̃t,T (θ̃)

)−
p∑

i=1

φi

(
Yt−i,T − f̃t−i,T (θ̃)

)
]2

(10)

which is equivalent to (4) due to (7). Note that when applying bent-cable regression in practice,
one is never required to deal with (9), (10), or η̃0; the CMLE is ̂̃η=([M−1

T θ̂]′, φ̂
′
)′. The triangular

array is a mere technical device for establishing large-sample approximations. This device is also
employed in other works on change-point asymptotics, e.g. Fotopoulos, Jandhyala & Tan (2009).

f t
(θ

T
)=

f~ t,
T
(θ~
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Figure 2: Two elements (T=200 and T=800) in the sequence of bent-cable parameters {θT }, and
the corresponding parameter θ̃ in the triangular array.

We emphasize that although the triangular array in (9) involves Wt, the AR noise series itself
is T -free. The Associate Editor suggests the following. Our asymptotic framework here can be
contrasted with an alternative framework that is based also on (9) but coupled with a different
AR series, Wt,T , that depends on T in such a way that Corr(Wt,T , Wt+k,T )→1 as T→∞, i.e. the
time gap between consecutive observations decreases as T→∞. Under (3) and (9), the effective
sample size (ESS) (Thiébaux & Zwiers 1984) of {Wt, t/T∈A⊂[0,1]} approaches ∞ as T→∞, and
so consistent estimators are possible. However, under the alternative framework, the ESS of {Wt,T ,
t=0, . . . , T} remains bounded as T→∞, and thus consistent estimators are not possible.

3.2 Statement of theorems

The main results of this article are given as theorems below. Proofs appear in the Appendix.

Theorem 1 (Consistency). Given is the model comprising (3) and (9), where εt’s are i.i.d. with
mean 0 and finite fourth moment. Consider estimating η̃0 by minimizing (10) over some compact
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set K ⊂ Ω ={θ̃: β̃2 6=0, 0<τ̃−γ̃<τ̃+γ̃<1}×{φ: φ∈S}, and estimating σ2
0 by (5). Take T→∞.

Then, ̂̃η and σ̂2 (referred to as the CMLEs) are consistent estimators of η̃0 and σ2
0, respectively.

As usual, asymptotic normality of ̂̃η follows from its consistency. Since the map from ̂̃η to η̂
is linear, asymptotic normality of ̂̃η is equivalent to that of η̂. However, due to the irregularity of
the bent-cable model, some care is required to define the Hessian and Fisher information. Again
we take σ=σ0 to be constant, then consider quantities derived from ST in (4) but omit the term
conditional and the dependence on T in the notation to avoid clutter.

First, the score function is Uσ(η)=−(1/2)σ−2∇ST (η). Although continuous, Uσ is cusped
(hence, non-differentiable) along the T+1 pairs of hyper-rays R={η : τ±γ=t for t=0,1,. . . ,T};
also see Chiu, Lockhart & Routledge (2006). Here, we adopt their definition of V+

σ , the directional
Hessian, by taking a directional gradient of Uσ. Hence, V+

σ is well-defined on Ω and is identical
to ∇Uσ(η) over Ω\R. Finally, we define

Iσ(η0) = −E
[
V+

σ (η0)
]
. (11)

We refer to Iσ(η0) as the “Fisher information” matrix, since, for normal εt’s, it has the usual
definition apart from directional derivatives. (For convenience of nomenclature, we use the term
“Fisher information” even when normality is not assumed.) We derive V+

σ in the Appendix.

Theorem 2 (Asymptotic Normality). Under the conditions of Theorem 1,

1. the matrix T−1Iσ(η0) is positive definite for all sufficiently large T , and similarly,

Pη0

{
T−1Iσ

(
η̂
)

is positive definite
} → 1 as T →∞;

2. whenever T−1Iσ(η0) is positive definite, it has a unique lower triangular square-root with pos-
itive diagonal entries, denoted by

[
T−1I(η0)

]1/2, and
√

T
[
T−1Iσ(η0)

]1/2(
η̂ − η0

)
converges

in distribution to a standard (5+p)-variate normal random variable; the statement holds true
with Iσ(η̂) replacing Iσ(η0);

3. Assertions (1) and (2) hold true when σ̂2 replaces σ2 in the expression of Iσ(η0) or Iσ(η̂).

4. COMPUTING THE CMLE AND FISHER INFORMATION

Again, quantities with a tilde (“∼”) are not considered in practice. For computations, we first
propose three algorithms in Sections 4.1 to 4.3 for obtaining the CMLEs η̂ and σ̂2; the subscript
“0” is dropped from this discussion to reduce clutter. The latter two algorithms involve some
technicality that is discussed in Section 4.4. A description of the computation of Iσ follows in
Section 4.5. An implementation of all five sections is available to the user of our methodology
through the bentcableAR package publicly distributed by the R Project for Statistical Computing.

4.1 Unconstrained conditional least-squares

The theory of this article concerns the minimization of (4) over the θ and φ spaces simultaneously.
In practice, constrained optimization to yield weak stationarity (i.e. φ̂∈S) is a non-trivial exercise.
While many time-series analysis programs have such constraints built-in for fitting linear regression
with AR noise, we are unaware of ones that readily handle the bent-cable counterpart. Here, we
propose a simple algorithm for obtaining η̂ over the unconstrained R5+p instead of Ω, although
the long-run behaviour of φ̂ from this algorithm is unclear. In the case that it results in φ̂/∈S but
stationarity is insisted upon, alternative algorithms in Sections 4.2 and 4.3 may be considered.
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Minimization of the objective function ST over an unconstrained parameter space can be easily
handled by standard optimization software. An initial estimate η̂(0) is required due to non-linearity;
for this, consider the profile deviance surface from Chiu, Lockhart & Routledge (2006) for p=0,
where β=(β0, β1, β2)′ is profiled out. As p>0 in the current estimation problem, we additionally
profile out φ, and evaluate this surface, Dprof, at each point on a fine (τ, γ)-grid. Note that our
estimation problem is linear in β and φ. Hence, Dj

prof, the profile deviance evaluated at the jth grid
point, is a function of the CMLEs β̂j and φ̂j , both of which correspond to having the jth grid point
as the given value of the underlying transition parameters. Consequently, all of Dj

prof, β̂j , and φ̂j

can be readily obtained for each j using a standard software that produces CML fits for an AR(p)

model with a linear trend. Next, define (τ̂ (0), γ̂(0)) = arg maxjD
j
prof, and β̂

(0)
and φ̂

(0)
to be the

associated CMLEs given (τ̂ (0), γ̂(0)). Finally, write θ̂
(0)

=(β̂
(0)

, τ̂ (0), γ̂(0))′ and η̂(0)=(θ̂
(0)

, φ̂
(0)

)′.
The quality of such η̂(0) as an initial estimate naturally depends on the grid resolution. As

computational burden increases with resolution, a less intensive alternative (that is possibly less

precise) is to take θ̂
(0)

to be the MLE of θ assuming p=0 (see Chiu, Lockhart & Routledge

2006), then set φ̂
(0)

to be the MLE of the AR coefficients for the residual series {Yt − ft(θ̂
(0)

)}.
In practice, however, we observe that for some datasets, such initial values often mislead the
optimization software to converge on a local minimum of ST that may be some distance from the
global minimum. In either case, substitute the converged η̂ into (5) to obtain σ̂2.

4.2 Iterative conditional / full maximum likelihood hybrid algorithm

This algorithm addresses the case in which unconstrained optimization of Section 4.1 leads to φ̂/∈S.
However, it does not address the case of β̂2=0 and/or τ̂≤0 and/or γ̂≤0. Nevertheless, such may not
be a practical issue, since most optimization programs allow bounded parameter spaces, which may
be applied to τ and γ. For example, the R function optim() allows quasi-Newton optimization with
optional box constraints for each parameter, although from our experience, unconstrained quasi-
Newton is generally faster and converges more readily. Finally, a CMLE consisting of boundary
values for any of these three parameters may simply indicate that either the underlying model
does not satisfy the non-degeneracy assumptions, or more data are needed for proper parameter
estimation. Of course, the former is a case of model misspecification, and is beyond the scope of
this article. For the latter, large-sample inference from Section 3.2 may be inappropriate.

For our hybrid algorithm here, note that Y has a multivariate normal distribution with mean
(f0(θ0), . . . , fT (θ0))′ and covariance matrix c0Σ0, where

Σ0 ≡ Σ(φ0) =




1 r1 r2 . . . . . . rT

r1 1 r1 r2 . . . rT−1

...
...

...
...

...
...

rT rT−1 . . . . . . r1 1


 , rh =

ch

c0
∀ h = 0, 1, . . . , T

and ch≡ch(φ0, σ0) is the lag-h autocovariance for {Wt}. Also note that Σ0 does not depend on
σ0 since rh is the autocorrelation. Now, the full log-likelihood is `full(η, σ2) ≡ ln Pη,σ(Y ) =
`T (η, σ2) + `e(η, σ2), where `T can be regarded as the working component, and `e(η, σ2) =
ln Pη,σ(Y0, Y1, . . . , Yp−1) is the residual component. This setup resembles that for maximization-
by-parts by Song, Fan & Kalbfleisch (2005). Specifically, `T dominates `e in the information it
contains about `full in applications where T is much greater than p. (Full) ML estimation via
maximization-by-parts requires iteratively solving (A) ∇`T (η, σ2)=0 — call the solution ψ∗ —
and (B) ∇`T (η, σ2)=−∇`e(ψ∗). Note that Step (A) alone is CML. Here, for the purpose of re-
stricting φ̂∈S, we modify Step (B) as (B*) to incorporate some information from `e to obtain Step
(A) estimates at each iteration.
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Our iterative approach is as follows. For Step (A), maximize `T over θ while holding φ fixed.
This can be broken down into linear and non-linear components: (i) given (τ, γ) and φ, computing
Σ(φ) is routine (see Section 4.4), so that one may exploit the simple closed form generalized LS
(GLS) linear solution of β̂ that maximizes `full (thereby incorporating `e in the iterations of Step
(A)); (ii) given β and φ, maximizing `T reduces to non-linear LS estimation of (τ, γ), which is a
two-dimensional problem that can be easily implemented with standard optimization software. For
Step (B*), maximize `full over φ for θ fixed, i.e. obtain the AR coefficient MLEs for the mean-zero
series {Yt−ft(θ)}. Such estimates that also satisfy stationarity constraints are readily available by
using a standard time-series analysis software, which may additionally provide an estimate for σ.
Our algorithm iterates between (A) and (B*) until convergence. Thus, the overall algorithm solves
∇`full(η)=0 over β via (A)(i), ∇`T (η)=0 over (τ, γ) via (A)(ii), and ∇`full(η)=0 over φ via (B*).
In essence, this is an iterative full ML procedure except for (A)(ii). For it to be full ML, ∇`full

would replace ∇`T in (A)(ii), although the extra complexity due to `e may not be worthwhile if
one’s purpose is to merely restrict φ̂∈S.

Note that with this hybrid algorithm, one has the choice of taking the σ̂2 associated with the
last iteration from Step (B*), or substituting the converged η̂ into (5) to obtain σ̂2.

4.3 Iterative CML-ML-method-of-moments hybrid algorithm

This algorithm is identical to that of Section 4.2, with the exception that the computation of φ̂
(i)

at iteration i is based on solving the Yule-Walker (YW) equations that involve sample autoco-

variance values expressed as functions of θ̂
(i)

. Standard time-series analysis software provide this

computation to yield the method-of-moments (MM) estimate φ̂
(i)

that is guaranteed to fall inside
S for all i (Brockwell & Davis 2002).

4.4 Autocovariance as a function of φ and σ

The previous two algorithms involve the computation of a GLS solution β̂φ,τ,γ based on the
autocorrelation matrix Σ(φ). To this end, first consider the autocovariance ch expressed in terms
of the true values φ0 and σ0. For an AR(p) process {Wt}, it can be shown that

Var(Wt) = c0(φ0, σ0) = σ2
0

{
1−

p∑

i=1

φ2
0,i − 2

∑∑

i < j
i, j = 1, ..., p

φ0,i φ0,j rj−i(φ0)
}−1

(12)

for all t. Stationarity of {Wt} ensures that (12) is well defined. At lag h>0, one can verify that
the autocorrelation rh satisfies the system

0 = φ0,h + (φ0,2h − 1) rh(φ0) + 11{h > 1} (φ0,1 + φ0,2h−1) rh−1(φ0)
+ 11{h > 2} [(φ0,h−1 + φ0,h+1) r1(φ0) + (φ0,h−2 + φ0,h+2) r2(φ0) + . . . +
(φ0,2 + φ0,2h−2) rh−2(φ0)] + 11{2h < p}[φ0,2h+1 rh+1(φ0) + φ0,2h+2 rh+2(φ0)

+ . . . + φ0,p rp−h(φ0)] for 1 ≤ h < p , (13)
rh(φ0) = φ0,1 rh−1(φ0) + φ0,2 rh−2(φ0) + . . . + φ0,p rh−p(φ0) for h ≥ p . (14)

Note that (13)–(14) for 1 ≤ h ≤ p form the system of YW equations. For general φ and σ, we
replace all instances of φ0 in (12)–(14) with φ (i.e. φ0,i with φi) and of σ0 with σ. These equations
can be put in the context of our hybrid algorithms, as follows.

Given φ at any iteration, we solve (13) for rh(φ), where h=1, . . . , p−1. Substitute them in (14)
to obtain rh(φ) for h=p, . . . , T . This completes the computation of Σ(φ). Note that our usage of
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the YW equations here may be unorthodox, as observed moments of ch are typically substituted
in them to solve for MM estimates of φ0,i.

4.5 Fisher information as a function of η

In practice, only Assertion (3) of Theorem 2 is directly consequential, and it requires the compu-
tation of Ibσ(η̂). Thus, it is necessary to consider Iσ as a function of η. To do so, we again fix
σ=σ0, and expand the expression on the right-hand-side of (11), then replace η0 by η to yield
Iσ(η). Next, partition Iσ(η) into an upper-left 5×5 block, a lower-right p×p block, and the 5×p
and p×5 off-diagonal blocks, as follows:

Iσ(η) =




Iθσ(η) | Iησ(η)
−−−−− | − −−−−

[Iησ(η)]′ | Iφσ (η)


 .

Note that Iσ is made up of T+1−p summands over t=p, p+1, . . . , T . In the Appendix, we show that
the tth summand of Iθσ(η) has (j, k)th element equal to σ−2[∇jDt(η)][∇kDt(η)], where Dt(η) =∑p

i=1 φi [Yt−i − ft−i(θ)] − [Yt − ft(θ)], with Dt(η0)=−εt, and ∇j denotes the partial derivative
with respective to the jth element of θ. Indeed, Iθσ for p=0 corresponds to the Fisher information
of Chiu, Lockhart & Routledge (2006). We also derive in the Appendix that Iησ(η)≡O (matrix of
zeros), and that the tth summand of Iφσ (η0) has (j, k)th element equal to σ−2c|j−k|(φ0, σ). Take
σ−2c|j−k|(φ, σ) over j, k, and t to form Iφσ (η), which is θ-free.

Finally, η̂ and σ̂ are substituted into the above expressions to yield Ibσ(η̂). Note that obtaining
Iφbσ (η̂) may be computationally involved for p>1, due to the solving of (12)–(14).

5. ANALYSIS OF CFC-11 DATA

The NOAA/ESRL Global Monitoring Division (GMD) records hourly measurements of atmo-
spheric concentration of CFCs from numerous monitoring stations around the globe. These data
date as far back as the 1970’s, and are publicly available on the GMD website. We apply our
methodology to analyze the CFC-11 monthly means made at each of several stations using the
Radiatively Important Trace Species (RITS) system; in this article, we only discuss the Mauna Loa
(MLO) station from July 1987 to August 2000. Subsequent measurements at MLO were made us-
ing the newer Chromatograph for Atmospheric Trace Species system. We restrict our attention to
the RITS data to avoid the possible non-stationarity element due to a switch in measuring devices.

Online GMD data are occasionally updated, and the version that we analyze was last updated
on May 4, 2001. Note that each monthly mean is computed based on a different number of measure-
ments whose sample standard deviation varies from month to month. Also, five means are missing
(January 1992, and June to September 1995). As our current method cannot handle missing data,
they are replaced with the corresponding measurements made by the Halocarbons and other At-
mospheric Trace Species Group Flask Sampling Program: we use the 1992 flask data (last updated
on August 25, 1999; ftp://140.172.192.211/hats/cfcs/cfc11/flasks/monthly/oldgc/f11mon.dat) and
the 1995 data (last updated on November 24, 2004; ftp://140.172.192.211/hats/cfcs/cfc11/flasks/
monthly/otto/mlomon f11.txt). We expect the introduction of a different sampling scheme for 5
of more than 150 observations to be a negligible source of non-stationarity.

Preliminary visual inspection of the complete time series suggests that the observations from
1987 may violate the linearity of the bent cable’s incoming phase. Consequently, we drop these val-
ues and analyze the remaining 152 observations shown in Figure 1. This minor truncation is justi-
fied, in that our main interest is in the structure of the change of CFC concentration over time, from
being an increasing trend in earlier years to a decreasing one more recently. With the emphasis
placed on the smoothly bent phase, Chiu, Lockhart & Routledge (2006) have demonstrated that
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such types of changes often can be effectively described by the bend joining two linear phases to
form a bent cable.

The corresponding partial ACF (PACF) is given in Figure 1(c). As the horizontal lines delimit
±1.96/

√
(T + 1), they can be regarded as crude guidelines for determining p. Thus, we see that

the lag-1 autocorrelation heavily dominates, although that at lags 6, 9, and 21 is potentially non-
negligible. Nevertheless, the main objective is to understand the response mean structure while
accounting for non-trivial autocorrelation. We first focus on p=1, and only consider higher values
of p for possibly improved fits.

5.1 AR(1)

With p=1, the default CML algorithm of Section 4.1 produces the parameter estimates in Table 1.
The fitted bent cable appears in Figure 3(a) in bold gray, with the estimates τ̂ and τ̂±γ̂ delimited
by bold gray vertical lines. As φ̂∈S here, the alternative hybrid algorithms of Sections 4.2 and 4.3
are unnecessary. The fitted residuals, Ŵt, and fitted innovations, ε̂t, appear in Figure 3(b) in gray
and black, respectively. Some non-random pattern remains, as well as heteroskedasticity between
the earlier and latter months. Moreover, the P/ACF of ε̂t (not shown) exhibits potentially non-
negligible autocorrelation at various lags as high as 31. Altogether, these suggest that a stationary
AR(1) process may not be fully adequate to describe these data properly.

Table 1: Bent-cable regression estimates for the CFC-11 data.

AR(1) AR(6)

(bβ0, bβ1, bβ2) (247.29, 0.64, −0.75) (249.34, 0.55, −0.67)
(bτ , bγ) (46.35, 24.77) (49.00, 21.03)
bφ 0.56 (0.57, 0.03, 0.07, −0.04, −0.16, 0.28)
bσ2 0.56 0.46

approx. 95% CI for Tθ 63.47 ± 3.53 62.71 ± 4.93

Despite this, a drastic advantage of the AR(1) model over the “naive” fit assuming white noise
is evident in the assessment of uncertainty associated with bent-cable parameters. The difference is
seen in Figure 4, where profile deviance contours for the AR(1) and naive fits are shown. The profil-
ing technique mentioned in Section 4.1 was employed to produce these plots. The innermost contour
with value −6 for each plot may be regarded as an approximate 95% confidence region (CR) for
(τ0, γ0) computed assuming the corresponding noise structure. (This approximation is based on
the asymptotic χ2

2 distribution, in light of Theorem 2, of the (conditional) profile deviance drop
as a function of (τ, γ). The tactics used by Chiu, Lockhart & Routledge 2006 can be employed
here for its proof). The naive fit produces a smooth, rounded CR that is wrongly optimistic in the
uncertainty associated with the transition parameters. In contrast, by acknowledging a positive
and substantial lag-1 autocorrelation, we reveal the extent of this uncertainty (in the form of an
unbounded CR) and the irregularity of the estimation problem (in the form of an infinite diagonal
ridge), despite a large T . (Refer to Chiu, Lockhart & Routledge 2006 for an in-depth discussion
on interpreting the profile deviance surface).

5.2 Other AR(p) fits

As the AR(1) model is not fully adequate, one may consider a general ARIMA structure and/or non-
stationarity for {Wt}, but such is beyond the scope of our methodology. Instead, we consider a larger
p as a compromise, while keeping the fit somewhat parsimonious. For example, an AR(6) CML
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Figure 3: (a) Fitted bent cable with transition region assuming AR(1) (---------) and AR(6) (- - -)
noise; an approximate 95% CI for the CTP corresponding to the AR(1) fit is also shown (——);
(b) fitted residuals (---------) and fitted innovations (---------) from the AR(1) fit.

fit appears in Figure 3(a) in dashed lines. Aside from a milder incoming slope for AR(6), both
estimated cables virtually coincide. Thus, the characteristics of Ŵt (not shown for p=6) are highly
comparable between fits. For ε̂t’s (also not shown), the larger p does not improve heteroskedasticity,
although the corresponding P/ACF shows no substantial deviation from that for white noise.

To quantitatively compare the two models, consider an AR(6) model subject to the null con-
straint H0 : φ0,2=. . .=φ0,6=0. Due to the nature of CML estimation, one can easily show that
this reduced AR(6) fit is equivalent to an AR(1) fit on the reduced dataset {y6, y7, . . . , yT }. Now,
denote by `m

T the maximized conditional log-likelihood for the full fit, and `mr
T for the reduced. Let

Sm
T and Smr

T denote the corresponding values of the CSSE, both of which are sums of T ∗=T+1−6
terms. Then, the conditional deviance statistic is

2 [`m
T − `mr

T ] =
Smr

T

Smr
T /T ∗

+ T ∗ ln
Smr

T

T ∗
− Sm

T

Sm
T /T ∗

− T ∗ ln
Sm

T

T ∗
= T ∗ [ln Smr

T − ln Sm
T ] = 4.3 .

When compared to the χ2
5 distribution, it suggests little evidence against H0, i.e. having p=1 is no

less adequate than p=6 here.
There are other potential shortcomings with the use of a large p. Note that the earlier half of the

AR(6) incoming phase appears to be positively biased. Given virtually identical outgoing slopes for
both AR fits, first-order differentiability of the bent cable forces the AR(6) fit to exhibit a narrower
bend. Hence, the duration of this bend may also be biased. Indeed, the bias of the incoming phase
may be expected to increase with p, as the randomness of the first p data points (out of a finite
sample) is entirely unaccounted for by the CML method, possibly leading to overfitting. For this,
raising p simply to compensate for the inadequacy of an AR model when the data show a more
general ARIMA structure and/or non-stationarity is not recommended for CML inference.

To further investigate the notion of overfitting, we obtained an unconstrained AR(9) CML fit
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Figure 4: Profile deviance contours for the (a) AR(1) fit and (b) naive (AR(0)) fit.

(not shown) for these data. A notable peculiarity of this fit is its near non-stationarity: 1−∑p
i=1 φ̂i

= 0.06 (≈ 0), as opposed to 0.44 and 0.25 for p=1 and 6, respectively. However, the striking
feature is that the fit hovers entirely above the observed data. Interestingly, such a non-sensical fit
exhibits a very reasonable bend that ranges from 29 to 64. Moreover, while Ŵt here is uniformly
negative, ε̂t much better resembles white noise than when p=1 or 6, with substantially reduced
heteroskedasticity. Nevertheless, having discarded information on the variability of 6% (9 out
of 152) of the time series and nearly 1/3 of the incoming phase has drastically impaired CML
estimation for the model as a whole.

In contrast, the CML-ML-MM hybrid algorithim results in an alternative AR(9) fit (also not
shown) that highly resembles the AR(1) CML fit, and hence, is much more sensible than the
AR(9) CML counterpart. Thus, it is evident that accounting for the variability of all data in part
of the estimation procedure helps to counter the effects of potential overfitting. However, since
the conditional likelihood methodology of this article handles CML estimation only, we shall not
pursue further inference based on the hybrid fit.

6. ESTIMATING THE CRITICAL TIME POINT

Let us again drop the subscript “0” for true parameter values throughout this section.
In some applications, it may be of interest to locate the point at which the bent cable’s slope

changes sign. In a temporal context, it is the critical time point (CTP) at which the response mean
structure takes either an upturn from a decreasing trend, or a downturn from an increasing trend.
We denote it by Tθ. It parallels the break point of the conventional broken stick (the bent cable’s
limiting case as γ↓0) when the mean response begins to move in a different direction. For this, the
idea of a CTP is inapplicable to any bent cable whose slope does not exhibit a sign change, including
that whose either linear phase is flat. (A similar idea to the CTP in such cases may be τ , the centre
of the bend, although care is needed to distinguish between τ and Tθ otherwise: see Section 6.1.)
Hence, we restrict our attention to the bend region [τ−γ, τ+γ], and define Tθ=argt{∂ft(θ)/∂t=0}.
Then, one can verify that Tθ=τ−γ−2β1γ/β2, which is estimated by T̂ ≡Tbθ.
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As Tθ is non-linear in the vector components of θ, we employ a first-order Taylor expansion
about θ̂ for the large-sample distribution of T̂ . That is,

T̂ ≈ Tθ + ξ′θ(θ̂ − θ) where ξθ =
(

0,−2γ

β2
,
2β1γ

β2
2

, 1,−2β1 + β2

β2

)′
.

By Theorem 2, an approximate 100(1−δ)% Wald confidence interval (CI) for Tθ is therefore

T̂ ± zδ/2

√
ξ̂
′ [
Iθbσ(η̂)

]−1
ξ̂ (15)

where ξ̂≡ξbθ and zq is the (1−q)th quantile of the standard normal distribution.

6.1 Example: CFC-11 data revisited

Since January 1, 1989, many countries around the world have adopted stringent policies to control
the use and production of CFC-releasing substances, thanks to the Montréal Protocol. Earlier
non-participating countries have recently followed suit. As a result, atmospheric concentrations of
CFCs have shown a steady decline for more than a decade. Of course, the decline did not start
immediately following the CFC ban; any impact on the atmosphere would take time to develop.
Therefore, it may be of interest to estimate the CTP at which the decline began to take place.
However, as monitoring stations are situated in geographical locations that are vastly spread out,
CTPs deduced from various stations may be very different. This is evident in the graphs of
monthly mean CFC readings found at the GMD website. This difference causes ambiguity in the
interpretation of individual CTPs. To properly handle this, Khan, Chiu & Dubin (2009) develop,
in a Bayesian framework, bent-cable regression methodology for longitudinal data that arise from
multiple observational units. Instead, we focus on CFC-11 detection by the MLO station only, and
make classical inference on the corresponding Tθ.

We apply (15) to the AR(1) and AR(6) CML fits from Section 5. The two resulting CIs appear
in Table 1, the former of which is also shown in Figure 3(a) as light gray vertical lines. In both
instances, Tθ is estimated to take place in around the 63rd month (April 1993); apparently, it
took only about 4 years for the Montréal Protocol to show its success. The key feature here is a
corresponding CI that resides entirely above τ̂ (the upper 95% confidence limit for τ is less than
56 for both AR(1) and AR(6), computed based on the respective profile deviance as a function
of τ only, and compared to the χ2

1 distribution). This phenomenon has significant implications.
The conventional change-point technique of broken-stick fitting would direct one’s attention to
the estimate of the kink, which is perceivably around τ̂ of a bent-cable fit. However, if the data
possibly exhibit a gradual transition such as the bend of a cable, then the “change point” in the
form of a CTP could be a substantial distance from τ . Therefore, if the start of a downturn from
an upward trend (or vice versa) is of scientific interest, then it is vital for the focus to be placed
on Tθ instead of τ . In our example, mistaking τ̂<56 (September 1992) for the change point could
result in an unwarranted early declaration of the Protocol’s success.

7. SIMULATIONS

We now discuss simulations in the AR(1) case to exemplify the large-sample behaviour of the
CMLEs, η̂ and σ̂2, given finite samples. Again, we use subscript “0” for true parameter values.

7.1 Performance of large-sample approximations for CFC-11 analysis

First, we illustrate that large-sample approximations from our theory are valid for the CFC analysis.
To do so, we conducted simulations, using the CML AR(1) fitted cable from Section 5.1 (see Table
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1) as the underlying structure. Innovations εt’s were generated from a t-distribution with 10 degrees
of freedom (df), but scaled to have variance σ2

0=0.56. The choice of df was to impose heavier tails
than a normal distribution. Taking ρ0≡φ0,1=0.56, noise Wt’s were generated by (3) with a starting
value of 0, and a burn-in of 1,000 values that were subsequently discarded. Responses yt’s resulted
from substituting θ0,T =(247.29, 0.64,−0.75, 46.35, 24.77)′ and Wt’s into (6); 1,000 such {yt} series
were generated. Unconstrained CMLEs assuming normality were computed for all 1,000 time
series, with the knowledge of a stationary AR(1) noise structure. Since all ρ̂ values fell inside
(−1, 1), hybrid algorithms were unnecessary. However, one simulation resulted in γ̂<0, for which
conditional least-squares was repeated but optimized over γ≥0. We focus on the parameters of
main interest: the transition, α0≡(τ0, γ0), and the CTP, Tθ0 . Empirical coverage of nominal 95%
CRs/CIs from these 1,000 datasets appears in the first row of Table 2.

Table 2: Empirical coverage (%) out of 1,000 simulated bent-cable AR(p=1) time series with non-
normal innovations. CRs for (τ0, γ0) and CIs for Tθ0 have a nominal 95% confidence level, based on
critical values from χ2, F , and normal distributions. For the bottom four rows, η0,T =(θ′0,T , ρ0)′,
with σ2

0=0.01 and θ̃0=(10, −2.5, -10, 0.5, 0.2)′ as appears in Figure 2.

(τ0, γ0) Tθ0

(A) Deviance (B) Wald
truth T χ2 F χ2 F Wald

CFC fit from Table 1 151 91.6 91.8 87.9 88.2 89.7

(1)(a): η0,T = (10,−1/80,−1/20, 100, 40, 0.8)′ 200 87.2 88.1 93.9 94.1 —
(1)(b): η0,T = (10,−1/80,−1/20, 100, 40, 0.2)′ 200 94.1 94.2 94.0 94.2 —
(2)(a): η0,T = (10,−1/320,−1/80, 400, 160, 0.8)′ 800 94.2 94.3 95.1 95.1 —
(2)(b): η0,T = (10,−1/320,−1/80, 400, 160, 0.2)′ 800 96.2 96.2 97.4 97.5 —

Wald CIs for Tθ0 were computed using (15). For α0, we follow Chiu, Lockhart & Routledge
(2006) and consider (A) deviance-based CRs and (B) Wald CRs, where actual CRs needed not
be computed: for (A), a (conditional) profile deviance drop between 0 and −χ2

2(0.05)=−5.99 or
−2F2,(T+1−p)−2(0.05) =−6.1136 implied coverage; likewise, (α̂−α0)′ S−1(α̂−α0)<5.99 or 6.1136
implied coverage for (B), where S is the 2×2 block of [Ibσ(η̂)]−1 that corresponds to α. As expected
for finite samples, observed coverage for either α0 or Tθ0 was somewhat less than the nominal 95%
(from 88% to 92%), with increasing coverage using Wald, χ2, and F critical values, respectively.
Qualitative features of the fits would have been impractical to assess visually on a case-by-case
basis, as simulations were fully automated. However, in the absence of model misspecification aside
from non-normality, qualitative anomalies were not expected. Overall, results here suggest that
our asymptotic framework provided proper inference for atmospheric CFC-11 concentrations.

7.2 Large-sample approximations for a bent cable with no CTP

Next, we ran simulations featuring true bent cables whose slope did not change signs; we used the
cable from Figure 2. Two values of T were investigated: (1) T=200 and (2) T=800. For each,
two values of the AR(1) parameter were examined: (a) ρ0=0.8 and (b) ρ0=0.2. Aside from these
parameters and σ2

0=0.01, all simulation and estimation procedures were identical to Section 7.1.
Parameter constraints proved to be unnecessary here. Empirical coverage from the 4,000 fits

appear in Table 2, bottom four rows, in ascending order of the effective information available from
the data, a qualitative notion related to the ESS. Here, we are interested in a qualitative assessment
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of the performance of normal approximations based on our asymptotic framework. Hence, formal
computation of the ESS is not pursued, although we use the term “ESS” in the discussion, in the
sense that for a fixed sample size, the more correlated the data, the less information they contain,
or the smaller the ESS.

For our simulations with the smaller three ESSs, moderate to no under-coverage (from 87%
to 95%) was observed, with F -based coverage higher than the χ2-based by a small margin that
approached 0 as the ESS increased, roughly speaking. Curiously for these three, Wald coverage
was no less or even higher than deviance-based coverage, the latter of which is typically considered
more reliable (Harrell 2001). The same peculiarity was true for the largest ESS (97+% vs. 96%), in
addition to both types of coverage being higher than nominal; though, deviance-based coverage was
closer to nominal, and hence, superior in this case. Considering all four sets of simulations, Wald
coverage appeared closer to nominal when ρ0 was closer to 1; the advantage was more noticeable for
a smaller T . All this perhaps was attributable to the non-trivial underestimation of the nuisance
parameters ρ0 and σ0 for small ESSs (see Figure 5), leading to a false sense of high precision
through the use of Ibσ(η̂) for Wald CRs. Specifically, each graph in Figure 5 comprises boxplots
for Sets (1)(a), (1)(b), (2)(a), and (2)(b) by increasing ESS / decreasing negative bias from left to
right. (All these distributions are roughly symmetric; hence, the median and mean are similar.)
Thus, one cannot determine which of deviance-based and Wald CRs is generally preferable in bent-
cable time series regression, in light of how the negative bias for ρ0>0 and σ0 can compensate for
the theoretical inferiority of Wald CRs apparent in most types of regression settings. Finally, note
that Table 2 and Figure 5 together reflect consistency of ̂̃η and σ̂2.
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Figure 5: Boxplots for CMLEs of covariance parameters: each tickmark on the x-axes indicates the
values of T and ρ0 for the 1,000 simulated datasets that produced the boxplot, e.g. “800.2” refers
to T=800 and ρ0=0.2; horizontal lines in gray indicate the actual parameter values that generated
the data.

Indeed, negative bias in the estimate of ρ0 for AR(1) time series with a linear trend has been
well documented in work such as Marriott & Pope (1954). To conduct our own investigation for
ρ̂ and σ̂, we ran separate sets of simulations (not shown) involving a response mean that is (i)
horizontal and ranging from 0 to an unknown constant, (ii) a straight line with non-trivial slope,
and (iii) a bent cable. Our results indicate that for fixed T , ρ0, and σ0, bias increases as more
unknown parameters in the mean structure are being estimated. Bias corrections for ρ0 of a mean-
zero AR(1) series appear in Mudelsee (2001) and White (1961), and those for AR(p) coefficients in
linear regression are in Cheang & Reinsel (2000). However, bias corrections for nuisance parameter
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estimates in bent-cable regression is beyond the scope of our current article.
We return to the simulations of Table 2 and Figure 5. In addition to consistency, we also

investigated asymptotic normality for all model parameters except σ0. Histograms for simulated
estimates (not shown) exhibited a general “bell shape.” Exceptions to symmetry occurred for the
distribution of γ̂T=200 which showed mild skewness for both ρ0=0.8 and 0.2. For the former, the
left tail was truncated at 0 because of a large variability due to a small ESS and a lower γ-bound
of 0. However, for T=800, all parameter estimates exhibited normality.

8. DISCUSSION

Previous articles (Chiu, Lockhart & Routledge 2006 and related works) have discussed the po-
tential advantage of fitting bent cables instead of broken sticks for describing phenomena that
are traditionally considered piecewise-linear in nature. Bent-cable regression for different types of
correlated data is an area of ongoing research (Khan, Chiu & Dubin submitted; Reynolds & Chiu
submitted). In this article, we have restricted our attention to bent-cable regression in contexts
involving a single time series, where the notion of a change point is often of practical significance.
For bent cables, we have referred to it as the CTP, and demonstrated its distinct interpretation
from the centre of the cable’s transition region, the latter being a time point which may be easily
confused as the change point due to its close relation to the break of the conventional broken stick.

For temporally correlated data, both inference for and implementation of bent-cable regression
are substantially more complex than the case of independent data. Specifically, classical inference
is impossible for this type of regression under the standard asymptotic framework in which model
parameters are invariant to an ever-increasing number of observations over time. Instead, we
have employed a framework that involves an AR noise series indexed only by time (t), coupled
with a triangular array of bent-cable models indexed by t and the number of observations (T );
all elements of the triangular array share a common parameter that is T -free and linearly related
to the bent-cable parameter at hand (dependent on T ) that corresponds to the observed time
scale. This non-standard framework is used to provide useful distributional approximations for the
practitioner of the bent-cable methodology when confidence limits on the observed time scale are
concerned. Assuming a stationary AR temporal structure, we have developed inference procedures
and implementation of our methodology using conditional least-squares estimation. Data analyses
and simulations have demonstrated the practicality of our asymptotic framework and methodology.

Our inference theory is developed, as is common, for a known AR order, p. However, in very
few practical situations is p predetermined; in general, p must be estimated or selected (sometimes
multiple times) according to certain criteria, and the subsequent fit(s) diagnosed. Any formal
estimation of p is expected to influence the behaviour of other parameter estimators, but this
topic is beyond the scope of our article. Here, estimation of the bent-cable parameters is our
primary interest; when serial correlation is non-negligible, we acknowledge the dependence over
time by applying the stationary AR model as an approximation, without excessive concern over
the underlying value of p. This approach is similar to that of Brockwell & Davis (2002), page
141. Our modelling framework has shown promise in practical settings of serially correlated data.
Of course, some situations may call for models other than the bent cable or AR(p). As with
any modelling exercise in practice, alternative methodologies should be considered if the current
modelling framework performs inadequately.

Finally, readers interested in applying the methodology of this paper are encouraged to consider
the bentcableAR package, publicly available through the Comprehensive R Archive Network.

APPENDIX

We derive the conditional score, directional Hessian, and Fisher information after establishing
some notatioanl conventions. We drop the subscript σ on U , V + and I to reduce clutter. The
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various derivatives and right derivatives involve several indicators for which notation is useful:
J1t(τ, γ)=11{t > τ + γ}, J2t(τ, γ)=11{|t − τ | ≤ γ}, and J3t(τ, γ)=11{τ − γ < t ≤ τ + γ}. To
shorten expressions below we suppress τ and γ from the J ’s. Throughout this appendix we use
s=s(t)=t/T as a shorthand to relabel quantities in the triangular array when necessary. Both

∑
s

and
∑

t extend over t=p,. . . ,T , and is equivalent to ranging s over Ψ(T ) = {p/T, (p+1)/T, . . . , 1}.
We will need the fact that for continuous functions g and h on the unit interval and integers
1 ≤ i, j ≤ p, we have

lim
T→∞

1
T

∑
s

g(s− i/T ) h(s− j/T ) =
∫ 1

0

g(u)h(u) du ; (16)

the convergence is uniform in any family of Lipschitz functions g, h with a uniform bound on the
functions and on their Lipschitz constants.

Now, let Zt(θ) = Yt − ft(θ) = Wt + ft(θ0)− ft(θ), and let ϕ0=−1 and ϕi=φi for i = 1, . . . , p.
Thus, Dt from Section 4.5 can be rewritten as Dt(η) =

∑p
i=0 ϕiZt−i(θ), so that St(η) =

∑
t D2

t (η)
and the tth summand of U(η) is U t(η) = −σ−2[Dt(η)][∇Dt(η)]. One can show that the φ-
derivatives are ∇φj

Dt(η) = Zt−j(θ) for j=1, . . . , p. For θ-derivatives,

∇β0 Dt(η) = −
p∑

i=0

ϕi , ∇β1 Dt(η) = −
p∑

i=0

ϕi(t− i) , (17)

∇β2 Dt(η) = −
p∑

i=0

ϕi(α1,t−i α4,t−i + γ α2
2,t−i) , (18)

∇τ Dt(η) = β2

p∑

i=0

ϕi(α1,t−i + α2,t−i) , ∇γ Dt(η) = −β2

p∑

i=0

ϕi α3,t−i , (19)

where α1t = J1t, α2t = [t − (τ − γ)]/(2γ)J2t, α3t = (1/4)
[
1 − (t − τ)2/γ2

]
J2t, and α4t = t − τ .

Assemble to obtain U t.
We denote by V +

jk,t(η) the derivative from the right of the kth vector component of U t(η) with
respect to ηj . Apply (11) to define Ijk,t(η), the (j, k)th entry of the tth summand of I(η). For
p=0, all expressions of U , V+, and I reduce to those of Chiu, Lockhart & Routledge (2006). For a
general p, with the argument η suppressed from the notation, some tedious algebra can show that
the (j, k)th entry of Iθ is the expectation of −V +

jk,t = [(∇jDt)(∇kDt)−Qjk,t]/σ2, where

Qjk,t =





−Dt

∑p
i=0 ϕi(α1,t−i + α2,t−i) j, k ∈ {β2, τ}

Dt

∑p
i=0 ϕi α3,t−i j, k ∈ {β2, γ}

(2γ)−1β2Dt

∑p
i=0 ϕiJ3,t−i j = k = τ

(2γ2)−1β2Dt

∑p
i=0 ϕi α4,t−iJ3,t−i j = τ, k = γ

(2γ2)−1β2Dt

∑p
i=0 ϕi α4,t−iJ2,t−i j = γ, k = τ

(2γ3)−1β2Dt

∑p
i=0 ϕi α2

4,t−iJ2,t−i j = k = γ

0 otherwise

.

Note that E[Qjk,t(η0)] = 0 since E[Dt(η0)] = 0. By (11), Iθ
jk,t(η) = σ−2[∇jDt(η)][∇kDt(η)].

For Iη, one can show that

V +
β0φj ,t = V +

φjβ0,t =
1
σ2

[
Dt + Zt−j

p∑

i=0

ϕi

]
, (20)

V +
β1φj ,t = V +

φjβ1,t =
1
σ2

[
Dt(t− j) + Zt−j

p∑

i=0

ϕi(t− i)

]
, (21)

17



V +
β2φj ,t = V +

φjβ2,t =
1
σ2

[
Dt(α1,t−j α4,t−j + γα2

2,t−j) + Zt−j

p∑

i=0

ϕi(α1,t−iα4,t−i + γα2
2,t−i)

]
, (22)

V +
τφj ,t = V +

φjτ,t = −β2

σ2

[
Dt(α1,t−j + α2,t−j) + Zt−j

p∑

i=0

ϕi(α1,t−i + α2,t−i)

]
, (23)

V +
γφj ,t = V +

φjγ,t =
β2

σ2

[
Dt α3,t−j + Zt−j

p∑

i=0

ϕi α3,t−i

]
. (24)

Evaluated at η0, all (20)–(24) have mean 0. Hence, by (11), Iη(η) ≡ O.
Finally, for Iφ, it can be shown that V +

φjφk,t(η0) = −σ−2[Zt−j(θ0)][Zt−k(θ0)] = −σ−2Wt−jWt−k

for all j, k = 1, . . . , p. Hence, by (11), Iφjφk,t(η) = σ−2c|j−k|(φ, σ).

For the following proofs, recall Ψ(T ), (7), (8), and that η̃=(θ̃
′
,φ′)′. Regularity of the estimation

problem hinges on the η̃ parametrization or Ψ scale, which ensures that the design points satisfy
the design conditions of Chiu, Lockhart & Routledge (2006).

Proof of Theorem 1. Consider S̃T (η̃) from (10) and

H(η̃) ≡ σ2
0 + (φ− φ0)

′ I∗ (φ− φ0) +

(
1−

p∑

i=1

φi

)2 ∫ 1

0

[
fs(θ̃)− fs(θ̃0)

]2

ds ,

where I∗ = c0Σ0 = Cov(Wt−1, . . . , Wt−p) for all t. Then, we have the following lemma.
Lemma 1. As T →∞,

1. the function T−1S̃T (η̃) converges to H(η̃) uniformly on K, in probability;

2. on Ω, the function H is continuous and uniquely minimized by η̃0, i.e. H(η̃) > H(η̃0) for
all η̃ ∈ Ω \ η̃0; and

3. the minimizer of S̃T over K, denoted by ̂̃ηK, converges to η̃0 in probability.

Assertion (3) is consistency of the CMLE ̂̃η. Assertion (1) of the lemma and consistency of ̂̃η
imply that σ̂2 = T−1ST

(
η̂T

)
= T−1S̃T

(̂̃η) P−→ H(η̃0) = σ2
0 . That is, σ̂2 is consistent. The proof

of Lemma 1 below completes the proof of Theorem 1.

Proof of Lemma 1. Assertion (1). Let a = φ − φ0, Xs = (Ws−1/T , . . . , Ws−p/T )′, and ds =∑p
i=0 ϕi[fs−i/T (θ̃) − fs−i/T (θ̃0)]. Write S̃T =

∑
s(εs − a′Xs + ds)2 = T [AT + BT + CT +

2(ΓT +∆T +ΛT )] where AT = T−1
∑

s ε2
s, BT = a′[T−1

∑
sXsX

′
s]a, CT =

∑p
i=0

∑p
j=0 ϕiϕjC

∗
ijT ,

C∗ijT = T−1
∑

s[fs−i/T (θ̃) − fs−i/T (θ̃0)][fs−j/T (θ̃) − fs−j/T (θ̃0)], ΓT = −∑p
i=1(φi − φ0,i)T−1×∑

s εsWs−i/T , ∆T = T−1
∑

s εsds, and ΛT = −∑p
i=1(φi − φ0,i)T−1

∑
s Ws−i/T ds.

By ergodicity, we have η̃-free and a.s. convergence for (i) AT → σ2
0 , (ii) T−1

∑
sXsX

′
s → I∗,

and (iii) T−1
∑

s εsWs−i/T → 0 for all i. By (ii), BT (φ) converges to a′I∗a uniformly on K. By
compactness, ∃ MK < ∞ such that |ϕi|, |φi − φ0,i| < MK for all i. This and (iii) imply that

sup
K
|ΓT (φ)| ≤

p∑

i=1

MK
∣∣T−1

∑
s

εsWs−i/T

∣∣ a.s.−→ 0.

As T → ∞, we have C∗ijT → g(η̃) ≡ ∫ 1

0

[
fs(η̃) − fs(η̃0)

]2
ds uniformly on K, since fs is

continuously differentiable and K is compact. Since {Wt} is stationary, we have
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p∑

i=0

p∑

j=0

ϕiϕj =

(
p∑

i=0

ϕi

)2

=

(
1−

p∑

i=1

φi

)2

> 0 (25)

=⇒ sup
K

∣∣∣
p∑

i=0

p∑

j=0

ϕiϕjC
∗
T (η̃)− (1−

p∑

i=1

φi)2g(η̃)
∣∣∣ ≤

p∑

i=0

p∑

j=0

M2
K[sup

K
|C∗ijT (η̃)− g(η̃)|] → 0 .

Hence, CT converges to (1−∑p
i=1 φi)2g uniformly on K.

Finally, by compactness of K and a gridding argument such as in Chiu (2002), one can show
that supK |∆T (η̃)|, supK |T−1

∑
s Ws−i/T ds(η̃)| P−→ 0. Hence,

sup
K
|ΛT (η̃)| ≤

p∑

i=1

MK
(
sup
K

∣∣T−1
∑

s

Ws−i/T ds(η̃)
∣∣) P−→ 0.

Uniform convergence of T−1S̃T to H follows.
Assertion (2). Continuity of H is elementary. The rest of the assertion is also straightforward,

since (i) H(η̃0)=σ2
0 and (ii) for η̃ 6=η̃0, positive definiteness of I∗ and (25) imply H(η̃)>σ2

0 .
Assertion (3). This is a standard consequence of Assertions (1) and (2). ¤

Proof of Theorem 2. Note that the use of T in the statement of the theorem is unnecessary, but
it allows the theorem to correspond directly to its counterpart in Chiu, Lockhart & Routledge
(2006). For Assertions (1) and (2), take σ2

0=1 without loss.
Assertion (1). The map η 7→ η̃ is linear with a diagonal transformation matrix which we denote

by A. In fact, A is block diagonal with MT as the θ-block and the identity matrix as the φ-block.
Thus, Ĩ = A[I(η)]A is the Fisher information for the model parametrized by η̃. Since Ĩ is positive
definite (pd) if and only if I is pd, it suffices to consider Ĩφ = Iφ and Ĩθ separately.

For the former, recall that I∗ is pd and T -free. Since Iφ(η0) = (T+1−p)I∗, we have that
Iφ(η0) is pd for all T and T−1Iφ(η0) → I∗. For Ĩθ̃, some algebra yields Ĩθ̃(η̃0) =

∑p
0

∑p
0 ϕ0,i ϕ0,j×∑

s[∇̃
θ̃
fs−i/T (θ̃0)] [∇̃θ̃

fs−j/T (θ̃0)]′, where the superscript for ∇̃ denotes the corresponding vector

elements. By (16), T−1Ĩθ̃(η̃0) → Ĩθ̃∞ whose (j, k)th entry is (1−∑p
1 φ0,i)2

∫ 1

0

[
∇̃θ̃j

fs(θ̃0)
] [
∇̃θ̃k

fs(θ̃0)
]
ds.

The arguments surrounding identifiability in Chiu, Lockhart & Routledge (2006) imply that
v′Ĩθ̃∞v > 0 for all non-zero v ∈ R5. Hence, T−1Ĩθ̃(η̃0) is asymptotically pd. The rest of As-
sertion (1) follows from a uniform convergence argument such as that for Theorem 1.

Assertion (2). On the Ψ scale the score function is Ũ = AU , although A cancels out of the
quantity in Assertion (2). The usual tactic here is to establish unbiasedness and asymptotic
normality of the score Ũ(η̃0). To this end, we apply the following lemma.
Lemma 2. Under the conditions of Theorems 1 and 2,

T−1/2v′[Ũ(η̃0)]√
T−1v′ [̃I(η̃0)]v

L−→ N(0, 1) as T →∞ for all non-zero v ∈ R5+p .

The proof of Lemma 2 appears at the end of this appendix. The rest of the proof for Assertion
(2) hinges on (i) a one-term Taylor-type expansion of Ũ

(̂̃η)
about η̃0, involving Ṽ+

(̂̃η)
; (ii) the

uniqueness in probability of ̂̃η as the minimizer of S̃T (η̃) over a neighbourhood of η̃0; and (iii) the
uniform closeness in probability of Ṽ+(η̃) to Ĩ(η̃0) on this neighbourhood. As in Chiu, Lockhart
& Routledge (2006), the directional Hessian for (i) plays the role of a well-defined gradient of the
score function in a standard Taylor expansion in a regular estimation problem. Here, our problem
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of estimating η̃0 would have been regular, if not for the non-differentiability of Ũ with respect to θ̃
along isolated hyper-rays. Since the estimation of φ yields no additional irregularity, the argument
for (i) is essentially identical to that for Lemma 2 from Chiu, Lockhart & Routledge (2006), except
for an extended parameter space due to φ. Similarly, the argument for (ii) is a direct extension of
Step 1 in the proof of their Theorem 2, Assertion 2, coupled with our Theorem 1 above. For (iii), the
assertion can be verified by some algebra. Assemble and rescale from ̂̃η to η̂ to conclude asymptotic
normality of [I(η0)]1/2

(
η̂ − η0

)
. That of

√
T [T−1I(η̂)]1/2

(
η̂ − η0

)
follows from Theorem 1.

Assertion (3). This is standard likelihood theory from the consistency of σ̂2 and the properties
of Ṽ+(η̃) used to prove Assertion (2).

Proof of Lemma 2. We apply the martingale central limit theorem (MCLT) (Theorem 3.2 and
Corollary 3.1 of Hall & Heyde 1980). Let Xt,T ≡ T−1/2v′Ũ t(η̃0) and Mt,T =

∑t
u=p Xu,T . We

claim that Mt,T is a martingale array for each T relative to the sigma fields Ft generated by
{W0, . . . , Wp−1, εp, εp+1, . . . , εt} (or equivalently by {W0, . . . ,Wt}). The lemma would then follow
if we verify the two conditions of the MCLT.

We write V t = (Wt−1, . . . , Wt−p)′ and let v1 = (v1, . . . , v5) and v2 = (v6, . . . , v5+p) so that
v′ = (v1,v2). Note from (17)–(19) that Xt,T = T−1/2εt[v1at + v2V t] where

at =MT

p∑

j=0

ϕj∇θf(t− i;θ) =
p∑

j=0

ϕj∇̃θ̃
f(s− i/T ; θ̃).

Since each Wt−j is Ft-measurable and εt has mean 0, it is easy to check that Mt,T is a martingale.
The first condition of the MCLT which must be checked is that for each δ > 0, we have

T∑
t=p

E
[
X2

t,T 11{|Xt,T | > δ} ∣∣ Ft−1

]
=

1
T

T∑
t=p

(v1at + v2V t)2 E
[
ε2

t 11{|Xt,T | > δ} ∣∣ Ft−1

] P→ 0 .

To this end, we let Zt = δ
√

T (|v1at + v2V t|)−1. For δ > 0, we have

E
[
ε2
t 11{|Xt,T | > δ}

∣∣ Ft−1

]
= E

[
ε2

t 11{|εt| > Zt}
∣∣ Ft−1

] ≤ E
[
ε4
t 11{|εt| > Zt}

∣∣ Ft−1

]

Z2
t

≤ E(ε4
t )

Z2
t

.

Assembling, and using (a + b)4 ≤ 8(a4 + b4), we have

T∑
t=p

E
[
X2

t,T 11{|Xt,T | > δ}
∣∣ Ft−1

] ≤ 8E(ε4
t )

δ2T
¦ 1
T

T∑
t=p

{
(v1at)4 + (v2V t)4

}
. (26)

The terms involving (v2V t)4 go to 0 by ergodicity of {Wt}. Components of at may be computed
from (17)–(19) by replacing each occurrence of β2, γ, and τ by β̃2, γ̃, and τ̃ , respectively, and by
replacing t − i by s − i/T . It follows that there is a constant C not depending on t such that
|v1at| ≤ C; the right hand side of (26) therefore converges to 0.

In the proof of Theorem 2 we showed that T−1Ĩ converges to a positive definite matrix, Ĩ∞. It
therefore remains only to establish the second condition of the MCLT which becomes

T∑
t=p

E[X2
t,T | Ft−1] =

1
T

T∑
t=p

σ2(v1at + v2V t)2 → v′Ĩ∞v. (27)

Convergence of T−1
∑

t(v1at)2 to v1Ĩθ̃∞v′1 follows from the application of (16). Convergence of the
cross product term T−1

∑
t(v1at)(v2V t) to 0 is a moment calculation, using the exponential decay

of the autocovariance function of the {Wt} and the previous bound on |at|. Finally, convergence
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of T−1
∑

t(v1at)2 to v2Ĩφ∞v′2 = v2Ĩ∗v′2 uses ergodicity and the variance-covariance of {Wt}. This
establishes (27) and completes the proof of Lemma 2. ¤
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