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SUMMARY

Multimetric indices (MMIs) are appealing scalar-valued tools for policy makers when rating ecosystems
with respect to biological conditions that are not directly measurable. For conventional assessment of eco-
logical health using MMIs, the quantitative calibration of health qualities can be specific to the investigator,
and to the geographical region and time frame of interest. We propose a statistical-model-based approach
that provides a systematic mechanism to construct MMIs; our approach aims to address some common is-
sues of conventional practices, including the loss of information from data, spatio-temporal restrictions, and
concerns over arbitrariness and costs. Our latent health factor index (LHFI) is obtained via statistical infer-
ence for an unobservable health factor term in a mixed-effects analysis-of-covariance regression that directly
models the relationship among metrics, a very general notion of health, and factors that can influence health.
We illustrate the approach by constructing an LHFI for a freshwater system using benthic taxonomic data
in various Bayesian hierarchical formulations of generalized linear mixed models, implemented by Markov
chain Monte Carlo techniques. The concept of the LHFI is also applicable to medical and other contexts.

KEY WORDS: Bayesian inference; ecosystem health; hierarchical models; mixed-effects models; multi-
metric index

1 INTRODUCTION

Many scientific disciplines involve assessing underlying conditions with a single number com-
puted based on various measurable characteristics. We generically refer to these conditions as
health throughout this article. A familiar example is an economic index. Another example is the
body mass index (BMI), which combines a person’s height and weight measurements to yield a
scalar-valued quantification of obesity, a form of poor health. Scalar-valued assessments are nat-
urally appealing for their structural simplicity and supposed ease of interpretation, particularly in
decision making contexts such as disease diagnosis. In certain applications, the definition of the
scalar index may incorporate scientific theory in the subject matter. Other applications of scalar
indices may lack a unified, systematic approach for the construction or interpretation of the in-
dex. For example, how one should interpret BMI values in different situations has long been a
contentious issue (e.g. López-Alvarenga et al., 2003). To assess aquatic ecosystem health, con-
ventional indices such as the benthic index of biotic integrity (B-IBI) (Kerans & Karr, 1994) and
its variants (e.g. McCormick et al., 2001) are also constructed by studying and combining mul-
tiple indicator variables, or metrics, to reflect a very general notion of underlying health of field
sites. IBI variants and observed-to-expected (O/E) indices (e.g. Hawkins et al., 2000) are types of
reference-based health indices: sites whose health is under scrutiny are gauged against sites iden-
tified as comparable in every aspect except for the unstressed reference conditions. These days,
unstressed sites can be difficult to locate due to widespread environmental degradation across the
globe, or inaccessible to scientists due to their remoteness. For this and other reasons, reference
criteria are often admittedly arbitrary (e.g. CEH Web; Hawkins et al., 2000; Kennard et al., 2006),
leading to calibration schemes that are specific to geographical regions and time frames (e.g. Moss
et al., 2001). More broadly, existing index construction approaches are based largely on human
intuition. Given that such indices ought to reflect unobservable conditions of interest, the present
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lack of a unified, systematic approach to quantify qualitative features is of concern. More in-depth
discussions of this and other issues appear elsewhere (e.g. Chiu & Guttorp, 2004, 2006; Chiu et
al., 2008; Steedman & Regier, 1990; Suter, 1993).

Despite all, conventionally constructed multimetric indices (MMIs) remain popular in policy-
making contexts (e.g. SEQ; Stoddard et al., 2005) for good reasons: a scalar MMI value is a readily
communicable “report card,” and is appealing in its high biological content (from subject-matter
expertise involved in metric selection and index construction) and structural simplicity (being eas-
ily computable from the chosen metrics). However, to enhance scientific integrity of an MMI,
desirable statistical inferential properties should not be overlooked. As Dr. Neil McKenzie (Chief,
Land and Water) of the Commonwealth Scientific and Industrial Research Organisation (CSIRO)
advocated in the 2009 CSIRO Workshop on Nationally Relevant Environmental Monitoring, “en-
vironmental information increases in utility when it reduces uncertainty for a decision maker.”

For proper reduction of uncertainty, first the amount of uncertainty — propagated through the
various stages of data collection / index construction / inference — should be properly assessed.
Often, this is a challenging task for conventional indices, due to the various (semi-)qualitative
schemes involved in collapsing multimetric data into scalar. Thus, we propose a new approach
for constructing MMIs that combines the statistical advantages of model-based techniques and the
communicability of conventional indices (e.g. BMI, B-IBI). Regarding the former, (1) propagation
of uncertainty is built into our approach, and (2) the method allows one to assess health based (a)
solely on species composition, or (b) additionally on environmental factors that influence health.
A consequence of this flexibility is the ability of the investigator to predict health using easily
measurable environmental variables without the need for costly species sampling and subsequent
laboratory assays to identify species composition.

We illustrate our method in the context of assessing freshwater ecosystem health. For this, we
take metrics that have been expertly identified as informative, then model their interdependence by
regressing them on health as a latent covariate. This unobservable factor can be estimated statisti-
cally, thereby yielding a scalar assessment of underlying health conditions. If desired, observable
environmental factors — e.g. stream order and other physical traits, spatial and/or temporal loca-
tions of sites, and human demographic variables that could directly influence site health — may
be included as extra covariates. The resulting latent health factor index (LHFI) can then be com-
pared to existing indices for the same data. If both are deemed to contain similar information about
health, then the LHFI may be preferred for its unambiguous quantitative nature. This is because
(1) its construction is based almost entirely on standard modeling principles while accounting for
propagation of uncertainty, (2) its performance is tractable statistically, (3) it involves no interme-
diate dimension reduction procedures that are qualitative in nature and distort valuable information
from available data, and (4) when covariates are included to explain the latent health, then (a) pre-
diction of site health and its proper inference are straightforward, and (b) the fitted model can help
resource managers to identify external factors that influence health. Specifically, the significance
of their impact on health can be statistically assessed and classified, thus readily providing policy
makers with unambiguous guidelines for prioritizing conservation measures. Indeed, both ranking
sites on health and classifying factors according to their impact on health, as well as assessing their
uncertainty, can be achieved in a single step of fitting the model.

Our methodology and its rationale and principles are given in Section 2. Statistical inference
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for health, including its prediction, is discussed in Section 3. In Section 4, we construct an LHFI for
the 1997 Puget Sound Lowland (PSL) freshwater ecosystem. Although not necessarily of present
scientific interest, the health of this ecosystem is highly relevant to ecosystem health assessment in
general when various approaches are compared. Thus, we discuss in Section 5 how our PSL LHFI
compares to existing indices in numerical value, and in statistical and biological performance. In
Section 6, we suggest how one may make biological interpretations from a model-based LHFI
without relying on external or prescribed reference conditions. Overall findings and advice are
summarized in Section 7.

2 A FULLY QUANTITATIVE MODELING FRAMEWORK FOR THE LHFI

In some biomonitoring studies, it is preferred to assess ecological health by basing entirely on
faunal metrics that have been selected according to their apparent relationships with non-faunal
environmental variables (e.g. Stoddard et al., 2005). To maximize the utilization of relevant data
when constructing a report-card index, other studies regard any health-related variable, faunal or
otherwise, as a potential metric (e.g. SEQ). In either case, mainly study-specific, semi-qualitative
schemes are used to calibrate multiple metrics into a scalar index. Here, we present our quanti-
tatively oriented LHFI scheme that is intended as an alternative: it relies on systematic statistical
model building procedures, and allows the investigator to include or exclude non-faunal environ-
mental variables for index construction.

Many ecosystems subject to conservation measures involve bodies of water, so that much focus
is on the ecosystem defined at the level of the aquatic environment. To assess aquatic ecosystem
health, benthic macroinvertebrate faunal data are typically considered. In general, benthic taxo-
nomic data are collected by obtaining a mud sample according to a standardized protocol, separat-
ing the animals from this mud, then sorting each animal into one of many taxa (e.g. Cuffney et al.,
1993; Ferraro et al., 2006; Marshall et al., 2006). This collection of animals forms the field sample.
Replicate field samples per site are common. Ecologists identify various numerical aspects of the
field sample composition to reflect ecosystem health. For instance, an abundance of animals from
predatory taxa reflects a healthy ecosystem that can sustain a large number of predators. Similarly,
a field sample rich in stress-sensitive taxa indicates an ecosystem that has been subject to minimal
stress. Corresponding numerical measures, known as metrics, are used to construct health indices.

By combining metrics to form a health index, conventional schemes essentially regard health as
the response and metrics as covariates or driving factors of health measurements. In reality, some
metrics are indicators of health. Thus, in a statistical model, such metrics would appear more
naturally as responses, being driven by health as a latent covariate. If desired, we allow health to
appear hierarchically in a latent regression on non-faunal variables that have a potential impact on
the field site’s overall health. Schematically, the two approaches can be contrasted as follows.

CONVENTIONAL : metrics −→ health
LHFI MODELING : covariates −→ health −→ metrics (1)

In the absence of explicit scientific theory for index definition, the above role reversal between
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metrics and health is fundamental to the scientific integrity of our index construction approach.
This is because their relationship is directly modeled in an intrinsically quantitative framework, in
a causal hierarchy, without ambiguous metric manipulation that is common to existing ecological
health indices. While subject-matter expertise determines what constitutes biologically meaning-
ful metrics, statistical principles enable effective preservation of information contained by these
metrics during index construction, resulting in a biologically meaningful health index.

2.1 Building the latent health factor model

For the benefit of decision makers in environmental policy and monitoring, we exploit the prac-
ticality of latent variable modeling, while retaining the scientific and practical appeal of MMIs.
Researchers in other disciplines have employed explicit statistical inference for latent quantities to
assess unobservable traits (e.g. Hays et al., 2000; Martin & Quinn, 2002; Pietrobon et al., 2004;
Rabe-Hesketh & Skrondal, 2008; Rosas, 2009; Skrondal & Rabe-Hesketh, 2008; Stock & Watson,
1989; Ward & Hoff, 2007). These methods may be grouped as follows: variants of factor analysis,
variants of item response modeling, and context-specific latent variable modeling. The context of
biomonitoring puts our method in the third group.

To consider the relationship in the schematic of (1), multivariate-response models could be con-
sidered, although they often require complex parameterizations for non-Gaussian data. Instead, we
rely on the simple principles of analysis of (co)variance (ANO(CO)VA), expressed as a generalized
linear mixed model (GLMM). For benthic data, let Yijk denote the (possibly transformed) value of
the jth metric for the ith site’s kth independent replicate, i=1,. . . ,n, j=1,. . . ,J , and k=1,2,. . . ,K.
In light of (1), Yijk can thus be explained, in an ANOVA model, by site effect Hi (regarded as
the site’s underlying health) and metric effect βj . Assume randomly chosen sites. Then, if desired,
health can be regressed on xi, a vector of observable covariates. Let fθ be the function of latent
regression with coefficients θ. Altogether, we have a hierarchical GLMM (ANOVA if fθ is taken
to be constant, ANOCOVA otherwise)

νij ≡ g
�
E[Yijk|Hi, βj]

�
= Hi + βj , Hi = fθ(xi) + εi (2)

where g is an appropriate link function and εi’s are independent and identically distributed (iid) er-
rors. Our main interest is in Hi. Although health itself is latent, its estimate �Hi from the model fit is
an explicit quantification of site health. Note that no site-metric interaction is modeled since homo-
geneity induced by random selection of sites can be assumed. Finally, we model βj’s as random
effects with mean 0 (to avoid confounding with the intercept from Hi) and an appropriate co-
variance structure. Modeling βj’s as random has the following advantages: (i) a non-diagonal
covariance allows for any dependence of Yijk’s over j due to informational overlap of metrics (see
Section 4); (ii) this dependence may be readily investigated by comparing models that are nested
with respect to Σ (e.g. identity nested in diagonal nested in unstructured); and (iii) having unequal
variances for βj’s allows for the notion of an unknown, unequal weighting of metrics.

When non-faunal environmental covariates are utilized for index construction, deciding on the
functional form of fθ in the ANOCOVA model may require some effort. An ANOVA model
without covariates can be fitted initially, then an exploratory analysis conducted on the resulting
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( �Hi, xi)’s to identify an appropriate form of fθ to be used for (2). Alternatively, a simple form
such as linear may be blindly fitted, then diagnosed subsequent to the fit.

2.2 Model for combining spatial and other types of domains

When developing an ecological health index, neighboring geographical domains may be similar
enough to share the same metrics, yet different enough that traditional metric calibration devised
for one region may not effectively reflect the health conditions of another.

Suppose our J metrics are deemed adequate for multiple spatial domains. The goal is to assess
in one combined study the ecological health of sites from all domains. However, formal spatial
models are typically impractical: ecologists often warn of the sparsity / large variability of eco-
logical data of this sort (mainly due to the substantial costs of observing and processing each field
sample) that prevent statistical detection of underlying spatial correlation patterns. The traditional
approach for, say, IBI variants would then require recalibration of all J metrics to account for the
different spatial scales. Painstaking effort aside, personal preferences could play a heavy role in
this recalibration, adding ambiguity to the health assessment. Chiu & Guttorp (2006) advocate
the gold standard SHIPSL scoring / calibration scheme, where metrics are standardized against
predetermined values of region-specific “gold-standard” mean and standard deviation. However,
these authors warn that implementation could be challenging in practice. To preserve biological
and statistical integrity while formal spatial modeling is impractical, our LHFI approach handles
the issue as follows. Let Yi(�)jk denote the value of the jth metric from replicate sample k in the
ith site nested within spatial domain �. In the presence of environmental covariates, a spatial effect
term λ� can be added to yield νi(�)j = Hi(�) + βj and Hi(�) = λ� + fθ(xi�) + εi(�), where fθ(xi�)
may be removed if covariates are absent, and λ� modeled as random or fixed depending on the
context. For the intercept λ� to be logically regarded as the overall health of the �th domain, all
domains should share the same set of metrics and covariates. Then, the simple addition of this
spatial effect term in the LHFI model allows us to study the health conditions by estimating Hi(�)

over all sites simultaneously and without ambiguity. The same principles may be applied to mul-
tiple temporal domains, through a temporal effect term (e.g. year), possibly ordinal, to the model
in a similar fashion. To account for both types of domains, a spatio-temporal interaction term may
be included. Similarly, stream order (size category) could be considered a type of domain, and
incorporated as such.

Currently, we are unaware of quantitative biomonitoring indices that account for spatial and
temporal differences in a statistically sound manner; ours attempts to do so when field sites are
sparse. In very rare cases, field sites are sampled densely. Higgs & Hoeting (in press) use data
from one such study in Maryland (USA) to illustrate a spatial model for rating streams based on
the stream’s IBI score. In principle, an LHFI can be constructed for this system of streams by
modifying (2) to incorporate spatial dependence among εi’s. LHFI construction for general inter-
regional and/or -temporal studies is ongoing (Chiu et al., in progress; Wu, 2009). In the remainder
of this article, we return our focus to (2) with iid εi’s.
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3 COMPUTING THE LHFI: BAYESIAN MODEL INFERENCE

According to Gelman & Hill (2007), the hierarchical Bayesian framework is the most direct way
to handle models with latent structures, as each level of latent regression in the model hierarchy
has a direct correspondence to a specific level in the parameter hierarchy. As a bonus, unlike some
classical techniques, this framework does not rely on asymptotics that may be inappropriate due to
small sample sizes and/or unbalanced designs that are common in ecological and other contexts.

For us, let H = (H1, . . . , Hn)T and β = (β1, . . . , βJ)T . Let ν denote the vector of νij’s; Y , the
vector of Yijk’s; X, the design matrix whose rows are xi’s; and Ω, the vector of remaining model
parameters, including θ and those from the distributions of β and εi’s. In the Bayesian context, all
but X are considered random quantities. Next, let P be the generic label for a distribution. Then,
P (Ω) is the prior for Ω, P (Y |ν) or P (Y |H , β) is the likelihood, P (H|Ω, X) is the distribution of
H , and P (β|Ω) is that of β. In the absence of concrete preconceptions of Ω, a diffuse prior P (Ω)
is commonly applied. Bayesian inference for H , β, and Ω is made based on the joint posterior
P (H , β,Ω|Y , X). We assume independence of H and β, so that

P (H , β,Ω|Y , X) ∝ P (Y |H , β) P (H|Ω, X) P (β|Ω) P (Ω) . (3)

Then, one can take the marginal posterior mean (or median / mode) of Hi to be our LHFI:
�Hi ≡ �Hi(Y , X) = E(Hi|Y , X) =

�
Hi

� � �
P (H , β,Ω|Y , X) dβ dΩ dH−i (4)

where H−i is obtained by removing Hi from H . Estimation uncertainty can be assessed by highest
posterior density (HPD) intervals. Once the right-hand-side of (3) is determined, obtaining HPD
intervals is routine and unambiguous. In contrast, confidence intervals for existing indices such
as IBI and SHIPSL variants rely on the non-parametric bootstrap, and are negatively biased in
location and width in general (Chiu & Guttorp, 2006). Although closed forms may not exist
for (3) or (4), samples can be simulated from (3) by numerical methods such as Markov chain
Monte Carlo (MCMC). Approximating (4) based on posterior draws is then trivial. The remaining
nuisance parameters can be estimated similarly.

3.1 Predicting site health

The ability to reliably predict site health has significant practical implications, especially for
ecosystems that traditionally involve the painstaking and costly collection and laboratory analysis
of taxonomic data. For example, each benthic sample may contain thousands of minute animals to
be sorted and identified. Instead of handling benthic animals directly per field sample per site, it
becomes invaluable to have reliable and easily observable surrogate data that can reflect ecosystem
health equally well for some sites. In a statistical modeling framework, covariates can be surro-
gates for the response. Thus, given a set of covariates, their quality as health indicators in their
own right can be gauged via prediction inference.

An issue with monitoring ecosystem health by common indices is the inability to make sound
statistical inference on the predictions of site health. For IBI / SHIPSL variants and O/E indices,
one may first compute the index values, then regress them on observable covariates and make
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predictions of future site health via the fitted regression. For this two-step approach, uncertainty
in the raw taxonomic data is unaccounted for. In contrast, prediction / interpolation of health at
a “future site” (e.g. one with no taxonomic data) and its inference is much more straightforward
given Model (2) that has been fitted to a set of sites with taxonomic and covariate data. This
inference is done via the posterior predictive distribution P (H∗|Y , X, x

∗), where a “∗” denotes
a future value. Specifically, first consider a single Monte Carlo sample from the joint posterior
(3). Extract from this sample those components of Ω that are relevant to (2). Now, substitute
these components together with x

∗ into (2) to simulate a Monte Carlo draw from P (H∗|Y , X, x
∗).

Repeat this process until a collection of simulated draws are obtained from P (H∗|Y , X, x
∗). Then,

�H∗ is approximated by, e.g. the mean, of these draws. Predictive HPD intervals are also easily
approximated using appropriate quantiles of the simulated collection of draws.

The advantage of our predictive inference approach is that it accounts for the modeled relation-
ship among metrics, health, and environmental variables simultaneously, “rolling up” uncertainty
from different levels of the data hierarchy in an unambiguous fashion. Predictive inference can also
be used in cross-validation for model evaluation, as demonstrated by Chiu et al. (2008). These au-
thors report that despite having many unknown quantities but relatively few sites and replicates,
various formulations of the ANO(CO)VA GLMM for the PSL data all show reasonable predictive
power and no apparent overfitting.

4 LHFIs FOR THE PSL

4.1 Data

We apply our methods to the 1997 PSL benthic data (obtained from Chiu & Guttorp, 2006) to con-
struct and compute LHFIs. These data were collected from n=18 sites scattered over 9 streams
(Table 1), with K=3 replicate field samples per site. For the PSL, an observed animal could belong
to one of 80 taxa, and the animal count per taxon could range from 0 to more than 1,000, but
is equal or close to 0 for many taxa. Biologists have previously identified 10 useful metrics for
the PSL (Table 1), whose values are computed based on the 80 counts. Here, all 10 metrics are
highly correlated due to their definitions: 7 describe taxa richness (count), and 3 describe relative
abundance (%). For #Intol and %Tol, non-tolerant taxa are not necessarily intolerant, as some taxa
are classified as neither tolerant nor intolerant. Also note that %Tol and %Dom3 are negatively
associated with health (Morley, 2000). Chiu & Guttorp (2004) take the obvious transformations
%NonTol=100%−%Tol and %NonDom3=100%−%Dom3, so that higher values of the index cor-
respond to higher metric values. They also show that it is beneficial, at least statistically, to convert
the taxa richness counts to percentages, before combining them with relative abundance metrics to
form a health index. They suggest making #Tx the denominator in converting the other 6 count
metrics into relative richness (%), in the same way that sample cardinality Nik (total number of
animals in the field sample) is used to define relative abundance. This way, all J=9 variables now
share the same scale over all sites and replicates. (To avoid handling metrics on different scales,
Chiu et al., 2008, also consider just the 7 count metrics, including #Tx, in a Poisson regression.)

In addition to metrics data, associated with each stream are data for environmental covariates
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(taken from Morley, 2000) that include urbanization and Global Positioning System (GPS) co-
ordinates. Urbanization perceivably has a strong influence on stream health; its values are in
the form of percentages of total impervious area in the sub-basin to which the stream belongs.
Thus, some sites share the same urbanization value. GPS co-ordinates are latitudes and longitudes
recorded with sensitive instruments, and are unique to each site. Since urbanization and longitude
are highly correlated, we omit the latter from our consideration.

4.2 Model A

To formulate the LHFI model, all 9 metrics may be considered observed success probabilities,
where “success” is an occurrence of the taxon (towards richness) or animal (towards abundance)
that indicates a healthy stream. Therefore, we construct a logistic model. We first consider urban-
ization as the sole covariate due to its preconceived impact on health. When we diagnose the fit of
this model, we will also decide if latitude should be included in the latent regression.

The 9 metrics can be broken down into J1=6 pertaining to richness, and J2=3 to abundance. Let
s=1,2 denote the respective groups. Next, for replicate k from site i, let Yij(s)k denote the total num-
ber of successes for metric j nested in group s, each success occurring with probability pij(s)�. Also,
let νij(s)� denote the logit-transformed pij(s)�. Initially we blindly consider linearity in the latent re-
gression, with urbanization xi centered to remove dependence between the regression intercept and
slope. Finally, we take metric effects βj’s to be independent but heterogeneous. Linearity and the
simple structure for Cov(β) will be diagnosed after fitting the model. Then, we rewrite (2) as

�
Yij(s)k|Ti�sk, pij(s)�

� ind∼ Binomial(Ti�sk, pij(s)�) , Ti�sk =

�
(#Tx)ik if s = 1
Nik if s = 2

, (5)

ln
pij(s)�

1− pij(s)�
≡ νij(s)� = Hi + βj(s) , σ1(1) =σ2(1) =σ3(1) , (6)

Hi = θ0 + θ1(xi − x) + εi , (εi|σH)
iid∼ N(0, σ2

H
) , (βj(s)|σj(s))

ind∼ N(0, σ2
j(s)) , (7)

for j=1,. . . ,Js and k=1,2,3. The model stipulates that success probability is affected by site health
and metric, but not by metric type (richness / abundance). It further assumes a common variance
for the metric effects of Eph., Ple., and Tri. taxa (s=1, j=1,2,3), known collectively as EPT taxa.
(Analyses by Chiu et al., 2007, suggest that metric type is insignificant, and that the three σj(s)’s
under consideration are very similar although the rest are not.)

For priors, we take θ1 and θ2 to be iid normal with mean 0 and variance 100, and σ2
H

and σ2
j(s)’s

to be iid inverse-Gamma with shape and scale both equal to 1. Our choice of hyperparameters leads
to relatively diffuse priors to reflect our ignorance of the modeled parameters. MCMC sampling
from the resulting posterior was implemented with OpenBUGS (Thomas et al., 2006); hierarchical
centering was required for the implementation to reduce runtime (see Appendix I).

Based on two Markov chains, all of H , β, and Ω were unambiguously estimated, except for
non-EPT σj(s)’s, which exhibited minor convergence problems (see Appendix II). As no such
problem was encountered for Hi’s, we define LHFI-A as the mean of the Hi draws from both
chains combined. Index values and corresponding 95% HPD intervals (Smith, 2007) appear in
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gray in Figure 1. Posterior summary statistics for Ω are given in Table 2. From Figure 2(a), we see
no obvious violations against the linearity assumption of Model A, in light of sites MA1 and LB4
(shown as “M” and “L” in the figure) being potential outliers. Nor do we see the need to regress
latent health on latitude due to the large scatter in Figure 2(b), regardless of those two sites.

4.3 Model B

The formulation of Model A is based entirely on binomial distributions associated with the metrics.
However, one could fine-tune the dependence among Yij(s)k’s based on the disjoint nature of #Eph,
#Ple, and #Tri that define a quadrinomial variate. To incorporate this into the LHFI model, we
further break down the richness metrics into two subgroups by letting s=0 represent EPT richness
metrics, and s=1 for the remaining three. The group of abundance metrics remains as s=2. Thus,
each group consists of 3 metrics. As before, Yij(s)k’s are binomial for s=1, 2. However, for s=0,

�
Yi1(0)k , Yi2(0)k , Yi3(0)k , Ti�1k−

�3
j=1Yij(0)k

�� Ti�1k , pi1(0)� , pi2(0)� , pi3(0)�
�

∼ Multinomial( Ti�1k ; pi1(0)� , pi2(0)� , pi3(0)� , 1−
�3

j=1pij(0)� )
(8)

where pij(0)� is the probability of an observed taxon from site i falling in the jth EPT category.
Note that all 6 richness metrics share the same margin Ti�1k, irrespective of s=0 or 1. As large
values of pij(0)�’s are indicative of good health, we consider the multinomial-logit

ln
pij(0)�

1−
�3

j=1 pij(0)�
≡ νij(0)� = Hi + βj(0) . (9)

Altogether, Model B is binomial-multinomial mixture logit, comprising (8)–(9) for s=0, with
σ1(0)=σ2(0)=σ3(0); (5)–(6) for s=1,2; and (7) for all s=0,1,2.

The prior for Ω, as well as the characteristics of the resulting two Markov chains of posterior
draws (see Appendix II), are all as for Model A above. Again, we combine both chains to form
LHFI-B. Index values and corresponding 95% HPD intervals are given in solid black in Figure 1.
Posterior summary statistics for Ω are in Table 2.

4.4 Model C

Finally, one might wish to consider as part of the model the dependency of the richness counts
over sites and metrics, for the following reason. The nature of the dependence between pairs of
richness counts is expected to vary by site and metric. Although random site selection is assumed,
any given stream may yield multiple selected sites, so that Yijk and Yi�jk may be dependent. More
obvious may be the dependence between Yijk and Yij�k for, say, the jth metric being #Eph and the
j
�th, #Cl, as many Eph. taxa fall in the clinger category; the covariance structure between Yijk and

Yij�k differs among different pairs of metrics.
In fact, the dependence of pairwise covariance on (i, i�) is already reflected by the latent re-

gression in (2), and that having correlated βj’s can further account for the dependence on (j, j�);
see Appendix III. In particular, we modify Model B by having β ∼ MVN(0,Σ), where Σ has jth
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diagonal element σ2
j

and off-diagonal (j, j�)th element σjj� . In principle, one may wish to impose a
covariance structure that is based on the conceptual relationship among metrics. However, except
for some special structures that may be unrealistic, it is often challenging to efficiently sample
from the posteriors of the covariance parameters (Westveld & Hoff, conditionally accepted). Thus,
we assume the popular inverse-Wishart prior for an unstructured Σ, with q degrees of freedom and
scale matrix S, so that E(Σ)∝S. Hyperparameters are chosen to yield reasonably diffuse proper
priors; we take q=9 (smallest possible) and S to have diagonal values 1 and positive off-diagonal
values, arbitrarily set as 0.5. The latter reflects the prior notion that all 7 metrics are positively
associated with latent health, and hence, perhaps with each other. Other hyperparameters for Ω are
as for Model B.

From two chains of posterior draws, we observe convergence problems for many Σ matrix
entries (perhaps unsurprisingly; see Appendix II). Nonetheless, Hi chains mixed well marginally;
hence, we define LHFI-C using the combined chain. Index values and 95% HPD intervals appear
as dashed lines in Figure 1. Posterior summary statistics for selected Ω elements are in Table 2.

5 DISCUSSION OF RESULTS

Pairwise correlations among the three LHFIs are all equal to 1.00. This suggests that Models A to C
(variants of the same model) contain essentially the same information about the posterior mean for
each Hi, which we define as the LHFI. This does not imply that the models yield the same infer-
ence, as we must also consider the reliability of the resulting health assessment. Figure 1 indicates
that LHFI-C has substantially more uncertainty (longer HPD intervals) than A and B, which show
almost identical properties but for a minor location shift. Thus, although Model C incorporates
the natural correlation among metric values over sites and metrics into the LHFI model, the extra
complexity of the model did little in practice to improve our inference for health given these data.
Some remarks on this complexity appear in Appendix IV.

Note the extremes, “R” (RO1) and “T” (TH1), in Figure 2(a). Indeed, health conditions of
Thornton Creek have been found to be so poor that even the untrained from surrounding com-
munities have recognized and discussed the problems through local news and residents’ forums.
The opposite is true for Rock Creek. Our LHFI successfully reflects these extremes, and agrees
with the B-IBI and SHIPSL in this regard. Figure 3 shows pairwise relationships among B-IBI,
SHIPSL, and LHFI-B for all sites. (Recall that all three LHFIs are virtually perfectly correlated.)
There is a strong positive correlation (r≈0.9) between our index and either existing one, but the re-
lationship is slightly curvilinear. The curvature can be explained by the non-linearity of Models A
to C, whereas both B-IBI and SHIPSL are linear combinations of metric scores (calibrated values).
The strong correlation demonstrates that our LHFIs are no less informative about the sites’ health
conditions. And because of its highly quantitative nature, we therefore advocate the model-based
LHFI as a comprehensive assessment of overall health.

The negative trend in Figure 2(a) also supports the common practice of habitat conservation by
controlling urbanization. Indeed, all three models yield statistical evidence that urbanization im-
pacts stream health negatively: 95% HPD intervals for θ1 are below zero (approximately −3.4 to
−0.4; see Table 2). While this negative effect might have been a foregone conclusion based on bio-
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logical knowledge, our LHFI models provide direct quantitative evidence to support this biological
notion. Such results have profound implications in practice. A policy maker may be presented with
several factors that have potential impact on ecosystem health. Meanwhile, due to limited re-
sources, s/he may be forced to devise conservation policies in response to selected factors only.
To illustrate this, we can additionally include latitude in Model B; results are not discussed except
for the inference on the latitude effect. The extra covariate has virtually no impact on the poste-
rior distributions of Hi’s (or of other unknown quantities). A typical 95% HPD interval for the
corresponding coefficient includes 0, suggesting statistically insignificant effect on health due to
latitude. (Generally, it is advisable to keep in the model any covariate that subject-matter experts
have previously identified as influential to health. Such a model incorporates expert knowledge in
an unambiguous fashion, and it undoubtedly provides a more comprehensive picture of the rela-
tionship among metrics, factors, and latent health, than if covariates were kept in the model merely
for statistical significance.) Thus, our latent factor hierarchical modeling approach provides the
policy maker with a scientific mechanism to classify factors according to their observed impact
on health: an HPD interval that is negative indicates detrimental effects, one that covers 0 indi-
cates undetectable impact, and a positive one implies positive impact. (The credible level may
require adjusting in the context of multiple testing; e.g. see Westfall et al., 1997) Since this mech-
anism accounts for uncertainty propagation, resulting conclusions are more realistic than from the
traditional procedure of regressing a faunal-only MMI on covariates after index construction.

A quantitative comparison among models may be of interest also. A common basis of compar-
ison is the deviance information criterion (DIC), which assesses how well the model can predict
Yij(s)k’s. The DIC can be used to compare performance among models for identical data (Spiegel-
halter et al., 2002); smaller values are preferred. Our DIC values are taken from the OpenBUGS
output, and shown in Table 2. (Theory behind the DIC is beyond the scope of our article.) Here,
the DIC is 4651.0 for Model A and 4606.0 for Models B and C. Thus, posterior predictive power
is apparently gained by accounting for the multinomial dependence among EPT metrics.

6 INTERPRETING THE LHFI IN THE ABSENCE OF PRESCRIBED REFERENCE

CONDITIONS

As discussed in Section 1, a reference-based scheme typically suffers from non-transferability be-
tween geographical / temporal domains, and relies heavily on the availability of unstressed ecosys-
tems, despite their rarity and/or the cost in locating and observing them. Hence, one may wish
to consider no reference-based calibrations at all, but rely on a scheme of relative rating among
several sites included in a single study. As a compromise for the lack of a full spectrum of health
conditions, it may be useful to gauge health against a heavily degraded ecosystem which, sadly,
is likely easier to locate than very healthy ones. When included in the study, a badly degraded
site then serves as the baseline for “internal referencing,” a concept originally proposed by Chiu &
Guttorp (2006). Much in the same way that a one-way ANOVA assesses the effectiveness among
several treatments relative to the least effective treatment, an inference-based comparison can rate
sites according to their health (i.e. LHFI) relative to an unhealthy site; externally defined baseline
or reference conditions are perhaps less crucial.
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With our approach, ratings can be defined relative to the posterior distribution of health Hworst

for the site identified (before or after fitting the LHFI model) as the worst degraded in the region.
This method, as we now illustrate, is inspired by the comments from a reader of an article related
to this paper. Let us take TH1 to be the worst degraded site in the PSL region. Thus, Hworst=HTH1,
and it acts as a baseline value for other sites. To assess Site BB1 situated along Big Bear Creek, a
simple approach then is to compute a z-score for its LHFI value (posterior mean of HBB1) relative
to the posterior P (HTH1|Y , X). Assuming Model B, we have

zBB1 =
E(HBB1|Y , X)− E(HTH1|Y , X)�

V ar(HTH1|Y , X)
=
−0.788− (−2.272)

0.461
= 3.22 .

A subject-matter expert may now translate z=3.22 back to practical terms, and decide on the over-
all degree of degradation for BB1. Note that the z-score is appropriate here, as (HTH1|Y , X) is
approximately normally distributed (not shown).

Ideally, the study would include healthier sites that are recognized as “nearly pristine.” In
this case, the above gauge could be replaced or used alongside its “mirror image,” i.e. the same
procedure but applied to the best site in the study. One could extend this principle further by using
posterior quantiles for the best site in the study to define future unstressed sites. For instance, a
new site may be added to the current study, and the LHFI model re-fitted. The earlier best site
will now have an updated posterior distribution P (H̃best|Ỹ , X̃) due to the inclusion of the new site,
where ‘∼’ indicates the update; but qualitatively, the site remains “nearly pristine.” Now, one may
declare that the new site is unstressed if its LHFI value falls above, say, the 90th percentile of
P (H̃best|Ỹ , X̃). Similarly, the site could be labeled as “exceedingly degraded” if its index value
falls below, say, the 10th percentile of P (H̃worst|Ỹ , X̃). Note that this approach is not restricted to
new sites taken from the same spatial or temporal domain as the others, so long as the model from
Section 2.2 is deemed sensible.

Gauging ecosystem health with this “internal referencing” scheme may reduce the disadvan-
tages associated with externally defining reference conditions. Of course, a minor level of ambigu-
ity is still inevitable despite our quantitatively oriented approach, such as in the percentile cut-offs
used to define categories of health, which should be left to subject-matter experts to decide.

7 CONCLUSION

In this article, we described the methodology for constructing LHFIs and contrasted it with that
for some existing health indices. We used the LHFI approach to assess the health of the 1997 PSL
freshwater ecosystem, and compared it to existing B-IBI and SHIPSL measures. Major advantages
stem from a modeling framework that allows proper inference for all crucial quantities, except for
the exceedingly diffuse metric (co)variances, which are difficult to estimate with a finite number of
MCMC draws. Of course, the same technique could lead to very different results and conclusions
when applied to another dataset.

Irrespective of the data, LHFI modeling is systematic and unambiguous for ecosystem health
studies. It attempts to retain the user-friendliness of conventional scalar health indices while over-
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coming several hurdles not clearly addressed by the approaches taken to construct the latter. Rely-
ing on standard modeling principles, our approach exhibits the following desirable properties. (1)
Honest statistical inference of health and impact from environmental factors. Building an LHFI
for ecosystems involves virtually no qualitative procedures and deals directly with the raw metrics
and associated covariates; hence, it can incorporate auxiliary information as part of the index in a
systematic fashion, and allows proper assessment of uncertainty that trickles down the hierarchy
of the multi-level relationship among variables under consideration. Thus, compared to common
indices, ours provides more “honest” statistical inference for current and predicted site health.
Alongside index construction is the ability to assess the significance of impact on health from
observable factors. (2) Versatility and adaptability to studies involving datasets that arise from
multiple strata (geographical or otherwise and/or observed on different macroscopic scales). We
use a domain effect term in the LHFI model, a standard practice for scientific comparisons among
strata, to address the age-old difficulty encountered in inter-regional and -temporal studies. This
also avoids the complexity and impracticality of formal spatio-temporal models in biomonitoring
studies. The same principle has been applied by Wu (2009) on non-spatio-temporal stratification.
(3) Less need for external reference conditions. When truly unstressed conditions are unavailable,
we propose “internal referencing” against those sites on either extreme of health that can be easily
included in a study. Scientific comparisons via statistical modeling is universal, and constructing a
health index as such is intended to achieve the same purpose as reference-based techniques, while
avoiding some of the associated disadvantages.

The statistical principles used to construct the LHFI would not diminish the biological worthi-
ness of the resulting index, as subject-matter expertise remains vital in variable selection and results
interpretation before and after model fitting. In the terminology of Fjelland (2002) page 168, here
statisticians play the role of non-experts in the “extended peer communities” of ecologists, and
because they are naturally “closer to the problem” of developing quantitative methods, their con-
tribution can only enhance the overall value of the methodology in scientific applications. Our
technique has been embraced by some ecologists and quantitative scientists who work alongside
them; studies that involve inter-regional and -temporal data to be converted to LHFIs are ongoing.
Other directions of LHFI research appear in Appendix IV.

Our approach is rooted in a simple statistical concept of ANOCOVA model building, and may
be easily adapted to any context of health assessment, be it ecological, medical, or otherwise. Once
a list of relevant observable variables has been identified, constructing an LHFI reduces to forming
a statistical model that efficiently describes the relationship among these variables and latent health.
Some variables may be explanatory to health, and vice versa for others. Although latent variable
modeling techniques have become widely popular in many sciences, its use to yield a direct quan-
titative “report card” composite measure of health in a general sense is apparently uncommon. Our
proposed methodology is a simple but universal and versatile approach that is potentially valuable
to many scientific disciplines in which a scalar assessment of health is desirable.
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APPENDIX I: HIERARCHICAL CENTERING

To minimize MCMC mixing problems, we employ partial hierarchical centering (Gelfand et al.,
1995) to reformulate parts of each model before implementation; see Appendix in Chiu et al.
(2007) for the full rationale. In general, we must explore several formulations of partial hierarchical
centering to identify one under which to obtain posterior samples efficiently. For example, the
following formulation of the relevant parts of Model A performs satisfactorily in our study:

(H̃i|θ1, σH , x) ∼ N(θ1(xi − x), σ2
H

) ,
�
bj(s)|θ0, σj(s)

� ind∼ N(θ0, σ
2
j(s)) ,

νisj� = H̃i + bj(s) , Hi = θ0 + H̃i , βj(s) = bj(s) − θ0 .

APPENDIX II: MCMC DETAILS

For each model, two independently generated Markov chains of posterior samples form the basis
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of our posterior inference. The chains started at different random initial values. Each chain con-
sisted of 10,000 draws, reduced from removing a burn-in of b draws then thinning by a lag of �. For
each of Models A and B, b=5,000 and �=5; what appeared to be mixing problems were encoun-
tered only for the non-EPT σj(s)’s, in the form of noticeably different chain dispersions with tail
values on the order of 103; however, marginal posterior medians were comparable between chains.
Nor did the Brooks-Gelman-Rubin convergence diagnostic plots (Brooks & Gelman, 1998) exhibit
patterns that would cause much concern. Indeed, it is understandable that extensive coverage of the
support of an exceedingly diffuse posterior may require an impractically large number of simulated
draws. Chiu (2008) also observes that for the PSL data, diffuseness of the posterior is an indica-
tion of weak identifiability, likely a direct result of the diffuseness of the prior. In light of how
readily the marginal chains for the other parameters converged, and how similar the non-EPT σj(s)

medians were between chains, our minor mixing problems do not appear particularly problematic.
Similar characteristics were observed for Model C, for which b=250,000 and �=50. After the

substantial burn-in, chains for all parameters but Σ converged exceptionally quickly. Posterior
draws for matrix entries of Σ were on the order of 106, again with substantially different dispersion
between chains, although chain medians were highly comparable. For the purpose of estimating
the problematic (co)variance parameters for these models, we restrict our attention in each case to
the chain that yielded a larger posterior variability for the parameters in question, as the smaller
variability for the rejected chain could have resulted from an initial value that confined the Markov
chain to a smaller subset of the parameter space.

APPENDIX III: RESPONSE CORRELATION OVER SITES AND OVER METRICS

We show that having (a) health regressed on covariates and (b) correlated metric effects in (2) can
address the natural correlation among metric values over sites and over metrics.

First, consider the potential shortcomings of Models A and B which assume independence
among metric effects. We do so through a Gaussian analog of the models (with dependence on s

dropped from the notation to reduce clutter):

Wijk ≡ ln Yijk = Hi + βj + εijk , (εijk|σε)
iid∼ N(0, σ2

ε) , (10)

(Hi|θ0, θ1, x, σH)
ind∼ N

�
θ0 + θ1(xi − x), σ2

H

�
, (βj|σj)

ind∼ N(0, σ2
j
) . (11)

Conditioned on Ω=(θ, σH , σ1, . . . ,σ7), the mean and covariance structures of the data coming
from sites (i, i�) and from metrics (j, j�) are

E(Wi�jk|Ω) = E(Hi� + βj + εi�jk|Ω) = θ0 + θ1(xi� − x) , (12)
E(Wijk|Ω) = E(Hi + βj + εijk|Ω) = θ0 + θ1(xi − x) = E(Wij�k|Ω) , (13)

Cov(Wijk, Wi�jk|Ω) = Cov(Hi + βj + εijk, Hi� + βj + εi�jk|Ω) = Var(βj|σj) = σ2
j
,

Cov(Wijk, Wij�k|Ω) = Cov(Hi + βj + εijk, Hi + βj� + εij�k|Ω) = Var(Hi|σH) = σ2
H

.

Now, take the priors from the models. Then, by the law of total covariance, one can easily show

17

Page 18 of 23

John Wiley & Sons

Environmetrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

that the marginal covariances become

Cov(Wijk, Wij�k) = ψ + c[1 + (xi − x)2] , (14)
Cov(Wijk, Wi�jk) = ψ + c[1 + (xi − x)(xi� − x)] (15)

where c is the hypervariance of the normal prior, and ψ depends on the inverse-Gamma hyper-
parameters only. Thus, given site i, (14) implies that the correlation between (the log-values of)
any pair of metrics is constant over metrics (i.e. independent of (j, j�)). However, as discussed in
Section 4.4, metric values could be naturally correlated over metrics and over sites. Conveniently,
dependency over sites is addressed by regressing latent health on site-specific covariates according
to (15): given metric j, the correlation of metric values between any pair of sites depends on (i, i�).
However, this dependence would have been lost should the dependence on x be removed from
(11), leaving (12), (13), (14), and (15) simply as

E(Wijk|Ω) = E(Wi�jk|Ω) = E(Wij�k|Ω) = θ0 ,

Cov(Wijk, Wi�jk) = Cov(Wijk, Wij�k) = ψ + c .

Just as the latent regression introduces correlation over sites, dependence among metric effects
βj’s conveniently incorporates correlation over metrics into the model, by replacing independent
βj’s in (11) with β ∼MVN(0,Σ). Adding this to the latent regression turns (14) and (15) into

Cov(Wijk, Wi�jk) = c [1 + (xi − x)(xi� − x)] + E(σ2
j
) ,

Cov(Wijk, Wij�k) = c
�
1 + (xi − x)2

�
+ ψ + E(σjj�) .

The hyperparameter S in the inverse-Wishart prior for Model C can be specified such that E(σ2
j
)

and E(σjj�) — and hence, the covariances — depend on j and (j, j�), respectively. For the PSL
data, various such priors were employed, but they all led to virtually identical estimates. As it turns
out, we find little evidence from these data that βj’s are correlated.

APPENDIX IV: REMARKS

One may wonder if proper estimation of Σ could be an issue for Model C, since no replication
for any given j appears at the level of P (β|Ω) alone; to the contrary, the pooling of informa-
tion from other random quantities in the model aids inference for Σ. To see this, again consider
the Gaussian analog from (10). Letting δijk=βj+εijk, we have ([δi1k, δi2k, . . . , δiJk]T |Σ, σ2

ε) ∼
MVN(0,Σ+σ2

εI), where I is the identity matrix. Thus, replication of each j exists over (i, k) for
the estimation of σjj�’s. Indeed, Chiu (2008) shows that for the same PSL data analyzed by Poisson
counterparts of our three models (involving the 7 count metrics only), insightful inference is in no
way hindered even by diffuseness of (proper) priors, as substantial Bayesian learning is achieved
for Σ. Those conclusions are expected to extend to our logistic models which are structurally
identical to the Poisson counterparts.

Also, note that we formulate our logistic LHFI models with Ti�sk’s, which are not population
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quantities but of the samples. The level of richness and abundance in the species community
(i.e. population) that can be supported by the habitat is highly relevant to the notion of ecological
health. Thus, a remaining statistical issue is that of species (occupancy) estimation (see Chao,
2006; MacKenzie et al., 2006). However, standard sampling protocols for benthic fauna utilize the
species accumulation curve (see Chao, 2006), constructed based on data often accrued over many
previous studies, to design how to obtain benthic samples that best reflect conditions of the entire
community. Of course, standard protocols are not foolproof (Ferraro et al., 2006). A new direction
of LHFI research could investigate the circumstances under which occupancy estimation should
play a role in index construction.

Finally, although not demonstrated for these data, using any of Models A to C to make pre-
diction inference for site health (Section 3.1) would be straightforward for a PSL site that is not
accompanied by benthic faunal data but by an urbanization value.

Table 1: Sites sampled from the PSL in 1997, and metrics identified in ecological studies to be
effective indicators of PSL stream health

site metric
name location label characteristic type

BB1 Big Bear Creek #Tx all taxa richness∗ (count)
BB2 #Eph Ephemeroptera taxa richness
BB3 #Ple Plecoptera taxa richness
BB4 #Tri Trichoptera taxa richness
BB5 #LL long-lived taxa richness
BS1 Big Soos Creek #Intol intolerant taxa richness
JE1 Jenkins Creek #Cl clinger taxa richness
LB1 Little Bear Creek %Tol tolerant taxa abundance† (%)
LB2 %Pred predatory taxa abundance
LB3 %Dom3 3 most dominant taxa abundance
LB4
MA1 May Creek
MI1 Miller Creek ∗# distinct taxa of given characteristic appearing in field sample
RO1 Rock Creek
SW1 Swamp Creek †100 × # animals of given characteristic in field sample
SW2 total # animals in field sample
SW3
TH1 Thornton Creek
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Table 2: Selected summary statistics of posterior draws. Values for parameters with a ‘∗’ are based
on one Markov chain only

mean median 2.5th HPD %-ile 97.5th HPD %-ile MC error # draws

Model A: DIC=4651.0

θ0 −1.62 −1.63 −2.51 −0.68 0.01 20 000
θ1 −2.03 −2.03 −3.59 −0.43 0.01
σ1(1),σ2(1),σ3(1) 0.87 0.58 0.10 2.36 0.01
σ4(1)

∗ 2.31 1.03 0.12 7.21 0.08 10 000
σ5(1)

∗ 12.92 5.50 0.64 37.76 0.56
σ6(1)

∗ 4.35 1.92 0.16 13.91 0.18
σ1(2)

∗ 10.11 4.30 0.37 28.62 0.77
σ2(2)

∗ 4.30 1.85 0.15 12.99 0.17
σ3(2)

∗ 3.12 1.31 0.12 9.16 0.20
σH 0.58 0.56 0.40 0.79 0.00 20 000

Model B: DIC=4606.0

θ0 −1.07 −1.06 −1.97 −0.20 0.01 20 000
θ1 −2.08 −2.09 −3.64 −0.49 0.00
σ1(0),σ2(0),σ3(0) 0.86 0.57 0.10 2.37 0.01
σ1(1)

∗ 3.22 1.32 0.13 9.36 0.15 10 000
σ2(1)

∗ 17.41 7.02 0.78 47.77 0.85
σ3(1)

∗ 3.28 1.38 0.14 9.42 0.15
σ1(2)

∗ 7.55 3.22 0.25 22.43 0.39
σ2(2)

∗ 5.85 2.58 0.20 18.33 0.16
σ3(2)

∗ 2.71 1.00 0.12 7.08 0.22
σH 0.58 0.57 0.40 0.79 0.00 20 000

Model C: DIC=4606.0

θ0 −1.40 −1.40 −5.42 2.57 0.02 20 000
θ1 −2.09 −2.09 −3.67 −0.52 0.01
σ2∗

1 47.23 2.50 0.07 53.10 0.25 10 000
σ2∗

2 196.5 9.52 0.11 168.0 0.01
σ2∗

3 251.7 3.12 0.07 64.60 0.02
σ2∗

4 576.4 6.07 0.08 110.5 0.05
σ2∗

5 53.84 3.63 0.07 79.68 0.24
σ2∗

6 179.8 2.53 0.08 53.04 0.02
σ2∗

7 178.7 2.34 0.07 49.60 0.02
σH 0.58 0.56 0.39 0.78 0.00 20 000
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Figure 1: Ninety-five percent HPD intervals for LHFIs A (gray), B (solid black), and C (dashed);
a ‘−’ denotes the index value
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Figure 2: The relationship between covariates and the estimated latent health from Model A (lat-
itudes shown are shifted by −47); points labeled ‘L’, ‘M’, ‘R’, and ‘T’ correspond to sites LB4,
MA1, RO1, and TH1, respectively

21

Page 22 of 23

John Wiley & Sons

Environmetrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

B.IBI

−15 0 10

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!
!
!

! 10
30!

!

!
!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

−1
5

0
10

!

!
!!!

!

! !

!

!

!

!

!

!

!
!
!

!

SHIPSL !

!
!!!!

!!

!

!

!

!

!

!

!
!

!

!

10 30

!

!!

!!

!

! !

!

!

!

!
!

!

!!

!

!

!

!!

!!

!

!!

!

!

!

!
!

!

!!

!

!

−2.0 −1.0

−2
.0

−1
.0

LHFI.B

Figure 3: Scatterplots among various health indices for the 1997 PSL data
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