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The linear transform model of functional magnetic resonance
imaging (fMRI) hypothesizes that fMRI responses are propor-
tional to local average neural activity averaged over a period of
time. This work reports results from three empirical tests that
support this hypothesis. First, fMRI responses in human pri-
mary visual cortex (V1) depend separably on stimulus timing
and stimulus contrast. Second, responses to long-duration
stimuli can be predicted from responses to shorter duration
stimuli. Third, the noise in the fMRI data is independent of
stimulus contrast and temporal period. Although these tests

can not prove the correctness of the linear transform model,
they might have been used to reject the model. Because the
linear transform model is consistent with our data, we pro-
ceeded to estimate the temporal fMRI impulse–response func-
tion and the underlying (presumably neural) contrast–response
function of human V1.
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Functional magnetic resonance imaging (fMRI) measures
changes in blood oxygenation and blood volume that result from
neural activity (Ogawa et al., 1990; Belliveau et al., 1992) (for
review, see Moseley and Glover, 1995). Deoxygenated hemoglo-
bin acts as an endogenous paramagnetic agent, so a reduction in
the concentration of deoxygenated hemoglobin increases the T2*-
weighted magnetic resonance signal.
A typical fMRI experiment measures the correlation between

the fMRI response and a stimulus. From this, scientists hope to
infer something about neural activity. Often it is assumed that
there is a simple and direct relationship between neural activity
and fMRI response, but the nature of this relationship remains
unclear.
The goal of the research reported in this article is to understand

how the fMRI response relates to neural activity. The vascular
source of the fMRI signal places important limits on the tech-
nique. Because the hemodynamic response is sluggish, perhaps
the fMRI response is proportional to the local average neural
activity, averaged over a small region of the brain and averaged
over a period of time. We will refer to this as the “linear transform
model” of fMRI response. The linear transform model, special-
ized for a visual area of the brain, is depicted in Figure 1.
According to this model, neural activity is a nonlinear function of
the contrast of a visual stimulus, but fMRI response is a linear
transform (averaged over time) of the neural activity in V1. Noise
might be introduced at each stage of the process, but the effects of
these individual noises can be summarized by a single noise source
that is added to the output.

To date, this linear transform model of fMRI response has not
been tested, despite the fact that some studies rely explicitly on
the linear model for their data analysis (Friston et al., 1994; Lange
and Zeger, 1996). The sequence of events from neural response to
fMRI response is complicated and only partially understood. It is
unlikely that the complex interactions among neurons, hemody-
namics, and the MR scanner would result in a precisely linear
transform. However, the linear transform model might be a rea-
sonable approximation of these complex interactions.
The linear transform model is attractive because, if it were

correct, it would greatly simplify the analysis and interpretation of
fMRI data. Most important, it would provide confidence in infer-
ences made about neural activity. In addition, the relationship
between neural activity and fMRI response would be character-
ized completely and simply by the fMRI “impulse–response func-
tion,” that is, the fMRI response resulting from a brief, spatially
localized pulse of neural activity. The fMRI impulse–response
function would allow one to predict the fMRI response evoked by
any pattern of neural activity. This would help in experimental
design, for example, in choosing the temporal duration of a visual
stimulus when measuring fMRI responses in visual cortex.
According to the linear transform model, the fMRI impulse–

response function would characterize completely both the spatial
and the temporal averaging of the neural activity. This article
concentrates on the temporal aspects of fMRI response (for a
study on spatial aspects, see Engel et al., 1996). This article also
concentrates only on primary visual cortex (V1), although the
approach certainly may be used for studying other areas as well.
Note, however, that the spatial and temporal averaging may be
different in different brain areas, especially since the vasculature
seems to be specialized in particular brain areas (e.g., in V1)
(Zheng et al., 1991).
This article reports fMRI data from experiments designed to

test the linear transform model of fMRI responses. Although
these tests can not prove the correctness of the linear transform
model, they might have been used to reject the model. Because
the linear transform model is consistent with our data, we pro-
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ceeded to estimate the temporal fMRI impulse–response function
and the underlying (presumably neural) contrast–response func-
tion of human V1.

MATERIALS AND METHODS
Data acquisition. Imaging was performed on a standard clinical GE 1.5 T
Signa scanner with a 5 inch surface coil. We used a T2*-sensitive
gradient-recalled echo pulse sequence (TR 75 msec, TE 40 msec, flip
angle 238) with a spiral readout (Meyer et al., 1992). Inplane resolution
was 2.4 3 2.4 mm, and slice thickness was 5 mm. A bite bar stabilized the
subject’s head.
Each experiment consisted of a series of functional images acquired at

a rate of 1.5 sec per image, as the subject viewed the stimulus. Data were
collected from a single slice through the calcarine sulcus in the right
hemisphere of each subject, parallel to and ;5 mm from the medial wall.
Because data were collected over several sessions, a series of anatomical
axial slices was used to localize (nearly) the same slice from one session
to the next. An anatomical image was taken in the same plane as the
functionals preceding each experimental session. Each fMRI scan was
started by hand at the stimulus onset (to within ;0.25 sec).
Stimuli. Stimuli were presented using a Macintosh Quadra computer

(Apple Computer, Cupertino, CA) and a Sanyo PLC300M LCD projec-
tor (Sanyo, Chatsworth, CA). Stimuli were focused onto a backlit pro-
jection screen inside the bore of the magnet, just above the subject’s chin.
A mirror was positioned to allow the subject to view the image from the
supine position. Stimuli had a mean luminance of 92 cd/m2 and subtended
a visual angle of 218 vertical and 428 horizontal. The LCD projector was
gamma-corrected to allow for accurate presentation of contrast stimuli.
We used two types of visual stimuli that we will refer to as “pulse”

stimuli and “periodic” stimuli. Both stimuli consisted of flickering (con-
trast reversing with a flicker rate of 8 Hz) checkerboard patterns.
The periodic stimuli contained flickering checkerboard patterns ar-

ranged in slowly moving vertical bars (Fig. 2A). As the bars moved slowly
to the left, the time course of stimulation in any part of the image
alternated between checks and uniform gray (Fig. 2B) with a period that
we refer to as the “temporal period” of the stimulus. Note that the
temporal period depends on the drift rate of the bars, and it is very
different from the flicker rate (that was always fixed at 8 Hz).
Subjects viewed periodic stimuli of various contrasts and temporal

periods. The “contrast” of the stimulus is defined, in the usual way, as the
maximum intensity minus the minimum, divided by twice the mean.
Twenty-four periodic stimuli were viewed by each of two subjects: the
stimuli had one of four temporal periods (10, 15, 30, and 45 sec) and one
of six contrasts (0, 0.032, 0.063, 0.16, 0.40, and 1). The stimulus duration
was fixed at 192 sec for all conditions, so the number of periodic cycles
varied with the temporal period/drift rate of the stimulus. The first 12 sec
(8 fMR images) of fMRI data were discarded to avoid magnetic satura-
tion effects. The remaining 180 sec (120 images) were analyzed as
described below.
Figure 2C depicts an example of the time course of a pulse stimulus.

Each stimulus cycle began by displaying a full-field flickering checker-
board pattern (contrast reversing with a flicker rate of 8 Hz) for a period

of time (the “pulse duration”). Each stimulus cycle was completed by
replacing the checkerboard with uniform gray for 24 sec. Six cycles were
repeated for each scan. Twenty-four pulse stimuli were viewed by each of
two subjects: the stimuli had one of four pulse durations (3, 6, 12, and 24
sec) and one of four contrasts (0, 0.25, 0.5, and 1). The total duration of
the scan depended on the pulse duration.
Analysis. Figure 3 shows how the periodic data sets were analyzed. For

each condition, 120 images were acquired over 180 sec (Fig. 3A). For a
given pixel, the image intensity values from all 120 fMRI images comprise
a time series of data. This time series was periodic (although noisy) with
a period equal to the stimulus temporal period (Fig. 3B). We measured
fMRI response as the amplitude of the sinusoid that best fit the time

Figure 2. Schematic of visual stimuli used in the experiments. A, One
frame of the periodic stimulus consisted of vertical bars of checkerboard
patterns alternating with vertical bars of uniform gray (mean). Over time,
the checkerboard patterns flickered (contrast reversing with a flicker rate
of 8 Hz), and the bars drifted slowly leftward. B, The time course of a
single pixel of the periodic stimulus as the bars drifted. C, The time course
of pixels for the pulse stimulus. Each stimulus cycle began by displaying a
full-field flickering checkerboard pattern (contrast reversing at 8 Hz) for a
period of time (the pulse duration). Each stimulus cycle was completed by
replacing the checkerboard with uniform gray for 24 sec.

Figure 1. Diagram of the linear transform model. The output of the Retinal-V1 Pathway (Neural Response) is a nonlinear function of stimulus–contrast.
fMRI signal, mediated by Hemodynamics, is a linear transform of neural activity. That is, fMRI signal is proportional to the local average neural activity,
averaged over a small region of the brain and averaged over a period of time. Noise might be introduced at each stage of the process, but the effects of
these individual noises on the fMRI Response can be summarized by a single noise source.
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series of each pixel. The best-fitting sinusoid was determined by comput-
ing the amplitude and phase of the appropriate component (same as the
stimulus temporal period) of the discrete Fourier transform of the time
series. The response amplitude was computed in this way for all pixels in
the calcarine sulcus. Calcarine pixels were selected by hand from an
anatomical image that was taken in the same plane as the functionals
preceding each experimental session (Fig. 3C). Finally, the mean and
SEM of the amplitudes were used to summarize the fMRI response
(Fig. 3D).
An alternate measure of fMRI signal strength is the correlation of the

fMRI time course with a reference waveform such as a sinusoid. Both
amplitude and correlation have been used to quantify fMRI signal
strength (Bandettini et al., 1993). Amplitude and correlation are closely
related; correlation is equal to amplitude divided by the total Fourier
energy at all frequencies (Engel et al., 1996). In other words, the corre-
lation measure is “normalized” with respect to the overall amplitude
spectrum in the signal, including the frequency of interest. This means
that two time courses that are scaled copies of one another (different
amplitudes but with otherwise identical shapes) will have the same
correlation coefficients. This is clearly undesirable when quantifying
fMRI response as a function of stimulus strength. We therefore used the
raw, “unnormalized” amplitudes.
The response amplitudes were averaged over all of the pixels in the

calcarine sulcus. Also, we analyzed a subset of the data by selecting
the pixels that resonated most strongly with the stimulus. Averaging over
the entire calcarine sulcus has the disadvantage of including many pixels
with time courses that correlate poorly with the stimulus, resulting in
noisier data. Selecting a region of interest based on a measure of signal
strength, however, might be misleading, given that we are trying to
characterize the relationship between stimulus contrast and signal
strength. Fortunately, our conclusions do not depend on which method
was used for selecting the region of interest (see Discussion).
Periodic checks for head movements were made by applying an image

motion estimation algorithm (Friston et al., 1996) to the functional image
series. No significant head movements were discovered, presumably be-
cause the subjects were experienced and were using a bite bar.
Data from the pulse experiments were analyzed slightly differently.

Pixels in the calcarine sulcus again were selected by hand from the aligned
anatomical image, and the time course of the fMRI signal again was
extracted for each of the selected pixels. Then the time course for each
pixel was blocked with the stimulus cycle duration, and the average time
course was computed, averaging across all six blocks and across all of the
selected pixels.
Below, we summarize the percentage of variance in the data accounted

for by various models by computing the studentized residual statistic,
sometimes called the “jacknifed” residual (Atkinson, 1988). The studen-
tized residual is the error between the measured data and the predictions

(from the model) relative to the SE in the data. Specifically, the studen-
tized residual, r, is:

r 5 1 2

O i

~ pi 2 di!2

SEi
2

O i

1
SEi

2

, (1)

in which pi are the predictions, di are the data points, and SEi are
the standard errors. The studentized residual is an ad hoc formula
for quantifying the model fits. A large value for r can be obtained
either by having a very good fit (small numerator in Eq. 1) or by
having very noisy data (large denominator in Eq. 1). Even so, the
studentized residual is useful for comparing different models.

RESULTS
We performed three empirical tests of the linear transform model
of fMRI responses. First, we tested whether fMRI responses
depend separably on stimulus timing and stimulus contrast. Sec-
ond, we tested whether responses to long-duration stimuli can be
predicted from responses to shorter duration stimuli. Third, we
tested whether the noise in the fMRI data is independent of
stimulus contrast and temporal period. Because the results of
these tests are consistent with the linear model, we proceeded to
estimate the temporal fMRI impulse–response function and the
underlying (presumably neural) contrast–response function of V1.

Time–contrast separability
The linear transform model predicts that the fMRI response
should be a separable function of stimulus contrast and pulse
duration (see Appendix for a formal statement and derivation of
this prediction). In other words, the linear transform model holds
only if the responses to pulses of different contrasts are scaled
copies of one another.
The fMRI responses to the pulse stimuli for subject GMB are

shown in Figure 4. Similar data were obtained from the second
subject, SAE. Each curve in these figures is the time course of the
fMRI response (pixel intensity) averaged across cycle repetitions
and averaged across all pixels in the calcarine sulcus. The raw

Figure 3. Analysis of data for periodic stimuli. A, Sequence
of fMR images. B, Time course of response at a single pixel
(dashed curve) superimposed with the best-fitting sinusoid. C,
Aligned anatomical image with pixels in the calcarine sulcus
highlighted. D, Mean and SE of the response amplitudes of
the selected pixels.
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fMRI signal modulates ;5–10% above and below a baseline
intensity (;90, in pixel intensity units). The curves were shifted
vertically (see Parametric model), so that they asymptote at zero.
The different curves correspond to different pulse durations and
contrasts.
The fMRI responses in Figure 4 increase with stimulus contrast,

and the fMRI responses are blurred and delayed with respect to
the time course of the stimuli. The effect of stimulus contrast is
presumably attributable to increased neural activity. Since the
pulse durations that were used in this experiment are rather long
as compared with the time scale of neural activity in V1, the
blurring and delay presumably are attributable to the hemody-
namic properties of the vascular system.
The linear transform model of fMRI responses can be tested by

comparing the different curves in Figure 4. The model holds only
if the curves in each panel of Figure 4 are scaled copies of each
other (see Appendix). Figure 5 shows the results of the time–
contrast separability test. The data points in each panel of Figure
5 are scaled copies of the data in the corresponding panel of
Figure 4. The resulting scaled data seem to align without apparent
significant systematic error, consistent with time–contrast
separability.
To align the curves, the three scale factors were computed using

a principal components analysis to maximize the covariances
between each pair of curves. The same three scale factors (one for
each contrast) were used for all four pulse durations. The solid
curves in each panel are the first principal components for each
pulse duration. These principal component curves act as nonpara-
metric models of the data. In particular, the first principal com-
ponent is the curve that is closest (minimizing squared error) to all
three scaled data sets. For subject GMB, the principal component
curves account for 86.81% of the variance in the data (computed
using Eq. 1). If the data for different contrasts were not scaled
copies of each other, then the principal component curves would
not have accounted for much of the variance. The results for
subject SAE (data not shown) are very similar, and the principal
component curves account for 99.01% of the variance in that
data set.
The response to the lowest contrast in Figure 5 (squares) shows

the most scatter around the principal component. This occurs
because the response to the lowest-contrast stimulus requires the
largest scale factor to match the response to the full-contrast
stimulus. Unscaled, each signal has about the same amount of
high frequency noise (See Noise analysis). Scaling the signal
amplifies the noise as well. This is reflected in the size of the
error bars.

Figure 4. fMRI responses to pulse stimuli. Each curve is the mean time course of the fMRI response (pixel intensity) averaged across cycle repetitions
and averaged across all pixels in the calcarine sulcus. Each panel shows data for a different pulse duration. Different curves within a panel correspond
to different contrasts. The stimulus time course also is depicted in each panel. The fMRI responses increase with stimulus contrast, and the fMRI
responses are blurred and delayed with respect to the time course of the stimulus. Error bars represent 1 SE.
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Time–contrast separability also was tested using the periodic
stimuli. Figure 6 plots the fMRI response amplitude (that is, the
amplitude of modulation of the response at the stimulus temporal
period) as a function of stimulus contrast. fMRI response ampli-

tude is not a linear function of stimulus contrast, but it does
increase monotonically. In addition, fMRI response amplitude
decreases as the temporal period shortens. The fMRI response
amplitudes for zero contrast stimuli are attributable to noise.

Figure 6. fMRI response amplitudes for periodic stimuli as a function of stimulus contrast and temporal period for both subjects. Amplitudes are in pixel
intensity units, and Contrast is plotted on a logarithmic scale. Data points are mean response amplitudes (averaged over the calcarine sulcus). Error bars
represent 1 SE of the mean. fMRI response amplitude increases monotonically with stimulus contrast, and it decreases as the Temporal Period shortens.

Figure 5. Time–contrast separability test using pulse stimuli. Data in each panel are scaled copies of data in the corresponding panel of Figure 6. Error
bars represent 1 SE of the scaled data. The resulting scaled data align without significant systematic error, consistent with time–contrast separability. The
first principal components (solid curves) account for 86.81% of the variance in the data.
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Again, the increase in response amplitude with stimulus con-
trast presumably is a result of increased neural activity. fMRI
response is a nonlinear function of stimulus contrast, presumably
because neural activity in V1 is a nonlinear function of stimulus
contrast. From single-cell electrophysiological recordings, we
know the response (firing rate) of neurons in V1 increases with
stimulus contrast but not in proportion to stimulus contrast. For
example, as the contrast is doubled from 0.5 to 1, the contrast–
response of a V1 neuron typically does not double, a phenomenon
known as response saturation (Maffei and Fiorentini, 1973; Dean
1981; Albrecht and Hamilton, 1982; Ohzawa et al., 1982, 1985;
Sclar et al., 1990). Likewise, the fMRI response amplitudes satu-
rate somewhat at high contrasts. (This is more easily seen in Fig.
7 by noting that the response to 100% contrast is far less than
double the response to 42% contrast.) Note, however, that the
nonlinearity of the fMRI contrast–response function is not a
violation of the linear transform model. The linear model predicts
that doubling the neural response doubles the fMRI response, but
doubling the contrast does not necessarily double the neural
response.
The attenuation of response amplitude for shorter temporal

periods presumably is a result of temporal blurring by the hemo-
dynamics. Although V1 neurons adapt after long-term exposure
to high contrast stimuli, we certainly would not expect neurons in
V1 to respond more (that is, with higher average firing rates) to a
22.5-sec-duration flickering checkerboard than to a 5-sec-duration
flickering checkerboard.
Time–contrast separability predicts that the curves in Figure 6

be scaled copies of each other. Unfortunately, because of noise in
the fMRI responses, the curves do not meet at zero for zero
contrast, thus violating separability. However, we can compensate
for the noise (see Appendix) and demonstrate separability of the
underlying (noise-free) responses.
Figure 7 shows the results of the time–contrast separability test

for the periodic data sets. After compensating for the noise, the
curves were scaled, as was done for the pulse data sets. The
resulting data align without significant systematic error, consistent
with time–contrast separability. The scale factors were deter-
mined, as before, by performing a principal components analysis

of the data. The principal component curves, drawn as solid
curves in Figure 7, account for 99.64 and 99.01% of the variance
in the data for subjects GMB and SAE, respectively.

Pulse duration
The pulse data sets were used to perform another test of the linear
transform model. According to the model, the response to a long
pulse should be predictable by summing the responses to shorter
pulses (see Appendix). The pulse durations of 3, 6, 12, and 24 sec
provide six predictions. For example, the response to the 6 sec
pulse is predicted by summing the response to the 3 sec pulse with
a copy of the same response delayed by 3 sec. The response to the
12 sec pulse is predicted by summing four shifted copies of the
response to the 3 sec pulse, and so on.
Figure 8 shows the results of this analysis for the principal

component curves from Figure 5. The predictions are generally
consistent with the linear transform model. However, there is a
systematic failure of the predictions. The responses to the shortest
(3 sec) pulse tend to overestimate the responses to the longer
pulses. We believe that this may be attributable to neural adap-
tation (see Discussion). Results for subject SAE are similar.

Noise analysis
An assumption of the linear transform model is that the noise in
the fMRI data is independent of stimulus contrast and stimulus
temporal period. Noise amplitudes can be measured by analyzing
the fMRI responses to zero contrast stimuli. Noise amplitudes
also can be measured using any of the (nonzero contrast) periodic
data, as long as the data is analyzed with a temporal period that is
different from the stimulus temporal period. We refer to that
temporal period, Ta, as the “analysis period” to distinguish it from
the stimulus temporal period T.
Figure 9A plots the fMRI response amplitudes from one subject

for all of our periodic stimuli. For example, the upper left graph
plots response amplitude for Ta 5 10, that is, the amplitude of the
Fourier component of the fMRI response time course with a
period of 10 sec. In each panel of Figure 9A, response amplitude
increases with contrast only when the analysis period is the same
as the stimulus temporal period. The other curves are flat, dem-

Figure 7. Time–contrast separability test using periodic stimuli for both subjects. Each data set is a scaled copy of the corresponding data from Figure
6, after compensating for the noise (see text). Error bars represent 1 SE of the scaled data. The curves align without significant systematic error, consistent
with separability. The first principal components (solid curves) account for 99.64 and 99.01% of the variance in the data for subjects gmb and sae,
respectively.
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onstrating that the noise is, in fact, independent of both stimulus
contrast and stimulus temporal period.
We analyzed our data to obtain many additional noise ampli-

tude measurements. In particular, we used a total of 60 analysis
periods Ta such that: (1) Ta . 3 sec (because the sample rate of
the MR scanner was 1.5 sec), and (2) 180 was an integer multiple
of Ta (because the total duration of the stimulus was 180 sec). For
each stimulus contrast and temporal period, we computed the
amplitude of modulation of the fMRI responses for every one of
these analysis periods. We excluded from this analysis only the
small number of cases for which the analysis period was the same
as the stimulus temporal period.
Figure 9B plots the noise amplitudes for all stimulus conditions

and for each analysis period. The noise is broad-band and nearly
flat across analysis periods. For subject GMB, the noise increases
for temporal periods of 5 sec and shorter. Subject SAE does not
show this effect. It is plausible that the fMRI response for GMB
is more susceptible to respiratory artifacts.

Parametric model
The linear transform model is consistent with our data. This
suggests that fMRI responses can be predicted by convolving the
time course of the neural response with a shift-invariant linear

temporal filter. Our data also suggest that the underlying pooled
neural activity is a simple monotonic function of stimulus contrast.
Next, we proposed explicit parametric formulae for the contrast–
response function and for the linear temporal filter, and we fit
these parametric models to the data.
We adopted the hyperbolic ratio formula to fit the contrast–

response functions:

r~c! 5
acp

cp 1 s
, (2)

in which c is contrast. There are three free parameters: a scale
factor, a, an exponent, p, and the contrast gain, s. The hyperbolic
ratio describes single-cell contrast–response functions (Albrecht
and Hamilton, 1982; Sclar et al., 1990). The formula also has been
used to fit psychophysical data on contrast discrimination (Legge
and Foley, 1980; Foley and Boynton, 1993).
We modeled the temporal impulse response with a gamma

function:

h~t! 5
~t/t!~n21!e2~t/t!

t~n 2 1!!
, (3)

Figure 8. fMRI responses from shorter pulses can predict the responses to longer pulses. The four principal component curves (corresponding to pulse
durations of 3, 6, 12, and 24 sec) from Figure 5 were used to make six predictions. The predictions are generally consistent with the linear transform model.
However, the responses to the shortest (3 sec) pulse tend to overestimate slightly the responses to the longer pulses.
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in which t is time. There are two free parameters: the time
constant, t, and a phase delay determined by the integer n. In
addition, we allowed for a pure delay, d, between stimulus onset
and the beginning of the fMRI response. The pure delay accounts
for any systematic asynchrony between stimulus onset and data
acquisition and for any real delay between stimulus onset and
hemodynamic response.
We used a least-squares fit to estimate the model parameters

from the fMRI data. Most of the model parameters were fit
independently to the pulse and periodic data sets. However, the
two delay parameters, n and d, were chosen to fit both data sets
simultaneously. This was done because the pure delay d is uncon-
strained by the periodic data set, and the two delay parameters
can be traded off against each other to fit the pulse data set.
Figures 10 and 11 show fits of the model for the pulse data sets

for subjects GMB and SAE, respectively. The model predictions
and corresponding data points were shifted vertically so that the

predicted responses asymptote at zero (the same vertical shifts
were used in Fig. 4). The best-fitting model parameters do not
vary greatly between subjects. The model accounts for 76.98 and
62.49% of the variance for subjects GMB and SAE, respectively.
Although the fits are good, the model systematically underesti-
mates the response to the shortest (3 and 6 sec) pulses (see
Discussion).
Figure 12 shows fits of the model for the periodic data sets for

both subjects. The model was fit to the amplitudes of the fMRI
response after compensating for the noise (see Appendix for
details). Parameter values do not vary greatly between subjects.
The model accounts for 99.56 and 98.76% of the variance for
subjects GMB and SAE, respectively.
Figure 13 (top) shows the predicted impulse–response function

for subjects GMB (left) and SAE (right). The functions are derived
from the best-fit parameter values (see Figs. 10, 12) for the pulse
(thin line) and periodic (thick line) data sets. For subject SAE, the

Figure 9. Noise analysis. A, fMRI re-
sponse amplitudes for periodic stimuli as
a function of stimulus Contrast, stimulus
Temporal Period, and Analysis Period.
Each panel corresponds to a different
analysis period. Different curves corre-
spond to different stimulus temporal pe-
riods. Error bars represent 1 SE. Re-
sponse amplitude increases with
Contrast only when the Analysis Period is
the same as the stimulus Temporal Pe-
riod. The other curves are measurements
of the noise. The noise curves are flat,
demonstrating that the noise is indepen-
dent of both stimulus contrast and stim-
ulus temporal period. B, Noise ampli-
tudes for all periodic stimulus conditions
and for all possible analysis periods. The
noise is broad-band; that is, the noise
amplitudes are significantly nonzero for
each of the analysis periods. The solid
curve, drawn for comparison, is the
temporal fMRI frequency–response
function, that is, the amplitude of
the Fourier transform of the temporal
fMRI impulse–response function (from
Fig. 13).
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estimated impulse–response functions from the two stimulus con-
ditions are nearly identical to each other, and they are similar to
the impulse–response estimated from the periodic data set of
subject GMB. However, the impulse–response estimated from the
pulsed data set for subject GMB has a shorter time constant than
that of any of the other three estimates.
Figure 13 (bottom) shows the estimated contrast–response

functions for subjects GMB (left) and SAE (right) and for the
pulse (thin line) and periodic (thick line) data sets. These re-
sponses are presumed to be proportional to average neural activ-
ity (e.g., firing rate) as a function of stimulus contrast averaged
over neurons in the calcarine sulcus.
The contrast–response functions for the periodic data sets are

shifted horizontally (on the log contrast scale) toward lower
contrasts as compared with the functions for the pulse data sets.
This difference in contrast gain might reflect different neural
responses attributable to the different spatial layouts of the
stimuli.

DISCUSSION
According to the linear transform model of fMRI responses,
neural activity is a nonlinear function of the contrast of a visual
stimulus, but fMRI response is proportional to the average neural

activity. If this model were correct, then three important conse-
quences would follow. First, stimulus contrast and stimulus time
course would influence fMRI responses separably. Second, the
linear transform model would enable us to estimate the temporal
fMRI impulse–response function. Third, the linear transform
model would enable us to infer the underlying (presumably neu-
ral) contrast–response functions from fMRI data.

Time–contrast separability
The linear transform model predicts that fMRI response is a
separable function of stimulus timing and stimulus contrast.
Time–contrast separability means that for a given stimulus time
course, varying the contrast simply scales the fMRI response
magnitude. In other words, the stimulus-evoked fMRI response
is the product of two functions, one that depends only on
contrast and the other that depends only on time (see Appen-
dix). This is supported by our separability tests for the pulse
(Fig. 5) and periodic (Fig. 7) data sets. This implies that the
hemodynamics are similar for low and high contrasts. Time–
contrast separability is critical for comparing results across
experiments and laboratories that use different stimulus tem-
poral profiles and/or stimulus contrasts.

Figure 10. Model fit to the pulse data set for subject gmb. The model predictions and corresponding data points were shifted vertically so that the
predicted responses asymptote at zero. The best-fitting model parameters do not vary greatly between subjects. The model accounts for 76.98% of the
variance in the data.
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Temporal fMRI impulse–response function
The linear transform model and time–contrast separability enable
us to estimate the temporal fMRI impulse–response function
independently of stimulus contrast (Fig. 13). The impulse–
response functions begin to rise ;2 sec after stimulus onset; this

pure delay agrees with observations made by DeYoe et al. (1994)
and Savoy et al. (1995).
Friston et al. (1994) assumed linearity of fMRI response in

human V1 and estimated a Poisson impulse–response function
with a time constant of 7.37 sec. This function is several seconds

Figure 12. Model fit to the periodic data sets for both subjects. Best-fitting model parameters do not vary greatly between subjects. The model accounts
for 99.56 and 98.76% of the variance for subjects gmb and sae, respectively.

Figure 11. Model fit to the pulse data set for subject sae. The model accounts for 62.49% of the variance in the data.
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slower than our estimate. Their analysis, however, assumes that
the noise in the fMRI responses is entirely attributable to vari-
ability in neural activity, and it assumes that neural noise is
uncorrelated (white). These assumptions are inconsistent with our
results. We can test their assumptions, because we have indepen-
dent measurements of the noise and of the temporal fMRI
frequency–response function (that is, the Fourier transform of the
temporal fMRI impulse–response function). In particular, their
assumptions are true only if the temporal frequency–response
functions are equal to the noise spectra. The solid curves in Fig.
9B are the temporal frequency–response functions estimated from
the data (see Parametric model). For short temporal periods, the
fMRI response is attenuated greatly by the temporal fMRI im-
pulse–response function, but the noise amplitudes remain approx-
imately constant. Because the estimated frequency–response
functions clearly do not match the noise spectra, we can conclude
either that noise in the neural activity is not white or that the
fMRI noise is not primarily attributable to variability in the neural
activity. Instead, we presume that the noise in fMRI responses
may be attributable to a combination of variability in the neural
activity, variability in the hemodynamic response, and/or variabil-
ity in the magnetic resonance scanning process.
Using fMRI at 4 tesla, Menon et al. (1995) found that the image

intensity of some pixels decreases initially, reaching a minimum
value 2 sec after stimulus onset. The signal in these pixels then
changes sign, reaching a positive maximum about 5 sec after

stimulus onset. This biphasic-response time course has been at-
tributed to an initial, focal deoxygenation phase followed by a
more spatially distributed increase in oxygenated hemoglobin
because of increased blood volume. Intrinsic optical imaging
exhibits a very similar biphasic-response time course (Grinvald et
al., 1991; Malonek and Grinvald, 1996). The time course of our
measurements (at 1.5 tesla and averaged across all pixels in the
calcarine sulcus) resembles the time course of the second (in-
creased oxygenation) of these two phases.

Contrast–response function
The linear transform model of fMRI responses allows us to infer
neural contrast–response functions from fMRI data (Fig. 13).
Tootell et al. (1995) also have measured contrast–response

functions in human V1 using fMRI. They used a different stimulus
(a drifting vertical 0.1 c/deg square wave stimulus), they analyzed
the data differently (they measured the percentage of signal
change above baseline), and they used a much longer (80 sec)
temporal period. Despite all these differences, their estimated
contrast–response functions are very similar to ours. This similar-
ity further supports time–contrast separability, because the
contrast–response function should have the same shape regardless
of the time course of stimulation.
The contrast–response exponents estimated from our fMRI

measurements are significantly smaller than those measured for
single cells in the primary visual cortices of both cats and primates.

Figure 13. Estimated impulse response (Time, top) and contrast response (Contrast, bottom) functions for subjects gmb (left) and sae (right). The functions
are plotted using the model parameter values fit to the pulsed (thin line) and periodic (thick line) data sets.
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In animals, the exponent is 2, on average, but there is variability
from cell to cell (Albrecht and Hamilton, 1982; Sclar et al., 1990).
The semisaturation constant also varies significantly from cell to
cell, and it varies over time, depending on the adaptation state of
the cell (Albrecht and Hamilton, 1982; Ohzawa et al., 1982, 1985;
Dean, 1983; Albrecht et al., 1984; DeBruyn and Bonds, 1986; Saul
and Cynader, 1989; Sclar et al., 1990). With fMRI, we presumably
are measuring the average response of many neurons. Averaging
many contrast–response functions, each with exponent 2 but with
different semisaturation constants, produces a contrast–response
function with a much smaller exponent (shallower slope on a
logarithmic contrast scale).

Adaptation
The model underestimates the responses to the short pulses in
Figures 10 and 11. According to our analyses, fMRI responses
should reach their maximum after ;10 sec. A 3 or 6 sec pulse is
therefore too short to reach an asymptotic response. The data,
however, peak at approximately the same value for all four pulse
durations.
This may be because of neural adaptation. In analyzing the data

for Figures 10 and 11, we assumed that the time course of neural
activity followed the rectangular (square wave) time course of the
stimulus. However, we know from single-cell recordings that neu-
rons in primary visual cortex adapt to stimulus contrast. A step
increase in stimulus contrast produces a rapid rise in firing rate,
followed by a decay to an intermediate response level. Bonds
(1991) estimated an exponential decay with a time constant of
0.5–2 sec for 8 Hz stimuli. Albrecht et al. (1984) estimated a
longer time constant of 5–7 sec. Maddess et al. (1988) estimated
a ratio of 3:1 for the peak response to the response 6 sec later
(also using 8 Hz flickering stimuli). Although these experiments
were performed on cats, there is reason to believe that similar
effects would be found in monkey V1 neurons (Poirson et
al., 1995).
According to the above estimates, neural adaptation should be

nearly complete by the end of our shortest (3 and 6 sec) pulse
stimuli. Neural adaptation might thus explain the discrepancy in
the fMRI responses to short pulses.
We reanalyzed our data, adopting an exponential time course

for the neural response. Indeed, fits of the linear transform model
to the pulsed data are improved significantly by assuming a neural
response which exhibits adaptation. There are two additional
parameters in these fits: (1) the time constant of the exponential
decay, and (2) the ratio of the peak response to the asymptotic
response. The fits are best for a time constant of 1 sec and a ratio
parameter of 3:1. With these parameters, the model accounts for
80.40 and 69.62% of the variance for subjects GMB and SAE,
respectively. These values should be compared with the values of
76.98 and 62.49% (see Results) that were obtained, assuming that
no adaptation occurred. As expected, the improvement in the fit
was greatest at the shortest duration, in which the percent of
variance increased from 78.82 to 85.91% for subject GMB and
from 66.01 to 76.42% for subject SAE. Unfortunately, our pulse
durations were too long to give reliable estimates to the adapta-
tion parameters. Equally good fits were obtained when both
parameters were changed simultaneously so that the time con-
stant parameter was shortened and the ratio parameter was in-
creased. The fits described above were obtained by fixing the time
constant parameter to 1.0 sec and letting the ratio parameter vary,
thereby adding one free parameter to the original model.
Savoy et al. (1995) found significant fMRI responses with very

brief stimulus durations of 17 and 100 msec. The linear transform
model predicts an insignificant response to such short stimuli,
even when the neural adaptation parameters are incorporated as
described above. However, we also know from single-cell record-
ings that neurons in cat primary visual cortex respond with an
initial transient burst of activity when a stimulus first appears
(Tolhurst et al., 1980). The linear transform model might, in
principle, predict the large responses measured by Savoy et al.
(1995) if we were to include such a transient burst in the time
course of the underlying neural activity.

Higher harmonics
Consistent with the linear transform model, there is no response
at the even harmonics in the periodic data set. A square wave with
fundamental frequency f and unit amplitude can be expressed as
an infinite sum of sinusoids having frequencies f, 3f, 5f . . . and
amplitudes 4/p, 4/3p, 4/5p . . . . Nonlinearities would introduce
energy at frequencies other than those found in the stimulus. For
example, squaring would add energy at twice the fundamental
frequency, 2f. Energy at the even harmonics (2f, 4f, . . .) also
would be added through asymmetric responses to the onsets and
offsets in the square wave stimulus, but we see no response at the
even harmonic components, consistent with linearity. For exam-
ple, there is no response to the 30 sec stimulus period when
analyzed with a 15 sec analysis period (Fig. 9, upper right).
A failure of the linear transform model is the absence of odd

harmonics. For example, a 45 sec square wave has a 3f component
with a 15 sec period at one-third the contrast. It is clear from
Figure 6 that a stimulus with a 15 sec period and a contrast of 0.33
produces a significant fMRI response. We therefore expect to find
a significant 3f response component to a full-contrast stimulus
with a 45 sec period. However, we find no such response (Fig. 9,
upper right). The same kind of failure is apparent for the 30-sec-
stimulus temporal period, analyzed with a 10 sec analysis period
(Fig. 9, lower left).
In general, it seems that the time course of the fMRI response

to a square wave stimulus shows a significant amplitude only at the
fundamental frequency. The lack of response at the higher har-
monics also may have a profound effect on the fMRI analysis
technique proposed by Lange and Zeger (1996), which relies on
having some response at the higher harmonics.

Alternate methods of pixel selection
The amplitudes of the fMRI time course of neighboring pixels can
vary greatly, even within the calcarine sulcus. This may be caused
by partial volume effects, differences in neural responses within
the calcarine, or some other spatial inhomogeneity in the mea-
surement technique. Averaging over the entire calcarine sulcus
has the disadvantage of including many pixels with time courses
that correlate poorly with the stimulus, resulting in noisier data.
We, therefore, reanalyzed the pulsed data set by selecting a

subset of pixels within the calcarine sulcus. In particular, we
selected the 20% of the calcarine pixels with the largest response
amplitudes for the longest duration (24 sec) of pulse stimulus.
(This pulse stimulus had an even duty cyle, 24 sec on and 24 sec
off.) Using this subset of calcarine pixels, the average responses
are larger and show less variability than those shown in Figure 4.
However, parameter values of the model fits do not differ greatly
from those shown in Figure 10, except that the amplitude param-
eter a increased by ;70% (e.g., from 6.52 to 11.20 for subject
GMB). Hence, the method of pixel selection does not seem to
affect our conclusions about time–contrast separability, estimates
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of the impulse–response function, and the shape of the contrast–
response function.
We prefer, however, the more objective method of including all

calcarine pixels even though it gives noisier data. Selecting a
region of interest based on a measure of signal strength is worri-
some, given that we are trying to characterize the relationship
between stimulus contrast and signal strength.

Extrastriate areas
At the time that these experiments were performed, we did not
have the capability to acquire multiple functional images simul-
taneously, so we chose to concentrate on a single brain area, V1.
The technology now is available routinely for acquiring fMRI data
simultaneously in several slices. This will enable researchers to
collect data like that reported here from several brain areas
simultaneously (e.g., from visual areas V2, V3, MT, etc. or from
other sensory cortical areas). It remains to be seen whether the
hemodynamic response will be the same or different throughout
the brain, especially since the vasculature seems to be specialized
in particular brain areas, e.g., in V1 (Zheng et al., 1991).

Testing the linear transform model
If the transformation between the visual input and neural activity
were known, then experiments like those reported in this article
could be used absolutely to prove or reject the linear transform
model of fMRI responses. Because this transformation (from
stimulus to neural activity) is not known exactly, our results do not
prove the correctness of the model; there could be “hidden”
nonlinearities.
Even so, it is significant that our data generally is consistent with

the linear transform model. Had the results come out differently, we
would have been able to reject the model. Moreover, although we
can not prove linearity, we have demonstrated time–contrast sepa-
rability, a result that is important in its own right (see above).
The presumably neural responses inferred from our fMRI

measurements do, in fact, behave in a manner consistent with
what we would expect of V1 neural activity. First, we found that
the contrast–response curves exhibit some saturation at high con-
trasts (see Figs. 7 and 13). Second, we found some evidence for
contrast adaptation (see above).
Although the transformation from stimulus to neural activity is

not known exactly, reasonable quantitative models do exist, espe-
cially for V1 (Heeger, 1992, 1993; Carandini and Heeger, 1994).
The linear transform model can be tested further by comparing
fMRI data with these quantitative models of neural responses, a
project that we are pursuing currently.
Stronger tests of the linear transform model could be per-

formed by comparing large databases of single-cell (or local-field
potential) recordings with fMRI responses. According to the
model, the fMRI responses should be predictable from the aver-
age neural activity. The electrophysiological and fMRI measure-
ments would have to be performed using the same stimuli. Ideally,
both sets of measurements would have to be performed in the
same species, but this will have to wait until fMRI on monkeys
becomes routine.

APPENDIX
This Appendix formalizes the linear transform model of fMRI re-
sponses and derives the following theoretical results that were used
for analyzing and fitting the data. First, we show that the time–
contrast separability test and the pulse duration test both are conse-
quences of the linear transform model. Second, we derive the equa-

tion that was used to compensate for the noise in demonstrating
time–contrast separability for the periodic data sets. Third, we derive
equations for fitting the fMRI impulse–response and contrast–re-
sponse functions to the periodic data sets.

Linear transform model of fMRI responses
According to the linear transform model of fMRI responses,
fMRI response is proportional to the local average neural activity
averaged over a period of time, plus noise:

f~c, t! 5 fs~c, t! 1 fn~t!

5 h~t!pr~c, t! 1 fn~t!
(4)

5 E h~t 2 t!r~c, t!dt 1 fn~t!,

in which f(c, t) is the fMRI response, fs(c, t) is the part of the fMRI
response evoked by a stimulus of contrast c (subscript s indicating
signal), fn(t) is the part of the fMRI response attributable to noise
(subscript n indicating noise), h(t) is the temporal fMRI impulse
response function, r(c, t) is the time course of the neural activity
pooled over a small region of the brain, and p means convolution
(as expressed in the last line of the equation). The stimulus-
evoked fMRI response, fs(c, t), is expressed as a sum of shifted and
scaled copies of the impulse response shifted to each and every
time and scaled by the neural activity r(c, t) at that time.
The noise, fn(t), could be attributable to a combination of

variability in the neural activity, the hemodynamics, the magnetic
resonance scanner, and/or measurement error. The noise is inde-
pendent of the stimulus and it is broad-band, but it is not neces-
sarily white (uncorrelated) noise.

Time–contrast separability
We assume that neural activity is a nonlinear function of stimulus
contrast that can be expressed as follows:

r~c, t! 5 g~c!r~1, t!, (5)

in which 0 , g(c) , 1 is a nonlinear function of contrast, and r(1,
t) is the time course of the neural activity for a full-contrast
stimulus. According to Equation 5, the time course of the neural
activity is independent of contrast. Although this seems like a
reasonable assumption for V1 neurons, it is not necessarily cor-
rect. This assumption could be tested with single-cell electrophys-
iological recordings in monkey V1 simply by presenting visual
stimuli of various contrasts (like the ones we used in this study)
and testing for time–contrast separability of the neural responses
(e.g., using an approach analogous to that described in Results).
Substituting for r(c, t) in Equation 4 gives:

fs~c, t! 5 h~t!p@g~c!r~1, t!#
(6)

5 g~c!@h~t!pr~1, t!#.

The stimulus-evoked fMRI response fs(c, t) is the product of two
functions, one, g(c), that depends only on contrast and the other,
h(t) p r(1, t), that depends only on time. The linear transform
model predicts that fMRI responses should depend separably on
stimulus timing and stimulus contrast, thus motivating the time–
contrast separability experiment reported in Results.
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fMRI response to periodic stimuli
Because the time course of neural activity in V1 is fast compared to
the temporal periods of our stimuli and if we ignore long-term neural
adaptation, we would expect r(1, t) to be a square wave, alternating
between zero for half of the period (when the stimulus is uniform
gray) and some constant nonzero value for the other half of the
period (when the stimulus is flickering at 8 Hz with full contrast).
The fMRI response amplitude for a periodic stimulus of con-

trast c and temporal period T is expressed in terms of the Fourier
transform of fs(c, t). From Equation 6:

uFs~c, 1/T!u 5 g~c!uH~1/T!R~1, 1/T!u, (7)

in which Fs(c, 1/T), H(1/T), and R(1, 1/T) are the Fourier trans-
forms of fs, h, and r, respectively.
Again, ignoring neural adaptation, the neural activity r(1, t) is

effectively a square wave. Hence, R(1, 1/T) 5 2/p and Equation 7
reduces to:

uFs~c, 1/T!u 5
2
p
g~c!uH~1/T!u. (8)

This equation was used to fit the fMRI impulse–response and
contrast–response functions to the periodic data sets.
With added noise, the Fourier transform of the fMRI response is:

F~c, 1/T! 5 Fs~c, 1/T! 1 Fn~1/T!, (9)

and the power is:

uF~c, 1/T!u2 5 uFs~c, 1/T!u2 1 uFn~1/T!u2. (10)

This equation was used to compensate for the noise in the peri-
odic data sets. In particular, we used the fMRI response ampli-
tudes at zero contrast as estimates for the noise, uFn(1/T)u, and
calculated the stimulus-evoked fMRI response amplitude, uFs(c,
1/T)u, from the above equation. This analysis relies on the assump-
tion that the noise is independent of stimulus contrast. We tested
this assumption and found it to be valid (see Noise analysis).

fMRI response versus pulse duration
Let stimulus two be the sum of two shifted copies of stimulus one.
For example, stimulus one is a pulse of duration dt and stimulus
two is a pulse of duration 2dt, both with the same contrast, c.
Ignoring neural adaptation, the neural response to stimulus two
can be predicted from the neural response to stimulus one:

r2~c, t! 5 r1~c, t! 1 r1~c, t 2 dt!, (11)

in which r1(c, t) and r2(c, t) are the neural responses to stimulus
one and stimulus two, respectively. The linear transform model
states that f2(c, t), the fMRI response evoked by stimulus two, is:

f2~c, t! 5 h~t!pr2~c, t!

5 h~t!p@r1~c, t! 1 r1~c, t 2 dt!#
(12)

5 h~t!pr1~c, t! 1 h~t!pr1~c, t 2 dt!

5 f1~c, t! 1 f1~c, t 2 dt!,

in which f1(c, t) is the fMRI response evoked by stimulus one.
Thus, the fMRI response evoked by stimulus two is the sum of two
shifted copies of the fMRI responses evoked by stimulus one. In

general, the response to a pulse of length ndt is the sum of
n-shifted copies of the fMRI response to a pulse of length dt.
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