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SUMMARY

When faced with a crowded visual scene, ob-
servers must selectively attend to behaviorally
relevant objects to avoid sensory overload. Of-
ten this selection process is guided by prior
knowledge of a target-defining feature (e.g.,
the color red when looking for an apple), which
enhances the firing rate of visual neurons that
are selective for the attended feature. Here,
we used functional magnetic resonance imag-
ing and a pattern classification algorithm to pre-
dict the attentional state of human observers
as they monitored a visual feature (one of two
directions of motion). We find that feature-
specific attention effects spread across the
visual field—even to regions of the scene that
do not contain a stimulus. This spread of fea-
ture-based attention to empty regions of space
may facilitate the perception of behaviorally
relevant stimuli by increasing sensitivity to
attended features at all locations in the visual
field.

INTRODUCTION

The human visual system has a limited processing capac-

ity. Consequently, when multiple stimuli are simulta-

neously present in a scene, they must compete for cortical

representation and access to awareness (Desimone and

Duncan, 1995; Serences and Yantis, 2006). To resolve

this competition, incoming sensory input is selectively fil-

tered based on current behavioral goals so that relevant

stimuli are processed more efficiently than irrelevant stim-

uli. An observer might attend to a particular region of

space, providing a competitive advantage to stimuli pre-

sented at the selected location (Gandhi et al., 1999; Kast-

ner et al., 1998; Moran and Desimone, 1985). Alternately,

attended features (e.g., a color or direction of motion) will

enjoy a competitive advantage over stimuli that do not ex-

press the attended feature, independent of their spatial lo-

cation (Martinez-Trujillo and Treue, 2004; Melcher et al.,
2005; Saenz et al., 2002; Treue and Maunsell, 1996; Treue

and Martinez Trujillo, 1999). Feature-based selection is

thought to be especially important because we often

know the defining features of a target (e.g., the pencil is

yellow) without knowing its exact location (e.g., the pencil

is somewhere on the desk).

Investigators have only recently begun to examine the

neural basis of feature-based attention (Haenny et al.,

1988; Motter, 1994). Treue and coworkers (Martinez-

Trujillo and Treue, 2004; Treue and Maunsell, 1996; Treue

and Martinez Trujillo, 1999) demonstrated that feature-

based attention amplifies the response of a neuron when

attention is directed to the neuron’s preferred feature

and suppresses the response when attention is directed

to the neuron’s nonpreferred feature (see also Boynton,

2005). This ‘‘feature-similarity gain’’ mechanism operates

on the firing rate of all neurons tuned to the attended fea-

ture, even when the neuron is being driven by a stimulus

that is outside the current focus of spatial attention (Bichot

et al., 2005; Martinez-Trujillo and Treue, 2004; Saenz et al.,

2002; Treue and Martinez Trujillo, 1999). In addition, if the

multiplicative gain factor also boosts the baseline firing

rate of a neuron (‘‘activity gain;’’ see, e.g., Williford and

Maunsell, 2006), then the model makes the untested pre-

diction that feature-based attention should modulate the

firing rate of a neuron that is not directly driven by a stimu-

lus in its spatial receptive field.

In the present study, functional magnetic resonance im-

aging (fMRI) and an image classification algorithm were

used to demonstrate direction-selective attentional mod-

ulations in human occipital and parietal cortex (or intrapar-

ietal cortex [IPS]), replicating and extending recent reports

showing similar attention effects in early regions of visual

cortex (Kamitani and Tong, 2005, 2006). In addition, fea-

ture-based attentional modulations spread to stimuli pre-

sented outside the focus of spatial attention, corroborat-

ing single-cell recording studies (Bichot et al., 2005;

Treue and Martinez Trujillo, 1999) and establishing the fea-

ture-specific nature of these spatially global modulations

in human observers (Saenz et al., 2002). Finally, feature-

based attention spreads to unstimulated regions of the

visual scene, which may facilitate visual search by auto-

matically priming behaviorally relevant features simulta-

neously across all locations in the visual field.
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RESULTS

The behavioral task is depicted in Figure 1. Observers

maintained gaze on a central fixation point; at the onset

Figure 1. Behavioral Task

(A) Sequence of events on a trial where the observer was attending to

45� motion in the right stimulus aperture. In this sequence, stimuli were

presented in both the attended and the unattended locations; how-

ever, on one-half of the trials, no stimulus was presented at the unat-

tended location. One-half of the dots in each stimulus aperture moved

at 45�, and the other half moved at 135�, for the duration of the 14 s

presentation period (arrows shown in figure were not present in the ac-

tual display). The central attention cue indicated both the location of

the to-be-attended target stimulus (by pointing left or right) and the

to-be-attended direction of motion (e.g., red = attend 45�; green =

attend 135�). Targets were defined as a brief slowing of the dots at

the attended location that moved in the currently attended direction

(45� in this figure); distractors were defined as a brief slowing of the

dots at the attended location that moved in the unattended direction

(135� in this figure).

(B–E) The different stimulus configurations with respect to a cortical re-

gion of interest (ROI, e.g., left hMT+) receiving input from the right vi-

sual field. (B) The focus of spatial attention is in the receptive field of

the ROI under consideration, and there are two stimulus apertures

present. (C) The focus of spatial attention is outside the receptive field

of the ROI under consideration, and there are two stimulus apertures

present. (D) The focus of spatial attention is in the receptive field of

the ROI under consideration, but there is only one stimulus aperture

present. (E) The focus of spatial attention is outside the receptive field

of the ROI and there is only one stimulus present in the visual field. In

this case, the ROI receives input from an unstimulated region of space.
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of each trial, a small attention cue indicated whether to

attend to the left or right stimulus aperture, and it also

indicated the direction of motion to be monitored within

the attended aperture (i.e., either 45� or 135� motion). Ob-

servers pressed a button when the dots moving in the cur-

rently attended direction slowed (a target event), which

occurred twice on each trial. No button press was required

when the dots moving in the unattended direction slowed

(a distractor event), which also occurred twice on each

trial. On half of the trials, only the spatially cued aperture

contained moving dots; on the remaining trials, dot fields

were also presented on the unattended side of space.

The speed of the moving dots presented on the unat-

tended side of space (when present) remained constant

throughout a trial. Each scan consisted of 24 trials inter-

leaved with blank 6 s intertrial intervals. Observers were

able to reliably discriminate target from distractor events

(mean d-prime, ±SEM with one stimulus aperture: 2.58 ±

0.33, and with two stimulus apertures: 2.38 ± 0.30, not

significantly different).

Feature-Based Attentional Modulations

in Visual Cortex

Visual features fall into superordinate categories such as

motion or color, and can be further divided into subordi-

nate categories such as specific directions of motion or

specific colors. Traditionally, fMRI studies have been re-

stricted to the superordinate level of analysis because

the blood oxygenation level-dependent (BOLD) response

measured with fMRI is spatially imprecise with respect to

the topology of subordinate-level selectivity within visual

cortex. For example, motion-selective region MT contains

direction-selective columns of neurons, with a 180� array

of columns spanning approximately 0.5 mm of cortex

(Albright et al., 1984). Thus, a single fMRI voxel, measuring

approximately 3 mm3 in the present study, should contain

columns selective for many different directions. Averaging

across all voxels in MT would nullify any directional selec-

tivity in the BOLD response.

However, Kamitani and Tong (2005, 2006) recently

circumvented this limitation by using multivariate pattern

classification methods to measure subordinate-level

feature-based representations (see also Cox and Savoy,

2003; Haxby et al., 2001; Haynes and Rees, 2005, 2006;

Mitchell et al., 2003; Norman et al., 2006; Peelen and

Downing, 2007). The method assumes that a preponder-

ance of neurons preferring a particular feature might

happen to be sampled within a single fMRI voxel, giving

rise to a small but detectable feature-selective response

bias. By considering the pattern of activity across many

weakly selective voxels, Kamitani and Tong (2005, 2006)

were able to predict the orientation or the direction of

motion an observer was attending. Haynes and Rees

(2005) used a similar procedure to predict the orientation

of a stimulus rendered ‘‘invisible’’ via a combination of

forward and backward masking (Macknick’s ‘‘standing

wave of invisibility;’’ see Macknik and Livingstone, 1998).
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Here, we used a pattern classification analysis to exam-

ine motion-specific attentional modulations in visually re-

sponsive regions of occipital, parietal, and frontal cortex

(see Experimental Procedures and Haynes and Rees,

2005). All neuroimaging analyses were based on measure-

ments of the BOLD response made within regions of inter-

est (ROIs) that were independently identified using a func-

tional localizer task that isolated voxels responding more

strongly to stimuli in one visual hemifield compared with

the other. We exploited the fact that ROIs in left visual cor-

tex receive input primarily from stimuli in the right visual

field, whereas ROIs in right visual cortex receive input pri-

marily from stimuli in the left visual field. This contralateral

stimulus-to-cortex mapping allowed us to measure BOLD

responses evoked by attended and ignored stimulus

apertures on the same trial because the two apertures

projected to visual areas in opposite cortical hemispheres.

The qualitative pattern of responses was similar across

corresponding ROIs (e.g., left and right human MT+, or

hMT+, which is thought to be the homolog to monkey

regions MT and MST), so data were collapsed across

hemispheres within each observer.

Each observer participated in either seven or eight

scans of the main experimental task shown in Figure 1.

To classify the observer’s attentional state (e.g., attending

45� versus 135� motion), we first computed an activation

vector indexing the magnitude of the BOLD signal in

each voxel within a given ROI at each time point from

6 s to 18 s poststimulus. We then grouped these activation

vectors into three bins based on the following stimulus/

attention configurations with respect to each ROI: trials

on which the observer was attending to a contralateral

stimulus (Figures 1B and 1D), trials on which the observer

was attending to an ipsilateral stimulus while there was an

unattended stimulus in the contralateral field (Figure 1C),

and trials on which the observer was attending to an ipsi-

lateral stimulus while no stimulus was present in the con-

tralateral visual field (Figure 1E). In all cases, the goal was

to infer the currently attended direction of motion based

on the activation vectors from each bin.

To carry out the classification in a given stimulus/

attention configuration, activation vectors from all but

one of the scans were averaged to form a ‘‘training’’ vec-

tor, and activation vectors from the remaining scan were

averaged to form a ‘‘test’’ vector (a scan refers to an

�8 min data acquisition block, so training and test vectors

were independent). To classify the currently attended

direction of motion, each test activation vector was classi-

fied based on the mean training activation vector that it

most closely resembled (see Experimental Procedures).

The accuracy of classification was validated using

a ‘‘hold-one-scan out’’ procedure, where data from each

scan served as a test set in turn. Since the classification

procedure was used to determine if the observers were

attending to either 45� or 135� motion on any given trial,

chance classification was always 50%.

Figure 2A shows classification accuracy within motion-

selective regions V3A (Braddick et al., 2001; Orban et al.,
2003; Tootell et al., 1997) and hMT+ when the currently at-

tended target stimulus was within the receptive field of the

ROI under consideration (data collapsed across the stim-

ulus configurations are depicted in Figures 1B and 1D; see

Figure S1 in the Supplemental Data, available with this

article online, for each condition separately). In V3A and

hMT+, classification accuracy was above chance when

all 50 voxels were considered, and the qualitative pattern

of results was similar based on only the 30 most spatially

selective voxels (Figure S2). As in other studies (e.g., the

first figure in Haynes and Rees, 2005), classification accu-

racy was sometimes above chance when only a few

voxels were considered because the Mahalanobis dis-

tance (md) is sensitive to differences in the pattern of

activation across an ROI and differences in mean activa-

tion levels between conditions. Thus, differences in the

mean activation level across the first several voxels sup-

ported above-chance classification of the attended direc-

tion (however, similar results were obtained when the

mean of each activation vector was explicitly removed

before pattern classification; see Figure S3).

This feature-based attentional modulation was not

driven by sensory differences in the display because tar-

get events (a slowing of the dots moving in the currently

attended direction) and distractor events (a slowing of

the dots moving in the ignored direction) occurred with

equal frequency on each trial. Spatial attention cannot

account for the results because the moving stimuli were

spatially interleaved, and a ‘‘spotlight’’ of attention would

cover dots moving in both directions. Therefore, the suc-

cessful classification of motion direction depicted in

Figure 2A must reflect systematic changes in the pattern

of activation across V3A and hMT+ induced by feature-

based attention. Figure 2B depicts asymptotic classifica-

tion accuracy—defined as classification accuracy with all

50 voxels considered—from all visual areas identified.

Collapsed across visual areas, classification accuracy

was significantly above chance [paired t test against

chance, t(9) = 5.84, p < 0.0005]. Note that ROIs in IPS

and frontal eye field (FEF) were only successfully identified

in a subset of hemispheres across the ten observers (see

Experimental Procedures).

If feature-based attention spreads automatically to

other stimuli in the visual field (Bichot et al., 2005; Marti-

nez-Trujillo and Treue, 2004; Saenz et al., 2002; Treue

and Martinez Trujillo, 1999), then the pattern of activation

evoked by the unattended stimulus aperture should also

be modulated by the current state of feature-based atten-

tion. Figure 2C shows classification accuracy based on re-

sponses in areas V3A and hMT+ when an ignored stimulus

was in the contralateral visual field (as in Figure 1C). Even

though the stimulus was completely irrelevant to the task,

the activation patterns predicted the currently attended

direction of motion, and similar results were obtained in

other regions of occipital and parietal cortex [Figure 2D,

paired t test against chance collapsed across visual areas,

t(9) = 2.9, p < 0.025]. Previous human neuroimaging stud-

ies have shown a general increase in the response to
Neuron 55, 301–312, July 19, 2007 ª2007 Elsevier Inc. 303
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Figure 2. Pattern Classification Accuracy

(Top row) Accuracy of classifying the currently attended direction of motion as a function of the number of voxels included in the pattern analysis

(shaded regions indicate ±1 SEM across observers). (Bottom row) Asymptotic classification accuracy (defined as accuracy with all 50 voxels con-

sidered) in each of the visual ROIs (error bars, ±SEM across observers). (A and B) Classification accuracy based on responses in ROIs contralateral

to the focus of spatial attention (Figures 1B and 1D). (C and D) Classification accuracy based on responses to an ignored stimulus (Figure 1C). (E and F)

Classification accuracy based on the responses to an unstimulated region of space (Figure 1E). *p < 0.05, **p < 0.01, ***p < 0.005 based on planned

repeated-measures t tests against chance (the asterisks by the panel labels in [B], [D], and [F] indicate significance of t tests computed on data

collapsed across all visual areas).
ignored stimuli that share a feature with an attended

stimulus (Saenz et al., 2002). The current data support

the notion that these increased responses are due to

response modulations within neurons selective for the

attended feature.

If feature-based attention operates by enhancing base-

line firing rates, then we reasoned that it might also mod-

ulate the pattern of activation within an ROI even in the

absence of direct sensory stimulation (as in Figure 1E).

Figure 2E shows classification accuracy based on re-

sponses in V3A and hMT+ when the contralateral visual

field was unstimulated, and the pattern of activation within

most ROIs predicted the currently attended direction of

motion, even in the absence of direct sensory input

[Figure 2F, paired t test against chance collapsed across

visual areas, t(9) = 5.29, p < 0.0005]. These data provide

evidence that feature-based attentional modulations

spread to unstimulated regions of the visual field.

Since classification was carried out separately for each

stimulus/attention configuration, the present results do
304 Neuron 55, 301–312, July 19, 2007 ª2007 Elsevier Inc.
not establish that the pattern of activation observed in

the absence of direct visual stimulation is the same as

the pattern observed when an actual stimulus is present

in the receptive field of an ROI. We explicitly tested this

possibility by evaluating classification accuracy when

the training set was based on attended contralateral mo-

tion and the test set was based on either an unattended

motion stimulus (Figure 1C) or an unstimulated region of

the visual field (Figure 1E). While classification accuracy

for an unattended stimulus was slightly above chance in

some visual areas (although nonsignificant overall), classi-

fication accuracy based on responses to an unstimulated

region of the visual field was at chance. Thus, our results

show that although feature-based attention induces a sys-

tematic modulation of the pattern of activation across an

ROI even in the absence of direct stimulation (Figure 2),

the activation patterns are not necessarily the same as

the patterns observed when a stimulus is driving the re-

sponse. We speculate that this lack of generalization

may be due to large sensory differences between the
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Figure 3. Spatial Selectivity of Voxels in

Each ROI

The mean BOLD response during the spatial

selectivity control experiment in which epochs

of contralateral and ipsilateral peripheral stim-

ulation were compared to epochs of no periph-

eral stimulation. All estimates are computed

from the same 50 voxels that were selected

for use in the main attention experiment.

(A and B) The time-windowed average time

course of the BOLD response in V3A and

hMT+ following the onset of contralateral and

ipsilateral stimulation.

(C) Data from each visual area (bar plots show

the mean response collapsed over 4 s to 16 s

poststimulus, marked by the shaded region in

[A] and [B]).

(D) Mean classification accuracy in each of the

conditions depicted in Figures 2B, 2D, and 2F,

collapsed across highly spatially selective

regions V1, V2v, V3v, V4v, and V3A.

Error bars, ±SEM across observers.
stimulus-present and stimulus-absent conditions. How-

ever, it is also possible that the pattern of attentional

modulations in the absence of a stimulus may be qualita-

tively distinct from the pattern induced by an attended

stimulus.

An alternate account of our results holds that above-

chance classification accuracy might be observed in all

conditions if the observer foveates the currently attended

stimulus. However, eye position was monitored in several

observers during scanning and the mean gaze position

deviated less than 0.5� of visual angle during epochs of

attention to the left and right sides of space (approxi-

mately the size of the central attention cue). Such small

deviations in eye position are unlikely to significantly influ-

ence the data, given that the stimuli were located approx-

imately ±6� in the periphery. Nor did we find any system-

atic differences in eye position related to the currently

attended direction of motion (45� versus 135�, Figure S4).

Because we are arguing that feature-based attention

spreads to unstimulated regions of the visual field, it is im-

portant to demonstrate that the spatial receptive fields of

the selected voxels did not also encompass the currently

attended ipsilateral stimulus. Four of the original ob-

servers were scanned in a control experiment in which

12 s epochs of left or right peripheral visual stimulation

were interleaved with occasional 12 s epochs of passive

fixation (see Experimental Procedures). As depicted in

Figure 3 (see also Figure S5), the voxels within V1, V2v,

V3v, V4v, and V3A that were used in the main attention

experiment (i.e., Figure 2) were highly selective for epochs

of contralateral stimulation compared with epochs of ipsi-

lateral stimulation (where epochs of passive fixation

formed the baseline). On the other hand, reliable positive

responses in hMT+, IPS, and FEF were observed during
periods of ipsilateral stimulation compared with baseline

(Ben Hamed et al., 2001; Tootell et al., 1998). However,

our general conclusion that feature-based attention

spreads to unstimulated regions of the visual field stands

on the basis of data from early visual areas that exhibit

a high degree of spatial selectivity (V1–V3A, Figure 3D).

Of particular importance is the observation that area

V3A, which is strongly motion selective in humans (Brad-

dick et al., 2001; Orban et al., 2003; Tootell et al., 1997),

shows both a spatially lateralized response and significant

classification accuracy in the absence of direct visual

stimulation.

We next tested the possibility that feature-based mod-

ulations in the absence of direct stimulation spread to re-

gions of space beyond the defined stimulus apertures. We

restricted our analysis to early regions V1, V2v, and V3v

because (1) retinotopy is highly preserved (i.e., adjacent

voxels respond to adjacent regions of the visual field),

and (2) contamination by weak ipsilateral signals should

be minimal (see, e.g., Tootell et al., 1998). First, we defined

a ‘‘neighborhood’’ around each voxel in a given visual area

(mean neighborhood size in voxels, ±SEM: 45 ± 14, see

Experimental Procedures). To compute a ‘‘location selec-

tivity index’’ within each neighborhood, we subtracted the

mean response to ipsilateral stimuli from the mean re-

sponse to contralateral stimuli during the functional local-

izer scans (Figure 4A). Since voxels in V1, V2v, and V3v

should have receptive fields centered in the upper contra-

lateral visual field, this index should be high for voxels that

respond robustly to the contralateral stimulus aperture,

and near zero for voxels that respond weakly to the con-

tralateral aperture. The value of the selectivity index was

assigned to the voxel at the center of the currently consid-

ered neighborhood, and this procedure was iterated until
Neuron 55, 301–312, July 19, 2007 ª2007 Elsevier Inc. 305
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Figure 4. Spread of Attention beyond

Stimulus Apertures

(A) Segmented and inflated left occipital lobe of

a single observer depicting the stimulus selec-

tivity index computed across V1 (see text and

Experimental Procedures). Voxels rendered in

yellow were highly selective for stimuli in the

contralateral visual field, and voxels rendered

in red were less selective. The bright yellow

patch in the middle of V1 corresponds to the

region from this observer that contained the

most spatially selective voxels, which were

used in the classification analyses shown in

Figure 2.

(B) Classification accuracy for each voxel in the

same observer in the absence of direct visual

stimulation, based on the pattern of responses

within that voxel’s neighborhood (see text).

Note that most regions of V1, even those not re-

sponding strongly to the contralateral stimulus

aperture, correctly classified the attended di-

rection >50% of the time. However, some sub-

regions in this observer did not (shown in blue).

(C) Mean spatial selectivity index for voxels in

each of four bins based on a quartile analysis.

(D) Classification accuracy of voxels in each of the four selectivity bins shown in (C). (Accuracy averaged across V1, V2v, and V3v was significantly

above chance in all four bins; *p = 0.02, *p = 0.004, *p = 0.01, *p = 0.03, respectively.)

Error bars, ±SEM across observers.
the spatial selectivity of each voxel was estimated. Next,

we computed classification accuracy based on the pat-

tern of responses across each neighborhood (Figure 4B).

Finally, we sorted the voxels into four bins on the basis of

their location selectivity (Figure 4C) and computed the

average classification accuracy across all voxels falling

into each of these bins (Figure 4D). Even voxels that

were not highly responsive to the locations occupied by

the stimulus apertures classified the currently attended

feature. Similar results were obtained from the four ob-

servers that participated in the spatial selectivity control

experiment where the location preference of each voxel

was more directly estimated by comparing epochs of con-

tralateral stimulation to passive fixation (Figure S6).

To determine if feature-based attention also spreads to

regions of the lower visual field, where stimuli were never

presented in the present experiment, we used the same

neighborhood method to compute classification accuracy

across visual areas V2d and V3d in each observer because

neurons in these regions respond primarily to locations in

the lower visual field. Again, we observed above-chance

classification accuracy in each region (Figure 5), providing

additional support for the hypothesis that feature-based

modulations spread across the entire visual field.

To complement our ROI-based approach, a group

random-effects analysis was carried out to evaluate clas-

sification accuracy across all of occipital cortex in the

absence of direct visual stimulation. Using the neighbor-

hood classification method descried above, a sphere

was defined around each voxel in the occipital cortex of

an observer, and classification accuracy was computed

based on the pattern of activation across the sphere.
306 Neuron 55, 301–312, July 19, 2007 ª2007 Elsevier Inc.
The resulting single-observer classification accuracy

maps were then standardized into Talairach space before

averaging (Talairach and Tournoux, 1988). Significant

classification accuracy was observed in areas near V3A

and hMT+, as well as in several regions in striate and ex-

trastriate visual cortex (Figure 6 and Table 1). While this

group analysis lacks sensitivity because the visual areas

of each observer are not perfectly aligned, the results gen-

erally confirm our ROI analyses and rule out the trivial pos-

sibility that classification accuracy is above chance for all

voxels inside (or outside) the brain (see Experimental Pro-

cedures for additional details).

Figure 5. Spread of Attention to Lower Visual Field

Classification accuracy for dorsal occipital visual areas V2d and V3d,

which respond primarily to locations in the lower visual field, in the ab-

sence of direct visual stimulation. Classification accuracy for each

voxel was first computed for a neighborhood surrounding each voxel

and then averaged across all voxels in each region. Data were not

sorted based on stimulus selectivity (as in Figure 4) because voxels

in these regions exhibit a generally poor response to stimuli in the

upper visual field. *p < 0.025, **p < 0.01. Error bars, ±SEM across

observers.
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Figure 6. Group Random-Effects Analy-

sis

One coronal and one transverse slice showing

regions in the vicinity of V3A and hMT+ that ex-

hibited above-chance classification accuracy

in a group random-effects analysis. Brain im-

ages were generated by averaging anatomical

scans across all subjects, and y and z coordi-

nates are based on the atlas space of Talairach

and Tournoux (1988) (images shown in neuro-

logical convention, left on left).
DISCUSSION

Here we show that feature-based attention spreads to

stimuli presented outside the focus of spatial attention

and to unstimulated regions of the visual field. The spa-

tially global nature of feature-based attention may act to

heighten sensitivity to relevant features across the visual

field, a result predicted by models of visual search that

posit an initial parallel stage of processing in which behav-

iorally relevant features are marked as having a high prior-

ity (e.g., Wolfe, 1994). In addition, the ballistic spread of

feature-based attention across the visual field explains

why behaviorally relevant features have a tendency to

capture attention even when they are presented in an un-

expected location (termed ‘‘contingent capture;’’ see Folk

et al., 2002; Serences et al., 2005).

The spread of feature-based attention to stimuli outside

the focus of spatial attention has been previously reported

(Martinez-Trujillo and Treue, 2004; Saenz et al., 2002;

Treue and Martinez Trujillo, 1999). However, in previous

experiments the unattended aperture contained a single

field of dots moving in either the attended or the unat-

tended direction. While the investigators demonstrated

that spatial attention was unlikely to play a significant

role (Saenz et al., 2002, 2003), it remains possible that
observers may have covertly shifted spatial attention

toward the to-be-ignored aperture more frequently when

it contained an attended direction of motion than when it

contained an unattended direction of motion. It is similarly

possible that spatial attention was split between the two

apertures more evenly when the to-be-ignored stimulus

expressed the attended feature (Awh and Pashler, 2000;

McMains and Somers, 2004). However, in our paradigm,

when a stimulus was present in the ignored aperture, it al-

ways contained two overlapping dot fields moving in both

the attended and ignored direction. Any spatial attention

shift toward the ignored aperture would uniformly boost

the response evoked by dots moving in both directions,

instead of the observed direction-specific modulations

reported in Figure 2. In addition, the observation of

feature-specific modulations in the absence of direct vi-

sual stimulation cannot be attributed to spatial attention

because the observer would have no reason to direct spa-

tial attention toward a blank visual field. Together, these

data strongly argue for the existence of a global feature-

based attentional mechanism, and demonstrate that the

observed modulations do not simply reflect spatial shifts

of attention driven by feature similarity.

One concern is that neurons within a given ROI might

have spatial receptive fields large enough to encompass
Table 1. Regions Exhibiting Significant Classification Accuracy

General Extent

of Region Mean (x, y, z) SEM (x, y, z) Volume (ml) t(9)*

Left V1/dorsal extrastriate (�7, �92, 7.4) (5, 6, 5) 1.02 2.9

Left V1/ventral extrastriate (�5, �57, 4) (5, 8, 5) 1.21 2.9

Left V3A/posterior IPS (�27, �69, 30) (6, 7, 9) 4.1 3.0

Left hMT+ (�45, �63, 15) (4, 7, 4) 3.2 3.1

Right V1/dorsal extrastriate (24, �87, 9) (7, 6, 7) 3.3 3.0

Right ventral extrastriate (8, �69, �12) (6, 7, 6) 1.1 2.8

Right V3A/posterior IPS (27, �64, 38) (9, 9, 5) 3.3 2.9

Right hMT+ (37, �73, 6) (6, 7, 7) 4.1 3.1

All regions exhibiting significant classification accuracy in the group random-effects analysis depicted in Figure 6. Mean coordi-

nates (±SEM) are based on the atlas space of Talairach and Tournoux (1988), and t values reflect averages across all voxels in

the cluster (*p < 0.025).
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both stimulus apertures. If this were the case, a stimulus

presented in the attended aperture would project to both

contralateral and ipsilateral ROIs. While some neurons in

higher-order visual areas such as V3A, hMT+, IPS, and

FEF have receptive fields large enough to encompass

both stimulus locations (Ben Hamed et al., 2001;

Desimone and Ungerleider, 1986; Tootell et al., 1998),

three arguments can be made against this general in-

terpretation of the data. First, all pattern classification

analyses were performed on the 50 most spatially selec-

tive voxels within each ROI as determined by independent

functional localizer scans. Second, feature-specific at-

tentional modulations were observed in regions such as

V2v that are known to have small spatial receptive fields

(e.g., �2�) centered primarily in the contralateral vi-

sual field (Desimone and Ungerleider, 1986). Finally, a

control experiment comparing epochs of contralateral

and ipsilateral stimulation with a low-level passive fixation

baseline condition confirmed that the selected voxels

within most ROIs (V1–V3A) had spatial receptive fields

restricted to the contralateral hemifield. We do not dis-

pute the existence of neurons (voxels) within many of

these visual areas that respond to stimuli on both sides

of fixation, especially in hMT+, IPS, and FEF, which were

confirmed to respond to ipsilateral stimuli in our control

experiment. However, we do argue that the selected

voxels from most ROIs in the present study were respon-

sive primarily to stimuli presented in the contralateral

visual field.

The relatively high classification accuracy achieved

based on responses to an unstimulated region of the

visual field is surprising, given the relatively low baseline

firing rate of the neurons in this condition (compare Fig-

ures 2B and 2F). Thus, feature-based attentional modula-

tions would be occurring near the level of background

noise, and one might expect these signals to be relatively

weak. We hypothesize that the relatively high classifica-

tion accuracy observed in the absence of direct visual

stimulation might be due to the fact that visually respon-

sive neurons are typically selective for a conjunction of

several stimulus properties (e.g., spatial frequency and

stimulus speed). Thus, when a stimulus is physically pres-

ent within the receptive field of an ROI, neurons that are

jointly tuned to the attended direction of motion and the

other incidental features of the moving dots (size, speed,

etc.) might dominate the response pattern. In contrast,

when no stimulus is present within the receptive field, all

neurons tuned to the currently attended direction of mo-

tion may undergo a systematic gain change. Since the

classification algorithm takes into account the distributed

pattern of activity across multiple voxels within each ROI,

increasing the number of systematically modulated neu-

rons might in turn support higher classification accuracy.

Alternatively, the relatively high classification accuracy in

the absence of direct stimulation may be the result of

some nonlinearity in the BOLD response that makes

feature-based attentional modulations easier to detect

when baseline activity is lower.
308 Neuron 55, 301–312, July 19, 2007 ª2007 Elsevier Inc.
A recent behavioral study provides indirect evidence

supporting the present observation that feature-based

attention spreads into empty regions of space (Arman

et al., 2006). The study showed that attending to a single

motion stimulus on one side of the visual field induced

a motion aftereffect in the opposite visual field. The

presence of a global motion aftereffect suggests that

feature-based attention modulated the firing rates of

direction-selective neurons with spatial receptive fields

in the unstimulated region of the visual field, consistent

with the data reported in Figures 2E and 2F.

The present report of feature-based attention spreading

across the visual scene is also reminiscent of reports

showing that mental imagery can selectively influence

neural activity within retinotopically organized regions of

visual cortex (e.g., Slotnick et al., 2005). On this account,

‘‘imagining’’ a stimulus might be accomplished by boost-

ing the gain of neurons tuned to the imagined features. If

so, then feature-based attention may be the mechanism

of mental imagery, and future studies might investigate

this link by using multivariate pattern classification

methods to evaluate feature-based modulations within

visual cortex during epochs of imagined stimulation.

Robust feature-selective attentional modulations were

observed in ROIs that are not generally thought to play

an important role in motion processing (e.g., V2v, V3v,

V4v; see Figure 2). However, this observation is not unique

to our study, as a recent report also demonstrated motion-

selective modulations in fMRI response patterns from

areas V1, V2, V3, V4, and hMT+ using fMRI and eight dif-

ferent directions of motion (Kamitani and Tong, 2006). In

addition, robust classification accuracy need not be

based solely on direction-selective neural activity per se.

For example, some visual areas exhibit a biased popula-

tion response in favor of radial motion as compared with

circular motion (Beardsley and Vaina, 2005; Bex and

Makous, 1997; Sasaki et al., 2006). It is also possible

that although neurons in many of these regions are not

thought to be particularly direction selective based on sin-

gle-unit recording studies, the response profile across

a population of such weakly selective neurons may in

fact carry some information about direction. Thus, the

multivariate fMRI response pattern may be sensitive to

population-level dynamics that are not easily observed

when recording the spiking activity of single neurons. Un-

derstanding the exact nature of these attentional modula-

tions will be crucial for making claims about the tuning

properties of neurons based on fMRI response patterns;

however, our results support the general conclusion that

a spatially global feature-based attentional mechanism

gives rise to systematic changes in activation across vi-

sual cortex.

Feature-selective responses were also observed within

IPS, even though this region is most often considered

a ‘‘source’’ of attentional control signals instead of a site

of modulation (Corbetta and Shulman, 2002). However,

previous neuroimaging studies have demonstrated that

IPS responds robustly to moving stimuli (Liu et al., 2003;
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Shulman et al., 1999), and a recent single-unit study docu-

mented directional selectivity in monkey lateral IPS after

training (Freedman and Assad, 2006). In conjunction with

the present observations, these studies suggest that re-

gions such as IPS (and perhaps FEF; see Figure 2A) may

flexibly exhibit some feature selectivity, which in turn

may facilitate the targeting of attentional modulations in

earlier occipital visual areas. However, we endorse this

explanation cautiously and future studies will need to con-

firm our results, as well as test the generality of feature-se-

lective responses in parietal cortex.

Feature-based attentional modulations in the absence

of direct visual stimulation might be mediated by a purely

endogenous (or top-down) gain control mechanism, akin

to ‘‘baseline shifts’’ in neural activity induced by space-

based and feature-based attention shifts in the absence

of a stimulus (Chawla et al., 1999; Hayden and Gallant,

2005; Kastner et al., 1999; Luck et al., 1997; Ress et al.,

2000). However, previously reported baseline shifts were

observed during the temporal gap between a cue instruct-

ing the observer where (or what) to attend and the presen-

tation of the target stimulus or search array. In contrast,

observers in the present experiment were continuously

monitoring a stimulus on one side of the visual field, so

the spread of feature-based attention may have been

driven by hard-wired cross-hemispheric connections be-

tween similarly tuned neurons in corresponding visual

areas. According to this model, similarly tuned neurons in

each cortical hemisphere are connected in a mutually ex-

citatory manner; the efficacy of these cross-hemispheric

connections might be modified by attention, giving rise

to feature-selective modulations in the absence of direct

visual stimulation. In addition, inhibitory connections

between corresponding visual areas in each hemisphere

may play a role in producing feature-selective activation

patterns. This possibility is consistent with the lack of gen-

eralization across both patterns of activation evoked by

attended stimuli and patterns of activation measured in

response to unstimulated regions of the visual field (see

Results). While the exact nature of these connections

remains unknown, it seems possible that they might be

callosal, subcortical, or cortical in nature. Follow-up ex-

periments examining the speed with which feature-based

attention spreads across the visual field, as well as studies

employing spilt-brain patients, may shed light on this

issue.

According to another account, highly active neurons

enhance the activity of corresponding neurons in com-

plementary visual areas in the other hemisphere. Thus,

the spread of feature-specific gain might depend only on

the activity level of the ‘‘sending’’ neuron, which in the

present study is determined by the priority of the attended

feature. However, other factors that modulate the gain of

the sending neuron, such as stimulus contrast, may also

induce a global spread of feature-specific activity. In either

case, the spread of feature-specific modulations likely

plays a fundamental role in highlighting or priming relevant

features across the visual field, and future studies will
need to determine the influence of various factors (e.g., at-

tention, contrast, etc.) on this phenomenon.

While a better understanding of the exact mechanisms

will clearly require additional study, the present results es-

tablish that feature-based modulations spread across the

visual field, even to regions of space that do not contain

a stimulus. The functional utility of this spatially global

feature-based mechanism can easily be imagined: the

ability to enhance sensitivity to a given feature across

the visual field would facilitate efficient visual search and

the detection of behaviorally relevant stimuli.

EXPERIMENTAL PROCEDURES

Participants

All participants gave written informed consent to participate in the

study, which was approved by the Salk Institute Human Subjects Insti-

tute Review Board. Ten neurologically intact adults (four females),

ages 25 to 30, participated in the main feature-based attention exper-

iment. Four observers from the main experiment also participated in

the spatial selectivity control experiment.

Feature-Based Attention Experiment

All visual stimuli were rendered in black on a white background and

were viewed via the Avotec Silent Vision SV-701 Fiber Optic Visual

System (Stuart, FL). Observers were instructed to maintain visual fixa-

tion on a central square that was present for the duration of each scan

(subtending 0.16� visual angle). At the start of each trial, two small dots

of the same size were presented 2.75� above fixation and ±5.9� to the

left and right of fixation. An attention cue, consisting of a horizontal line

subtending 0.4�, was present throughout each trial; the cue indicated

both the location of the impending target stimulus and the attended di-

rection of motion. The direction of the line indicated the location of the

to-be-attended aperture. For half of the observers, a green central at-

tention cue instructed observers to monitor the dots moving at 135�

and a red cue instructed them to monitor the dots moving at 45�;

this color/direction pairing was reversed for the remaining observers.

After 500 ms, moving dots were presented within either one or two

invisible circular apertures (subtending 2.5� radius). Half of the dots

in each aperture moved at 45� and the other half moved at 135�

for the duration of the 14 s presentation period (each dot moved at

4.6�/s, subtended 0.2� diameter, and had a limited lifetime of eight

33.3 ms frames). When a single motion aperture was presented, it al-

ways appeared at the cued location. Target events were defined as

a brief slowing (mean slowing of 2.9�/s) of the dots moving in the cur-

rently attended direction; distractor events were defined as a brief

slowing of the dots moving in the unattended direction. Target and dis-

tractor events only occurred within the spatially attended aperture, and

the speed of the dots in the unattended aperture (if present) remained

constant throughout each trial. The observer’s task was to press a but-

ton with the right pointer finger whenever a target event was detected.

On each trial, there were two target and two distractor events, ran-

domly interleaved and spaced 3.5 ± 0.2 s apart, with the first event

starting 1 ± 0.2 s after the onset of the stimulus display. The next trial

began after a blank intertrial interval of 6 s. There were 24 trials in each

scanning run, and the pseudorandomized trial presentation order used

for each scan was selected at random from a set of the 60 most statis-

tically efficient sequences of events (based on 20,000 tested se-

quences; see Dale, 1999).

Independent Functional Localizer Task

and Retinotopic Mapping

To identify spatially selective regions of occipital cortex, IPS, and FEF,

a moving dot stimulus was presented in either the left or the right stim-

ulus location for 16 s in an alternating sequence; the moving dot
Neuron 55, 301–312, July 19, 2007 ª2007 Elsevier Inc. 309
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stimulus contained either uncorrelated motion or a correlated motion

flow field with the direction of motion changing every 2 s. Since spa-

tially selective visual areas in IPS and FEF are known to be sensitive

to attentional factors (Silver et al., 2005), observers were instructed

to press a button when they detected a 1 s slowing in the motion of

the dots, which occurred once per 16 s stimulation period. Retinotopic

mapping data were obtained in 1–2 scans per observer using a check-

erboard stimulus and standard presentation parameters (checker-

board flickering at 8 Hz and subtending 45� of polar angle; see Engel

et al., 1994; Sereno et al., 1995). The data were projected onto compu-

tationally inflated cortical surfaces to aid in the visualization of early

visual cortical areas revealed by the functional localizer and retinotopic

mapping procedures.

Control Experiment: Spatial Selectivity of Visual ROIs

This control study was designed to assess the spatial selectivity of the

voxels used in the main attention experiment within a subset of four ob-

servers. The size and structure of the stimuli and task exactly matched

the functional localizer paradigm described above, except that epochs

of peripheral stimulation were only 12 s in duration and were randomly

interleaved with 12 s passive fixation trials in which no peripheral stim-

ulus was presented. There were 20 stimulus-present trials and 10 pas-

sive fixation trials on each scan. The time-windowed average re-

sponses to contralateral and ipsilateral stimuli were computed by

subtracting the mean response on passive fixation trials so that all

time series reflect deviations away from the low-level fixation baseline

(see also Figure S5 for a complementary analysis). Since the type of

motion (uncorrelated or flow-field) only exerted a small main effect

on activation levels in some regions (e.g., hMT+) and did not interact

with spatial location, all data are presented collapsed across this

factor.

fMRI Data Acquisition and Analysis

MRI scanning was performed on a Signa EXCITE 3 Tesla GE scanner

equipped with an eight channel head coil at the Center for Functional

Magnetic Resonance Imaging, University of California, San Diego. A

custom-made bite bar was used to restrict head movement. Anatom-

ical images were acquired using a SPGR T1-weighted sequence that

yielded images with a 0.97 mm 3 0.97 mm 3 1 mm resolution.

Whole-brain echoplanar functional images (EPI) were acquired in

32 transverse slices (TR = 2000 ms, TE = 30 ms, flip angle = 90�, image

matrix = 64 3 64, FOV = 220 mm, slice thickness = 3 mm, no gap).

Data analysis was performed using BrainVoyager QX (v 1.74; Brain

Innovation, Maastricht, The Netherlands) and custom time series anal-

ysis and pattern classification routines written in Matlab (v 7.1; The

Math Works, Natick, MA). Data from the feature-based attention ex-

periment were collected in either seven or eight scans per subject,

with each scan lasting 486 s. EPI images were corrected using an un-

warping procedure (the FUGE algorithm, FMRIB Software Library, Uni-

versity of Oxford), slice-time corrected, motion-corrected (both within

and between scans), and high-pass filtered (3 cycles/run) to remove

low-frequency components in the time series. Data from the functional

localizer task were collected in 1 or 2 scans. Each scan lasted 390 s

and the EPI images were preprocessed as described above. The dis-

parity in the number of scans for each observer was due only to

constraints on scan time. In the spatial selectivity control experiment,

observers participated in three 370 s scans.

ROI Selection

To identify ROIs in visual cortex that represented either the left or the

right stimulus locations, a general linear model (GLM) with four boxcar

regressors was applied to the BOLD time series data from the func-

tional localizer scans; two regressors marked temporal epochs of cor-

related motion and uncorrelated motion on the right side of fixation,

and two regressors marked temporal epochs of correlated and uncor-

related motion on the left side of fixation. Each of the boxcar regres-

sors was then convolved with a gamma function to account for the
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assumed hemodynamic response function (delta = 2.5 s, tau =

1.25 s; see Boynton et al., 1996). ROIs in V1, V2v, V3v, V4v, and V3A

were defined by identifying voxels within each retinotopically defined

area responding more strongly during epochs of visual stimulation

on one side of space compared with the other (after collapsing across

epochs of correlated and uncorrelated motion). hMT+ was defined as

a contiguous group of voxels lateral to the parietal-occipital sulcus and

beyond the retinotopically organized visual areas that exhibited a larger

response during epochs of correlated motion compared with epochs

of uncorrelated motion. ROIs in IPS were identified as contiguous clus-

ters of spatially selective voxels superior to the parietal-occipital junc-

tion within the intraparietal sulcus (identified in 13/20 hemispheres),

and ROIs in FEF were identified as contiguous clusters of the spatially

selective voxels near the junction of the precentral sulcus and the

superior frontal sulcus (identified in 11/20 hemispheres). The same

ROIs were used in the feature-based attention experiment and in the

control experiment.

In occipital cortex, the 50 most spatially selective voxels, as defined

based on responses during the functional localizer task, were included

in each ROI. By selecting the most selective voxels, the hMT+ ROIs

were likely biased in favor of area MT, which is thought to be more spa-

tially selective than area MST (Huk et al., 2002). However, we cannot

rule out the possibility that the hMT+ ROIs also encompassed some

portion of MST; hence, we adopt the more general hMT+ terminology.

In IPS and FEF, we were not able to identify 50 activated voxels in all

hemispheres, so all contiguous voxels that passed a minimum thresh-

old of p < 0.05 (corrected for multiple comparisons using the false dis-

covery rate method implemented in Brain Voyager) were included. The

mean size (in voxels ±SEM) of the IPS ROIs was 45.7 ± 2.0, and the

mean size of FEF ROIs was 40.3 ± 3.5. Figure S7 shows the location

of the IPS and FEF ROIs in each observer in native scanner space.

Pattern Classification Analysis

Our general image classification approach is similar to that reported

elsewhere (see Haynes and Rees, 2005). We extracted seven EPI im-

ages on each trial (from 6–18 s after stimulus onset, where an image is

defined as a vector of activation values from all voxels in a particular

ROI). Before classification, the images extracted from all but one

scan were defined as training images, and the remaining images

were defined as test images. All test images belonging to a particular

stimulus/attention configuration (see Figures 1B–1E) were then aver-

aged together (after z-normalizing), creating a mean activation vector

characterizing the pattern of responses across voxels for each con-

dition in a scan. We then computed the md between the test activation

vector (X) and each mean activation vector for the two attention con-

ditions (attending 45� or 135� motion) computed over the training

images:

mdðiÞ=
�
X � �Xi

�T
S�1

�
X � �Xi

�

where S is the pooled covariance matrix estimated from the training

images, and �Xi is the mean training activation vector for each attention

condition i. The parameters S and �Xi were computed using only data

from the training set. The test activation vector was then assigned to

the condition for which md(i) was smallest. Classification was per-

formed using activation vectors of different lengths, with the most

discriminating voxels—determined using a pooled variance t test

computed only using the training activation vectors (Haynes and

Rees, 2005)—entered first (until all 50 voxels from the ROI were

included). This procedure was repeated until each scan had served

as a test set in turn.

Computing Classification Accuracy and Stimulus-Selectivity

Index for Each Voxel in a Visual Area

To generate an estimate of classification accuracy for each voxel in

a visual area, we defined a spherical neighborhood that encompassed



Neuron

Spreading of Attention across the Visual Field
surrounding voxels (radius of the sphere = 2.5 voxels). Because we re-

stricted our analysis to voxels in the cortical sheet, and because the

cortical sheet is folded, the size of the neighborhood around each

voxel was not identical (mean size in voxels, ±SEM: 45 ± 14, with

neighborhoods of <10 voxels excluded). This sphere size was chosen

to be as close to 50 voxels as possible so that the results would be

roughly comparable to the data depicted in Figure 2. The results

were also replicated using a sphere with a radius of 3 voxels (mean

neighborhood size in voxels, ±SEM: 60 ± 19, data not shown). The

classification accuracy for the voxel at the center of the sphere was

computed using the same hold-one-scan out method described

above. This procedure was iterated until a classification accuracy

was assigned to each voxel within the visual area under consideration.

Estimates of stimulus selectivity for each voxel (Figure 4A) pro-

ceeded in an identical manner, except that instead of computing the

classification accuracy for a neighborhood, we computed the magni-

tude of the response to a contralateral stimulus minus the response

to an ipsilateral stimulus during the functional localizer scans (over

a window extending from 6 s to 18 s poststimulus). In addition, for

the four observers that participated in the control experiment where

epochs of contralateral and ipsilateral stimulation were interleaved

with fixation, we computed a selectivity index comparing contralateral

stimulation versus fixation, providing a more direct measure of spatial

selectivity (Figure S6). To produce the classification data depicted in

Figure 4D, we sorted voxels into four bins based on a quartile analysis

of the distribution of stimulus selectivity indices (shown in Figure 4C).

Group Random-Effects Analysis of Classification Accuracy

in Occipital Cortex

For each voxel in the cortical sheet over the occipital lobe in each ob-

server, we estimated classification accuracy using the method de-

scribed in the preceding section (mean neighborhood size in voxels, ±

SEM: 45 ± 14). The classification accuracy map for each observer was

then standardized into the space of Talairach and Tournoux (1988),

and repeated-measures t tests were used to identify voxels that con-

sistently classified the currently attended direction across observers.

The single-voxel threshold was set at t(9) = 2.3, p < 0.05. Since this

analysis was secondary to our main ROI-based analysis, and

because the neighborhood analysis rendered the voxel-by-voxel

t values nonindependent, we did not formally control for multiple com-

parisons. However, a minimum cluster size of 0.5 ml was adopted to

partially guard against false positives (see, e.g., http://afni.nimh.nih.

gov/afni/doc/manual/AlphaSim), and classification accuracy was

only computed within the occipital cortical sheet (as opposed to the

whole brain) because our main a priori theoretical interest was to eval-

uate the spread of feature-based attention in regions of early visual

cortex. However, as an additional check to ensure that our algorithm

did not always yield positive results, we repeated the analysis and

estimated classification accuracy for all voxels in the image matrix—

including voxels in white matter and outside of the brain. We found

that the regions exhibiting above-chance classification accuracy

were primarily confined to the cortical sheet (e.g., the areas reported

in Figure 6 and Table 1), supporting the general validity of our analytical

approach.

Eye Tracking

Eye tracking was performed at 60 Hz during scanning for three of the

ten observers using an MR-compatible camera built into the video

display goggles (Avotec Silent Vision SV-701 Fiber Optic Visual Sys-

tem). Data were first corrected for eye-blinks and linear drift, and

then the mean position of the eye during each 14 s trial was separately

assessed for each of the eight attentional conditions (Figure S4).

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/55/2/301/DC1/.
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