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In object-based attention, it is easier to divide attention between features within a single object than between features
across objects. In this study we test the prediction of several capacity models in order to best characterize the cost to
dividing attention between objects. Here we studied behavioral performance on a divided attention task in which subjects
attended to the motion and luminance of overlapping random dot kinemategrams, specifically red upward moving dots
superimposed with green downward moving dots. Subjects were required to detect brief changes (transients) in the motion
or luminance within the same surface or across different surfaces. There were two primary results. First, the dual-task deficit
was large when attention was divided across two surfaces and near zero when attention was divided within a surface. This
is consistent with limited-capacity processing across surfaces and unlimited-capacity processing within a surface—a pattern
predicted by established theories of object-based attention. Second and unexpectedly, there was evidence of crosstalk
between features: when cued to monitor transients on one surface, response rates were inflated by the presence of a
transient on the other surface. Such crosstalk is a failure of selective attention between surfaces.
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Introduction

More sensory information is available to the visual
system than can be effectively processed. Due to these
limits in processing, information competes for memory
encoding, perceptual decisions, and motor responses.
Visual attention helps resolve this competition by
selecting relevant information on the basis of spatial
location, feature, or object, which biases the sensory
processing in favor of the behaviorally relevant
information (Desimone, 1998; Desimone & Duncan,
1995; Kanwisher & Wojciulik, 2000; Posner, 1980).
Object-based attention is hypothesized to select all the
features of a behaviorally relevant object, serving to
improve the encoding of its component features relative
to an unattended object (Duncan, 1984; Kahneman,
Treisman, & Gibbs, 1992; Treisman, 1998; Valdes-
Sosa, Cobo, & Pinilla, 1998). When behaviorally
relevant features belong to different objects, can
observers selectively attend to those features, or does

object-based attention interfere with the selection
process?

Duncan (1984) proposed that selective attention
operates at the object-based level, limiting selection to
one object at a time. Using a dual-task paradigm,
subjects performed multiple perceptual judgments
regarding features within one object or between two
objects. Performance was better when the judgments
regarded features belonging to the same object versus
different objects (Duncan, 1984). Vecera and Farah
(1994) later demonstrated similar divided attention
costs—using Duncan’s stimuli—regardless of whether
the two objects were superimposed or separated in
space, lending further support that object ownership
limits perception. Ideally spatial separation could be
better controlled for within the stimulus. In addition,
the types of feature judgments made within and
between objects were not the same, leading to the
concern that task demands may have been different
across conditions.

Valdes-Sosa, Cobo, and Pinilla (2000) improved the
paradigm for studying object-based attention by
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superimposing two random dot fields that rotated in
opposite directions. As is typical with a random dot
kinemategram, each dot existed for a limited number of
frames before being randomly redrawn, forcing surface
segregation to rely on the global motion of the dots.
Surface selection is therefore exclusively feature-based
since dots belonging to either field were spatially
intermingled. Subjects reported the direction of two
brief translational probes, which occurred in either
surface and with a variable interprobe interval.
Performance in reporting the direction of the second
probe dropped when it occurred in the other surface
within 600 ms or less of the first. The authors described
the first probe as an exogenous cue, which captured
object-based attention decreasing the subjects’ sensitiv-
ity to probes on the second surface. These results
provide evidence that perception of objects is capacity
limited. The authors describe the capacity limit as a
‘‘difficulty in switching attention rapidly between
surfaces’’ (Valdes-Sosa et al., 2000).

Multiple groups have argued that capacity is
unlimited when dividing attention within an object,
but requires switching when attempting to divide
attention between objects (Blaser, Pylyshyn, & Hol-
combe, 2000; Duncan, 1984; Valdes-Sosa et al., 2000).
In a dual-task paradigm where observers are asked to
divided their attention across multiple objects, an all-
or-none switching model assumes that on a given trial
the observer is constrained to select only one object at a
time (Bonnel & Haftser, 1998; Sperling & Melchner,
1978) and therefore must guess when asked to recall the
properties of a second object. Thus the all-or-none
switching model predicts a negative trial-by-trial
covariance (Bonnel & Prinzmetal, 1998) and a decrease
in overall performance known as a dual-task cost. In
addition to the all-or-none switching model, there are
limited-capacity parallel models that also predict a
dual-task cost, but zero trial-by-trial covariance. One
specific limited-capacity model is the fixed-capacity
model, which maintains a fixed amount of information
processing when attention is divided (Shaw, 1980).
These models make specific predictions of dual-task
performance from baseline single-task performance. In
this paper we measured dual-task performance when
attention was divided within versus between two
surfaces and compared behavioral performance to the
predictions of two common capacity models at either
end of the capacity continuum: the unlimited-capacity
parallel and the all-or-none switching models.

Most capacity models assume perfect selection, but a
dual-task deficit could also arise from selective atten-
tion errors cause by distractor interference. The
difficulty in dividing attention between objects may
arise from interaction between feature channels
through crosstalk (Navon & Miller, 1987). If object-
based attention facilitates the selection of all of an

object’s features, then task-irrelevant features may
interfere when attempting to select specific features
from multiple objects (Davis, Driver, Pavani, &
Shepherd, 2000). The interference due to crosstalk
may increase when attention is divided between objects
composed of competing features within a feature
dimension (e.g., different directions of motion). The
prevalence of selection errors observed in our data
leads us to propose a new capacity model that takes
into account crosstalk.

In order to measure the capacity of divided attention
within and between objects, we measured accuracy
when attention was divided across features within and
between two superimposed transparent motion surfaces
created from a random dot kinemategram. Following
in the tradition of Duncan and Valdes-Sosa, we chose
to focus on accuracy rather than reaction times in order
to test the predictions made by specific capacity models.
Although our model does not make specific reaction
time predictions, dual-task deficits may also manifest in
slower reaction times when attention is divided between
surfaces (Lamy & Egeth, 2002; Watson & Kramer,
1999). In addition, interference due to crosstalk has
also been shown to affect reaction times (Navon &
Miller, 1987; Treisman, Kahneman, & Burkell, 1983).

Methods

Participants

Five subjects participated in this study, including the
first author. All subjects gave written informed consent
in accord with the human subject protocol at the
University of Washington (Seattle, WA).

Apparatus

Stimuli were presented on a CRT monitor with a
resolution of 1024 · 768 pixels, and viewed from a
distance of 57 cm. Subject responses were collected by
keyboard button presses. The code was written in
MATLAB (MathWorks, Natick, MA) and presented
using Psychtoolbox (http://www.psychtoolbox.org)
(Brainard, 1997; Pelli, 1997) on a computer running
Windows 7.

Stimuli

The stimuli consisted of two superimposed moving
surfaces composed of randomly drawn dots with a
unique color-motion conjunction, i.e., red-up and
green-down or vice versa, counter-balanced across
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sessions. Each surface was composed of 100 dots. To
remove a potential depth cue, the depth order of
overlapping dots (which dots occludes the other dot)
was randomized. The diameter of the dots was 0.88.
The dots were confined to annulus with an inner
diameter of 38 and an outer diameter of 168 (see Figure
1B). A fixation plus was placed at the center of the
annulus. The dots moved coherently at a rate of 88/s.
Each dot was presented with a limited lifetime of 12
frames (200 ms), and was subsequently redrawn at a
random position. The luminance of the green dots was
reduced to match the luminance of the red dots at the
maximum intensity of the red channel (33 cd/m2). The
(x, y) CIE 1931 xyz space coordinates for the red and
green dot colors were (0.612, 0.331) and (0.279, 0.581),
respectively. The monitor background was set to black
with a luminance of less than 1 cd/m2.

Procedure

Prior to a block of trials, subjects received specific
instructions regarding which feature, or pair of
features, to attend in order to perform one or two
detection tasks. There were a total of four conditions:
two single-task and two dual-task conditions. For the
single-task motion condition, subjects were cued to
attend to the speed of one of the two surfaces (e.g.,
‘‘attend to the speed of the upward-moving red
surface’’). For the single-task luminance condition,
subjects were cued to attend to the luminance of one
of the two surfaces (e.g., ‘‘attend to the brightness of

the red surface’’). For the dual-task, within-surface
condition, subjects were cued to attend to the speed and
the luminance of one of the two surfaces (e.g., ‘‘attend
to the speed AND brightness of the upward-moving
red surface’’). For the dual-task, between-surface
condition, subjects were cued to attend to the speed
of one surface and the luminance of the second surface
(e.g., ‘‘attend to the speed of the upward-moving
surface AND the brightness of the green surface’’).

The trial structure is schematized in Figure 1. Each
trial began with a 1000 ms pretrial interval, consisting
of a fixation plus centered on a black screen (Figure
1A). The stimulus movie followed for 1100 ms (Figure
1B). Stimulus ‘‘transients’’ occurred 500 ms after the
onset of the moving surfaces and consisted of brief (100
ms) decrements in speed and/or luminance of the dots
within each surface (Figure 1B). On every trial, there
was an independent 50% chance of a transient
occurring in each of the four features. Thus, from zero
to four stimulus transients occurred on each trial.

Following stimulus offset, subjects were queried to
indicate whether or not a transient occurred in the cued
feature(s) by pressing one of two buttons (a yes/no
response). There was no time pressure. To help reduce
response errors, the yes/no responses for the motion
and luminance tasks were mapped to separate pairs of
keyboard buttons; subjects used their left and right
pointer fingers to perform the motion and luminance
tasks (e.g., ‘‘did the speed of the upward-moving
surface decrease, yes (z) or no (x)?’’ and ‘‘did the
brightness of the red surface decrease, yes (.) or no (/)’’.
The order of report, whether motion or luminance was

Figure 1. Trial structure. (A) Each trial commenced with a 1000 ms pretrial interval with a fixation cross. (B) The stimulus then appeared

for 1100 ms. At 500 ms, poststimulus onset, 0–4 100 ms luminance/motion transients could occur. (C) Following the stimulus, the

observer made one or two yes/no responses without time pressure.
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queried first, was pseudo-randomized across trials to
prevent response biases.

Subjects practiced all four experimental conditions
over the course of two to three one-hour sessions until
they reported feeling comfortable with the task.
Experimental data was then collected over two one-
hour sessions. The magnitudes of the speed and
luminance decrements were adjusted during the train-
ing sessions to ensure single-task performance levels
above 80% correct but below ceiling. Intensities
decrements were chosen separately for each surface
(Table 1). For the motion task, Subject 3 exhibited
much higher sensitivity for upward motion decrements
then downward motion decrements. For the luminance
task, four subjects (2–5) exhibited slightly higher
sensitivity for the luminance decrements in the green
field than in the red field.

During the experimental sessions, the magnitude of
the speed and luminance decrements was held constant.
Subjects performed blocks of 32 trials, preceded by
specific attention instructions. Each attention condition
was grouped into sets of four blocks. For example, for
the single-task motion, subjects alternated between
attending upward motion for 32 trials and downward
motion for 32 trials. After four blocks (128 trials total),
the subject began a new (randomly selected) cue
condition. In this manner, 256 trials were collected
for each of the four cue conditions in each one-hour
session for a total of 512 trials per cue condition.

Analysis

We collapsed performance across surfaces because
we were not interested in performance differences
within a feature dimension (e.g., upward vs. downward
motion or red vs. green). Behavioral performance was
analyzed at several different levels. For a coarse
analysis of performance, we averaged across the hit
rate and correct rejection rate to compute a percent
correct for each condition. Going further, we analyzed
the joint dual-task performance for signs of indepen-

dence between tasks. At the finest level of analysis, we
compared hit rates to false alarm rates conditionalized
on each type of stimulus transient. Finally, we fit a
parametric model to the most informative of the three
conditionalized response distributions (see Modeling
below).

Error bars

When plotting averages across subjects, error bars
encompass 61 standard error of the mean (n ¼ 5).
When plotting individual subject data, we resampled
our data (with replacement) 10,000 times, calculating
the sample mean after each iteration (Wichmann &
Hill, 2001). Error bars enclose 61 standard deviation
of the sampling distribution (634.14%).

Results

We began by comparing dual-task performance to
single-task performance in an attention operator
characteristic (AOC) plot (Figure 2) (Sperling &
Melchner, 1978). AOC plots are generated by plotting

Subject

Speed decrement (%) Luminance decrement (%)

Upward Downward Red field Green field

1 43 43 36 36

2 36 36 26 29

3 63 50 34 38

4 45 45 33 36

5 26 26 27 36

Table 1. Percent of speed or luminance decrement from baseline

intensity (88/sec and 33 cd/m2) for transient events. The

percentages are tabulated for each surface feature within each

subject.

Figure 2. Performance on the motion task (abscissa) is plotted

against performance on the luminance task (ordinate). Between-

subject average single-task performance is plotted in black on the

axes; dual-task performance, when attention was divided within a

surface, is plotted in blue; dual-task performance, when attention

was divided between-surfaces, is plotted in red. Error bars

encompass 61 standard error of the mean between-subjects (n

¼ 5). Gray lines extend from the single-task performance levels to

aid in their comparison to dual-task performance levels.
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dual-task performance levels against one another. To
ease comparison between the single-task and dual-task
conditions, single-task performance is plotted along the
axes. The effect of divided attention within versus
between surfaces is readily apparent in the AOC, which
shows mean performance across the five subjects.

Detecting a change in both the motion and
luminance within a single surface yielded little to no
deficit compared to detecting a change in either feature
alone. The average within-subject difference between
single-task performance and within-surface dual-task
performance (0.02 6 0.01 for the motion task and
�0.02 6 0.02 for the luminance task) was not
statistically significant, t(4) ¼ 1.46 and 1.45; p . 0.05.
In contrast, detecting a change in the motion of one
surface and the luminance of the other surface resulted
in a significant deficit compared to single-task perfor-
mance levels (�0.14 6 0.02 and �0.18 6 0.017). The
difference was statistically significant for both tasks,
t(4)¼7.05 and 10.26; p , 0.01. The pattern of dual-task
performance was consistent across all five subjects
(Figure 3).

To verify that there were no memory or order effects
resulting from the order in which the two tasks were
performed in the dual-task conditions, we separated

performance on the basis of response order (Figure 4).
The average within-subject differences between perfor-
mance in the motion task when motion was queried
first versus when color was queried first (�0.013 6

0.005 for the within-surface condition and �0.009 6

0.011 for the between-surface condition) was not
statistically significant, t(4) ¼ 2.36 and 0.90; p . 0.05.
Likewise, the differences between performance in the
color task when color was queried first versus when
motion was queried first (0.00 6 0.02 and 0.01 6 0.02)
was not statistically significant, t(4) ¼ 0.12 and 0.71; p
. 0.05.

Modeling

We next explored the predictions of two simple
nonparametric models at either end of the processing-
capacity continuum. The unlimited-capacity sharing
model assumes that each task was performed indepen-
dent of the other task, whereas the all-or-none
switching model assumes that only one task can be
performed at a given time.

Figure 3. Individual subject performances are summarize by separate AOC plots. Error bars enclose 61 standard deviation of the

bootstrapped sampling distribution (see Methods: Error bars).
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Unlimited-capacity model

There exists a range of models over which the
amount of interference between two concurrent tasks
varies. At one end of the spectrum resides the
unlimited-capacity parallel model, which assumes
independent and noninterfering task performance.
Given unlimited capacity, the joint probability of two
correct responses in the dual-task condition is simply
the product of the two single-task performance levels.

pðm& lÞdual ¼ pðmÞsingle·pðlÞsingle ð1Þ

Where m and l represent the motion and luminance
tasks, and p(x) represents the probability of a correct
response on task x. The unlimited-capacity sharing
model predicts that dual-task performance should fall
at the independence point at the intersection of the
single-task performance levels.

The results from the within-surface dual-task per-
formance fall very close to this intersection for all five
subjects (Figure 3), which suggests that there is not a
capacity limit for dividing attention across features
within a single object.

All-or-none switching model

On the other end of the spectrum resides the all-or-
none switching model, which assumes that only one

task can be carried out at a given time. Consequen-
tially, the model predicts a negative trial-by-trial
correlation in dual-task performance because the
observer can only be in one attentional state at a
time. When attention is directed to one task, the
observer must guess on the other. This model results
in two contingency tables, one for each attention state.
Since subjects were given no priority instructions, we
assumed an even mixture of the two attention states
across trials. If the observer attended to motion on
half of the trials while guessing on the luminance task,
and attended to luminance on the other half of the
trials while guessing on the motion task, the joint
probability of getting the luminance and motion task
correct is:

pðm& lÞdual ¼
0:5·pðmÞsingle þ 0:5·pðlÞsingle

2
ð2Þ

The all-or-none switching model predicts a trade-
off between the two tasks confining dual-task perfor-
mance along the negative diagonal connecting the two
single-task performance levels (see Figures 1 and 2).
Equation 2 assumed an equal trade-off between the
two tasks resulting in performance halfway between
single-task performance and chance. For each of the
five subjects (Figure 3), dual-task performance is close
to the negative diagonal when attention was divided
between surfaces. This seems at first like strong
support for the all-or-none switching model for
predicting dual-task deficits for dividing attention
across surfaces. However, a further analysis shows
that this model cannot describe the results.

Rejection of all-or-none switching model:
Test for independence

A key feature of the all-or-none switching model is
that there should be a negative covariance between
trial-by-trial performances, since attention to one task
forces the subject to guess on the other. Note that while
the AOC plots in Figures 1 and 2 provide a useful
graphical summary of performance in divided attention
experiments, because performance is collapsed across
trials, trial-by-trial covariance cannot be observed in
these plots.

The amount of negative covariance predicted by the
all-or-none switching model depends on the single-task
performance level. Plotted in Figure 5 is the observed
dual-task covariance between the motion and lumi-
nance task, along with the prediction curve of the all-
or-none switching model as a function of single-task
performance (Equation 3):

covðPCsingleÞ ¼ pðm & lÞ � pðm & lÞ þ pðm & ; lÞ½ �

Figure 4. AOC plots, averaged across subjects, after separating

dual-task performance on the basis of response order. Squares

denote performance over trials in which the luminance task was

queried first, and circles denote performance over trials in which

the motion task was queried first.
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· pðm & lÞ þ pð;m & lÞ½ �
ð3Þ

where p(m & l) corresponds to the joint probability of
correct response on both task described by Equation 2.
To reduce the dimensionality of the space we set
p(m)single equal to p(l)single for each point along the
abscissa. The ‘‘;’’ in Equation 3 signifies the proba-
bility of an incorrect response—otherwise one minus
the probability of a correct response. The between-
subject average covariance (0.001 6 0.003) was
statistically indistinguishable from zero, t(4) ¼ 0.56; p
. 0.05. In addition, there was plenty of power to reject
the prediction of the all-or-none, switching model. The
average within-subject difference between the observer
covariance and the model prediction (0.041 6 0.002)
was statistically significant, t(4)¼ 16.93; p , 0.001.

Conditionalizing responses on target and
distractor transients

Dividing attention across surfaces led to a decrease
in performance, but without a corresponding negative
trial-by-trial covariance. Instead, some other mecha-
nism besides switching must be causing this perfor-
mance deficit. One possibility is a phenomenon called
crosstalk (Navon & Miller, 1987), which is when
subjects inadvertently respond to the presence of

distractors. For example, subjects may be more likely
to respond yes to an upward speed decrement when a
speed decrement occurs on the uncued downward
moving surface.

To further investigate the crosstalk hypothesis, we
conditionalized hits and false alarms on the presence or
absence of uncued transients, or distractors. If there is
crosstalk between channels, then distractors will not be
properly filtered, and an increase in hits and false
alarms on trials containing distractors would occur.
For each task there were three categories of distractors:
same feature/different surface, different feature/same
surface, and different feature/different surface. For
example, when the motion of surface 1 was cued, a
distractor transient may occur in the motion of surface
2, the color of surface 1, and/or the color of surface 2.

To begin, we considered distractors within the same
feature dimension (Figure 6A, B), e.g., for the motion
task, a downward motion transient on trials where
upward motion is cued (Figure 6A). The presence of
these distractors increased the proportion of yes
responses, and therefore both the proportion of hits
and false alarms (solid points)—for both tasks and
across all conditions—relative to trials containing no
distractors (open points). For the motion task (Figure
6A), the average within-subject increase in proportion
of yes responses (0.06 6 0.02 for the single-task, 0.07 6
0.01 for the dual-task within, and 0.17 6 0.03 for the
dual-task between) was statistically significant across
all conditions, t(4) ¼ 3.40, 5.06, and 5.93; p , 0.05,
, 0.01, and , 0.01. For the luminance task (Figure
6B), the average within-subject increase in proportion
of yes responses (0.23 6 0.02, 0.20 6 0.02, and 0.31 6
0.03) was statistically significant across all conditions,
t(4)¼ 13.74, 8.42, and 10.13; p , 0.01.

Based on signal detection theory, (Green & Sweets,
1974), we drew isosensitivity curves (constant d 0)
through the open points to help visualize changes in
sensitivity from changes in response bias due to the
distractors. For the motion task, the difference in d0

(�0.4 6 0.4, 0.3 6 0.3, and 0.4 6 0.3) was not
statistically significant, t(4) ¼ 0.93, 1.22, and 1.57; p .
0.05. For the luminance task, the difference in d0 (�0.2
6 0.3, 0.4 6 0.3, and 0.5 6 0.2) was also not
statistically significant, t(4) ¼ 0.61, 1.54, and 2.10; p .
0.05.

Next, we considered distractors within the other
feature dimension on the same surface (Figure 6C, D),
e.g., for the motion task, a luminance transient in the
same surface as the cued motion direction. Luminance
transients decreased the accuracy of motion judgments
within the same surface across all three cue conditions
(Figure 6C). The decrease in sensitivity (by a d0 of 1.1
6 0.2, 1.8 6 0.2, and 0.6 6 0.1) was statistically
significant across all three conditions, t(4)¼ 4.68, 10.00,
and 4.17; p , 0.01, 0.01, and 0.05. This suggests that

Figure 5. Single-task performance is plotted on the abscissa, and

trial-by-trial covariance between the motion and luminance task is

plotted on the ordinate. The red data points correspond to

observed single-task performance and dual-task covariance for

when attention was divided between surfaces. To reduce the

dimensionality, single-task performance was averaged across the

two tasks. Error bars enclose 61 standard deviation of the

bootstrapped distribution (horizontal error bars fall within the

extent of the data points). The red curve traces the covariance

predicted by the all-or-none switching model as a function of

single-task performance.
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Figure 6. Between-subject average false alarm rate (abscissa) and hit rate (ordinate) contingent on distractor transients. Open points

correspond to trials with no distractor transients, and filled points correspond to trials with distractor transients. Isosensitivity curves

(assuming zero bias) are drawn through the open points (Green & Sweets, 1974). False alarm and hit rates for (A) the motion task,

contingent on motion transients in the other surface; (B) the luminance task, contingent on luminance transients in the other surface; (C)

the motion task contingent on luminance transients in the same surface; (D) the luminance task contingent on motion transients in the

same surface; (E) the motion task contingent on luminance transients in the other surface; and (F) the luminance task contingent on

motion transients in the other surface.
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luminance transients masked target-motion transients
within the same surface. The complementary effect was
not observed in the luminance task (Figure 6D);
motion transients did not appear to mask target
luminance transient within the same surface. The
change in sensitivity to luminance targets when motion
distractors occurred in the same surface (�0.5 6 0.2,
�0.3 6 0.2, and 0.1 6 0.1) was not statistically
significant, t(4) ¼ 2.68, 1.54, and 0.83; p . 0.05.

Finally, we considered the effect of distractors within
the other feature dimension, on the other surface
(Figure 6E, F), e.g., for the motion task, a luminance
transient in the surface moving in the uncued motion
direction (Figure 6E). These distractors had no
measurable effect on responses in either task across
all three cue conditions. The change in sensitivity for
motion transients when luminance distractors occurred
(Figure 6E) in the other surface (0.1 6 0.1, 0.3 6 0.2,
and �0.1 6 0.2) was not statistically significant, t(4) ¼
1.21, 0.15, and 0.74; p . 0.05. Likewise, the change in
sensitivity for luminance transients when motion
distractors (Figure 6F) occurred in the other surface
(0.1 6 0.1, 0.00 6 0.1, and 0.1 6 0.1) was not
statistically significant, t(4) ¼ 1.12, 0.03, and 1.46; p .
0.05.

The two main effects captured by the AOC plot
(Figure 5) are also present in all of the receiver operator
characteristic (ROC) plots (Figure 6). First, the
conditionalized responses are similar between the
single-task (black) and dual-task within-surface (blue)
conditions. Second, when attention was divided be-
tween surfaces (red), there was a decrease in sensitivity
compared to the other two conditions (i.e., the red
points fall closer to the diagonal than the other two
conditions). Distractors within the same feature dimen-
sion increased the proportion of yes responses across
both tasks and in all three conditions (Figure 6A, B).
Decrements in luminance masked decrements in
motion (decreasing sensitivity) within the same surface
(Figure 6C), but not vice versa (Figure 6D). However,
luminance events in the other surface had no masking
effect on the motion task (Figure 6E).

A limited-capacity sharing model with
crosstalk

One way to describe how crosstalk interferes with
selection is to imagine that some proportion of the
output from the distractor channel is leaked into the
output of the target channel. Poor selection can be
exemplified by the extent to which the probability of a
yes response is greater when: (a) a distractor alone
occurred compared to no transients at all, and/or (b)
both a target and distractor occurred compared to a
target alone.

We formalized this crosstalk concept into a model
called the limited-capacity sharing model with crosstalk.
The term limited capacity refers to the fact that we
allowed sensitivity to vary freely across conditions, in
contrast to the specific limited-capacity model that
assumes a fixed rate of information processing (Shaw,
1980). The term sharing refers to the assumption that
both tasks are performed independently but with
limited capacity. The model begins with an encoding
stage: each feature is encoded by an independent
sensory channel, the output of which is a normally
distributed random variable. We assumed that on a
transient-absent trial the output of the channel was
drawn from a ‘‘noise’’ distribution: a normal distribu-
tion with a mean of zero and a standard deviation of
one. On transient-present trials the output of the
channel was drawn from a ‘‘signal’’ distribution: a
normal distribution with a mean greater than or equal
to zero and a standard deviation of one. Finally, we
assumed that the sensitivity of the two motion/
luminance channels were the same (e.g., the sensitivity
to upward and downward motion is equivalent).

To illustrate the model, consider the motion-task for
a given trial in which upward motion is cued (Figure 7).
Figure 7A depicts the probability density functions
(PDF) for the outputs of the upward and downward
motion channels (above and below respectively). The
random variable x1 denotes the internal evidence for an
upward motion transient (target), and the random
variable x2 denotes the internal evidence for a
downward motion transient (distractor). In the absence
of a transient, the output of either channel is drawn
from the noise distribution (with a mean equal to zero).
On trials containing a target or distractor transient, the
output is drawn from the signal distribution (with a
mean shifted from zero). Based on the assumption that
attention has no effect on the stimulus encoding stage,
the mean of the signal distribution for target and
distractor transients are the same. The mean of the
signal distribution is equal to the sensitivity (d0). As
sensitivity decreases, the overlap between the two
distributions increases, making the perceptual discrim-
ination between stimuli present/absent more difficult.

Following stimulus encoding, a decision is based on
the output of the cued channel (x1), plus some amount
of leak, or crosstalk, from the uncued channel (x2). The
amount of crosstalk is controlled by a gain term. If
selection were perfect then the value of the gain
parameter would equal zero and the distractor would
have no effect on the decision. If the subject were
unable to differentiate the target from the distractor—a
complete failure of selective attention—then the gain
parameter would equal one. A yes response is made if
the pooled output of the two channels is greater than a
criterion value (Figure 7B). The proportion of yes
responses increases as a function of crosstalk (Figure
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7C). If selection were perfect (a crosstalk gain
parameter equal to zero), then distractors should have
no effect on responses (Figure 7C, top). Given a
moderate level of crosstalk (gain¼ 0.5), distractors will
increase the proportion of yes responses (Figure 7C,
middle). Given a complete failure of selective attention
(gain ¼ 1.0), the proportion of yes responses given a
distractor alone will equal the proportion of yes
responses given a target alone, and will increase to
the combined probability of a yes response when both a
target and distractor occur (Figure 7C, bottom).

The model contains three parameters: sensitivity,
which defines the mean channel output corresponding
to a transient-present trial (signal distribution); a gain
term, which controls the amount of leak from the
uncued channel; and a decision criterion, which
determines how large the pooled output from the two
channels must be in order to produce a yes response.
We used a maximum likelihood procedure to estimate
the parameter values that yielded the greatest proba-
bility of generating our observed data set. In order to
take full advantage of the information in our data set,
we divided trials into four categories based on the
pairwise combination of target and distractor transients

and tallied the number of yes responses in each
category. We then fit the model to these four yes
response probabilities. The motion and luminance
tasks for each of the three cue conditions were fit
separately.

To visualize the model predictions to the data, we
replotted in Figure 8 the values from each pair of ROC
points from Figure 6A and B on a common axis—the
proportion of yes response. Three general patterns are
immediately apparent when inspecting the proportion
of yes response for each task across the three cue
conditions. (a) The distribution of yes responses was
nearly identical between the single-task condition and
the dual-task, within-surface condition. (b) Crosstalk
was more evident for the luminance task than for the
motion task across all three cue conditions (compare the
proportion of yes responses with and without distrac-
tors: cyan vs. blue and red vs. yellow). (c) Performance
dropped, and selection errors became more prevalent
when attention was divided between-surfaces.

The difference in the observed probability distribu-
tions between the single-task and the dual-task, within-
surface conditions (Figure 8) was statistically indistin-
guishable, v2(3, 4)¼ 51.81 and 28.87 for the luminance

Figure 7. Schematic for the limited-capacity sharing model with crosstalk. (A) The output of two opposing channels (e.g., upward and

downward motion-selective channels) is assumed to be normally distributed random variables with unit standard deviation. Trials

containing a target transient (above) generate a larger mean response within the cued channel, represented by the shifted PDF. Trials

containing a distractor transient (below) generate a larger mean response within the uncued channel, represented by the shifted PDF. A

yes/no decision is based on the output of the cued channel plus some leak, or crosstalk, from the uncued channel. There are four possible

target/distractor combinations resulting from the two channels. Based on the amount of crosstalk, the means and standard deviations of

the four evidence distributions will vary. (B) The four pooled response distributions are shown for a moderate level of crosstalk. The

distributions are color-coded as follows: no target or distractor transient (blue), distractor transient alone (cyan), target transient alone

(yellow), and both target and distractor transients (red). The dotted gray line represents a possible decision boundary, or criterion, above

which a yes response is made. (C) The amount of crosstalk will change the conditional probability of a yes response. Three example

distributions are shown for a fixed sensitivity and response criterion given: no crosstalk (top), moderate crosstalk (middle), and max

crosstalk (bottom).
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andmotion task respectively; p. 0.05. Fitting themodel
separately to these two conditions improved the fit by
less than 3% (increase in maximum likelihood) for the
motion condition and less than 1% for the color
condition. Thus, we reduced our parameters by fitting
the combined data for the two conditions (single-task
and dual-task within), hitherto referred to as the
baseline condition. None of the residual differences
between the model predictions and the observed
proportion of yes responses were not statistically
different from zero (p. 0.05 for all 24 t-tests) (Figure 9).

The average parameter values for the baseline and
the dual-task, between-surfaces conditions are dis-
played in Table 2. Considering the baseline condition
alone (Table 2, first column), the model describes
behavioral performance as follows. First, detection
sensitivity was high for both tasks (d0 of 3.4 6 0.2 for
the motion task and 3.8 6 0.2 for luminance task).
Second, the crosstalk gain parameter determines how
well the subjects were able to select the cued feature and
ignore distractor transients within the same feature
dimension. The crosstalk gain parameter was signifi-
cantly greater than zero in both cases, t(4) ¼ 6.95 and

17.75; p , 0.01, suggesting that even in the baseline
condition, subjects were not able to completely filter
out distractors. There was more crosstalk in the
luminance task than in the motion task (0.50 6 0.03
vs. 0.17 6 0.02, for the luminance and motion task,
respectively). This difference is reflected in the data by
the increase in the false alarm rate when a distractor
transient occurred (0.21 6 0.05 vs. 0.04 6 0.02, Figure
8 difference between cyan and dark blue bars), and an
increase in the hit rate when a distractor transient co-
occurred with a target transient (0.26 6 0.06 vs. 0.08 6
0.02, Figure 8 difference between orange and yellow
bars). Finally, the response criterion determines the
trade-off between false alarms and misses. A response
criterion equal to half an observer’s sensitivity—zero
bias—predicts an equivalent false alarm and miss rate.
The higher the criterion—a conservative bias greater
than zero—the more sensory evidence the observer
requires to make a yes response. A conservative
observer with a high criterion will commit more misses
in order to avoid false alarms. Subjects tended to be
conservative in both tasks (bias of 0.45 6 0.04 and 1.02
6 0.20, for the motion and luminance tasks, respec-

Figure 8. Bars represent the between-subject average proportion of yes responses conditionalized on the four target/distractor

combinations (replot of data from Figure 6A, B). Error bars enclose 61 standard error of the mean. Model predictions are plotted in cyan.

Because single-task and dual-task within conditions were simultaneously fit, the cyan points are identical between the two cue conditions.

(A) Proportion of yes responses in the motion task given—from blue to orange—no motion transients in either surface; one motion

transient in the uncued surface (distractor); one motion transient in the cued surface (target); motion transients in both surfaces (targetþ
distractor). (B) Proportion of yes responses in the luminance task given—from blue to orange—no luminance transients in either surface;

one luminance transient in the uncued surface (distractor); one luminance transient in the cued surface (target); luminance transients in

both surfaces (target þ distractor).
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tively), committing fewer false alarms than misses. This
parameter is reflected in the data by a very low false
alarm rate when no distractor occurred (0.037 6 0.012
and 0.009 6 0.004, Figure 8, dark blue bars).

Dividing attention between surfaces is captured in the
model by the ratio of the parameter values for the dual-
task, between surface and baseline conditions. The log10
of this ratio is tabulated in the third column of Table 2.
Dividing attention between surfaces results in: (a) a
significant decrease in sensitivity shown by a log
sensitivity ratio of �0.21 6 0.04 for the motion task,
and�0.37 6 0.03 for the luminance task, t(4)¼ 4.96 and
12.97; p , 0.01, plotted on the left in Figure 10; (b) a
significant increase in crosstalk shown by a log of the
crosstalk gain ratio of 0.35 6 0.09 for the motion task
and 0.21 6 0.04 for the luminance task, t(4)¼ 4.09 and

5.30; p , 0.05, plotted on the right in Figure 10. In
addition, there was also a conservative shift in bias
(corresponding to a change in d0 units of 0.26 6 0.04
and 0.05 6 0.21) shown by a log criterion ratio of 0.20
6 0.03 for the motion task and 0.03 6 0.10 for the
luminance task. However, this effect was only significant
for the motion task, t(4)¼ 5.8; p , 0.05, and not for the
luminance task, t(4)¼ 0.29; p . 0.05. For the luminance
task, 2 of the 5 subjects showed a liberal shift in bias.

An observer may choose to implement a transient
detection strategy by ignoring the cue and responding
to transients in either surface (e.g., upward or
downward speed changes for the motion task; or
luminance changes across the red or green dots for the
luminance task). When asked to divide attention
between surfaces, did the subjects choose to pursue a

Figure 9. Between-subject residual error; difference scores between the limited-capacity sharing model predictions and the observed

proportion of yes responses for the motion task (A) and luminance task (B).

Baseline Dual-task between Log parameter ratio

Motion Luminance Motion Luminance Motion Luminance

Sensitivity 3.4 (0.2) 3.8 (0.2) 2.2 (0.3) 1.6 (0.1) �0.21* (0.04) �0.37*(0.03)
Crosstalk gain 0.17 (0.02) 0.50 (0.03) 0.39 (0.07) 0.84 (0.09) 0.35* (0.09) 0.21*(0.04)

Response criterion 2.14 (0.08) 2.92 (0.22) 1.8 (0.1) 1.9 (0.2) 0.20* (0.03) 0.03 (0.10)

Table 2. Average between-subject parameter values for baseline condition (combined single-task and dual-task within), dual-task

between surface condition, and the log10 of the ratio between the two (dual-task between divided by baseline). Standard errors of the

mean are printed below in parentheses. Parameter values were fit to each subject’s data set using a maximum likelihood procedure that

maximized the likelihood of the observed conditional proportion of yes responses. The sensitivity and response criterion are in units of d0.

The crosstalk gain parameter ranges between zero (no crosstalk) and one (maximal crosstalk). Within-subject t-tests were conducted on

the log of the parameter ratios; asterisks denotes a log ratio significantly greater than zero ( p , 0.05).
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transient detection strategy or were they unable to
simultaneously select features from competing surfaces?
A transient detection strategy would result in poor
performance since observers’ false alarm rate would
equal their hit rate. Such a strategy would place an
observer’s performance on the negative diagonal in the
AOC plots (Figure 3), equivalent to ignoring one of the
two cues (as predicted by the all-or-none switching
model). Only one subject (S4) demonstrated that level
of dual-task deficit. The other four subjects outper-
formed the theoretical low limit of dual-task perfor-
mance. In addition, a pure transient strategy would
result in a crosstalk gain parameter value of one. The
maximum likelihood estimate for the crosstalk gain
parameter was below one for both tasks (0.84 6 0.09
and 0.39 6 0.07). This suggests that even though
selection was poor, subjects were, at the very least,
attempting to ignore the distractor transients.

To summarize, the proportion of yes responses
conditionalized on target and distractor transients
(within the same feature dimension) were statistically
identical between the single-task and the dual-task,
within surface conditions. Our limited-capacity model
with crosstalk adequately fit our data set (Figure 8) with
no consistent residual error (Figure 9). Dividing
attention between surfaces resulted in a dual-task deficit
described by the model as a decrease in detection
sensitivity paired with an increase in crosstalk (Figure
10). The increase in crosstalk in the luminance task
approached a complete failure of selective attention.

Overall, performance was statistically indistinguish-
able between the single-task conditions (motion or
luminance task) and the dual-task within-surface condi-
tion (motion and luminance task). In contrast, dividing
attention between surfaces to perform the motion and
luminance tasks resulted in a significant dual-task deficit.
Performance across the two tasks was statistically

independent (uncorrelated), contrary to the predictions
of an all-or-none switching model. In addition, dis-
tractors within the same feature dimension on the other
surface increased the proportion of yes responses,
indicative of crosstalk. Although crosstalk was observed
in all conditions, it was greatest when attention was
divided between surfaces (Figure 6). Although distrac-
tors in the other feature on the other surface were
successfully filtered (Figure 8), luminance distractors
masked motion transients within the same surface
(Figure 7). We constructed a limited-capacity sharing
model that includes a crosstalk gain parameter to
account for crosstalk within the feature dimension.
Our model successfully fit the observed proportion of
yes responses conditionalized on targets and distractors.

Discussion

We used transparent motion to investigate the
capacity limits in divided attention within and between
objects. Transparent motion provides a useful stimulus
for studying object-based attention because it allows
for multiple surfaces to be superimposed, isolating
object-based and feature-based selection from spatial
selection. Nevertheless, some have suggested that such
overlapping displays might be processed by the objects
being grouped into different depth planes and selected
by 3D spatial attention (see the discussion in Duncan,
1984 and review in Behrmann, Zemel, & Mozer, 1998).
This spatial selection hypothesis has two problems.
First, the stimuli are 2D with no depth cues. Thus, any
3D interpretation has to come from perceptual
organization and not space as specified in the stimulus.
Second, studies of attention to 3D space show it is
dominated by perceptual organization effects such as
attending to a surface rather than local depth cues (He
& Nakayama, 1995; Marrara & Moore, 2000). In short,
these stimuli have no depth information, and even if
they did, it would not help selection. Thus, it is
reasonable to assume that object-based and feature-
based selection dominates selection for displays with
overlapping fields of random dots.

In addition our paradigm possessed two key features
that are important for studying attention. First, our
stimulus was identical across conditions. Therefore,
changes in performance result from capacity-limits in
dividing attention rather than sensory encoding effects.
Second, the task was held constant between the two
divided attention conditions—in both cases the observ-
er performed a motion and luminance task—so changes
in performance result from capacity limits in object-
based attention rather than task-based effects.

Understanding the effects of divided attention on the
processing of multiple features within and between

Figure 10. Log10 of the ratio between the dual-task between and

the combined single/dual-task within parameters (see Table 2) for

the motion task (gray) and luminance task (light blue).
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objects is central to models of object-based attention.
In this study, we have shown evidence that all features
within a relevant surface can be selected with unlimited
capacity for the detection of motion and luminance
transients. Unlimited capacity for features within an
object has also been shown for a wide range of stimuli
including: the tilt & texture of a line (Duncan, 1984),
the color and shape of a letter (Bonnel & Prinzmetal,
1998), and the orientation, spatial frequency, and color
of a Gabor patch (Blaser et al., 2000). This evidence
further supports the hypothesis that object-based
attention allows unlimited capacity processing of
multiple features within an object.

We also showed evidence that dividing attention
across two surfaces reduced performance. A deficit in
dual-task performance when dividing attention across
objects has been reported in a variety of studies across a
range of superimposed stimuli (Duncan, 1984; Blaser et
al., 2000; Scholl, 2001). Duncan proposed that object-
based selection is all-or-none, limiting selection to one
object at a time. If selection were all-or-none, then we
should expect a negative correlation between a subjects’
motion and luminance performance. Instead, we
observed no significant negative correlation, and there
was enough power (based on high single-task perfor-
mance levels) to reject the prediction of the all-or-none
switching model (Figure 5). Duncan’s stimuli involved
some degree of spatial segregation which could have
contributed to the all-or-none switching effect that he
argued for. Consistent with this explanation, subjects’
dual-task performance was negatively correlated when
they were cued to attend to the shape of one object and
the color of a second displaced object (Bonnel &
Prinzmetal, 1998). Because we controlled for spatial
separation we cannot directly compare our results to
those of Bonnel and Prinzmetal.

Valdes-Sosa et al. (2000) also argued that object-
based attention was all-or-none using a transparent
motion stimulus similar to the one used in this study.
However, they manipulated the temporal asynchrony
(SOA) between the presentations of the two target
probes. It is possible that the first probe exogenously
captured attention, leading to the prioritization of
information processing from that channel (Shomstein
& Yantis, 2004). The time given by the SOA may have
encouraged subjects to switch attention between
surfaces. We presented targets and distractors simulta-
neously in order to discourage such a strategy. Our
limited-capacity sharing model could be modified to
account for differences in task priority, but since we did
not manipulate task priority in this study, our model
remains ambivalent to the possibility that attention can
be flexibly allocated between tasks (but see Bonnel &
Prinzmetal, 1998; Sperling & Melchner, 1978, for
evidence of flexible allocation).

For each task there were three types of possible
distractors. In order to address the influence of these
distractors on responses, we analyzed hits and false
alarms, contingent on each type of distractor. To begin,
we considered transient in different features (luminance
distractors during the motion task and vice versa).
Distractors within the same surface had an asymmetrical
effect on responses. Luminance transients interfered in
the detection of motion transients (Figure 6C), but
motion transients had no effect on sensitivity to
luminance transients (Figure 6D). The masking of
motion transients by luminance was observed across
all three cue conditions, suggesting that a one-way
sensory interaction occurs between luminance and
motion when a dot field simultaneously decreases in
speed and luminance. Motion detectors (like those found
in area MTþ) conceived of as spatiotemporal filters
(Adelson & Bergen, 1985) may respond to brief
luminance changes. A luminance transient produces
equal motion energy in all directions and would thus
increase the noise across the population of direction-
selective neurons, effectively reducing the detectability of
motion transients. But contrary to this hypothesis,
luminance transients in the other surface had no effect
on the sensitivity to motion transients (Figure 8).
Regardless of the explanation for this masking phenom-
enon, it occurred even in the single-task condition and
thus does not change our conclusion that processing
multiple features within a surface has unlimited capacity.

Next we consider transient in the same feature (i.e.,
motion distractors on the other surface during the
motion task, or luminance distractors on the other
surface during the luminance task). Same feature
distractors on the other surface had the greatest
influence on yes responses (Figures 6 and 10). Whereas
the masking effect discussed above may be due to input
interference, the failure of selection that occurred
within a feature dimension is possibly due to output
interference, or crosstalk between channels. Crosstalk
and masking are distinguished by the effect of the
distractor on the probability of a yes response rather
than on the probability of a correct response. Crosstalk
was greatest when attention was divided between
surfaces as compared to either the single-task or dual-
task, within-surface conditions (Figure 8). This failure
of selective attention was particularly prevalent in the
luminance task—subjects responded with equal prob-
ability on trials with a single target or distractor
transients. In addition, the probability of a yes response
was highest when both a target and distractor transient
occurred. This suggests that some portion of the output
from the channel encoding information regarding the
distractor was leaking into the output of the channel
carrying the cued feature information. Crosstalk was
present in all conditions (Figure 6), but was most
extreme when attention was divided between surfaces.
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Could the failure of selective attention that we
observed in our data be specific to transparent motion?
The answer is probably ‘‘no.’’ For example, crosstalk has
been reported for simultaneous binaural stimulus pre-
sentation (Gilliom & Sorkin, 1974), which, like our
paradigm, presentsmultiple stimuli at the same time. One
simple manipulation to explore would be to separate the
two surfaces in space, like Vercera and Farah (1994) did
with Duncan’s (1984) stimuli. Vercera and Farah found
no effect of spatial separation on the dual-task deficit
between objects, but whether or not we would see an
effect on the level of crosstalk using our stimuli remains
an open question. A second interestingmanipulation that
would likely effect the level of crosstalk would be to
parametrically vary the heterogeneity between target and
distractor features (Lo, Howard, & Holcombe, 2012).

In our experiment, selection was worse for the
luminance task than for the motion task. In the baseline
conditions, sensitivity was estimated at 3.4 for motion
and 3.8 for luminance. In contrast, the crosstalk gain
was estimated at 0.17 for motion and 0.50 for
luminance. The discrepancy for the two dimensions
observed between crosstalk gains seems larger than the
discrepancy observed between sensitivities. Thus, this
asymmetry seems to be something to take seriously. It is
possible that our chromatic feature pairs were less
distinguishable than the two motion directions.

Now turn to the larger question of why might
selection fail between objects. We suggest two possi-
bilities. First, selecting two objects may result in all of
the features of both objects being selected (Chen &
Cave, 2006; Egly, Driver, & Rafal, 1994; Yeari &
Goldsmith, 2010). In this automatic selection hypoth-
esis, object-based selection is less helpful in selecting the
task-relevant information in the between-surface con-
dition compared to the within-surface condition. In
particular, none of the irrelevant features within an
object are from the same dimension as the relevant
feature (e.g., motion-motion). That is not the case for
the between-surface condition. A second possibility is
that one cannot select two surfaces at once and instead
selects the entire stimulus. Again, this allows features
from the same dimensions to interfere in the between-
surface condition and not in the within-surface
condition. These two possibilities might be distin-
guished by experiments in which there are three
surfaces. Can one select two surfaces to prevent
interference from a third?

Conclusion

Changes to target features within a cued surface were
detected independently and without dual-task cost,
consistent with an unlimited-capacity model. By

contrast, when the same two target features belonged
to different surfaces, detection sensitivity decreased and
selection errors increased. Subjects were worse at
selecting the cued feature and instead responded to
changes in overall intensity, within the feature-dimen-
sion, irrespective of surface. Dividing attention across
objects interferes with the ability to filter irrelevant
features.
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