
Fast, accurate categorization is fundamental to survival
(Ashby & Maddox, 1998). Whenever we define an object
as a “kind” of thing, we are categorizing. In keeping with its
important role in perception and cognition, several power-
ful theories have been proposed and model-based instan-
tiations developed to predict categorization performance.
These include, among others, prototype (Anderson, 1991;
Homa, Dunbar, & Nohre, 1991; Reed, 1972), exemplar
(see Estes, 1994, and Nosofsky, 1992, for reviews), and
decision bound models (e.g., Ashby, 1992a; Ashby &
Maddox, 1993, 1998; Maddox, 1995; Maddox & Ashby,
1993). Nearly all these models focus exclusively on cate-
gorization accuracy as the dependent variable.

Although categorization accuracy provides important
information about the process of categorization, the ob-
server’s response time (RT) often provides a richer source

of information. For example, an observer might respond
with the same accuracy level for two category exemplars,
but with different RT distributions (e.g., Laming, 1968;
Luce, 1986; Welford, 1968). To date, few rigorous theories
of categorization RT exist; however, some are currently
being developed, and initial tests are being conducted
(e.g., Ashby & Maddox, 1994; Maddox & Ashby, 1996;
Nosofsky & Palmeri, 1997). The goal of this article is to
provide a rich base of categorization RT data that can be
used to guide the development and testing of new and
emerging models of categorization RT. Specifically, the aim
is to identify a set of empirical constraints that must be
predicted by any viable theory of categorization RT.

A robust empirical finding is that correct-response
mean RT tends to decrease as the distance between the ex-
emplar and the category boundary increases (Bornstein &
Monroe, 1980; Cartwright, 1941; see also Ashby, Boynton,
& Lee, 1994). That is, exemplars that are far from the cat-
egory boundary yield (on average) fast categorization re-
sponses, and exemplars near the category boundary yield (on
average) slow categorization responses. Ashby and Mad-
dox (1991, 1994) formalized this notion and called it the
RT–distance hypothesis. This is an important empirical
finding, but it has been tested only on a fairly weak statis-
tic of the data—namely, mean RT. Higher order statistics,
such as the RT distribution and RT hazard function, pro-
vide a richer source of information about categorization
RT and thus yield more powerful empirical constraints on
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categorization RT theories (Ashby, Tein, & Balakrishnan,
1993; Townsend, 1991; Townsend & Ashby, 1978, 1983).
Lower order statistics, such as mean RT, are useful because
accurate estimates require (relatively) little data, and pro-
cedures for testing statistical significance (such as analy-
sis of variance [ANOVA]) are well developed. Most dis-
tributional level statistics require much larger sample
sizes, and some, such as the RT hazard function, do not have
well-developed procedures for testing statistical signifi-
cance. Even so, relations among lower level statistics are
implied by relations among higher level statistics, whereas
the reverse is not true. For example, an ordering of two cu-
mulative distributions implies an ordering of the means,
but an ordering of the means implies nothing about the cu-
mulative distributions (e.g., Townsend, 1991). Thus, it is
advantageous to examine both higher and lower level sta-
tistics whenever possible.

Three experiments are reported in this article. In all
three, the stimuli were circles of varying size with a radial
line of varying orientation. In each experiment, there were
two categories of nine exemplars; each and every stimulus
was presented to each observer 300–400 times. These large
sample sizes made it possible to estimate the RT distribu-
tions for individual stimuli and individual observers.1 Our
analysis of the resulting data focused on four different em-
pirical issues.

First, we examined the relationship between RT and
distance to the category boundary. There is good evidence
that mean RT decreases with distance to boundary (i.e., the
RT–distance hypothesis), but it is unknown whether this
relationship extends to higher level distributional statistics.
Another goal of this analysis was to examine a corollary
of the RT–distance hypothesis—namely, that RT is invari-
ant for all stimuli the same distance from the boundary.
Currently, it is unknown whether this prediction holds even
at the level of mean RT (although see Ashby et al., 1994).

Second, we examined the relation between correct-
response and error RT. Many categorization studies (al-
though by no means all) utilize highly discriminable cat-
egories that yield small error rates. In these situations, it
is impossible to estimate mean error RT. A complete theory
of categorization RT must make predictions about correct
and error RT and about the relation between the two (e.g.,
are categorization errors always slower than correct re-
sponses?). Currently, there are no data that provide esti-
mates of correct and error mean RTs to the same stimuli in
a multidimensional categorization experiment.

Third, we examined the effect of category response bias
on RT. Small but consistent response biases are often ob-
served in categorization studies (e.g., Huttenlocher, Hedges,
& Duncan, 1991). In fact, most models of categorization
accuracy include a parameter to account for response bias
(e.g., Ashby, 1992a; Nosofsky, 1986). Even so, little effort
has been made to examine the influence of category re-
sponse bias on categorization RT.

Finally, we examined how the nature of the category
boundary affects categorization RT. It is known that the na-
ture of the category boundary (e.g., whether the boundary

is linear or quadratic) affects category learning and as-
ymptotic accuracy (Ashby & Maddox, 1990, 1992; Maddox
& Ashby, 1993, 1996), but virtually nothing is known about
effects on RT. We examined three qualitatively different
types of category boundaries. In the selective attention ex-
periment, the category boundary was linear but was posi-
tioned in such a way that the correct strategy was to attend
selectively to one stimulus dimension and ignore the
other. In the linear integration experiment, the category
boundary was again linear but was positioned in such a
way that the correct strategy was to attend (approximately)
equally to each stimulus dimension. In the nonlinear inte-
gration experiment, the category boundary was highly
nonlinear. As we will see, the complexity of the category
boundary has a large (and systematic) effect on the RT
distributions.

To summarize, the goal of the present research was to
provide a detailed examination of RT distributions in mul-
tidimensional perceptual categorization. In particular, we
were interested in the effects of several factors on lower
and higher order properties of the RT distributions. Our aim
was to provide a rich database of empirical constraints that
must be predicted by any viable theory of categorization RT.

The next section provides an overview of several im-
portant properties of RT distributions and details the sto-
chastic dominance relations used to investigate the relation
between RT and distance to the category boundary. The
third section is devoted to the experimental method, and the
fourth section is devoted to the results. Finally, we close
with some general comments on the implications of our
findings for current and future theories of categorization RT.

RESPONSE TIME DISTRIBUTIONS AND
TESTS OF STOCHASTIC DOMINANCE

Every presentation of the same category exemplar leads
to a unique RT.2 The resulting data can be described at
many different levels. This article focuses on four. The RT
density function, denoted by f(t), gives the likelihood that
RT equals t, for each specific value of t. The cumulative
RT distribution at time t, denoted by F(t), gives the prob-
ability that the observed RT is less than or equal to t [i.e.,
F(t) = P(RT � t)]. The hazard function, denoted by h(t),
defines the probability that the response will occur in the
next instant given that it has not yet occurred. More for-
mally, the hazard function is defined as h(t) = f (t)/[1 �
F(t)]. Finally, the mean or expected RT defines the aver-
age RT and is denoted by E(RT).

One of the major goals of this article is to examine
whether stimuli that are close to the category boundary
yield RTs that are stochastically greater than RTs for stim-
uli that are farther from the boundary. Theoretically, there
are several levels at which this stochastic dominance can
be tested (Ashby et al., 1993; Townsend, 1991; Townsend &
Ashby, 1978, 1983). One of the weakest is at the level of
the mean or expected RT. Let E(RTi) represent the mean
RT for Stimulus i, and let diB represent the distance be-
tween Exemplar i and the category boundary. We can then
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conclude that the RT–distance hypothesis is supported at
the mean RT level if, for all diB � djB,

E(RTj) � E(RTi). (1)

A stronger form of stochastic dominance is an ordering at
the level of the cumulative RT distribution functions. The
RT–distance hypothesis is supported at the cumulative
distribution function level if, for all diB � djB,

Fj (t) � Fi(t), for all t � 0. (2)

An ordering of the cumulative RT distributions is a
stronger RT–distance effect than an ordering of the mean
RTs because the former implies the latter—that is, an order-
ing of the cumulatives implies an ordering of the means—
but the latter does not imply the former (Townsend, 1991;
Townsend & Ashby, 1978, 1983). An even stronger form
of stochastic dominance holds if the RT hazard functions
are ordered by distance to bound—that is, if, for all t � 0,
and all diB � djB, 

hj(t) � hi(t). (3)

An ordering of the hazard functions implies an ordering of
the cumulative distributions (Equation 2), but an ordering
of the cumulatives does not imply an ordering of the haz-
ard functions. Not only is a hazard function ordering in-
formative, but the shape of the hazard function also pro-
vides important information about the nature of perceptual
processing (e.g., Ashby et al., 1993; Luce, 1986). An even
stronger form of stochastic dominance is at the level of the
likelihood ratio

l(t) = fi(t)/fj(t). (4)

The RT–distance hypothesis is supported at the likelihood
ratio level if, for all diB � djB,

l(t) is nondecreasing in t. (5)

This is the strongest form of stochastic dominance con-
sidered in this article because if Equation 5 holds, it implies
the other three forms of stochastic dominance (i.e., Equa-
tions 1, 2, and 3). To summarize the stochastic dominance
relations, when l(t) is nondecreasing for all t � 0, and diB �
djB, then the following three relations are implied:

hj(t) � hi(t), for all t � 0

Fj(t) � Fi(t), for all t � 0

E(RTj) � E(RTi).

Each type of stochastic dominance relation was tested in
data from three multidimensional perceptual categorization
experiments.

EXPERIMENTS

The stimuli used in all experiments were circles of
varying diameter that contained a radial line of varying
orientation (see Figure 1a). These stimulus components are
thought to be separable (e.g., Garner, 1974; Garner & Fel-

foldy, 1970; Shepard, 1964; however, see Ashby & Lee,
1991; Ashby & Maddox, 1990). The stimulus ensemble
consisted of 18 circular stimuli; it is displayed, along with a
numbering scheme, in Figure 1b. In the selective attention
experiment, the experimenter-defined categorization rule
required the observers to ignore the orientation of the ra-
dial line and base their categorization judgment solely on
the diameter of the circle (see Figure 2a). In the linear in-
tegration experiment, the categorization rule required the
observers to attend to both stimulus components and use
a linear decision bound (see Figure 2b). In the nonlinear
integration experiment, the categorization rule required
attention to both dimensions and the use of a nonlinear de-
cision bound (see Figure 2c).

During presentation of the data analyses, the selective
attention and linear integration experiments will be dis-
cussed in parallel, whereas the nonlinear integration ex-
periment will be treated separately. This approach is taken
because the observers, stimuli, and experimental proce-
dures were identical in the selective attention and linear
integration experiments. The only difference between the
selective attention and linear integration experiments was
in the stimulus-to-category mappings.

Figure 1. (a) Sample stimulus. (b) Stimulus structure and num-
bering scheme.
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GENERAL METHOD

Observers
All observers in the experiments were solicited from the Arizona

State University community. The observers were paid $5 for each
experimental session. All observers had 20/20 vision or vision cor-
rected to 20/20. The same 4 observers participated in the selective
attention and linear integration experiments. All observers com-
pleted the selective attention experiment first. Three observers par-
ticipated in the nonlinear integration experiment. Observers 1 and 2

from the selective attention and linear integration experiments par-
ticipated as Observers 1 and 2, respectively, in the nonlinear inte-
gration experiment. Observer 3 was the first author. The number of
trials per session and the number of sessions completed by each ob-
server are detailed in Table 1. In each experiment, the first few ses-
sions were considered practice and were excluded from the subse-
quent analyses.3 In the selective attention experiment, the first
session was considered practice. In the linear integration experi-
ment, the first three or four sessions (depending on the observer’s
performance) were considered practice. In the nonlinear integration
experiment, the first five or six sessions (depending on the ob-
server’s performance) were considered practice.

Stimuli
The stimulus ensemble consisted of 18 circles, each with an em-

bedded radial line. These stimuli represent a subset taken from 36
stimuli that were constructed from the factorial combination of six
levels of circle diameter with six levels of radial line orientation. In
the selective attention and linear integration experiments, the six di-
ameters were 100, 109, 118, 127, 136, and 145 pixels, and the six
orientations were .126, .201, .276, .352, .427, and .503 radians. In
the nonlinear integration experiment, the six diameters were 100,
115, 130, 145, 160, and 175 pixels, and the six orientations were
.126, .251, .377, .503, .628, and .754 radians. The 18 experimental
stimuli were selected by taking 3 equally spaced stimuli from a given
level of one stimulus component (see Figure 1b). The component
level structure of the stimuli in the selective attention and linear in-
tegration experiments was such that three levels of distance to bound
could be specified. We arbitrarily assigned the labels small, medium,
and large to these distances. The stimuli classified into the three dis-
tance categories for the selective attention and linear integration ex-
periments are outlined in Table 2. In all experiments, Category A
contained 9 stimuli, and Category B contained 9 stimuli. The cate-
gory assignments along with the category boundary are presented in
Figure 2. The average visual angle was about 1º. The stimuli were
computer generated and displayed on a noninterlaced Super VGA
monitor in a dimly lit room.

Procedure
At the start of each experimental session, the observer was shown

the 18 stimuli along with the category boundary in a form similar to
that displayed in Figure 2. On every trial of the experiment, the ob-
server’s task was to categorize the stimulus as an exemplar of Cate-
gory A or Category B. The observers were instructed “to respond as
quickly as possible without sacrificing accuracy.” Each trial of the
experiment proceeded as follows. First, 1 of the 18 stimuli was se-
lected at random (each with equal probability). A fixation point (i.e.,
a plus sign [+]) appeared in the center of the screen for 500 msec.
The stimulus was presented for 250 msec, followed by a pattern
mask that remained on the screen until the observer responded. The
pattern mask was included to ensure that the maximum amount of
perceptual processing on each trial was constant. The observer re-
sponded by pressing the key marked “A” for Category A or the key
marked “B” for Category B. Each response was followed by a 1,000-
msec display of the correct category label, a 1,000-msec blank screen,
and then initiation of the next trial. Every 25 trials, the observer was
allowed to rest and was provided with the cumulative accuracy score
and correct-response mean RT. Each observer, when ready to con-
tinue, pressed a button, and the next block of 25 trials was initiated.

RESULTS
Selective Attention and

Linear Integration Experiments

A major variable of interest in this study was distance
to the category boundary. When comparing stimuli of

Figure 2. Stimulus–response mappings and experimenter-
defined category boundary for the (a) selective attention experi-
ment, (b) linear integration experiment, and (c) nonlinear inte-
gration experiment.
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Table 2
Stimuli Assigned to the Three Distance-to-Bound Categories

Distance to Bound

Experiment Category Small Medium Large

Selective attention A 2, 8, 14 4, 10, 16 1, 7, 13
B 5, 11, 17 3, 9, 15 6, 12, 18

Linear integration A 3, 5, 8, 10, 13 2, 4, 7 1
B 6, 9, 11, 14, 16 12, 15, 17 18

Note—The stimulus numbering scheme is depicted in Figure 1b.

varying distances, we can specify three types of compar-
isons. Comparisons between small-distance stimuli and
medium-distance stimuli are called one-step near com-
parisons. We use this term because they involve stimuli that
are near the bound but that differ by one arbitrary unit of
distance. Comparisons between medium- and large-distance
stimuli are called one-step far comparisons, because they
involve stimuli that are far from the bound but that differ
by one arbitrary unit of distance. Finally, comparisons be-
tween small- and large-distance stimuli are called two-
step comparisons.

It is worth noting that this “arbitrary unit” of distance
was smaller in the selective attention experiment than in
the linear integration experiment. In the selective atten-
tion experiment, the unit of distance was a function only
of the circle diameter. In the linear integration experiment,
on the other hand, the distance was determined by the cir-
cle diameter and the line orientation. Statistically, the
smaller units in the selective attention experiment made it
more difficult to identify differences in RT as a function
of distance because the distances were smaller.

Accuracy Analysis
Tables 3 and 4 display the accuracy rates by stimulus

and observer for the selective attention experiment and the
linear integration experiment, respectively. Table 5 dis-
plays the selective attention and linear integration accu-
racy rates for each observer broken down by distance to
bound and by category. The results can be summarized as
follows. First, for each observer in both experiments, ac-
curacy increased monotonically as distance to bound in-
creased. Second, accuracy rates were similar in the selec-
tive attention and linear integration experiments, with a
slight advantage for the selective attention experiment.
Third, in some cases, the observers showed a bias for one

response over the other. This can be seen most clearly for
Observers 2 and 3. For Observer 2, in both experiments,
accuracy rates for Category B were higher than for Cate-
gory A (selective attention experiment, advantage for Cat-
egory B, 3.83%; linear integration experiment, advantage
for Category B, 5.58%). This pattern held for each of the
three distance-to-bound relations. Observer 3 showed a
similar pattern; however, the bias was toward Category A
instead of Category B (selective attention experiment, ad-
vantage for Category A, 5.01%; linear integration exper-
iment, advantage for Category A, 2.41%). Observer 1
showed a moderate bias toward Category A, and Ob-
server 4 showed a slight bias toward Category B, both in
the linear integration experiment (Observer 1, advantage
for Category A, 4.22%; Observer 4, advantage for Cate-
gory B, 1.14%). As we will see shortly, these biases are
mirrored nicely in the correct-response and error mean RT
data, especially for Observers 2 and 3.

Observer’s Category Boundary
Although a display of the stimulus configuration along

with the experimenter-defined category boundary was
provided for each observer, and accuracy rates were high,
it is possible that the observers did not use the experimenter-
defined category boundary. Because our classification
scheme of small, medium, and large distances to the bound-
ary is based on the experimenter-defined boundary, it is
important to determine whether each observer used this
boundary or at least one similar to the experimenter-defined
boundary. To make this determination, we fit a linear and
quadratic category boundary to each observer’s data. (The
details of this procedure are outlined in the Appendix for
the interested reader.) The experimenter-defined category
boundary along with the “most parsimonious” boundaries
(whether linear or quadratic) are displayed in Figure 3. If

Table 1
Number of Sessions Completed by Each Observer in Each Experiment

Selective Attention Linear Integration Nonlinear Integration
Experiment Experiment Experiment

Observer (600 Trials/Session) (600 Trials/Session) (400 Trials/Session)

1 11 16 26
2 15 15 25
3* 13 15 26
4 13 15

*Observer 3 in the nonlinear integration experiment, the first author, was different from Ob-
server 3 in the selective attention and linear integration experiments.
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the extra parameters of the quadratic category boundary
did not provide a statistically significant improvement in
fit over the linear category boundary, then the most parsi-
monious boundary was linear. However, if the extra para-
meters of the quadratic boundary did provide a statistically
significant improvement in fit, then the most parsimo-
nious boundary was quadratic. Figures 3a and 3b display
boundaries for the selective attention and linear integra-
tion experiments, respectively. The dashed line in each

display represents the experimenter-defined category
boundary. An examination of Figure 3 suggests that each
observer’s most parsimonious boundary differed only
slightly from the experimenter-defined boundary. An ex-
amination of the effects of distance to the category bound-
ary on RT requires only that the observer’s category
boundary preserved the distance-to-bound relations out-
lined above (i.e., small, medium, and large distances).
Clearly, these distance relations were not violated for any

Table 3
Accuracy Rates (Acc) and Correct-Response (CR) and

Error (E) Mean RTs by Stimulus and Observer for the Selective Attention Experiment

Observer

1 2 3 4 Average

Stimulus Acc CR E Acc CR E Acc CR E Acc CR E Acc CR E

1 98.19 311 297 96.90 350 222 98.69 301 280 98.98 306 267 98.11 320 257
2 74.85 338 327 89.98 388 291 85.71 327 324 80.85 325 286 83.30 348 308
3 88.33 317 312 94.19 335 348 90.89 328 319 90.00 288 308 91.06 319 322
4 94.71 327 307 95.19 360 274 96.66 309 310 96.84 310 254 95.65 328 286
5 71.59 329 325 80.24 356 404 67.57 341 333 71.50 298 319 72.58 334 346
6 94.53 307 282 98.31 313 301 95.67 307 268 98.99 272 264 96.79 302 280
7 98.08 317 325 97.20 353 211 99.27 304 335 98.96 303 298 98.33 321 266
8 72.90 348 327 82.79 406 320 83.13 333 336 80.78 325 291 80.13 356 318
9 89.81 320 296 96.30 324 332 94.97 321 277 92.71 277 293 93.82 312 298

10 89.86 325 321 93.20 364 266 96.73 311 323 92.73 311 271 93.23 331 292
11 81.23 329 327 88.50 349 395 72.08 336 325 81.28 303 320 81.31 331 339
12 96.44 309 288 99.78 305 255 96.95 310 300 97.74 271 294 97.72 299 299
13 97.72 316 332 97.18 357 243 98.58 300 286 99.75 307 299 98.23 323 274
14 64.41 336 335 67.46 420 368 74.44 341 353 69.19 330 295 68.54 360 339
15 93.07 315 290 97.90 317 319 91.00 320 298 94.90 279 293 94.50 309 297
16 91.28 330 335 91.37 377 310 96.80 314 323 94.67 317 266 93.35 337 312
17 84.29 325 316 93.52 345 350 78.55 337 312 82.02 292 311 85.09 327 319
18 95.18 305 287 98.55 299 254 97.97 310 261 98.93 270 286 97.67 296 274

Average 87.48 322 321 92.18 348 338 89.79 318 323 89.94 298 299 89.95 324 321

Note—Correct-response and error mean RTs are in milliseconds.

Table 4
Accuracy Rates (Acc) and Correct-Response (CR) and Error (E) Mean RTs

by Stimulus and Observer for the Linear Integration Experiment

Observer

1 2 3 4 Average

Stimulus Acc CR E Acc CR E Acc CR E Acc CR E Acc CR E

1 99.51 349 303 99.04 367 222 99.73 346 328 99.17 343 248 99.36 352 257
2 98.98 362 383 97.55 384 310 99.17 364 389 96.65 360 304 98.11 367 326
3 87.43 399 387 78.68 471 422 84.43 427 359 83.29 408 365 83.36 426 387
4 98.25 359 318 96.78 390 228 99.48 363 472 97.78 358 273 98.05 367 277
5 77.21 403 409 78.36 473 390 77.03 425 419 82.63 415 378 78.75 429 401
6 60.34 416 408 82.48 445 488 72.47 411 433 77.47 393 451 73.13 418 436
7 97.73 358 391 98.53 385 293 99.72 349 431 98.83 355 302 98.64 362 348
8 82.72 400 402 80.30 441 377 82.21 400 455 84.47 399 393 82.41 410 406
9 86.82 390 386 93.28 386 587 85.18 411 402 91.44 355 369 89.16 385 420

10 76.70 390 429 76.10 461 418 78.09 400 462 80.89 410 405 77.90 414 430
11 87.96 380 369 96.52 376 583 89.52 408 372 92.05 354 360 91.58 379 391
12 97.40 361 326 100.00 335 n.a. 97.21 374 349 99.25 319 291 98.51 346 331
13 86.82 383 431 85.54 447 379 93.30 381 435 81.41 394 392 86.87 401 404
14 82.42 391 379 92.62 393 480 77.36 433 378 87.37 367 394 85.48 394 397
15 97.35 350 347 100.00 334 n.a. 97.72 376 314 99.71 324 289 98.69 346 331
16 61.85 408 397 78.59 426 466 71.51 450 385 71.54 375 400 70.74 414 408
17 97.32 354 352 98.68 351 327 98.75 380 378 98.40 326 285 98.27 353 337
18 96.77 350 337 99.76 323 308 99.43 362 312 99.42 314 346 98.86 337 333

Average 87.42 375 398 90.86 394 425 89.13 389 409 90.08 362 390 89.36 380 405

Note—Correct-response and error mean RTs are in milliseconds.
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of the observers. A discussion of the best-fitting category
boundaries, along with possible explanations for the mod-
erate quadratic trend, is given in the Appendix.

Stochastic Dominance Tests
of the Response Time Data

One problem in testing RT hypotheses is that they make
predictions about the relation of RT to the position of
stimuli in the perceptual space, not the physical space.
Since the perceptual space is unobservable, this could cre-
ate problems in testing the RT hypothesis. Fortunately,
much is known about the perceptual representation of the
stimuli used in these experiments (at least about the mean
perceptual effect). First, the Stevens exponent for length is
very close to one, suggesting a close correspondence be-
tween the physical and perceived size of the stimulus. Sec-
ond, psychological scaling (MDS) solutions for these
stimuli, from many experiments, suggest a close corre-
spondence between the physical and the perceptual space
(Nosofsky, 1986; Nosofsky, Clark, & Shin, 1989; Shepard,
1964). Finally, since much of the present analyses require
only an ordinal relation between RT and position of the
stimulus in the stimulus space, this ordinal relation will
remain intact under a wide range of monotonic transfor-
mations that might characterize the relation between the
physical and the perceptual space (e.g., any strictly in-
creasing monotonic transformation). Thus, these analyses
do not require a close correspondence between the physical
and perceptual spaces.

Relation between correct-response and error RT.
Tables 3 and 4 show the correct-response and error mean
RTs for each stimulus and observer for the selective at-
tention and linear integration experiments, respectively.

Table 5 displays the correct-response and error mean RTs
separately by distance to bound, experiment, and cate-
gory. Working within standard univariate signal detection
theory, Thomas (1971; see also Thomas & Myers, 1972)
showed that the RT–distance hypothesis makes strong pre-
dictions about the relation between RT on correct and in-
correct trials. Specifically, Thomas showed that, for most
common perceptual distributions (e.g., normal), error RT
will be longer than correct-response RT.4 To test this hy-
pothesis, we performed t tests on the correct-response and
error mean RTs for each stimulus and observer. Averaged
across observers and stimuli, 7% (selective attention ex-
periment) and 15% (linear integration experiment) of the
correct-response mean RTs were significantly faster than
the error mean RTs (in support of the RT–distance hypoth-
esis), and 29% (selective attention experiment) and 25%
(linear integration experiment) of the correct-response
mean RTs were significantly slower than the error mean
RTs (providing evidence against the RT–distance hypoth-
esis). Interestingly, the majority of the tests were not sta-
tistically significant and, thus, did not provide support for
or evidence against the RT–distance hypothesis (64% in
the selective attention experiment and 60% in the linear
integration experiment). In the selective attention experi-
ment, the correct-response and error mean RTs were very
similar. In fact, averaged across stimuli and observers, the
error mean RT was 3 msec faster than the correct-response
mean RT. In the linear integration experiment, the error
mean RTs were consistently longer than the correct-
response mean RTs for all 4 observers. This difference was
relatively large, averaging 25 msec across observers. The
results from the linear integration experiment support the
prediction of the RT–distance hypothesis that errors will

Table 5
Accuracy Rates (Acc) and Correct-Response (CR) and Error (E) Mean RTs for the

Selective Attention and Linear Integration Experiments by Observer, Distance to Bound, and Category

Selective Attention Experiment Linear Integration Experiment

Distance to Bound Distance to Bound

Small Medium Large Average Small Medium Large Average

Category Acc CR E Acc CR E Acc CR E Acc CR E Acc CR E Acc CR E

Observer 1

A 70.55 341 330 91.91 327 323 98.00 315 319 86.84 326 328 82.11 395 413 98.30 360 365
B 78.96 328 323 90.44 317 301 95.39 307 285 88.14 317 313 75.60 395 394 97.36 355 342

Average 74.78 334 327 91.20 322 311 96.72 311 296 87.48 322 321 78.91 395 403 97.83 357 351

Observer 2

A 79.91 403 342 93.29 367 287 97.09 353 226 90.25 372 317 79.90 458 399 97.63 386 268
B 87.28 350 392 96.15 325 338 98.86 306 278 94.08 326 373 88.82 403 496 99.58 340 327

Average 83.67 375 362 94.73 345 305 97.97 330 240 92.18 349 339 84.44 429 435 98.61 363 277

Observer 3

A 81.05 333 341 96.73 311 318 98.85 302 294 92.27 314 335 83.11 406 428 99.45 359 424
B 72.64 338 325 92.24 323 302 96.84 309 277 87.26 322 316 79.44 421 397 97.92 377 343

Average 76.87 336 331 94.53 317 307 97.85 305 281 89.79 318 324 81.32 413 412 98.68 368 360

Observer 4

A 76.84 327 291 94.70 313 266 99.23 305 284 90.11 314 287 82.56 405 387 97.74 358 293
B 78.30 298 317 92.61 281 299 98.55 271 285 89.77 282 311 83.95 368 406 99.10 323 287

Average 77.56 312 304 93.68 297 285 98.89 288 285 89.94 298 299 83.27 386 396 98.42 340 291

Note—Correct-response and error mean RTs are in milliseconds.

Acc CR E Acc CR E

99.51 349 303 89.49 376 410
96.77 350 337 85.27 374 390
98.20 349 332 87.42 375 399

99.04 367 222 88.03 420 389
99.76 323 308 93.61 371 492
99.40 345 239 90.82 395 425

99.73 346 328 90.32 381 428
99.43 362 312 87.91 397 394
99.59 354 317 89.13 389 409

99.17 343 248 89.50 380 379
99.42 314 346 90.64 345 402
99.29 329 287 90.08 362 390
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be slower than correct responses. The results from the se-
lective attention experiment neither support nor provide
strong evidence against this prediction. It is worth mention-
ing that the predictions of the RT–distance hypothesis and
the finding of errors being slower than correct responses
are somewhat counterintuitive since we would expect a
decision process that continues longer to be more accurate
than a decision process that does not continue for as long.
The RT–distance hypothesis predicts this counterintuitive
result because percepts leading to errors will, on average,
lie closer to the category boundary than will percepts that
lead to correct responses.

Why might the correct-response and error mean RTs
support the RT–distance hypothesis in the linear integration
experiment and not in the selective attention experiment?
There are at least two possible explanations. First, there is
evidence that task difficulty affects the prevalence of “fast
guessing,” with easy tasks yielding more fast guesses than
difficult tasks. A robust result in the two-choice RT literature
is that errors are often faster than correct responses when
the discrimination is easy, but they are slower when the
discrimination is difficult (see Link & Heath, 1975, Luce,
1986, Ratcliff, 1978, Townsend & Ashby, 1983, and Vick-
ers, 1979,  for reviews of this literature). One possible ex-
planation of this result is that, when the discrimination is
very easy, any processing of the stimulus leads to a correct
response. As a result, when observers are pressed to respond
even more quickly, they can do so only by ignoring all
stimulus information on some proportion of trials and by
guessing. This “fast-guess” model of the speed–accuracy
tradeoff predicts that error RTs will be faster than correct-
response RTs (Ollman, 1967; Yellott, 1968). Notice that
the fast errors do not result because errors are processed
faster than correct responses, but rather because many er-
rors result from guesses that happen to be fast but incorrect.

When the discrimination is relatively difficult, an em-
phasis on speed causes observers to respond on the basis of
partial processing. No (or very little) fast guessing occurs,
but stimuli are not processed completely. Since all stimuli
are processed, percepts leading to errors will, on average,
lie closer to the category boundary than will percepts that
lead to correct responses, with the result that error RTs are
longer than correct-response RTs. In this case, the RT–
distance hypothesis is supported. These findings are rele-
vant, and they might explain the difference in correct-re-
sponse and error mean RT orderings across experiments,
because the selective attention experiment should have been
an easier task to perform than the linear integration ex-
periment. In the selective attention experiment, only one
stimulus component was relevant, and all processing could
be focused on that component, whereas, in the linear inte-
gration experiment, both stimulus components had to be
processed. In addition, the fact that the stimuli were com-
posed of separable dimensions should have made this fo-
cusing operation especially easy, and the integration process
more difficult. This fast-guess hypothesis is speculative at
this point, but it provides an interesting account of the
data. Clearly, more work is necessary to rigorously test this
hypothesis (see Townsend & Ashby, 1983, pp. 263–271,
for a review of more rigorous methods of testing the fast-
guess hypothesis).

A second possibility is that the response bias observed
in the accuracy data might account for some of the cases in
which error mean RTs were shorter than correct-response
mean RTs. The logic is as follows. Suppose an observer is
biased toward response “A.” In this case, the observer will
be fast and accurate when response “A” is correct and will
be slow and less accurate when response “B” is correct. In
addition, this observer will be slow when incorrectly re-
sponding “B” to an “A” stimulus but should be fast when

Figure 3. Stimuli, experimenter-defined, and “most parsimonious” category boundaries for each ob-
server in the (a) selective attention experiment and (b) linear integration experiment. The plus signs de-
note “A” stimuli, and the circles denote “B” stimuli. The dashed line denotes the experimenter-defined
bound, and the solid lines denote the “most parsimonious” bound.
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incorrectly responding “A” to a “B” stimulus. In short, such
a bias predicts that errors should be relatively slow and
correct responses fast for the “biased” category, whereas
errors should be fast and correct responses slow for the
“unbiased” category. To test this hypothesis, we examined
the correct-response and error mean RTs for the biased
and unbiased categories for each case in which a bias was
observed in the accuracy data. Because there were nine
Category A stimuli and nine Category B stimuli, there were
nine tests of this hypothesis for the biased and unbiased
categories. Recall that there were six cases in which a re-
sponse bias was observed. Observer 1 showed a bias to-
ward response “A” in the linear integration experiment,
Observer 2 showed a bias toward response “B” in both ex-
periments, Observer 3 showed a bias toward response “A”
in both experiments, and Observer 4 showed a bias toward
response “B” in the linear integration experiment. The data
in Tables 3 and 4 provide strong support for this “response
bias” hypothesis. For five of the six cases in which a bias
existed, six of nine stimuli showed the predicted ordering
for the biased category (i.e., longer error mean RT than
correct-response mean RT). In the final case, five of seven
stimuli showed the predicted ordering (for two stimuli,
there were no errors). In five of the six cases, nine of nine
stimuli showed the predicted ordering for the unbiased
category (i.e., shorter error mean RT than correct-response
mean RT). In the final case, eight of nine stimuli showed
the predicted pattern. It is important to note that, although
the RT–distance hypothesis predicts that responses (both
correct and error) to the favored category will be faster
than responses to the nonfavored category, it still always
predicts that, for any particular stimulus, errors should be
slower than corrects. Thus, the response bias hypothesis
tested here is fundamentally incompatible with the RT–
distance hypothesis.

Ratcliff and colleagues (Ratcliff & Rouder, 1997; Rat-
cliff, Van Zandt, & McKoon, 1997) recently developed
and tested a diffusion model that predicts the pattern of
results observed in these experiments. The critical factor in
this model is that there is variability across trials both in
the starting point of the diffusion process and in the mean
drift rate. Variability in the starting point leads to fast er-
rors, and variability in the mean drift rate leads to slow er-
rors. When applied to conditions that vary in difficulty,
one or the other factor tends to dominate the predicted RT.
In line with the present results, when the discrimination is
easy, errors are predicted to be faster than correct re-
sponses, and when the discrimination is difficult, errors
are predicted to be slower than correct responses.

Correct-response mean RT. A robust finding in pre-
vious research is that correct-response mean RT decreases
as distance to the category boundary increases (Bornstein &
Monroe, 1980; Cartwright, 1941). In line with previous re-
search, this RT–distance hypothesis finds support across ex-
periments, observers, and categories (see Table 5). In every
case, mean RT decreased as distance to bound increased.5

To test the predicted correct-response mean RT orderings
more rigorously, t tests were conducted between every

possible pair of stimuli (see Equation 1). Comparisons can
be classified into four types: one-step near, one-step far,
two-step, and parallel. The one- and two-step comparisons
have already been defined. The parallel comparisons are
those between stimuli that were the same distance from
the experimenter-defined decision bound. Statistically
significant one- and two-step mean RT differences would
provide evidence in support of the RT–distance hypothe-
sis, whereas statistically nonsignificant parallel RT dif-
ferences provide support for the hypothesis. To be con-
servative in our statistical analyses, we used different
significance levels for the one- and two-step comparisons
and the parallel comparisons. Specifically, we set � = .01
for the one- and two-step comparisons, and � = .30 for the
parallel comparisons. 

These data from these analyses are in Table 6, which
presents the percentages of comparisons that provide sup-
port for the RT–distance hypothesis. Also included are the
mean RT differences associated with each series of statis-
tical tests, as well as the the number of t tests conducted for
each type of comparison. The results can be summarized
as follows. First, restricting attention to the one- and two-
step comparisons, a large percentage of the tests supported
the RT–distance hypothesis. On the basis of the averaged
data from both experiments, 100% of the two-step com-
parisons and well over 70% of the one-step comparisons
supported the RT–distance hypothesis. In addition, notice
that the mean RT differences are relatively large, ranging
from 14 to 64 msec. The data from the parallel compari-
sons provided somewhat less support. Even so, nearly
60% and just over 70% of the parallel tests supported the
RT–distance hypothesis in the selective attention and lin-
ear integration experiments, respectively. Note also that the
parallel mean RT differences are small (9 and 21 msec).
The latter result was not completely unexpected given the
fact that the best-fitting decision bounds deviated slightly
from the experimenter-defined bound. The “parallel” stim-
uli are equidistant only from the experimenter-defined
bound. If the observer’s bound differs from the experimenter-
defined bound, then many of these stimulus pairs will not
be equidistant. An examination of Figure 3 suggests that
there were small deviations from the experimenter-defined
boundary. Even so, a large percentage of the parallel tests
supported the distance to bound hypothesis.

Cumulative RT distributions. A stronger test of the
RT–distance hypothesis requires a comparison of the cu-
mulative RT distributions (see Equation 2). Specifically,
the RT–distance hypothesis is supported if Fj (t) � Fi (t)
for all t � 0 and Stimuli i and j for which diB � djB, where
diB is the distance from Stimulus i to the category bound-
ary. To test this hypothesis, Kolmogorov–Smirnov tests
were conducted using the same strategy described for the
mean RT comparisons. Specifically, all possible one-step,
two-step, and parallel comparisons were tested using the
significance levels outlined above. 

These analyses are presented in Table 7 using the same
format as that used in Table 6. The results mirror those for
mean RT. Strong support was found for the RT–distance
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hypothesis in both experiments for all observers and for
the one-step, two-step, and parallel comparisons. For il-
lustrative purposes, the cumulative RT distributions for
one small-, medium-, and large-distance stimulus are pre-
sented in Figure 4 for a representative observer (Ob-
server 2). For the selective attention experiment (Figure 4a),
the presented stimuli are 7, 10, and 8. For the linear inte-
gration experiment (Figure 4b), the analogous stimuli are
1, 4, and 8. Notice that the cumulative RT distributions are
clearly ordered in the way predicted by the RT–distance
hypothesis.

RT hazard function ordering. The hazard functions
were estimated using the random smoothing technique of
Miller and Singpurwalla (1977; see also Ashby et al.,
1993). Unlike the analyses of the mean RT and cumulative
RT distributions, no well-established statistical test exists
for determining whether two hazard functions are ordered.
Thus, we simply plotted all pairs of hazard functions for
the one- and two-step comparisons and inspected them vi-
sually. Although we have no way of quantifying these
analyses, in general, the hazard function orderings supported
the RT–distance hypothesis. For example, Figure 5 depicts
the hazard functions for the same stimuli presented in Fig-
ure 4. Although there are some violations of the predicted
ordering, in general, the hazard functions clearly appear to
be ordered by distance to the bound.

RT hazard function shape. The shape of the hazard
functions is also informative. Notice (in Figure 5) that the
hazard functions for the stimuli farthest from the bound
are more “peaked” than are the functions for the stimuli
close to the bound. Although differing in magnitude, this
pattern held up for all stimuli and observers. Interestingly,
this same pattern has been observed in simple detection
(Burbeck & Luce, 1982), subitizing (Balakrishnan & Ashby,
1992), and memory scanning (Ashby et al., 1993). Specif-
ically, in each case, the hazard function is peaked for the
“easier” trials and is less peaked for the “difficult” trials.
This is especially interesting because of the large RT vari-
ation across these tasks. For example, mean RT on a difficult

detection trial (i.e., low-intensity stimulus) is typically
less than mean RT on an easy memory scanning trial (i.e.,
small memory set). Yet, within a task, the same change in
the hazard function occurs with changes in the difficulty
of the trials. This remarkable similarity across such different
tasks suggests a possible common mechanism that may
operate in virtually all perceptual decision-making tasks.

The nonmonotonicity of the hazard functions associ-
ated with the stimuli that are farthest from the bound rules
out a large class of serial processing models (see, e.g., Ashby
et al., 1993). The RT hazard function at time t gives the
likelihood that a response will be made in the next instant,
given that one has not already been made. In a serial
process, as time increases, the number of stages remaining
uncompleted tends to decrease. As a result, most serial
models predict that the hazard function steadily increases
with time. Such models cannot account for the hazard
functions shown in Figure 5.

RT likelihood ratios. A test of the monotonicity of
likelihood ratios is the strongest test of stochastic domi-

Table 7
Percentages of Correct-Response Cumulative 
RT Comparisons That Differed Significantly 
(Based on Kolmogorov–Smirnov [K–S] Tests)

Observer

Comparison No. of K–S Tests 1 2 3 4 Average

Selective Attention Experiment

One-step far 18 61 94 78 39 68
One-step near 18 44 83 67 83 69
Two-step 18 100 100 100 100 100
Parallel 18 33 61 39 22 38

Linear Integration Experiment

One-step far 6 67 100 67 67 75
One-step near 30 100 100 100 100 100
Two-step 10 100 100 100 100 100
Parallel 26 65 69 88 50 68

Note—For the one- and two-step comparisons, the significance level
was set to � = .01. For the parallel comparisons, the significance level
was set to � = .30.

Table 6
Percentages of Correct-Response (CR) Mean RT Comparisons That Differed Significantly

(Based on t Tests) and the Average (Av) Mean RT Differences for These Comparisons (in Milliseconds)

Observer

1 2 3 4 Average

Comparison No. of t Tests CR Av CR Av CR Av CR Av CR Av

Selective Attention Experiment

One-step far 18 83 12 67 21 89 13 72 10 78 14
One-step near 18 50 15 83 35 89 20 89 17 78 22
Two-step 18 100 23 100 48 100 30 100 24 100 31
Parallel 18 44 6 78 134 56 6 56 7 59 9

Linear Integration Experiment

One-step far 6 67 11 67 21 83 16 67 14 71 16
One-step near 30 100 38 100 69 100 48 100 47 100 51
Two-step 10 100 46 100 87 100 62 100 59 100 64
Parallel 26 81 14 73 29 69 25 65 17 72 21

Note—For the one- and two-step comparisons, the significance level was set to � = .01. For the parallel comparisons, the sig-
nificance level was set to � = .30. 
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nance of stochastic dominance considered in this article.
From a statistical standpoint, likelihood ratios are difficult
to estimate. Fortunately, however, there is a statistically re-
liable method of determining whether likelihood ratios are
nondecreasing that does not require an estimate of the
likelihood ratio (Ashby et al., 1993). A well-known result
in signal detection theory states that the likelihood ratio
(the ratio of the signal-plus-noise over the noise distribu-
tions) is an increasing function of the sensory variable, if
and only if the ROC curve is concave6 (Laming, 1973; Pe-
terson, Birdsall, & Fox, 1954). The survivor function is
defined as one minus the cumulative distribution function,
1 � F(t), so an ROC curve is a plot of the survivor func-
tion of the signal-plus-noise distribution [i.e., P(hit)]
against the survivor function of the noise distribution [i.e.,
P(false alarm)]. Therefore, an alternative method for de-
termining whether the likelihood ratio, l(t) = fi(t)/fj(t), is
increasing in t is to plot the survivor function of Stimulus i

against the survivor function of Stimulus j and check
whether the resulting function is concave (see Ashby et al.,
1993, for more details). Unfortunately, we know of no sta-
tistical test for determining whether a function is concave,
so visual inspection was employed. Overall, there was no
evidence that concavity was violated. This is seen clearly
in Figure 6, which shows the RT–ROC curves for the same
stimuli used in Figures 4 and 5.

Summary
The stochastic dominance tests indicate that the dis-

tance from the stimulus to the category boundary strongly
affects the time it takes for the observer to respond. Specif-
ically, the tests demonstrate that stimuli that are close to
the category boundary yield RTs that are stochastically
greater than RTs for stimuli that are farther from the cat-
egory boundary. These findings provide strong support
for the RT–distance hypothesis (Ashby & Maddox, 1994;
Maddox & Ashby, 1996). The RT–distance hypothesis was
supported in two qualitatively different types of categoriza-
tion problems: one in which the experimenter-defined

Figure 4. Representative short-, medium-, and long-distance-
to-bound cumulative RT distributions from Observer 2 for the
(a) selective attention experiment and (b) linear integration ex-
periment. In the selective attention experiment, the plots are for
Stimuli 7, 8, and 10. In the linear integration experiment, the
plots are for Stimuli 1, 4, and 8.

Figure 5. Representative short-, medium-, and long-distance-
to-bound hazard functions from Observer 2 for the (a) selective
attention experiment and (b) linear integration experiment. In
the selective attention experiment, the plots are for Stimuli 7, 8,
and 10. In the linear integration experiment, the plots are for
Stimuli 1, 4, and 8.
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strategy was to ignore a stimulus component (i.e., attend
selectively), and another in which both components needed
(approximately) equal attention. In both cases, however,
the experimenter-defined decision bound was approxi-
mately linear. In contrast to predictions of the RT–distance
hypothesis, error mean RTs were not always longer than
correct mean RTs, especially in the selective attention ex-
periment. One possible explanation is that the relatively
easy selective attention experiment led to a greater number
of fast guesses. A second possibility is that a response bias
existed for many observers that led to faster responding
for one category label over the other. This hypothesis pro-
vided a good account of the data, and it appears to account
for many of the violations of the RT–distance hypothesis.

To extend our analyses of RT distributions even further,
we had observers participate in a categorization problem
with a highly nonlinear category boundary. We turn to this
experiment now.

Nonlinear Integration Experiment

Because the category boundary is nonlinear, there is no
simple method for classifying the stimuli into small-,
medium-, and large-distance categories, as was done in the
selective attention and linear integration experiments. How-
ever, several pairs of stimuli clearly differed in distance to
bound. Thus, we will focus primarily on these pairs of stim-
uli. For example, in Category A, Stimulus 1 and Stimulus
18 were farther from the bound than were Stimuli 4, 7, 12,
13, 15, 16, and 17. Thus, the stochastic dominance tests will
be performed between Stimulus 1 and each of these seven

other stimuli and between Stimulus 18 and each of these
other stimuli. In Category B, Stimulus 3, Stimulus 5, and
Stimulus 8 were farther from the bound than were Stimuli
2, 6, 9, 10, 11, and 14. Thus, the stochastic dominance tests
will be performed between each one of these relevant pairs.
In total, we identified 32 pairs of stimuli to test.

Accuracy Analysis and
Observer’s Category Boundary

Table 8 presents the accuracy rates for each stimulus by
observer for the nonlinear integration experiment. Figure 7
presents the experimenter-defined and best-fitting quadratic
category boundary. As in the previous experiments, the
accuracy rates increased with distance to bound. In addition,
the best-fitting boundary was similar to the experimenter-
defined boundary and preserved the distance-to-bound re-
lations. Interestingly, there were a few stimuli that appeared
to give the observers some trouble. For example, Observer 3
frequently classified Stimuli 4, 10, and 12 into the incor-
rect category. The accuracy rates for these stimuli for Ob-
server 3 were 33%, 48%, and 34%, respectively. The best-
fitting quadratic boundary for Observer 3 predicted
accurately the poor performance for Stimuli, 4, 10, and 12,
yielding predicted accuracy rates of 34%, 47%, and 37%,
respectively. 

Response Time Analyses
Correct-response and error mean RT. Table 8 dis-

plays the correct-response and error mean RTs for each
observer. As in the previous experiments, correct-response

Figure 6. Representative ratio of the cumulative distribution plots for a one-step far, one-step
near, and two-step comparison from Observer 2 for the selective attention and linear integration
experiments. In the selective attention experiment, the plots are for Stimuli 8 and 10 (one-step near),
7 and 10 (one-step far), and 7 and 8 (two-step). In the linear integration experiment, the plots are
for Stimuli 4 and 8 (one-step near), 1 and 4 (one-step far), and 1 and 8 (two-step).
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mean RT was longest near the decision bound and fell off
monotonically with distance to bound. To test the RT–
distance hypothesis, we performed t tests on the correct-
response and error mean RTs for each stimulus and ob-
server. Averaged across observers and stimuli, 37% of the
correct-response mean RTs were significantly faster than
the error mean RTs (in support of the RT–distance hy-
pothesis), and 17% of the correct-response mean RTs
were significantly slower than the error mean RTs (pro-
viding evidence against the RT–distance hypothesis).
Forty-six percent of the tests were not significant and,
thus, did not provide support for or evidence against the
RT–distance hypothesis. Averaged across stimuli, the error
mean RTs were longer than the correct-response mean
RTs for each observer. The difference was quite large (av-
erage error minus correct-response mean RT = 35 msec)
and was somewhat larger than in the linear integration ex-
periment (average error minus correct-response mean
RT = 25 msec) and much larger than in the selective at-
tention experiment (average error minus correct-response
mean RT = �3 msec). A similar pattern holds when we
examine the percentages of t tests that provide statistically
significant support for the RT–distance hypothesis: 37%,
15%, and 7% in the nonlinear integration, linear integra-
tion, and selective attention experiments, respectively. No-
tice that these data provide support for the hypothesis sug-
gested earlier that task difficulty increases the difference
between correct-response and error mean RT. Although the
correct-response and error mean RT data, averaged across
stimuli, provide strong support for the RT–distance hypoth-
esis, there were still several stimuli for which the ordering
was violated. When discussing the selective attention and
linear integration data, we hypothesized that a response bias
might account for some of these violations. Further ex-

amination of the nonlinear integration data suggests that a
response bias might also be operative in this experiment.
Although Observer 1 showed no bias, Observers 2 and 3
showed a strong bias to respond “B.” Thus, when response
“B” is the correct response, we expect correct responses
to be fast and errors to be slow. When response “A” is the
correct response, we expect correct responses to be slow
and errors to be fast. In support of this hypothesis, for
seven of the nine Category B stimuli, the correct-response
mean RT was shorter than the error mean RT. Analo-
gously, for five of nine (Observer 2) and seven of nine (Ob-
server 3) Category A stimuli, the correct-response mean
RT was longer than the error mean RT. Despite the possi-
ble response bias, taken as a whole, the correct-response and
error mean RTs supported the RT–distance hypothesis.

To determine whether the 32 pairs of stimuli that differ
in distance to bound yielded mean RT differences in the
direction predicted by the RT–distance hypothesis, t tests
were performed. For Observers 1, 2, and 3, respectively,
81%, 81%, and 56% of the tests provided support for the
RT–distance hypothesis.

Cumulative RT distributions. The same stimulus
pairs were used to test the stronger form of stochastic dom-
inance based on the cumulative RT distributions. For Ob-
servers 1, 2, and 3, respectively, 88%, 84%, and 66% of the
Kolmogorov–Smirnov tests provided support for the
RT–distance hypothesis. Note that these percentages were
higher than for the analogous tests on the mean RTs. Since
an ordering of the cumulative distribution functions im-
plies an ordering of the mean RTs, these results, therefore,
reinforce our conclusion that the mean RT orderings are
reliable. A plot of the cumulative RT distributions for
Stimuli 1 and 4 for a representative observer (Observer 2)
are depicted in Figure 8a.

Table 8
Accuracy Rates (Acc) and Correct-Response (CR) and Error (E) Mean RTs

by Stimulus and Observer for the Nonlinear Integration Experiment

Observer

1 2 3 Average

Stimulus Acc CR E Acc CR E Acc CR E Acc CR E

1 97.49 481 472 95.04 437 441 93.20 465 465 95.16 459 457
2 89.86 503 610 95.59 400 478 97.21 429 482 94.26 443 556
3 99.79 436 387 99.56 380 715 99.59 407 612 99.65 408 608
4 61.81 600 593 48.58 519 444 33.04 513 471 47.77 552 492
5 98.83 477 566 98.23 379 403 98.87 402 486 98.64 418 471
6 99.06 459 499 97.39 401 440 96.15 411 501 97.54 424 479
7 98.32 505 470 96.23 446 392 94.39 460 442 96.29 470 429
8 93.16 563 612 98.25 398 538 94.93 436 471 95.45 464 550
9 95.50 525 661 97.34 403 653 98.26 406 563 97.02 446 639

10 68.88 625 584 59.30 502 492 47.91 517 481 59.09 556 512
11 83.48 577 636 94.85 435 533 93.36 445 490 90.54 482 583
12 64.22 647 581 72.12 540 429 34.22 526 455 57.15 577 484
13 97.49 484 652 97.39 431 512 97.78 446 552 97.56 453 571
14 78.43 585 508 80.24 502 491 61.44 515 503 73.59 537 502
15 81.22 592 637 87.45 498 469 58.88 502 495 76.85 532 528
16 98.38 473 533 92.44 475 542 92.94 458 604 94.64 469 569
17 98.72 482 452 94.56 465 482 89.62 472 470 94.37 473 472
18 98.63 472 481 99.77 431 298 94.03 462 438 97.34 455 441

Average 88.85 520 586 88.94 441 469 82.38 449 479 86.72 471 506

Note—Correct-response and error mean RTs are in milliseconds.
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RT hazard functions and RT likelihood ratios. The
RT hazard functions and likelihood ratios in the nonlinear
integration experiment mimicked those in the two linear
experiments. In general, on the basis of visual inspection,
the hazard functions were ordered in the direction pre-
dicted by the RT–distance hypothesis. In addition, the haz-
ard functions were again peaked for stimuli that were far-
thest from the decision bound. Finally, although some
violations of concavity existed, the RT–ROC curves were
generally concave, which supports the hypothesis that the
likelihood ratios increased with RT. Figures 8b and 8c de-
pict the hazard functions and the RT–ROC for Stimuli 1
and 4 from Observer 2.

GENERAL DISCUSSION
AND CONCLUSIONS

The goal of this study was to collect a rich set of cate-
gorization RT data that could be used to test developing
models of categorization RT. The observers participated
in three categorization experiments that differed qualita-
tively in the nature of the experimenter-defined category
boundary. In the selective attention experiment, the observer
was required to attend selectively to one dimension of the
stimulus while ignoring the other dimension. In the linear

integration experiment, the observer was required to at-
tend (approximately) equally to both stimulus dimensions
and integrate the stimulus information in a linear fashion.
In the nonlinear integration experiment, the observer was
required to attend to both stimulus dimensions and inte-
grate the stimulus information in a nonlinear fashion. The
observers completed several sessions in each experiment,
resulting in a large number of repetitions for each indi-
vidual stimulus. These large sample sizes made it possible
to obtain accurate estimates of the RT distributions,
thereby allowing us to examine the effects of many im-
portant factors on categorization RT.

A robust finding in the empirical literature is that correct-
response mean RT decreases with the distance between
the exemplar and the category boundary (e.g., Bornstein
& Monroe, 1980; Cartwright, 1941; see also Ashby et al.,
1994). This RT–distance hypothesis found support in the
data from all observers across all three experiments both
at the relatively weak level of correct-response mean RT
and at higher distributional levels (i.e., at the level of the
cumulative RT distribution, the RT hazard function, and
the RT likelihood ratio). In addition, we found strong ev-
idence of RT invariance for all stimuli the same distance
from the boundary (and within the same category). Thus,
we found no evidence that position within the category

Figure 7. Stimuli, experimenter-defined, and best-fitting quadratic category
boundaries for each observer in the nonlinear integration experiment. The plus
signs denote “A” stimuli, and the circles denote “B” stimuli. The dashed line de-
notes the experimenter-defined bound, and the solid lines denote the “most parsi-
monious” bound.
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structure had any effect on RT (once distance to bound
was controlled). Among the important implications of this
result is that our data showed no signs of a similarity or
typicality effect. For example, Figures 1 and 2 indicate that
in the linear integration experiment, Stimulus 8 was more
similar and more typical to the Category A exemplars than
were Stimuli 3 or 13 (by any currently popular similarity
and typicality measures), although distance to the bound-
ary was the same for these three stimuli. Thus, if there was
a tendency for the observers to respond “A” more quickly to
stimuli that were more typical of Category A or more sim-
ilar to the Category A exemplars, then RT to Stimulus 8
would have been less than RT to Stimuli 3 or 13. We found
no evidence of such differences.

In its most popular forms, the RT–distance hypothesis
predicts error RTs to be larger than correct-response RTs
(Thomas, 1971; see also Thomas & Myers, 1972). This pre-
diction was supported in the linear integration and nonlin-
ear integration experiments; however, in the selective atten-
tion experiment, correct and error RTs were approximately
equal. The selective attention task is the “easiest” task, in
the sense that the observer need only attend to one of two
separable stimulus components. The nonlinear integration
task is the most difficult because both stimulus compo-
nents must be attended, and information about these com-
ponents must be integrated in a nonlinear fashion. The lin-
ear integration task is intermediate in difficulty because it
requires information integration, but integration in a lin-
ear fashion. Two reasonable, but tentative, explanations are
offered for these results. One possibility is that the rela-
tively easy selective attention experiment led to a greater
number of fast guesses than did the more difficult inte-
gration experiments and thus led to faster error RTs. A
second possibility is that a response bias existed for many
observers that led to faster responding for one category
label over the other. Both hypotheses are reasonable, and
they appear to account for many of the violations of the
RT–distance hypothesis.

Another interesting aspect of the present data was the
effect of distance to the boundary on the shape of the RT
hazard functions. Specifically, the hazard functions for the
stimuli farthest from the bound were more “peaked” than
were the functions for the stimuli close to the bound. In-
terestingly, this same pattern has been observed in simple
detection (Burbeck & Luce, 1982), subitizing (Balakrish-
nan & Ashby, 1992), and memory scanning (Ashby et al.,
1993). In each case, the hazard function is peaked for the
easier trials and is less peaked for the difficult trials. This
similarity across such different tasks suggests a possible
common mechanism that may operate in virtually all per-
ceptual decision-making tasks. In addition, the nonmonot-
onicity of the hazard functions associated with the stimuli
that are farthest from the bound rules out a large class of se-
rial processing models (see, e.g., Ashby et al., 1993).

To our knowledge, this is the first categorization study
with sample sizes large enough for accurate estimation of
the RT distributions from individual observers. The rich
data set that resulted can be used for quantitative testing
of alternative categorization models, but an analysis of
those data also uncovered a number of qualitative results
that any serious model of categorization RT must predict.
In particular, any viable categorization model must make
several predictions: (1) RT is faster for stimuli farther
from the category boundary, and this stochastic dominance
holds all the way up to the level of the RT likelihood ratio.
(2) RT is invariant for all stimuli the same distance from
the category boundary, at least in experiments where the
stimuli are all presented with equal frequency. In particular,
this implies that, in such experiments, similarity and typ-
icality have no fundamental effect on RT. (3) As in two-
choice discrimination, the relation between correct and

Figure 8. Representative (a) cumulative RT distributions,
(b) hazard functions, and (c) ratio of the cumulatives for Ob-
server 2 from the nonlinear integration experiment. The plots are
for Stimuli 1 and 4.
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error RT depends on task difficulty. When the difficulty is
high, errors are slower than correct responses, whereas
this difference disappears when difficulty is low. (4) Small,
consistent response biases appear to have a large effect on
the relation between correct and error RT. (5) Categoriza-
tion RT hazard functions are qualitatively similar to haz-
ard functions observed in detection, subitizing, and memory
scanning experiments. Specifically, the hazard functions
are ordered by trial difficulty (i.e., by distance to boundary),
they have flat tails, they are peaked on easy trials (i.e., for
stimuli far from the boundary), and they are increasing on
difficult trials (i.e., for stimuli near the boundary). 

These results present an immediate challenge to exist-
ing categorization RT models, and they should serve as a
valuable guide to researchers developing new theories. 
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NOTES

1. Ratcliff (1979) outlined a method for using group data to estimate
higher level statistics. This approach is useful when data from many ob-
servers is available, but there are only a few stimulus presentations per
observer. Ratcliff ’s (1979) approach would be especially useful when
learning is of direct interest.

2. RT variability could be caused by one of a number of factors. With
simple stimuli, such as those used in the present study, it is likely that
there is trial-by-trial variability in the perceptual effect for repeated pre-
sentations of the same stimulus (e.g., Ashby & Lee, 1993; Geisler, 1989;
Green & Swets, 1967). In addition, variation in the time to initiate the ap-
propriate motor program is likely. For the present purposes, it is only im-
portant to acknowledge that RT variability exists.

3. The number of sessions to be considered as practice was determined
for each observer by examining the overall accuracy rate and correct-re-
sponse mean RT across sessions. Across the first few sessions, the ac-
curacy rate tended to increase and the correct-response mean RT tended
to decrease. This is most likely due to learning of the exemplars and their
category mappings. Across the remaining sessions, the accuracy rate and
the correct-response mean RT was fairly constant. Because the focus of
this research was on asymptotic categorization performance, the early
learning sessions were considered practice and were excluded from sub-
sequent analyses.

4. Thomas (1971) showed that if the RT–distance hypothesis holds, and
the hazard function of the perceptual distribution is increasing, then median
incorrect RT will be greater than median correct RT. The hazard functions
of many well-known probability distributions are increasing (e.g., gamma,
logistic, ex-Gaussian, Rayleigh). This includes the normal distribution,
which has been the most common distributional assumption in signal de-
tection theory (e.g., Ashby & Townsend, 1986; Green & Swets, 1967).

5. Although the distances between the small- and medium-distance
stimuli and between the medium- and large-distance stimuli were iden-
tical, a close examination of Tables 3–5 suggests that the differences in
performance for small- and medium-distance stimuli and for medium-
and large-distance stimuli were not equal. Performance for the small-
and medium-distance stimuli differed substantially, whereas perfor-
mance for the medium- and large-distance stimuli was very similar. This
finding was not unexpected. In fact, only a linear function relating dis-
tance to RT would predict equal performance differences for small- versus
medium-distance stimuli and for medium- versus large-distance stimuli.

A detailed discussion of this issue is beyond the scope of this article;
however, the interested reader is directed to Ashby and Maddox (1991,
1994) for details. 

6. A curve is concave if any two points on the curve can be connected
by a line segment that lies completely below the curve.

APPENDIX

In this appendix, we outline the procedure used to determine
each observer’s best-fitting linear and quadratic category bound-
ary. Two decision bound models of categorization were applied to
the data from each observer in the selective attention, linear inte-
gration, and nonlinear integration experiments. These were the
general linear classifier and the general quadratic classifier. In
short, the general linear classifier assumes the observer uses a lin-
ear decision boundary but not necessarily the experimenter-
defined decision boundary, and the general quadratic classifier as-
sumes the observer uses a quadratic decision boundary. The de-
tails of these models are described fully in many other articles
(e.g., Ashby, 1992a, 1992b; Ashby & Maddox, 1993; Maddox,
1995; Maddox & Ashby, 1993). In applying these models to the
data, some assumptions must be made regarding the relation be-
tween the perceptual space and the physical space. Following
Maddox and Ashby (1993), we assumed that the mean perceptual
effect for Stimulus i was equal to the coordinates of Stimulus i in
the physical space. In addition, the perceptual covariance matrix
was assumed to be a scaler multiple of the identity matrix and was
assumed to be bivariate normal. Using these same assumptions,
Maddox and Ashby (1993) successfully accounted for catego-
rization accuracy in a series of experiments that utilized these
same stimulus dimensions. As stated by Maddox and Ashby
(1993; see also Maddox & Ashby, 1998), these are the simplest per-
ceptual representation assumptions allowed in decision bound the-
ory and are surely incorrect in most cases. We made this assump-
tion for two reasons. First, this simplifies the modeling procedure
because only one distribution parameter is free to vary. Because of
the limited number of degrees of freedom in the accuracy data,
this was necessary. Second, such a simple perceptual representa-
tion places the burden of prediction on the decision bound. 

Because the general linear classifier is “nested” within the
general quadratic classifier (i.e., the general linear classifier is a
special case of the general quadratic classifier in which the qua-
dratic terms equal zero), likelihood ratio tests can be used to de-
termine which model provides the “most parsimonious account
of the data” (e.g., Ashby, 1992b; Wickens, 1982). The basic idea
is to determine whether the potentially nonzero quadratic terms
in the general quadratic classifier provide a statistically “signif-
icant” improvement in fit over the general linear classifier (whose
quadratic terms equal zero). 

Table A1 displays the goodness-of-fit (�lnL) values for each
model by observer and experiment. The goodness-of-fit value
for the most parsimonious model is in bold type. Interestingly,
these analyses suggest that many observers utilized a quadratic
boundary. In fact, all 4 observers in the linear integration exper-
iment and 1 of the 4 observers in the selective attention experi-
ment appeared to use a nonlinear category boundary. The re-
maining 3 observers in the selective attention experiment used a
linear category boundary.

At first glance, these findings seem to undermine our ability
to draw inferences about the RT–distance hypothesis from these
data, because the observers did not appear to use the experimenter-
defined category boundary. However, there are at least two rea-
sons to believe that these data will still serve our purpose. First,
and most importantly, there is evidence that the extremely sim-
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ple perceptual representation assumptions made by the models
has an impact on the form of the best-fitting category boundary.
For example, consider a situation in which the perceptual repre-
sentation for a set of stimuli violates the equal-variance as-
sumption, and the observer uses a linear category boundary. Sup-
pose one were to apply the general linear classifier and general
quadratic classifier to the data under the assumption that the per-
ceptual representation satisfies the equal-variance assumption.
This is a situation in which the perceptual representation assump-
tion for the models is incorrect. Maddox (in press; see also Mad-
dox & Ashby, 1998) investigated (through Monte Carlo simula-
tion) several situations of this sort and found that the general
quadratic classifier often provides the most parsimonious ac-
count of the data, even though the observer’s category boundary
is actually linear. Maddox argued that the extra boundary para-
meters in the general quadratic classifier allow the model to ab-

sorb (or to account for) some of the error created by the incor-
rect perceptual representation assumptions. This work is rele-
vant because it is very likely that the equal-variance assumption
is violated in the present data. (Of course, it is also possible that
other assumptions are violated, such as the assumption of nor-
mally distributed perceptual effects.) Thus, the fact that the general
quadratic classifier provided the most parsimonious account of
much of the present data does not imply that the observers used
a quadratic category boundary.  Second, the goal of the present
study was to examine the effect of distance to the category
boundary on RT. This requires only that the observer’s category
boundary preserve the distance-to-bound relations outlined in
the text. An examination of Figures 3 and 7 suggests that the ob-
server’s boundary was similar to the experimenter-defined
boundary—in general, preserving the distance-to-bound rela-
tions.

Table A1
Goodness-of-Fit (�lnL) Values for the General

Linear Classifier (GLC) and the General Quadratic
Classifier (GQC) by Experiment and Observer

Selective Linear Nonlinear
Attention Integration Integration

Experiment Experiment Experiment

Observer GLC GQC GLC GQC GQC

1 110.20 109.81 199.72 144.75 249.67
2 233.79 220.36 158.95 124.91 284.76
3 117.64 115.34 116.53 84.45 112.68
4 93.07 90.14 142.58 123.38 n.a.

Note—Values for the “most parsimonious” model are presented in bold type. The GLC
fits were excluded from the nonlinear integration experiment because the fits were ex-
tremely poor.
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