
AUTOMATIC GRAMMAR GENERATION FROM TWO

DIFFERENT PERSPECTIVES

Fei Xia

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in Partial Ful�llment of the Requirements for the Degree of Doctor of Philosophy

2001

Professor Martha Palmer and Aravind Joshi
Supervisors of Dissertation

Val Tannen
Graduate Group Chair

COPYRIGHT

Fei Xia

2001

To my family

iii

Acknowledgements

I thank everyone at the University of Pennsylvania (UPenn) and elsewhere who has helped

me to mature not only as a scientist but also as a human being.

I thank my advisors Martha Palmer and Aravind Joshi. Martha is not only a wonderful

mentor, but also a dear friend. Her steady support and encouragement helped me to go

through many diÆcult times. Dr. Joshi has always been my role model. He taught me to

trust myself and follow my heart.

I thank my dissertation committee members | ChuRen Huang from the Academia

Sinica in Taiwan, Vijay Shanker from the University of Delaware, Mitch Marcus, Steven

Bird, and Tony Kroch from UPenn | for their valuable suggestions and comments about

my thesis research. I would also like to thank Hiyan Alshawi from the AT&T Research

Lab for being a great mentor when I worked there as a summer intern.

I thank people at the Computer and Information Science Department (CIS) and the

Institute for Research in Cognitive Science (IRCS) at the University of Pennsylvania from

whom I have learned a lot about natural language processing, linguistics, psycholinguistics,

and more. This includes people in the XTAG group (Bangalore Srinivas, Christy Doran,

Beth Ann Hockey, Seth Kulick, Rajesh Bhatt, Rashmi Prasad, Carlos Prolo, Karin Kip-

per, William Schuler, Hoa Trang Dang, Alexandra Kinyon, Libin Shen, David Chiang),

CIS/IRCS faculty members (Bonnie Webber, Mark Steedman, Lyle Ungar, Scott Wein-

stein, Jean Gallier, Sampath Kannan, Insup Lee, Peter Buneman, Susan Davison, Val Tan-

nen, Carl Gunter, Dale Miller, Robin Clark, and Ellen Prince), students/alumni (Michael

Collins, Adwait Ratnaparkhi, Jason Eisner, Dan Melamed, Matthew Stone, Breck Bald-

win, Je� Raynar, Owen Rambow, Nobo Komagata, Jong Park, Joseph Rosenzweig, Tom

iv

Morton, Dan Bikel, Szuting Yi, Dimitris Samaras, Kyle Hart, Wenfei Fan, Hongliang Xie,

Jianping Shi, Liwei Zhao, Suejung Huh, Hee-Hwan Kwak, Peggi Li, Alexander Williams,

John Bell, and Allan Lee), visiting scholars and PostDocs (Michelle Strube, Paola Merlo,

Mark Dras, Mickey Chandrashekhar, and Shuly Wintner), and stu� members (Mike Felker,

Gail Shannon, Amy Dunn, Amy Deitz, Christine Metz, Laurel Sweeney, Ann Bies, Nicole

Bolden, Trisha Yannuzzi, and Jennifer MacDougall). I especially like to thank Anoop

Sarkar, Chunghye Han, Susan Converse, Tonia Bleam and Je�rey Lidz for their supports

and friendships.

I thank Nianwen Xue, Fu-Dong Chiou, Shizhe Huang, Zhibiao Wu, Shudong Huang,

John Kovarik, Mary Ellen Okurowski, James Huang, Shengli Feng, Andi Wu, Zhixing

Jiang, DeKai Wu, Jin Wang, Shiwen Yu, Huang Changning, and others for helping me

and my team to build the Chinese Penn Treebank. I especially thank Tony Kroch for

inspiring my love for linguistics.

I would like to thank my friends with whom I have spent time enjoying life itself. Spe-

cial thanks go to Xiaobai Wang, Zheng Xue, Mingkang Xu, Yujin Zhao, Yuanyuan Zhou,

Hong Jin, Zhijun Zhang, Zhijun Liu, Qin Lin, Aimin Sun, and Jin Yu.

Last, but not the least, I thank my family for supporting me all these years. I thank

my parents for their unconditional love and for letting me to pursue my dreams. I thank

my two sisters for supporting me in every stage of my life. I thank my kids for bringing

so much joy to my life. I especially thank my husband for showing me a totally di�erent

perspective of life and for making me a better person.

v

Abstract

AUTOMATIC GRAMMAR GENERATION FROM TWO DIFFERENT

PERSPECTIVES

Fei Xia

Supervisors: Professor Martha Palmer and Aravind Joshi

Grammars are valuable resources for natural language processing. We divide the pro-

cess of grammar development into three tasks: selecting a formalism, de�ning the proto-

types, and building a grammar for a particular human language. After a brief discussion

about the �rst two tasks, we focus on the third task. Traditionally, grammars are built

by hand and there are many problems with this approach. To address these problems,

we built two systems that automatically generate grammars. The �rst system (LexOrg)

solves two major problems in grammar development: namely, the redundancy caused by

the reuse of structures in a grammar and the lack of explicit generalizations over the

structures in a grammar. LexOrg takes several types of speci�cation as input and com-

bines them to automatically generate a grammar. The second system (LexTract) extracts

Lexicalized Tree Adjoining Grammars (LTAGs) and Context-free Grammars (CFGs) from

Treebanks, and builds derivation trees that can be used to train statistical LTAG parsers

directly. In addition to creating Treebank grammars and producing training materials for

parsers, LexTract is also used to evaluate the coverage of existing hand-crafted grammars,

to compare grammars for di�erent languages, to detect annotation errors in Treebanks,

and to test certain linguistic hypotheses. LexOrg and LexTract provide two di�erent per-

spectives on grammars. In LexOrg, elementary trees in an LTAG grammar are the result

vi

of combining language speci�cations such as tree descriptions. In LexTract, elementary

trees are building blocks of syntactic structures in a Treebank. LexOrg makes explicit the

language speci�cations that form elementary trees, whereas LexTract makes explicit the

elementary trees that form syntactic structures. The systems provide a rich set of tools

for language description and comparison that greatly enhances our ability to build and

maintain grammars and Treebanks e�ectively.

vii

Contents

Acknowledgements iv

Abstract vi

1 Introduction 1

1.1 Problems with the traditional approach . 2

1.2 Our approach to grammar development . 3

1.2.1 Task 1: selecting a formalism . 3

1.2.2 Task 2: de�ning the prototypes . 5

1.2.3 Task 3: building a grammar for a human language 5

1.3 Chapter summaries . 7

2 Overview of LTAG 10

2.1 Basics of the LTAG formalism . 11

2.1.1 Elementary trees . 11

2.1.2 Two operations . 11

2.1.3 Derived trees and derivation trees 13

2.1.4 Multi-anchor trees . 13

2.1.5 Feature structures . 15

2.2 LTAG for natural languages . 16

2.3 Multi-component TAGs (MCTAGs) . 18

2.4 Components of LTAG grammars for natural languages 20

2.4.1 An LTAG grammar is divided into a set of templates and a lexicon . 20

viii

2.4.2 A lexicon is split into a syntactic database and a morphological

database . 22

2.4.3 Templates are grouped into tree families 23

2.5 The XTAG grammar . 24

2.6 Summary . 25

3 The target grammars 26

3.1 Four types of structural information . 26

3.1.1 Head and its projections . 27

3.1.2 Arguments of a head . 28

3.1.3 Modi�ers of a head . 29

3.1.4 Syntactic variations . 29

3.2 The prototypes of the target grammars . 29

3.3 GTable: a grammar generated from three tables 32

3.4 The problems with GTable . 35

3.5 Two approaches . 38

3.5.1 LexOrg: building grammars from descriptions 39

3.5.2 LexTract: extracting grammars from Treebanks 40

3.6 Summary . 41

4 LexOrg: a system that builds LTAGs from descriptions 42

4.1 Structure sharing among templates . 43

4.2 The overall approach of LexOrg . 44

4.3 The de�nition of a description . 46

4.3.1 A compact representation of LTAG grammars 46

4.3.2 The previous de�nition of description 49

4.3.3 The de�nition of descriptions in LexOrg 51

4.4 The types of descriptions . 55

4.4.1 Head and its projections . 56

4.4.2 Arguments of a head . 57

4.4.3 Modi�ers of a head . 57

ix

4.4.4 Syntactic variations . 58

4.5 The Tree Generator . 59

4.5.1 Step 1: Combine descriptions to form a new description 59

4.5.2 Step 2: Generate a set of trees from the new description 61

4.5.3 Step 3: Build templates from the trees 67

4.6 The Description Selector . 68

4.6.1 The function of the Description Selector 68

4.6.2 The de�nition of a subcategorization frame 70

4.6.3 The algorithm for the Description Selector 72

4.7 The Frame Generator . 74

4.7.1 The function of the Frame Generator 75

4.7.2 The de�nition of a lexical rule . 76

4.7.3 The algorithm for the Frame Generator 76

4.8 The experiments . 77

4.9 Creating language-speci�c information . 79

4.9.1 Subcategorization frames and lexical rules 79

4.9.2 Descriptions . 80

4.10 Comparison with other work . 83

4.10.1 Becker's HyTAG . 86

4.10.2 The DATR system . 92

4.10.3 Candito's system . 95

4.11 Summary . 98

5 LexTract: a system that extracts LTAGs from Treebanks 100

5.1 Overview of the English Penn Treebank . 101

5.2 Overall approach of LexTract . 102

5.3 Three input tables to LexTract . 106

5.3.1 Head percolation table . 106

5.3.2 Argument table . 107

5.3.3 Tagset table . 108

5.4 Extracting LTAG grammars from Treebanks 108

x

5.4.1 Stage 1: Converting ttrees into derived trees 109

5.4.2 Stage 2: Building etrees . 109

5.4.3 Uniqueness of decomposition . 114

5.4.4 Relations between nodes in ttrees and etrees 118

5.5 Creating derivation trees . 118

5.6 Building multi-component tree sets . 122

5.7 Building context-free rules and sub-templates 126

5.8 Some special cases . 128

5.8.1 Coordination . 128

5.8.2 Empty categories . 129

5.8.3 Punctuation marks . 131

5.8.4 Predicative auxiliary trees . 134

5.9 Comparison with other work . 136

5.9.1 CFG extraction algorithms . 136

5.9.2 LTAG extraction algorithms . 138

5.10 Summary . 140

6 Applications of LexTract 142

6.1 Treebank grammars as stand-alone grammars 142

6.1.1 Two Treebank grammars for English 143

6.1.2 Coverage of a Treebank grammar . 144

6.1.3 Quality of a Treebank grammar . 148

6.2 Treebank grammars combined with other grammars 149

6.2.1 Methodology . 150

6.2.2 Stage 1: Extracting templates from Treebanks 151

6.2.3 Stage 2: Matching templates in the two grammars 151

6.2.4 Stage 3: Classifying unmatched templates 154

6.2.5 Stage 4: Combining two grammars 155

6.3 Comparison of Treebank grammars for di�erent languages 156

6.3.1 Three Treebanks for three languages 157

xi

6.3.2 Stage 1: Extracting Treebank grammars that are based on the same

tagset . 159

6.3.3 Stage 2: Matching templates . 159

6.3.4 Stage 3: Classifying unmatched templates 164

6.3.5 The next step . 166

6.4 Lexicons as training data for Supertaggers 169

6.4.1 Overview of Supertaggers . 169

6.4.2 Experiments on training and testing Supertaggers 171

6.5 Derivation trees as training data for statistical LTAG parsers 175

6.5.1 Overview of Sarkar's parser . 175

6.5.2 Adjustments to the Treebank grammars for parsing 176

6.6 LexTract as a tool for error detection in Treebank annotation 177

6.6.1 Algorithm for error detection . 177

6.6.2 Types of error that LexTract detects 178

6.6.3 Experimental results . 182

6.7 MC sets for testing the Tree-locality Hypothesis 183

6.7.1 Stage 1: Finding \non-local" examples 183

6.7.2 Stage 2: Classifying \non-local" examples 183

6.7.3 Stage 3: Studying \non-local" constructions 185

6.8 Summary . 189

7 Phrase structures and dependency structures 191

7.1 Dependency structures . 192

7.2 Converting phrase structures to dependency structures 194

7.3 Converting dependency structures to phrase structures 196

7.3.1 Algorithm 1 . 197

7.3.2 Algorithm 2 . 198

7.3.3 Algorithm 3 . 199

7.3.4 Algorithm 1 and 2 as special cases of Algorithm 3 206

7.4 Experiments . 210

7.5 Discussion . 212

xii

7.5.1 Extending Algorithm 3 . 212

7.5.2 Empty categories in dependency structures 213

7.5.3 Running LexTract on a dependency Treebank 213

7.6 Summary . 217

8 Conclusion 219

8.1 Contributions . 219

8.1.1 The prototypes of elementary trees 219

8.1.2 LexOrg: a system that generates grammars from descriptions 220

8.1.3 LexTract: a system that extracts grammars from Treebanks 221

8.1.4 The role of linguistic experts in grammar development 223

8.1.5 Relationship between two types of syntactic representation 224

8.2 Future work . 224

8.2.1 Combining the strengths of LexOrg and LexTract 225

8.2.2 Building and using parallel Treebanks 226

A Language-speci�c tables 229

A.1 The formats of the language-speci�c tables 229

A.1.1 Tagset table . 230

A.1.2 Head percolation table . 230

A.1.3 Argument table . 231

A.1.4 Modi�cation table . 232

A.1.5 Head projection table . 232

A.2 Tables for the English Penn Treebank . 232

A.2.1 Tagset table . 232

A.2.2 Head percolation table . 237

A.2.3 Argument table . 238

A.2.4 Modi�cation table . 238

A.2.5 Head projection table . 239

A.3 Tables for the Chinese Penn Treebank . 241

A.3.1 Tagset table . 241

xiii

A.3.2 Head percolation table . 244

A.3.3 Argument table . 245

A.4 Tables for the Korean Penn Treebank . 246

A.4.1 Tagset table . 246

A.4.2 Head percolation table . 248

A.4.3 Argument table . 248

B Building a high-quality Treebank 250

B.1 Overview of the Chinese Penn Treebank Project 251

B.1.1 Project inception . 252

B.1.2 Annotation process . 253

B.2 Methodology for guideline preparation . 254

B.3 Segmentation guidelines . 256

B.3.1 Notions of word . 256

B.3.2 An experiment . 258

B.3.3 Tests of wordness . 260

B.4 POS tagging guidelines . 262

B.4.1 Criteria for POS tagging . 262

B.4.2 Choice of a POS tagset . 263

B.5 Syntactic bracketing guidelines . 265

B.5.1 Representation scheme . 265

B.5.2 Syntactic constructions . 267

B.5.3 Ambiguities . 268

B.6 Quality control . 269

B.6.1 Two passes in each phase . 269

B.6.2 Double re-annotation in the bracketing phase 269

B.6.3 Error detection using LexTract . 270

B.7 The role of NLP tools . 271

B.7.1 Preprocessing tools . 271

B.7.2 Annotation and conversion tools . 272

B.7.3 Corpus search tools . 272

xiv

B.7.4 Quality-control tools . 273

B.8 Treebank guidelines and hand-crafted grammars 273

B.9 Summary . 274

Bibliography 275

xv

List of Tables

1.1 The comparison between three approaches for grammar development 7

3.1 An algorithm that builds templates using three tables 34

4.1 The de�nition of a description given in (Rogers & Vijay-shanker, 1994) . . . 49

4.2 The de�nition of a tree given in (Rogers & Vijay-shanker, 1994) 50

4.3 The new de�nition of description used in LexOrg 52

4.4 The new de�nition of tree used in LexOrg 53

4.5 A naive algorithm for buildingModmin(�) 62

4.6 A revised version of the naive algorithm for building Modmin(�) 63

4.7 A much more eÆcient algorithm for building Modmin(�) 64

4.8 An algorithm that builds a template from a tree 69

4.9 The algorithm for the Description Selector 73

4.10 Some examples of subcategorization frames, lexical rules, and descriptions

for English and Chinese . 79

4.11 The similarities and the di�erences between metarules, lexical rules, and

descriptions . 89

5.1 Treebank tags that appear in this chapter 102

5.2 Algorithm for �nding head-child of a node 110

5.3 Algorithm that marks a node as either an argument or an adjunct 111

5.4 Algorithm for building a derived tree . 112

5.5 Algorithm for building etrees from a derived tree 115

5.6 The bidirectional function between nodes in ttrees and etrees 118

xvi

5.7 Algorithm for building derivation trees . 121

5.8 Algorithm for building MC sets and testing whether the coindexation be-

tween a pair of nodes is tree-local . 125

6.1 The tags in the PTB that are merged to a single tag in the XTAG grammar

and in G2 . 143

6.2 Two LTAG grammars extracted from the PTB 143

6.3 The types of unknown (word, template) pairs in Section 23 of the PTB . . 147

6.4 The numbers of templates in G1 and G2 with the threshold set to various

values . 148

6.5 Matched templates and their coverage . 153

6.6 Matched templates when certain annotation di�erences are disregarded . . 154

6.7 Classi�cation of 289 unmatched templates 155

6.8 Sizes of the Treebanks and their tagsets . 158

6.9 Grammars extracted from the three Treebanks 158

6.10 Treebank grammars with the new tagset . 159

6.11 Numbers of matched templates, context-free rules, and sub-templates in

three grammar pairs . 161

6.12 The numbers of templates in the Treebank grammars with the threshold set

to various values . 162

6.13 Matched templates in the Treebank grammars with various threshold values 163

6.14 The distribution of the Chinese templates that do not match any English

templates . 166

6.15 The top 40 words with highest numbers of Supertags in G2 172

6.16 Supertagging results based on three di�erent conversion algorithms 174

6.17 Algorithm for error detection . 178

6.18 Numbers of tree sets and their frequencies in the PTB 183

6.19 Classi�cation of 999 MC sets that look non-tree-local 184

7.1 Algorithm 3 for converting d-trees to phrase structures 203

xvii

7.2 Algorithm for attaching the phrase structure for the dependent to that for

the head . 204

7.3 Algorithm for handling Chomsky modi�ers 207

7.4 Algorithm for moving up conjunctions . 207

7.5 Algorithm for attaching punctuation marks to phrase structures 208

7.6 The complete Algorithm 3 for converting d-tree to phrase structure 208

7.7 Performance of three conversion algorithms on Section 0 of the PTB 211

7.8 Some examples of heads with more than one projection chain 212

7.9 Algorithm for building elementary trees directly from a d-tree 215

7.10 Algorithm for updating the elementary trees for the head and the dependent 216

8.1 The comparison between three approaches for grammar development 220

B.1 Comparison of word segmentation results from seven groups 259

B.2 The process of creating and revising POS guidelines 266

xviii

List of Figures

1.1 Combining elementary trees to generate a parse tree for a sentence 4

1.2 Three prototypes of elementary trees in the target grammars 5

1.3 The organization of the dissertation . 8

2.1 The substitution operation . 12

2.2 The adjoining operation . 12

2.3 Elementary trees, derived tree and derivation tree for underwriters still draft

policies. 13

2.4 Two derivation trees for a derived tree . 14

2.5 Multi-anchor trees . 14

2.6 The substitution operation with features . 15

2.7 The adjoining operation with features . 15

2.8 Features for the subject-verb agreement . 16

2.9 An LTAG grammar that generates the language fanbncndng 16

2.10 Cross-serial dependencies in Dutch . 18

2.11 Trees for the wh-question What does John like 19

2.12 Trees for the wh-question What does Mary think Mike believes John likes . 19

2.13 Tree-local MCTAG . 20

2.14 An elementary tree is equivalent to a (word, template) pair 21

2.15 A set of elementary trees is equivalent to a set of templates plus a lexicon . 21

2.16 A lexicon is split into two databases . 22

2.17 A tree family . 23

2.18 The components of an LTAG grammar . 24

xix

3.1 The notions of head in X-bar theory and GB-theory 28

3.2 Four templates in the transitive tree family 28

3.3 The three forms of elementary trees in the target grammar 30

3.4 A spine-etree in which an argument is further expanded 31

3.5 A spine-etree which is also an auxiliary tree 32

3.6 An example that shows the input and the output of the algorithm in Table

3.1 . 36

3.7 Among four of the templates in GTable for ditransitive verbs, the last two

are implausible. 37

3.8 Among four of the templates in GTable for relative clauses, the last two are

implausible. 38

3.9 The algorithm that generates grammars from tables alone 39

3.10 The input and output of LexOrg . 39

3.11 Tree description for a relative clause . 40

3.12 The conceptual approach of LexTract . 40

3.13 The relations between GTable, GL and G�
Table 41

4.1 Templates in two tree families . 43

4.2 Structures shared by the templates in Figure 4.1 44

4.3 Combining descriptions to generate templates 45

4.4 The architecture of LexOrg . 45

4.5 The fragment of the lexicon given in (Vijay-shanker & Schabes, 1992) . . . 47

4.6 The de�nition of six verb classes given in (Vijay-shanker & Schabes, 1992) . 47

4.7 Rules to handle wh-movement and passive 48

4.8 A description and two templates that subsume it 49

4.9 Two representations of a description . 52

4.10 Two representations of a tree . 55

4.11 A tree and the template that is built from the tree 56

4.12 Two sets of descriptions that generate the same tree 57

4.13 Subcategorization descriptions . 58

4.14 A description for purpose clauses . 58

xx

4.15 A description for wh-movement . 59

4.16 The function of the Tree Generator . 60

4.17 An example that illustrates how the new algorithm works 65

4.18 A tree and the template built from it . 68

4.19 The function of the Tree Generator . 70

4.20 The function of the Description Selector . 71

4.21 Templates in two tree families . 75

4.22 The lexical rule for the causative/inchoative alternation 75

4.23 The architecture of LexOrg . 78

4.24 A template and a set of descriptions that can generate it 81

4.25 A more desirable description set if the template is for English 81

4.26 Descriptions built from language-speci�c tables 83

4.27 A description for wh-movement . 84

4.28 The lexical hierarchy given in (Vijay-Shanker & Schabes, 1992) 85

4.29 A di�erent hierarchy for English verb classes 85

4.30 Applying metarules to templates . 87

4.31 The result of applying a metarule to a template may not be unique 88

4.32 The ways that templates in a tree family are related in two systems 91

4.33 The ways that templates in di�erent tree families are related in two systems 92

4.34 An elementary tree and its DATR representation 92

4.35 The principal lexical hierarchy and the de�nitions of two classes which are

given in (Evans et. al., 1995) . 93

4.36 The lexical rules for topicalization, wh-movement, and passive in the DATR

system . 94

4.37 The di�erent ways that two systems handle wh-movement 98

5.1 Architecture of LexTract . 101

5.2 The Treebank annotation for the sentence Supply troubles were on the minds

of Treasury investors yesterday, who worried about the
ood. 103

5.3 The conceptual approach of LexTract . 103

5.4 The real implementation of LexTract . 105

xxi

5.5 Two LTAG grammars that generate the same ttree 105

5.6 The percolation of lexical items from heads to higher projections 107

5.7 A ttree and the derived tree . 110

5.8 The etree set is a decomposition of the derived tree. 114

5.9 The extracted etrees from the derived tree. 116

5.10 Several tree sets for a derived tree . 117

5.11 An example of the bidirectional function between nodes in ttrees and etrees 119

5.12 LTAG derivation trees for the sentence . 120

5.13 The ttree as a derived tree. 122

5.14 Etrees for co-indexed constituents . 123

5.15 The coindexation between two nodes may or may not be tree-local 124

5.16 The LTAG derivation tree for the sentence when multi-adjunction is allowed 124

5.17 The etrees that connect the ones for *ICH*-2 and SBAR-2 in the derivation

tree. 126

5.18 The context-free rules derived from a template 126

5.19 The decomposition of etree templates (In sub-templates, @ marks the anchor

in a subcategorization frame, * marks the modi�ee in a modi�er-modi�ee

pair) . 127

5.20 Spines, subcategorization chains, and subcategorization frames 128

5.21 Two ways to handle a coordinated VP in the sentence John bought a book

and has read it four times . 129

5.22 Handling a sentence with ellipsis: fMary came yesterday,g John did too . . 131

5.23 Handling a sentence with wh-movement from an argument position 132

5.24 Handling a sentence with wh-movement from an adjunct position 132

5.25 Elementary trees with punctuation marks 133

5.26 A sentence with quotation marks . 133

5.27 An example in which the etree for believed should be a predicative auxiliary

tree: the person who Mary believed bought the book 134

5.28 Two alternatives for the verb believed when there is no long-distance movement135

5.29 The etree for gerund in the XTAG grammar 135

xxii

5.30 An example in which the etree for believed should not be a predicative aux-

iliary tree: the person who believed Mary bought the book 136

6.1 The growth of templates in G1 . 144

6.2 Frequency of etree templates versus rank (both on log scales) 145

6.3 The growth of templates in the core of G1 146

6.4 A frequent, incorrect etree template . 148

6.5 The templates for pure intransitive verbs and ergative verbs in XTAG t-

match the template for all intransitive verbs in G2 151

6.6 Templates in XTAG with expanded subtrees t-match the one in G2 when

the expanded subtrees are disregarded . 152

6.7 An example of s-match . 153

6.8 Templates for adjectives modifying nouns 154

6.9 Some templates that appear in both the English and Chinese grammars . . 160

6.10 The percentages of matched template tokens in the English and Chinese

Treebanks with various threshold values . 163

6.11 Spuriously unmatched templates . 165

6.12 Truly unmatched templates . 166

6.13 Creating etree-to-etree mapping from a parallel Treebank 168

6.14 Handling instances of structural divergence 170

6.15 Marking the inserted nodes in the fully bracketed ttree and the correspond-

ing etrees . 177

6.16 An error caused by incompatible labels . 179

6.17 An error caused by a missing function tag 180

6.18 An error caused by a missing subject node 181

6.19 Three templates and corresponding context-free rules 182

6.20 An example of the NP-extraposition construction 185

6.21 An example of extraction from coordinated phrases 186

6.22 An example of the it-extraposition construction 186

6.23 An example of the comparative construction 187

6.24 An example of the of-PP construction . 187

xxiii

6.25 An example of the parenthetical construction 188

6.26 An example of the so ... that construction 188

7.1 A dependency analysis. Heads are connected to dependents by downward-

sloping lines. 193

7.2 A dependency tree. Heads are parents of their dependents in an ordered tree.193

7.3 A phrase structure with a non-projective construction 193

7.4 Two alternative d-trees for the sentence in Figure 7.3 194

7.5 A phrase structure . 195

7.6 The dependency tree produced by the conversion algorithm 195

7.7 Rules in X-bar theory and the algorithm that is based on it 197

7.8 The phrase structure built by algorithm 1 for the d-tree in Figure 7.6 198

7.9 The scheme for Algorithm 2 . 199

7.10 The phrase structure built by Algorithm 2 for the d-tree in Figure 7.6 . . . 199

7.11 The scheme for Algorithm 3 . 202

7.12 The phrase structure produced by Algorithm 3 205

7.13 Three alternative representations for a coordinated phrase in a d-tree 206

7.14 Coordinated phrases before and after applying the algorithm in Table 7.4 . 206

7.15 The
ow chart of the experiment . 210

7.16 A dependency tree that marks the argument/adjunct distinction 214

7.17 The elementary trees built directly from the dependency tree in Figure 7.16 217

7.18 The dependency units that form the dependency tree in Figure 7.16 217

7.19 The operations that combine dependency units to form a dependency tree . 218

8.1 One way to combine LexOrg and LexTract 225

8.2 The etrees in GT and G�
T . 227

B.1 The �rst phase: segmentation and POS tagging 253

B.2 The second phase: bracketing and data release 253

B.3 Words, POS tagset and positions . 264

B.4 Accuracy and inter-annotator consistency during the second pass 271

xxiv

Chapter 1

Introduction

Grammars are valuable resources for natural language processing (NLP). A large-scale

grammar may incorporate a vast amount of information on morphology, syntax, and se-

mantics for a human language, and it takes tremendous human e�ort to build and maintain.

The last decade has seen a surge of research on various statistical approaches, which do not

rely on hand-crafted grammars. In many NLP tasks such as parsing, statistical approaches

often outperform rule-based approaches. A question that has often been raised is do we

need grammars for NLP tasks such as parsing and machine translation?

We believe that the answer is positive. Instead of listing all the bene�ts of having

a grammar, we just want to point out the following. First, the notions of statistical

approaches and grammars are not mutually exclusive. A statistical system might not

use a hand-crafted grammar, but that does not necessarily mean that it does not bene�t

from grammars that are implicit in the data that the system used. For instance, most,

if not all, statistical parsers such as (Collins, 1997; Goodman, 1997; Charniak, 1997;

Ratnaparkhi, 1998) are trained and tested on Treebanks.1 Some of these parsers explicitly

use the grammars extracted from the Treebanks, whereas others choose a more indirect

way. In Appendix B, we shall show that the process of building a Treebank is very similar

to the process of manually crafting a grammar. Therefore, we can say that the parsers

that are trained on Treebanks actually bene�t from the implicit grammars provided by

1A Treebank is a collection of sentences annotated with syntactic structures.

1

Treebank developers via the Treebanks. Second, there are statistical systems that do

not use grammars at all. These systems were designed this way either because no high-

quality grammars were available or the designers of the systems did not �nd a way to

take advantage of grammars. It is likely that the performance of such systems could be

improved if the information in high-quality grammars were properly used.

Traditionally, grammars are built by hand. As the sizes of grammars grow, this ap-

proach presents a series of problems. The main goal of this dissertation is to provide two

alternatives for grammar development. This chapter is organized as follows: in Section

1.1, we discuss the problems with the traditional approach; in Section 1.2, we present

an overview of our approach; in Section 1.3, we give a summary of the chapters in the

dissertation.

1.1 Problems with the traditional approach

Traditionally, grammars are built by hand. As the sizes of grammars grow, this approach

presents several problems as follows:

Human e�ort: The process of creating a grammar is very labor-intensive and time-

consuming.

Flexibility: Because making a grammar requires much human e�ort, it is impossible

for grammar developers to provide a set of di�erent grammars for the same human

language so that grammar users can choose the ones that best �t their applications.

Coverage: It is diÆcult to evaluate the coverage of a hand-crafted grammar on naturally

occurring data. The most common way to evaluate a grammar is to create a test suite

and check whether the grammar can generate the grammatical sentences and reject

the ungrammatical ones in the test suite. It is diÆcult to extend this evaluation

method to large-scale naturally occurring data.

Statistical information: There are no weights associated with the primitive elements in

a hand-crafted grammar. To use the grammar for parsing, other sources of informa-

tion (such as heuristic rules) have to be found to help us select the most likely parse

2

trees.

Consistency: Primitive elements of a grammar often share common structures. For in-

stance, the primitive elements of a lexicalized tree adjoining grammar are called

elementary trees. The structures for syntactic movement such as wh-movement ap-

pear in many elementary trees. To make certain changes in a grammar, all the

related primitive elements have to be manually checked. The process is ineÆcient

and cannot guarantee consistency.

Generalization: Quite often, the underlying linguistic information (such as the descrip-

tion for wh-movement) is not expressed explicitly in a grammar. As a result, from

the grammar itself (which includes hundreds of primitive elements), it is diÆcult to

grasp the characteristics of a particular language, to compare languages, and to build

a grammar for a new language given existing grammars for other languages.

To address these problems, we built two systems that generate grammars automatically,

one from descriptions and the other from Treebanks, as described in the next section.

1.2 Our approach to grammar development

We divide the work of grammar development into three tasks: (1) selecting a formalism,

(2) de�ning the prototypes, and (3) building a grammar for a particular human language.

Our main focus is on the third task.

1.2.1 Task 1: selecting a formalism

Various formalisms have been proposed for natural languages, such as Context-Free Gram-

mars (CFGs), Head-Driven Phrase Structure Grammars (HPSGs), and Combinatory Cat-

egorial Grammars (CCGs). In this dissertation, we choose the Lexicalized Tree-Adjoining

Grammar (LTAG) formalism because its linguistic and computational properties make it

appealing for representing various phenomena in natural languages and it has been used in

several aspects of natural language understanding (e.g., parsing (Schabes, 1990; Srinivas,

3

1997), semantics (Joshi and Vijay-Shanker, 1999; Kallmeyer and Joshi, 1999), lexical se-

mantics (Palmer et al., 1999; Kipper et al., 2000), and discourse (Webber and Joshi, 1998;

Webber et al., 1999)) and a number of NLP applications (e.g., machine translation (Palmer

et al., 1998), information retrieval (Chandrasekar and Srinivas, 1997), generation (Stone

and Doran, 1997; McCoy et al., 1992), and summarization applications (Baldwin et al.,

1997)). Many issues and strategies covered in this dissertation apply to other formalisms

as well.

The primitive elements of an LTAG grammar are called elementary trees. They are

combined by two operations: substitution and adjoining. Each elementary tree is anchored

by a lexical item. As an example, Figure 1.1 shows a set of elementary trees that are used to

generate a parse tree for the sentence They still draft policies. A more detailed introduction

to LTAG is given in Chapter 2.

NP

they

PN VP

draft

V

policies

NP

N

S

VP

ADVP

ADV

still

NP

PN

They

VP

VP*ADVP

ADV

still

NP

S

NP VP

draft

V
policies

N

NP

They still draft policies

(a) a sentence

(c) a set of elementary trees

(b) a parse tree

Figure 1.1: Combining elementary trees to generate a parse tree for a sentence

4

lexical item

CC

X

X

m

m
Xm

Y X

X

X Z

m-1

1

p

k

0

X

X

X Z

W

W

X

Y

lexical item

m-1

1

p

q

q

m

k

0

X

X

X Z

lexical item

X

Y m-1

1

p

m

k

0

 (for coordination relation)

(c) conj-etree

(for modification relation)

(b) mod-etree

(for pred-arg relation)

(a) spine-etree

Figure 1.2: Three prototypes of elementary trees in the target grammars

1.2.2 Task 2: de�ning the prototypes

In the second task, we decide what kinds of information should be included in a gram-

mar. In addition to the lexical item that anchors an elementary tree, there are four types

of information that are important and should be included. They are the head and its

projection, the arguments of the head, the modi�ers of the head, and syntactic variations.

Once we have decided what should be included in a grammar, we then de�ne the

prototypes of grammatical structures for natural languages. The LTAG formalism is a

general framework. It can be used to generate formal languages such as fanbncng in

addition to natural languages. Because its usage is not restricted to natural languages, the

formalism itself has no constraints on the elementary trees in an LTAG grammar. In this

dissertation, we are interested only in grammars for natural languages. To ensure that the

target grammars (i.e., the grammars built by our two systems) are linguistically plausible,

we de�ne three prototypes of elementary trees according to the relationship between the

anchor of the elementary tree and other nodes in the tree, as shown in Figure 1.2. Every

elementary tree in the target grammars falls into one of the prototypes. The details about

the prototypes are covered in Chapter 3.

1.2.3 Task 3: building a grammar for a human language

The prototypes that we just de�ned are language independent. The next task is to use

them to build a grammar for a particular human language. We provide two systems that

5

automatically generate grammars.

The �rst system, called LexOrg, generates elementary trees in a grammar by combining

tree descriptions. The main idea is as follows. Each elementary tree includes one or

more of the four types of information mentioned previously. They are the head and its

projections, the arguments of the head, the modi�ers of the head, and syntactic variations.

Each type of information by itself provides only a partial description of an elementary

tree, but combining these partial descriptions will provide complete information about

the elementary tree. LexOrg requires its users to specify tree descriptions for these four

types of information. To produce the grammar, LexOrg takes these tree descriptions as

the input and combines them to automatically generate the elementary trees. LexOrg

has two major advantages: �rst, grammars created by LexOrg are consistent because

elementary trees are generated automatically from tree descriptions; second, the underlying

linguistic information is expressed explicitly as tree descriptions, subcategorization frames,

and lexical rules. The details about LexOrg are covered in Chapter 4.

The second system, LexTract, extracts grammars from Treebanks. Currently, most

large-scale Treebanks, such as the English Penn Treebank (Marcus et al., 1993), are not

based on existing grammars. Instead, these Treebanks were annotated by human beings

who followed annotation guidelines. Because the process of creating annotation guidelines

is similar to the process of building a grammar by hand, we can assume that an implicit

grammar, which is hidden in the annotation guidelines, generates the syntactic structures in

a Treebank. We call this implicit grammar a Treebank grammar. LexTract takes as input

a Treebank and three tables containing information about the Treebank, and produces

a Treebank grammar and associated information. For instance, given the parse tree in

Figure 1.1(b) and three tables which we shall explain in Section 5.3, LexTract will produce

a grammar that includes all the elementary trees in Figure 1.1(c). LexTract also builds a

derivation tree that shows how the elementary trees are combined to form the parse tree.

LexTract has several advantages. First, the system is totally language-independent. Given

a new Treebank, it only takes a linguistic expert a few hours to create the language-speci�c

tables. Once the tables are ready, LexTract can extract a grammar from the Treebank in

a few seconds. Second, the system allows its users to have some control over the type of

6

traditional approach LexOrg LexTract

human e�ort tremendous (�) some (2) little (
p
)

exibility very little (�) some (2) some (2)

coverage hard to can be inferred covers the source
evaluate (�) from the input (2) Treebank (2)

statistical info not available (�) not available (�) available (
p
)

consistency not guaranteed (�) consistent (
p
) not guaranteed (�)

generalization hidden in elementary expressed hidden in elementary
trees (�) explicitly (

p
) trees (�)

Table 1.1: The comparison between three approaches for grammar development

Treebank grammar to be extracted. The users can run LexTract with di�erent settings to

get several di�erent Treebank grammars, and then choose the one that best �ts their goals.

Third, the system produces not only a Treebank grammar, but also the information about

how frequently certain elementary structures are combined to form syntactic structures.

This information can be used to train statistical parsers. In Chapters 5 and 6, we describe

LexTract and its applications in detail.

The di�erences between the traditional approach, LexOrg, and LexTract are summa-

rized in Table 1.1. We use the symbols �, 2, and p to indicate that an approach did not

solve the problem, partially solved the problem, and solved the problem, respectively. From

the table, it is clear that both LexOrg and LexTract have advantages over the traditional

approach.

1.3 Chapter summaries

The structure of the dissertation is shown in Figure 1.3. An arrow from one chapter to an-

other indicates that the former should be read before the latter. Unlike many dissertations

that have a separate chapter for a literature survey, we include the comparison between

our approaches and related work in three individual chapters (i.e., Chapter 4, 5, and 7).

The following is a summary of the chapters in this dissertation:

Chapter 2: In this chapter, we �rst give a brief overview of the LTAG formalism; then

we discuss the properties of LTAG grammars; next we describe an extension of the

formalism (namely, multi-component TAGs); later we discuss the components of

7

(Introduction)

Chapter 1 Chapter 2

(LTAG)

Chapter 3

(Target grammars)

Chapter 7

(Dependency structure)

Chapters 5 and 6

(LexOrg)
Chapter 4

Chapter 8

(Conclusions)(LexTract)

Figure 1.3: The organization of the dissertation

an LTAG grammar; �nally we brie
y introduce the XTAG grammar, a large-scale

hand-crafted grammar for English.

Chapter 3: In this chapter, we �rst de�ne the prototypes of the target grammars; that

is, we specify the kind of grammars that our systems produce. Then we give an algo-

rithm that generates grammars from three tables that contain language information.

Next we point out the problems with this approach and show two alternatives.

Chapter 4: In this chapter, we present a grammar development system (called LexOrg).

The system takes three types of speci�cations of a language (namely, subcatego-

rization frames, lexical rules, and tree descriptions), and automatically generates

an LTAG grammar by combining these speci�cations. We have used the system to

build a grammar for English and another for Chinese. We shall compare our approach

with related work, including HyTAG (Becker, 1994), the DATR system (Evans et

al., 1995), and Candito's system (Candito, 1996).

Chapter 5: In this chapter, we present a system, called LexTract, which extracts gram-

mars from Treebanks and produces derivation trees for the sentences in the Tree-

banks. We compare the system with other grammar extraction algorithms, including

(Krotov et al., 1998), (Neumann, 1998), and (Chen and Vijay-Shanker, 2000).

Chapter 6: In this chapter, we present a number of applications for LexTract and re-

port experimental results of these applications. First, we describe our methodology

for using Treebank grammars to estimate and improve the coverage of hand-crafted

grammars. Second, we discuss our experiments on the comparison of Treebank gram-

mars for di�erent languages. Third, we have re-trained Srinivas' Supertagger and

8

compared the results with the ones that use other extraction algorithms. Fourth, we

show that the grammars and derivation trees produced by LexTract have been suc-

cessfully used to train a statistical LTAG parser (Sarkar, 2001). Fifth, we have used

the Treebank grammar to detect certain types of annotation errors in the Chinese

Penn Treebank (Xia et al., 2000b). Last, we test the Tree-locality Hypothesis (Xia

and Bleam, 2000) using the Treebank grammar extracted from the English Penn

Treebank.

Chapter 7: Throughout the dissertation, we use phrase structures as the syntactic repre-

sentation for grammars and Treebanks. Another commonly used syntactic represen-

tation is dependency structure. In this chapter, we discuss the relationship between

phrase structures and dependency structures, and explore various algorithms for con-

version between them. Our experiments show that, using simple heuristic rules and

language-speci�c information, the conversion algorithms that we propose work very

well for most cases.

Chapter 8: In this chapter, we summarize the dissertation and point out directions for

further work.

In addition to the eight chapters, this dissertation also includes two appendices. In

Appendix A, we show the formats and content of the language-speci�c tables that are used

by LexTract to extract grammars from the English, Chinese and Korean Penn Treebanks.

In Appendix B, we discuss our experience in designing the Chinese Penn Treebank, and

show that the process of creating a high-quality Treebank bears much similarity to the

process of building a grammar by hand.

9

Chapter 2

Overview of LTAG

There are various grammar frameworks proposed for natural languages: Context-free gram-

mars (CFGs), Head Grammars (HGs), Head-driven Phrase Structure Grammars (HPSGs),

Combinatory Categorial Grammars (CCGs) and so on. For a discussion of the relations

among these formalisms, see (Weir, 1988; Kasper et al., 1995) among others. We take

Lexicalized Tree-adjoining Grammars (LTAGs) as representative of a class of lexicalized

grammars. LTAG is appealing for representing various phenomena in natural languages

due to its linguistic and computational properties. In the last decade, LTAG has been used

in several aspects of natural language understanding (e.g., parsing (Schabes, 1990; Srini-

vas, 1997), semantics (Joshi and Vijay-Shanker, 1999; Kallmeyer and Joshi, 1999), lexical

semantics (Palmer et al., 1999; Kipper et al., 2000), and discourse (Webber and Joshi,

1998; Webber et al., 1999)) and a number of NLP applications (e.g., machine translation

(Palmer et al., 1998), information retrieval (Chandrasekar and Srinivas, 1997), generation

(Stone and Doran, 1997; McCoy et al., 1992), and summarization applications (Baldwin

et al., 1997)).

LTAG is a formalism, rather than a grammar. To avoid the confusion, from now on,

we shall use the LTAG formalism to refer to the formalism, and use an LTAG grammar to

refer to a grammar that is based on the LTAG formalism.

In this chapter, we give an overview of the LTAG formalism and its relevance to natural

languages. Due to the large amount of work based on LTAG, the overview is not intended

to be comprehensive. Instead, we shall focus on the aspects that are most relevant to this

10

dissertation. For a more comprehensive discussion on the formalism, see (Joshi et al., 1975;

Joshi, 1985; Joshi, 1987; Joshi and Schabes, 1997). This chapter is organized as follows.

In Section 2.1, we give a brief introduction of the basic LTAG formalism. In Section

2.2, we discuss the properties of LTAG that make it an appealing formalism for natural

language processing. In Section 2.3, we describe an extension of the LTAG formalism,

namely, Multi-component TAG (MCTAG). In Section 2.4, we introduce the components

of an LTAG grammar. In Section 2.5, we brie
y discuss the XTAG English grammar,

which is going to be used in later chapters.

2.1 Basics of the LTAG formalism

LTAGs are based on the Tree Adjoining Grammar (TAG) formalism developed by Joshi,

Levy, and Takahashi (Joshi et al., 1975; Joshi and Schabes, 1997).

2.1.1 Elementary trees

The primitive elements of an LTAG are elementary trees. An LTAG is lexicalized, as each

elementary tree is associated with at least one lexical item (which is called the anchor of

the tree) on its frontier. The elementary trees are minimal in the sense that all and only

the arguments of the anchor are encapsulated in the tree. The elementary trees of LTAG

possess an extended domain of locality. The grammatical constraints are stated over the

elementary trees, and are independent of all recursive processes. There are two types of

elementary trees: initial trees and auxiliary trees. Each auxiliary tree has a unique leaf

node, called the foot node, which has the same label as the root. In both types of trees,

leaf nodes other than anchors and foot nodes are called substitution nodes.

2.1.2 Two operations

Elementary trees are combined by two operations: substitution and adjoining. In the sub-

stitution operation (see Figure 2.1), a substitution node in an elementary tree is replaced

by another elementary tree whose root has the same label as the substitution node. In an

adjoining operation (see Figure 2.2), an auxiliary tree is inserted into another elementary

11

=>

X

Y

Y X

Y

Figure 2.1: The substitution operation

=>
Y

Y

X

Y

X

Y

Y

Figure 2.2: The adjoining operation

tree. The root and the foot nodes of the auxiliary tree must match the node label at which

the auxiliary tree adjoins. The resulting structure of the combined elementary trees is

called a parse tree or a derived tree. The history of the combination process is recorded as

a derivation tree.

In Figure 2.3, the four elementary trees in (a) are anchored by words in the sentence

underwriters still draft policies. �1 | �3 are initial trees, and �1 is an auxiliary tree. Foot

and substitution nodes are marked by � and #, respectively. To generate the derived tree

for the sentence, �1 and �3 substitute into the nodes NP0 and NP1 in �2 respectively, and

�1 adjoins to the VP node in �2, thus forming the derived tree in (b). The solid and dash

arrows between the elementary trees stand for the substitution and adjoining operations,

respectively. The history of the composition of the elementary trees is recorded in the

derivation tree in (c). In a derivation tree, a dash line is used for an adjoining operation

and a solid line for substitution. The number within square brackets is the address of the

node at which the substitution/adjoining operation took place. The address is useful when

there are two or more nodes with the same label in an elementary tree. For the sake of

simplicity, from now on we shall drop these addresses from derivation trees.

12

(underwriters)α1
β
1
(still)

α3(policies)

α2 (draft)

[2.2]
[2]

[1]

(a) elementary trees

0

1

underwriters

ADVP VP*

still

VP

NP

S

VP

NP

draft

NP

policies

NP

NN
ADV V

(b) derived tree

underwriters

NP VP

ADVP VP

still draft

NP

S

policies

N

ADV V

N

α1:
αα2: 3:β1:

(c) derivation tree

Figure 2.3: Elementary trees, derived tree and derivation tree for underwriters still draft
policies.

2.1.3 Derived trees and derivation trees

Unlike in CFGs, the derived trees and derivation trees in the LTAG formalism are not

identical; that is, several derivation trees may produce the same derived tree. For instance,

in Figure 2.4, G1 in (b) and G2 in (c) are two di�erent grammars. The derived tree in (a)

can be produced by combining either the elementary trees in G1 or the ones in G2. The

corresponding derivation trees are shown in (d) and (e). This property becomes relevant in

Chapter 5, where we discuss a system, LexTract, that automatically constructs elementary

trees and derivation trees from derived trees.

2.1.4 Multi-anchor trees

An elementary tree is normally anchored by a single lexical item, but multi-anchor trees

are used in a number of cases. Two of them are shown in Figure 2.5(a) and 2.5(b). The

�rst one is for idioms such as kick the bucket (which means someone dies), and the second

13

α3 (swim)α1 (John)

α2 (can)

(d) derivation tree for G1

α 4

α1 (John) β1(can)

(swim)

(e) derivation tree for G2

S

VP

VPV

can
V

swim

John

NP

N

(a) derived tree

NP

N

John

α2 α3α1

NP

N

John

β1α 4α1

S

VPNP

V

can

VP

VP

V

swim

: : :

(b) G1

(c) G 2

S

V

swim

VP

can

NP VP V

: : :

VP*

Figure 2.4: Two derivation trees for a derived tree

take(NP , NP)0 1

10sem: kick(NP , NP)0sem: walk(NP)
0sem: die(NP)

1

0

1

0

1

0
NP VP

V NP

kick/take

S

VPNP

NP

Ntake

walk

S

V

(a) idioms (c) transitive verbs(b) light verbs

bucketthe

kick ND

NPV

VPNP

S

Figure 2.5: Multi-anchor trees

one is for expressions with light verbs, such as take a walk.1 In each case, the multi-anchors

form the predicate. By having multi-anchors, each tree can be associated with semantic

representations directly, which is an advantage of the LTAG formalism. Notice that the

sentence He kicked the bucket now will have two correct parses, one for the idiomatic

meaning, the other for the literal meaning. Because multi-anchor trees are used only in a

number of cases, from now on we shall assume that each elementary tree has exactly one

anchor unless speci�ed otherwise.

1Notice that the determiner in Figure 2.5(a) is a co-anchor, whereas it is not part of the tree in Figure

2.5(b). This is because in the former the determiner has to be present and it has to be the word the,

whereas in the latter the determiner is optional (e.g., take walks), and it can be any determiner (e.g., take

a walk, take several walks).

14

tr

br
Y

t U tr

X

Y
br

t

=>

X

Y

Figure 2.6: The substitution operation with features

>

X

t
Yb

Y

Y*

br

tf

bf

tr
X

t U tr

b U bf

tf

br

Y

Y

Figure 2.7: The adjoining operation with features

2.1.5 Feature structures

In an elementary tree, a feature structure is associated with each node (Vijay-Shanker,

1987). This feature structure contains information about how the node interacts with

other nodes in the tree. It consists of a top part and a bottom part. When two elementary

trees are combined, the feature structures of corresponding nodes from these two trees are

uni�ed, as shown in Figure 2.6 and 2.7. For a derived tree to succeed, the top and bottom

features for each node in the tree must unify.

Features are used to specify linguistic constraints. For instance, in Figure 2.8, the

feature <agr> is introduced to enforce subject-verb agreement in English. Let X.t (X.b,

resp.) denote the top (bottom, resp.) feature structures of the node X. The subject-verb

agreement constraint is expressed as the requirement that NP0.t and VP.t in �2 must have

the same value, as indicated by the index <2>.2 Meanwhile, in �1 and �3, the value of

the <arg> feature propagates from N.t to NP.b (as marked by the index <1>). If nothing

adjoins at the N and NP nodes, the value of NP.t:<arg> in �1 is 3rdsg (third person

singular), and the value of NP.t:<arg> in �3 is 3rdpl (third person plural). Similarly, the

value of the feature <agr> propagates from V.t to VP.b in �2 (as marked by the index

<3>), and if nothing adjoins to the V and VP nodes, the value of VP.t:<arg> is 3rdsg. To

2If two features have the same index, it means that they must have the same value.

15

John

N

NP

[agr: <1>]

[agr:<1>]
[]

[agr: 3rdsg]

VP

α1:

NP0 []
[arg:<2>]

V

likes

[agr:3rdsg]
[agr:<3>]

[agr:<3>]
[agr:<2>]

NP1

Sα2: α3:

N

NP

[agr: <1>]

[agr:<1>]
[]

dogs

[agr: 3rdpl]

Figure 2.8: Features for the subject-verb agreement

S

a S d

S

b S c
NA

NA

ε

Figure 2.9: An LTAG grammar that generates the language fanbncndng

parse the sentence John likes dogs, �1 substitutes into the NP0 node in �2, and the values

of NP0.t:<agr> and VP.t:<agr> agree. For the sentence Dogs likes John, �3 substitutes

into the NP0 node, but the values of NP0.t:<agr> and VP.t:<agr> are di�erent and

cannot unify; therefore, the subject-verb agreement constraint is violated. This example

shows that, with the subject-verb agreement constraint, the toy grammar that consists

of only three elementary trees in Figure 2.8 can correctly accept the former sentence and

reject the latter.

From now on, for the sake of simplicity, we shall not show the feature structures in

elementary trees unless necessary.

2.2 LTAG for natural languages

LTAG is a constrained mathematical formalism. As a formalism, LTAG is more powerful

than CFG in that an LTAG grammar can generate a mildly context-sensitive language.

For example, the grammar in Figure 2.9 generates the language fanbncndng, which is a

content-sensitive language. The NAs in the �rst elementary tree mark that no adjoining

operations are allowed at the S nodes.

16

LTAG is an appealing formalism for representing various phenomena, especially syntac-

tic phenomena, in natural languages because of its linguistic and computational properties,

some of which are listed below:

� Lexicalized grammar: A grammar in the LTAG formalism is fully lexicalized in the

sense that each elementary tree is associated with a lexical item. It is generally

agreed that lexicalized grammars are preferred over non-lexicalized grammars for

NLP tasks such as parsing (Schabes, 1990).

� Extended Domain of Locality: Every elementary tree encapsulates all and only the

arguments of the anchor; thus, elementary trees provide extended locality over which

the syntactic and semantic constraints can be speci�ed. This is in contrast with

CFGs, where the arguments of the predicate may appear in separate context-free

rules. For example, the subject and the object of a transitive verb appear in two

rules: (1) S ! subject VP, and (2) VP ! V object.

� Generative capacity: Recent research (Bresnan et al., 1982; Higginbotham, 1984;

Shieber, 1984) has found that natural languages are beyond context free. For in-

stance, the cross-serial dependency relation in Dutch is context-sensitive. In this

aspect, LTAG is appealing because it is more powerful than CFG, but only \mildly"

so (Joshi et al., 1975; Joshi, 1985; Joshi, 1987). As shown in (Joshi, 1985), LTAG, but

not CFG, can handle cross-serial dependencies in Dutch. An example of cross-serial

dependencies and its treatment in LTAG are shown in Figure 2.10.3

On the other hand, the parsing time for an LTAG grammar is O(n6), where n is the

sentence length; that is, given an LTAG grammar, an LTAG parser can produce a tree

forest that includes all possible parse trees for a sentence of length n in O(n6). This is

much longer than the parsing time for a CFG grammar, which is O(n3). To address the

eÆciency issue, people have proposed some variances of the LTAG formalism. One of them

is the Tree Insertion Grammar (Schabes and Waters, 1995), which is weakly equivalent to

CFG and has O(n3) parsing time.

3Both the example and the grammar in Figure 2.10 come from (Joshi, 1985). We changed the grammar

slightly to be consistent with current notation conventions.

17

S

S V

helpen
VPS* (help)NP

V

ε

β1:

NP

N

Jan

N

NP

Piet

NP

N

Marie

2:β

α 1: α3:

α4:

α 2: V

NP VP

V

ε

(swim)
zwemmen

S

S

VP

VS

S

S*

V

ε

zag
(saw)

NP

 (... Jan saw Piet help Marie swim)

... Jan Piet Marie saw help swim

Dutch text:

English gloss:

The dependencies:

English translation:

(a) an example

... Jan Piet Marie zag helpen zwemmen

(b) an LTAG grammar that handles (a)

Figure 2.10: Cross-serial dependencies in Dutch

In this dissertation, we choose LTAG as the formalism for the grammars that LexOrg

and LexTract produce. Given an LTAG grammar, it is trivial to build a context-free

grammar; that is, reading context-free rules o� the elementary trees in an LTAG grammar

will yield a CFG.

2.3 Multi-component TAGs (MCTAGs)

A number of extensions have been proposed to handle constructions that pose challenges

to the basic LTAG formalism. In this section, we describe one of them, namely, Multi-

component TAG (MCTAG), as it shall be used in Sections 5.6 and 6.7.

MCTAG is proposed to handle various types of syntactic movement that are diÆcult for

the basic LTAG. In the basic LTAG, syntactic movement is restricted to a single elementary

tree: that is, the �ller and the gap must appear in the same elementary tree. For example,

in Figure 2.11, the �ller NP and the gap NP1 are both in �3. Substituting �1 into NP ,

substituting �2 into NP0, and adjoining �1 into S will yield the correct parse for a simple

wh-question What does John like. A sentence with long-distance movement, such as What

18

S

S*V

does

NP

N

John

NP

N

what

α2:

α1: α 3:
β1:

(a) elementary trees (b) derived tree

S

NP S

NP VP

V NP

εlike

0

1

NP VP

V NP

εlike

0

1N

John

S

SNP

N

what

V

does

S

Figure 2.11: Trees for the wh-question What does John like

S

S*V

does

think

S

NP VP

V S*

S

NP VP

V S*

S

NP S

NP VP

V NP

εlikes

0

1

believes

2:β β3:α1: β1:

(b) derived tree(a) elementary trees

S

V

think

NP VP

NP

NP

S

V S

NP

N

VP

S

VPNP

S

John

N

V

N

ε

Mary

Mike believes

does
N

what

V

likes

Figure 2.12: Trees for the wh-question What does Mary think Mike believes John likes

does Mary think Mike believes John likes, is handled similarly, as shown in Figure 2.12.

This type of movement is \unbounded" in the sense that in the sentence there can be an

unbounded number of verbs between the �ller and the gap, but the treatment in the LTAG

formalism is still elementary tree bound in the sense that the gap and the �ller are in the

same elementary tree.

This analysis runs into problems when the moved constituent is an adjunct. In Figure

2.13(a), the NP trace and the �ller NP cannot be in the same elementary tree because

the PP (the parent of the NP trace) is a modi�er of the VP and therefore should not be

part of the elementary tree anchored by the verb stay. An MCTAG is required to handle

such cases. MCTAG extends the basic LTAG so that the adjoining operation in MCTAG

is de�ned on elementary tree sets rather than on a single elementary tree. Weir (1988)

gave four ways of de�ning the adjoining operation. Two of them are commonly used in

the literature. One is called tree-local MCTAG, which requires the elementary trees in a

19

NP

N

hotel

S*

S

NP VP

V

stay

S

VP

PP

NP

ε

VP*

P

in

i

i

α 1:

β1: β2:

NP

which hotel

i
S

V

did

S

NP

you

VP

VP

V

stay

PP

P NP

in ε

i

S

(a) elementary trees (b) derived tree

Figure 2.13: Tree-local MCTAG

multi-component set (MC set) to be adjoined into distinct nodes of a single elementary

tree. The other is set-local MCTAG, which requires the elementary trees in an MC set to

be adjoined into distinct nodes of trees in another MC set. In Figure 2.13, the extraction

from PP can be easily handled by the tree-local MCTAG in (a), where �1 and �2 form an

MC set and both adjoin to nodes in �1, forming the derived tree in (b).

Weir (1988) has shown that tree-local MCTAG does not change the generative capacity

of the LTAG formalism, whereas set-local MCTAG does. The former has been used for

wh-movement and extraposition (Kroch, 1989), whereas the latter has been used to handle

clitic-climbing in Spanish (Bleam, 1994).

2.4 Components of LTAG grammars for natural languages

As mentioned in Section 2.1, an LTAG grammar consists of a set of elementary trees. In

practice, an LTAG grammar for a natural language is divided into two parts: a lexicon

and a set of tree templates. The lexicon can be further divided into two parts: a syntactic

database and a morphological database, and the tree templates are grouped into tree

families. In this section, we introduce each component of an LTAG grammar.

2.4.1 An LTAG grammar is divided into a set of templates and a lexicon

An elementary tree is anchored by a lexical item (or word). If the lexical item is removed

from the tree, the remaining part is called a tree template, or template for short. An

20

S

V

walk

NP VP S

V@

NP VP
(walk,)

(a) an elementary tree (b) a (word, template) pair

Figure 2.14: An elementary tree is equivalent to a (word, template) pair

S

V

walk

NP VP

S

V

NP VP

swim

S

V

NP VP
NP

John

N

NP

N

apple

NP

N

apples

(walk, #1)

(swim, #1)

(swum, #1)

(John, #2)

(apple, #2)

(apples, #2)

templates(b)

(a) elementary trees

#1: #2:
NP

N@
V@

VPNP

S

swum

(c) lexicon

Figure 2.15: A set of elementary trees is equivalent to a set of templates plus a lexicon

elementary tree is equivalent to a (word, template) pair, as shown in Figure 2.14. @ marks

the distinguished node in the template (called anchor node) where the word is inserted to

form an elementary tree.

Many words can anchor the same template. For instance, all the intransitive verbs

can anchor template #1, and all the nouns can anchor template #2 in Figure 2.15(b). In

order to avoid storing each template more than once in an LTAG grammar, we divide the

grammar into two parts: a Tree database (i.e., a set of tree templates) and a lexicon, as

illustrated in Figure 2.14. A lexicon associates words with templates that they can anchor.

21

(walk, #1)

(swim, #1)

(swum, #1)

(John, #2)

(apple, #2)

(apples, #2)

walk: /walk/, <mode>=base
swim: /swim/, <mode>=base
swum: /swim/, <mode>=ppart
John: /John/, <agr>=3rdsg
apple: /apple/, <agr>=3rdsg
apples: /apple/, <agr>=3rdpl

(/John/, #2)

(/apple/, #2)

(/walk/, #1)

(/swim/, #1)

(a) a lexicon

(c) morphological database(b) syntactic database

Figure 2.16: A lexicon is split into two databases

2.4.2 A lexicon is split into a syntactic database and a morphological

database

In Figure 2.15, both swim and swam can anchor the template #1, and both apple and

apples can anchor the template #2. In general, in
ections (such as adding -s to singular

nouns in English) rarely change the templates that a word can anchor. Therefore, when

building a grammar for a language with rich in
ectional morphology, we split its lexicon

into two parts: a syntactic database and a morphological database. In the syntactic

database, each unin
ected form is associated with a list of templates that it can anchor.

In the morphological database, each in
ected form is associated with its corresponding

unin
ected form and the grammatical features (such as number, person, and tense) that

are related to the in
ection.4 For example, in Figure 2.16, the lexicon is split into two

databases. In the databases, the unin
ected forms are enclosed by a pair of slash lines (/),

whereas the in
ected forms are not.

4We use the term unin
ected form, rather than the term stem, to avoid confusion because the meaning of

the latter term is subject to di�erent interpretations in the NLP �eld. For example, for the word teachers,

its unin
ected form is the word teacher, but its stem could be either teacher or teach depending on how the

term stem is de�ned.

22

 0

1

VPNP

S

V@ NP

NP

ε

NP 0

S

VP

V@ NP1

S

ε

 0

1
V@

NP

NP

VP

SNP

S

NP*

S

NP

S

NP

ε

NP 0

V@

VP

1
NP

 0

NP

NP* S

NP S

NP VP

V@ NP1

ε

#3: #4: #5:#2:#1:

Figure 2.17: A tree family

2.4.3 Templates are grouped into tree families

Templates in a grammar are related in many ways, the point that we shall elaborate

more in Chapter 4. The templates in Figure 2.17 show �ve syntactic environments in

which a transitive verb appears; namely, a declarative sentence, a wh-question with the

subject extracted, a wh-question with the object extracted, a relative clause with the

subject extracted, and a relative clause with the object extracted. Every transitive verb

can anchor these templates, and it would be very redundant to list all these templates

for every transitive verb in the lexicon. To avoid this type of redundancy, we group tree

templates into tree families, where a tree family is de�ned as the set of trees generated

from a base tree by the syntactic transformations which are available in the grammar.

Now in the lexicon we only need to associate each word with an appropriate tree family

or families, rather than with a set of templates. In this example, we group the templates

in Figure 2.17 into one tree family, and every transitive verb will select this tree family.

To summarize, an LTAG grammar is a set of elementary trees. To avoid storing the

same template more than once, we store a grammar as a set of templates and a lexicon.

The set of templates are grouped into tree families, and the lexicon is further split into a

syntactic database and a morphological database. In the syntactic database, an unin
ected

form is associated with appropriate tree families, and in the morphological database, each

in
ected form is associated with its corresponding unin
ected form and the grammatical

features that are related to the in
ection. The process is illustrated in Figure 2.18.

23

S

V

NP VP S

NP VP

V

S

NP

S

NP S

NP VP

V NP

S

NP VP

V NP

S

NP VP

S

NP

V@

S

NP VP

NPV@

templates(b) (c) lexicon

(a) elementary trees

buysswumswum buys

(/swim/, Tnx0V)

(/buy/, Tnx0Vnx1)

(/walk/, Tnx0V)

(/die/, Tnx0V)
......

......

swum: /swim/, <mode>=ppart

buys: /buy/, <mode>=present

<agr> = 3rdsing

walk: /walk/, <mode>=base

died: /die/, <mode>=ppart/past
......

morphological databasesyntactic database

......

S

NP S

NP VP

NP

NP

S

VP

V@

V@

Tnx0Vnx1:

Tnx0V:

Figure 2.18: The components of an LTAG grammar

2.5 The XTAG grammar

There have been a number of LTAG grammars developed at the University of Pennsylvania

and elsewhere in the world for languages such as English, French, Chinese, and Korean.

Among them, arguably the most well-known one is the XTAG English grammar, which is

a large-scale English grammar that has been developed by the XTAG Research Group at

the University of Pennsylvania since the early 1990s.5 The latest version of the grammar

was released to the public in March 2001. It has 1226 templates. The templates for verbs

are grouped into 57 tree families. The morphological database has entries for about 317

thousand in
ected words, and the syntactic database has entries for about 30 thousand

unin
ected words. Conceptually, there are 1.8 million elementary trees in total. The

templates of the grammar were built by hand, whereas the lexicon was extracted from two

dictionaries (Oxford Dictionary for Contemporary Idiomatic English and Oxford Advanced

Learner's Dictionary) and then manually checked. For more information about the XTAG

5XTAG is the name of a system that allows grammar developers to build and test LTAG grammars

in the X-window environment. The name is also used to refer to the research group at the University of

Pennsylvania who has built and used the system for language processing.

24

grammar, please refer to (Group, 2001).

In Sections 4.8 and 6.2, we compare the grammars built by LexOrg and LexTract with

an early version of the XTAG grammar, which has 1004 tree templates. The templates

for verbs are grouped into 53 tree families. Some common families are intransitive (e.g.,

sleep), transitive (e.g., buy), ditransitive (e.g., ask), ergative (e.g., melt), intransitive verb

particle (e.g., sign o�), transitive verb particle (e.g., pick up), and so on.

2.6 Summary

To summarize this chapter, LTAG is a tree rewriting system. An LTAG consists of a set of

elementary trees, which are combined via two operations (substitution and adjoining) to

form a parse tree (derived tree) for a sentence. LTAG is appealing for the representation of

various phenomena in natural languages due to its linguistic and computational properties.

To handle various phenomena in natural language, a number of extensions of the basic

LTAG have been proposed. MCTAG is one of them, and it is aimed at handling various

types of syntactic movement. In practice, an LTAG grammar is divided into a lexicon

and a set of templates. The lexicon can be further divided into two parts: a syntactic

database and a morphological database, and the tree templates are grouped into tree

families. Finally, we brie
y discuss the XTAG English grammar, which is going to be used

in later chapters.

25

Chapter 3

The target grammars

In Chapter 2, we gave a brief introduction to the LTAG formalism and its main properties.

In the next two chapters, we describe two systems that we designed to facilitate gram-

mar development: LexOrg generates grammars from descriptions, and LexTract extracts

grammars from Treebanks. Before getting into the detail of the systems, we would like to

�rst de�ne the prototypes of the target grammars; that is, we specify the kind of gram-

mars that our systems produce. Then we give an algorithm that generates grammars from

language-speci�c tables. Next we point out the problems with this approach and show the

two alternatives that address these problems.

3.1 Four types of structural information

In this chapter, we �rst de�ne the kind of LTAG grammars that our systems build for

natural languages. Recall that the LTAG formalism is a general framework. It can be used

to generate formal languages such as fanbncng in addition to natural languages. Because

its usage is not restricted to natural languages, the formalism itself has no constraints on

the elementary trees in an LTAG grammar other than the basic requirements that each

elementary tree must be anchored by a lexical item and an auxiliary tree should have

exactly one foot node which has the same category as the root node. In this dissertation,

we are interested only in grammars for natural languages. To ensure that the target

grammars (i.e., the grammars built by LexOrg or LexTract) are linguistically plausible,

26

we de�ne three prototypes such that every elementary tree in the target grammars should

fall into one of the prototypes.1

Before we de�ne prototypes of elementary trees, let us �rst determine what kind of

information should be included in elementary trees. In addition to the lexical item that

anchors an elementary tree, there are four types of information that are important and

should be included. In this section, we look at each type in detail and discuss how it

is represented in LTAG grammars and linguistic theories such as X-bar theory and GB

theory.

3.1.1 Head and its projections

An important notion in many contemporary linguistic theories such as X-bar theory and

GB theory is the notion of head. A head determines the main properties of the phrase that

it belongs to. A head may project to various levels, and the head and its projections form

a projection chain. For instance, in X-bar theory (see Figure 3.1(a)), a head X projects to

�X, and the �X projects to XP . The X in this paradigm can be any part of speech such as

a verb, where the XP is a phrase such as a verb phrase. GB theory divides heads into two

types: lexical heads and functional heads. In Figure 3.1(b), V (for verb) is a lexical head,

whereas C (for complementizer) and I (for in
ection) are functional heads. The projections

of lexical and functional heads are called lexical and functional projections, respectively.

An LTAG grammar does not have to strictly follow a linguistic theory. In practice,

to make the elementary trees simple and theory neutral, LTAG grammar developers often

choose to omit certain projections, to treat function projections and lexical projections dif-

ferently, and not to represent certain internal movements. Figure 3.2 shows four templates

in the XTAG grammar. Among them, template #2 can be seen as a simpli�ed version of

the structure in Figure 3.1(b): the template does not have the �V , �I, and �C levels; it uses

the same label S for IP and CP nodes; it does not include the complementizer C and the

INFL nodes; it does not show the movement of the subject from the [Spec, VP] position

to the [Spec, IP] position.

1Another possible name for a prototype is template. We do not use this name because the term template

in the LTAG formalism is used to refer to an unlexicalized elementary tree.

27

projection
lexical

functional
projection

CP

C

C IP

I

I

VP

V

NPV

NP

(1) XP -> YP X

(3) X -> X YP

(2) X -> X WP

(a) rules in X-bar theory (b) a phrase structure in GB-theory

Figure 3.1: The notions of head in X-bar theory and GB-theory

S

NPV@

VPNP 0

1ε

#1: #4:

S

 0
NP

#2:

S

NP
 0

#3:

VP*

V@ NP

VP

NPV@

VP
NP VP

V@ NP1

NP

S

1 1

 0

VP

S

ε ε

Figure 3.2: Four templates in the transitive tree family

3.1.2 Arguments of a head

A head may have one or more arguments. For instance, a transitive verb has two argu-

ments: a subject and an object. In both X-bar theory and GB theory, the treatment of the

subject is di�erent from the one for the object. The subject appears in a speci�er position;

that is, its parent is a VP and its sister is a �V . In GB theory, a subject is generated in

the [Spec, VP] position, then moved to the [Spec, IP] position. The object appears in a

complement position; that is, its parent is a �V , and its sister is a V. A subject is also called

an external argument of a verb, whereas an object is an internal argument. In the XTAG

grammar, the subject is a left sister of the VP and the object is a right sister of the head

V, as shown in Figure 3.2.

28

3.1.3 Modi�ers of a head

A head or its projections may be modi�ed by other phrases. In X-bar theory, modi�ers

always modify at the �X level, as shown in the second rule in Figure 3.1(a). GB theory

does not specify the positions of modi�ers in its basic structure. In an LTAG grammar, a

modi�er often appears in an auxiliary tree, in which the root node and the foot node have

the label of the modi�ee, and the modi�er is further expanded and its head is the anchor

of the whole tree. For instance, in template #4 in Figure 3.2, an S clause modi�es a VP,

the S is expanded and its head V is the anchor of the whole tree.

3.1.4 Syntactic variations

Linguistic theories often di�er in the way they represent and account for syntactic vari-

ations, which include syntactic movement such as wh-movement and other phenomena

such as imperative and argument drop. Templates #2 and #3 in Figure 3.2 show how

wh-movement and imperative are handled in the XTAG grammar.

3.2 The prototypes of the target grammars

We just discussed four types of information that are important in linguistic theories. Not

every elementary tree should have all four types. We de�ne three forms of elementary tree

according to the relations between the anchor of the elementary tree and other nodes in

the tree, as shown in Figure 3.3:

� Spine-etrees for predicate-argument relations: A spine-etree is formed by a head

X0, its projections X1; :::;Xm, and its arguments. We call the projection chain

fX0;X1; :::;Xmg the spine of the elementary tree.2 The head X0 is the anchor of

the tree. A spine-etree may also include information about syntactic variations.

� Mod-etrees for modi�cation relations: The root of a mod-etree has two children: one

has the same label (W q) as the root, the other node Xm is a modi�er of W q. The
2Some LTAG papers use the term spine to refer to the path between the root node and the foot node in

an auxiliary tree, and use the term trunk to refer to the path between the root node and the anchor node

of an elementary tree. Both terms are di�erent from our de�nition of spine.

29

lexical item

CC

X

X

m

m
Xm

Y X

X

X Z

m-1

1

p

k

0

X

X

X Z

W

W

X

Y

lexical item

m-1

1

p

q

q

m

k

0

X

X

X Z

lexical item

X

Y m-1

1

p

m

k

0

 (for coordination relation)

(c) conj-etree

(for modification relation)

(b) mod-etree

(for pred-arg relation)

(a) spine-etree

Figure 3.3: The three forms of elementary trees in the target grammar

node Xm is further expanded into a spine-etree whose head X0 is the anchor of the

whole mod-etree.

� Conj-etrees for coordination relations: In a conj-etree, the children of the root are two

conjoined constituents and one conjunction.3 One conjoined constituent is expanded

into a spine-etree whose head is the anchor of the whole tree. Structurally, a conj-

etree is the same as a mod-etree except that the root has one extra conjunction

child.

The similarity between the forms in Figure 3.3 and rules in X-bar theory is obvious:

A spine-etree is a tree that combines the �rst and the third types of rules in X-bar theory

(see Figure 3.1(a)). Similarly, a mod-etree incorporates all three types of rules. A spine-

etree is also very similar to the basic structure in GB-theory, as in Figure 3.1(b). Some

explanations about the prototypes are in order.

� A node Xi on a spine may have zero, one, or more arguments; therefore, each proto-

type is not necessarily binary. If a node has more than one child, the order between

its children is not speci�ed in the prototypes.

3It is possible that two conjoined constituents are connected by two conjunctions (e.g., the conjunction

pair both ... and ... in English). To handle this case, the root of the corresponding conj-etree has four

children: two Xms and two CCs. Both LexOrg and LexTract can produce such trees. For the sake of

simplicity, we omit this detail from all the discussions in this dissertation.

30

S

VP

NPV

ND

bucketthe

kick

NP 0

1

Figure 3.4: A spine-etree in which an argument is further expanded

� By default, the lower W q node in a mod-etree and one of the lower Xm nodes in a

conj-etree are foot nodes; the Y k, Zp, and CC are substitution nodes. The prototypes

allow this default to be overridden. For example, to handle idiomatic expressions (see

Section 2.1.4), an argument in a spine-etree may be expanded, as shown in Figure

3.4.

� In the LTAG formalism elementary trees are divided into two types: initial trees and

auxiliary trees. In this section, we de�ne three forms of elementary trees. These two

classi�cations are based on di�erent criteria. The traditional classi�cation is based

on the existence of a foot node in the tree and the operation by which the tree is

joined to another tree: an initial tree does not have a foot node and it is substituted

into a leaf node in another tree; an auxiliary tree has a foot node and it is adjoined to

a leaf or an internal node in another tree. Our classi�cation is based on the relation

between the anchor of the tree and other nodes in the tree. In general, spine-etrees

are initial trees; mod-etrees and conj-etrees are auxiliary trees. There are exceptions

to this generalization. One exception is the predicative auxiliary tree for verbs such

as think. As shown in Figure 3.5, the elementary tree for think is an auxiliary tree

because the leaf S node is a foot node. It is also a spine-etree because it shows the

predicate-argument relation of the verb.4

� The notions of head and anchor do not always coincide. For example, the anchor of

4The internal argument of think is marked as a foot node in order to handle long-distance movement.

For more discussion on predicative auxiliary trees, see Section 5.8.4.

31

S

VP

V

NP 0

think

S 1
*

Figure 3.5: A spine-etree which is also an auxiliary tree

a spine-etree is the head of the whole phrase, whereas the anchor of a mod-etree is

the head of the modi�er phrase, but it is not the head of the whole phrase.

Now that we have de�ned the prototypes, we require each elementary tree produced

by LexOrg or LexTract to fall into one of three prototypes. For a little abuse of notation,

we also use the terms spine-etree, mod-etree, and conj-etree to refer to the corresponding

templates.

3.3 GTable: a grammar generated from three tables

The prototypes that we de�ned in the previous section are language independent. To build

a grammar for a particular language, we need to instantiate the prototypes. For instance,

we have to replace labels such as Xi with the real labels for that language, determine the

order among sisters, and decide whether a node in the tree should be further expanded. In

this section, we give a simple algorithm that builds grammars from three language-speci�c

tables.

Recall that up to four types of information can appear in an elementary tree: the head

and its projections, the arguments of the head, the modi�ers of the head, and syntactic

variations. At �rst sight, it seems that the following three tables are suÆcient to express

the �rst three types of information:

� A head projection table is a set of (x; y) pairs, where y projects to x.

� An argument table is a set of tuples of the form (head tag, left arg num, right arg num,

y1=y2=:::=yn), where head tag is the category of a head, fyig is the set of possible

32

categories of the arguments of the head, left arg num and right arg num specify the

maximal numbers of arguments that a head can have at both sides. For example,

the entry (P, 0, 1, NP/S) says that a preposition cannot take left arguments, and it

has at most one right argument which is either an NP or an S.

� A modi�cation table speci�es the types of modi�ers a constituent can take. The

entry of the table is of the form (mod tag, x1=:::=xn, y1=:::=ym), which means a

constituent whose category is mod tag can be modi�ed by xi from the left and by yi

from the right. For instance, the entry (VP, ADVP, PP/S) says that an ADVP can

modify a VP from the left, and a PP or S can modify a VP from the right.

The information for syntactic variations cannot be easily expressed in a table. In this

section, we assume that the only syntactic variation in a language is that arguments in a

spine-etree can dominate empty categories. For instance, in each of the last three templates

in Figure 3.2, the subject NP dominates an empty category. Given a �nite set TagSet

of POS tags and three tables as input, a simple algorithm such as the one in Table 3.1

can produce all the templates that abide by our de�nitions of prototypes. For instance, to

build the spine-etrees of depth n, the algorithm �rst �nds all possible spines of length n

using the head projection table, then it adds arguments to the spines using the argument

table, next it adds syntactic variation information to the tree.5

Figure 3.6(b) shows the templates produced by the algorithm given the input in Figure

3.6(a). Let G(n) denote the set of templates of depth n that satis�es the de�nition of the

prototypes. The dashed line between two templates indicates that the algorithm builds one

template by adding one more level to the other template in step (D). In this example, G(0)

has three singleton templates, each is anchored by a POS tag.6 G(1) has two spine-etrees

and three conj-etrees. It does not have mod-etrees because, according to ModTb, none of

the root nodes in G(0) can be a modi�er. G(2) includes two mod-etrees because, according

to ModTb, an NP | which is the root of #5 in G(1) | can modify a VP from the right,

and modify an S from the left. G(3) does not have any spine-etree, because S cannot be

5To simplify the algorithm, we de�ne the depth of a template to be the distance between its root node

and its anchor node.

6A singleton tree is a spine-etree, which does not have any projection and argument.

33

Input: a �nite set TagSet of POS tags,
the head projection table HeadTb, the argument table ArgTb,
the modi�cation table ModTb, the depth n (n � 0).

Output: the set of templates of depth n that satisfy the de�nition of the prototypes.
Algorithm: TemplSet* BuildTemplWDepthN(TagSet;HeadTb;ArgTb;ModTb; n)
(A) ESet = fg;
(B) if (n == 0)

then for (each POS tag x in TagSet)
build a singleton template Ex, which has only one node with label x;
(The node is the anchor of Ex)

ESet = ESet [fExg;
return ESet;

(C) TmpESet = BuildTemplWDepthN(TagSet;HeadTb;ArgTb;ModTb; n� 1);
(D) for (each spine-etree E in TmpESet)

build a set ESet1 of spine-etrees, each template E1 in ESet1 satis�es
the following:

(1a) The root R of E1 has a child hr s.t. (R; hr) is an entry in HeadTb.
(1b) Let (hr, left arg num, right arg num, y1=:::=yn) be the entry for hr

in ArgTb, hr has up to left arg num left sisters and up to right arg num
right sisters, and the labels of the sisters are in fyig.

(1c) for (each sister Arg of hc)
Arg is a substitution node, a foot node,
or an internal node that dominates an empty category;

(1d) The subtree rooted at hc is identical to E.

build a set ESet2 of mod-etrees, each template E2 in ESet2 satis�es
the following:

(2a) The root R of E2 has two children: hc and mod.
(2b) hc has the same label as R and it is a foot node;
(2c) mod is a possible modi�er of hc according to ModTb.
(2d) The subtree rooted at mod is identical to E.

build a set ESet3 of conj-etrees, each template E3 in ESet3 satis�es
the following:

(3a) The root R of E3 has three children: hc, mod, and conj;
(3b) hc and mod have the same label as R and it is a foot node;
(3c) conj is a substitution node;
(3d) The subtree rooted at mod is identical to E.

ESet = ESet [ESet1 [ESet2 [ESet3;
(E) return ESet;

Table 3.1: An algorithm that builds templates using three tables

34

projected further according to HeadTb. Finally, G(n) (n > 3) is empty because G(3) does

not include any spine-etree. Now that we have an algorithm that calculates G(n) for any

integer n, we de�ne GTable to be
S
n2N G(n). GTable is the set of all possible templates

that satisfy the prototypes according to the three language-speci�c tables.

3.4 The problems with GTable

We have just shown that we can build a grammar GTable using three tables if we make

a certain assumption about syntactic variations (e.g., we assume that the only syntactic

variation in a language is that the arguments in a spine-etree can dominate empty cate-

gories). Given a natural language L, if the three tables for L are complete and error-free,

is GTable a good grammar for L? In other words, if GL is the ideal LTAG grammar for

the language L, is GTable a good approximation of GL? The answer is negative because

GTable overgenerates; that is, many templates in GTable are not in GL. In this section, we

discuss the sources of this overgeneration.

In Table 3.1, we wrote the algorithm as a recursive function. Conceptually, the algo-

rithm buildsGTable in four steps: �rst, it produces all possible spines according to the head

projection table; second, it adds arguments to the templates; third, for mod-etrees and

conj-etrees, the algorithm adds the top layer (i.e., a new root node and its children nodes);

fourth, it adds structures for syntactic variations. Each step may produce structures that

are not acceptable in language L.

� In the �rst step, the algorithm builds spines using a head projection table. When

people build LTAG grammars, they may use a label for more than one projection of

a head. For instance, both IP and CP nodes in GB theory have the label S in the

XTAG grammar. As a result, a label may appear on a spine more than once. For

instance, the label S appears twice on the spine for the template #2 in Figure 3.2.

In order to generate such template, the head projection table has to include entries

such as (S, S). Because of such an entry, the algorithm will produce spines with

an arbitrarily large number of S nodes; that is, the algorithm is not sophisticated

enough to know that the S label can appear once or twice on a spine, but not more

35

V*

V

CC V@

#6:

N*

N

N@CC

#7:

CC*

CC

CC CC@

#8:

S

VP

V@

S

VPNP

V@

CCS*

S S

S* CC

#18:

S

VPNP

V@ε

S

S* CC

#16: #17:

S

NP

N@

S*

VP

VP* NP

N@

#12:

Mod-etrees
#13:

S

VPNP

V@

S

VP

V@

NP

NP

N@

CCNP*

VP

VP* VP

V@

CC

(a) the input to the algorithm

G(0):

G(1):

VP

V@

NP

N@

#4: #5:

Conj-etreesSpine-etrees

(b) the templates produced by the algorithm

G(2):

G(3): Conj-etrees

S

VPNP

V@ε

#11:
Spine-etrees

#9: #10: #15:#14:

Conj-etrees

#2:
V@

#1:
N@ CC@

#3:

Spine-etrees

ModTb = {(S, NP, -), (VP, -, NP)}

ArgTb = {(V, 0, 0,-), (VP, 1, 0, NP)}

HeadTb = {(S, VP), (VP, V), (NP, N)}

TagSet = {V, N, CC}

Figure 3.6: An example that shows the input and the output of the algorithm in Table 3.1

36

VP

V@ NP

S

NP

NP

VP

V@

S

NP

NP

VP

V@

S

NPVP

V@ NP

S

NP

S S S S

#1: #2: #3: #4:

Figure 3.7: Among four of the templates in GTable for ditransitive verbs, the last two are
implausible.

than twice. As a result, the spines produced by the algorithm can be arbitrary long

and GTable is an in�nite set. Clearly, most of the spines and the templates with these

spines are implausible.

� In the second step, the algorithm adds zero or more arguments to the templates.

Let the argument table entry for a head hc be (hc, left max num, right max num,

y1=y2=::=yn), the algorithm tries every argument sequence that is consistent with

the entry.7 The number of such sequences is (
Plm

i=0 n
i) � (

Prm
j=0 n

j), where ln is

left max num and rm is right max num. Not every sequence is plausible for language

L. For example, assuming that the argument table entry for English verbs is (V, 1,

2, NP/S), the algorithm will try all twenty-one argument sequences, but only ten

of them are actually allowed in English. The templates in Figure 3.7 show four of

the twenty-one argument sequences. They are (NP; NP, NP), (NP; NP, S), (NP;

S, NP), and (NP; S, S). Only the �rst two are allowed in English.

� In the third step, the algorithm adds a top layer for a mod-etree or a conj-etree. It

is possible, although not common, that the modi�ee may impose constraints on the

internal structure of the modi�er. For example, when an S modi�es an NP as in a

relative clause, exactly one constituent within the S must undergo wh-movement (see

templates #1 and #2 in Figure 3.8). Such constraints cannot be expressed in the

modi�cation table, As a result, GTable includes templates in which the constraints

are not satis�ed, such as #3 and #4 in Figure 3.8.

7An argument sequence is consistent with the entry if the number of left arguments in the sequence

is no more than left max num, the number of right arguments is no more than right max num, and each

argument has an label in fy1; y2; :::; yng.

37

S

NPV@

NP

NP

VP

ε

NP

NP* S

#1: #3:#2:

1

0

S

NPV@

NP

NP

VP

NP

NP* S

ε

0

1

#4:

S

NPV@

NP

NP

VP

NP

NP* S

0

1

S

NPV@

NP

NP

VP

NP

NP* S

0

1
ε

ε

Figure 3.8: Among four of the templates in GTable for relative clauses, the last two are
implausible.

� In the fourth step, the algorithm adds structures for syntactic variations. The syn-

tactic variations allowed in natural languages are much more than what we assumed

in this section. To account for them, we have to �nd an alternative to express the

variations and change the algorithm accordingly.

In addition to the over-generation problem, there are two more challenges of using

GTable for natural language processing. First, the grammar is not lexicalized. We can

lexicalize each template in GTable with every word with the same Part-of-speech tag as

the anchor, but this will worsen the over-generation problem. For instance, only a small

subset of verbs | namely, ditransitive verbs | can anchor template #1 in Figure 3.7.

Another challenge is that there are no weights associated with the templates in GTable. To

use the grammar for parsing, other source of information (such as heuristic rules) has to

be found to help us select the most likely parse trees. All these problems show that the

three tables (i.e., the head project table, the argument table, and the modi�cation table)

do not contain suÆcient information to generate a good grammar.

3.5 Two approaches

In the previous two sections, we gave a simple algorithm that takes three language-speci�c

tables as input and produces a grammar GTable as output, as illustrated in Figure 3.9.

We also showed that GTable overgenerates because the tables do not contain suÆcient

information. In this section, we introduce two approaches that take advantage of additional

information to generate better grammars.

38

in Table 3.1

The algorithm

modification table

argument table

head projection table

G
Table

Figure 3.9: The algorithm that generates grammars from tables alone

subcategorization frames

tree descriptions

lexical rules

LexOrg
G

LexOrg

Figure 3.10: The input and output of LexOrg

3.5.1 LexOrg: building grammars from descriptions

The reason why GTable overgenerates is that the tables themselves do not contain suÆcient

information. For instance, the modi�cation table only lists the types of modi�ers that a

constituent can take; it does not specify the constraints that a modi�ee may impose on the

internal structures of a modi�er. As a result, GTable includes implausible templates such

as #3 and #4 in Figure 3.8. Intuitively, we can build a system that takes these constraints

as additional inputs and produces a more constrained grammar. Our �rst system, LexOrg,

is such a system.

Figure 3.10 shows the input and output of LexOrg. The main inputs to LexTract are

tree descriptions. Tree descriptions can easily express the constraints that are missing

from the language-speci�c tables. For instance, Figure 3.11 shows the description for a

relative clause. The top level speci�es that a clause S can modify an NP, and the rest

of the description says that a constituent of the clause must undergo wh-movement. The

second type of input to LexTract is a set of subcategorization frames. They are used to

select tree descriptions for a tree family. The third type of input is a set of lexical rules.

They express the relations between subcategorization frames. The output of the system

39

NP
S

NP S

NP

ε

NP*

Figure 3.11: Tree description for a relative clause

The algorithm

in Table 3.1

G
Table

G *
Table

a filter

LexTract

head projection table

modification table

argument table

a treebank

Figure 3.12: The conceptual approach of LexTract

is a grammar GLexOrg, which is a subset of GTable and should not include implausible

templates.8 In chapter 4, we shall describe this system in detail.

3.5.2 LexTract: extracting grammars from Treebanks

In LexOrg, the overgeneration problem is solved by adding more information to the input.

An alternative is to keep the input intact but add a new module which chooses a subset

of GTable. Our second system, named LexTract, uses this alternative.

As shown in Figure 3.12, the inputs to LexTract are three language-speci�c tables and

a Treebank. Conceptually, LexTract �rst uses the tables to generate GTable, then uses the

Treebank to select a subset G�
Table of GTable such that each template in the subset is used at

least once to produce correct derived trees for the grammatical sentences in the Treebank.

It is obvious that G�
Table is a subset of GL. If a Treebank included all the grammatical

8It goes without saying that the quality of GLexOrg depends on the quality of the input to LexOrg.

40

G

G

G
Table

L

Table
*

Figure 3.13: The relations between GTable, GL and G�
Table

sentences for a language L, G�
Table would be identical to GL. In reality, a Treebank is �nite

and therefore cannot include all the grammatical sentences. Nevertheless, if a Treebank

is a good representative of a language itself, G�
Table is a good approximation of GL. The

relation between GTable, GL and G�
Table are shown in Figure 3.13. The better a Treebank

is, the closer G�
Table is to GL. In Chapter 5, we describe LexTract in detail.

3.6 Summary

In this chapter, we �rst discuss four types of information that should be included in el-

ementary trees: the head and its projections. the arguments of the head, the modi�ers

of the head, and syntactic variations. Then we de�ne three forms of elementary trees in

our target grammar: spine-etrees, mod-etrees, and conj-etrees. Next we describe a sim-

ple algorithm that takes three language-speci�c tables as input and produces a grammar

GTable as output. The grammar overgenerates because the tables do not contain suÆcient

information. Finally, we give an overview of two systems that address this overgeneration

problem: the �rst system (LexOrg) overcomes the problem by requiring additional infor-

mation from the input; the second system (LexTract) uses a Treebank as a �lter to choose

a subset of GTable. The details of the systems are covered in the next two chapters.

41

Chapter 4

LexOrg: a system that builds

LTAGs from descriptions

Elementary trees in an LTAG grammar often share some common structures. The reuse

of the common structures creates redundancy. This redundancy problem was addressed

in several previous works, including (Vijay-Shanker and Schabes, 1992), (Becker, 1994),

(Evans et al., 1995), and (Candito, 1996). In (Vijay-Shanker and Schabes, 1992), Vijay-

Shanker and Schabes presented a scheme for eÆciently representing an LTAG grammar

using descriptions (a.k.a. tree descriptions or descriptions of trees). We extended the

concept of descriptions and built a system, called LexOrg, that generates templates from

a set of descriptions.1 2

The chapter is organized as follows: In Section 4.1, we describe the problems caused by

the reuse of structures among templates. In Section 4.2, we introduce the overall approach

of LexOrg. In Section 4.3, we de�ne the notions of descriptions and trees in a simpli�ed

�rst-order logic. In Section 4.4, we introduce four types of descriptions. In Sections 4.5 {

4.7, we discuss three components of LexOrg. In Section 4.8, we report our experiments on

1LexOrg produces elementary trees exactly the same way as it produces templates. In this chapter,

very often we use the term trees to refer to structures in a simpli�ed �rst-order logic (see Table 4.4). To

prevent the potential confusion between trees as structures and trees as elementary trees, we shall discuss

the generation of templates, rather than the generation of elementary trees.

2Our previous work on LexOrg can be found in (Xia et al., 1998) and (Xia et al., 1999).

42

 0

NP

VP

1

NP
NP

NP

S

ε

VP

NP

 0

V@

#2:

S NP S

V@
1

NP
1

 0

V@

ε

#3:

S

S

VP1

V@

NP VP

S

NP

Transitive verbs: (NP0 V NP1)

#1: #4:

Ergative verbs: (NP1 V)

NP

S

ε

S

NP VP

VP

VP* S

VP

ε

NP

1

V@

1

V@

#5: #7:#6:

VP

VP* S

 0 VP

NPε

NP

1V@

Figure 4.1: Templates in two tree families

using LexOrg to generate grammars for English and Chinese. In Section 4.9, we discuss

how the users of LexOrg can create the input to LexOrg. In Section 4.10, we compare

LexOrg with related work. In Section 4.11, we summarize the whole chapter.

4.1 Structure sharing among templates

The templates in an LTAG grammar often share some common structures. Figure 4.1

shows seven templates for ergative verbs such as break. The top four templates show the

syntactic environments for ergative verbs when they act as transitive verbs, such as break

in He broke two windows. #1 is for a declarative sentence, #2 and #3 are for wh-questions,

and #4 is for a purpose clause.3 There are two templates for wh-questions because the

moved constituent can be either the subject (as in #2) or the object (as in #3). The

bottom three templates show the syntactic environments for ergative verbs when they act

as intransitive verbs, such as break in The window broke.

Among the seven templates in Figure 4.1, #1, #2, #3, and #4 all have the structure

in Figure 4.2(a), templates #2, #3, and #6 have the structure in Figure 4.2(b), templates

#4 and #7 have the structure in Figure 4.2(c), and so on. The dashed line in Figure 4.2(b)

3Template #4 is anchored by a verb such as please in the sentence John bought a book to please Mary,

where the subordinating clause to please Mary modi�es the verb phrase bought a book in the matrix clause.

43

S

 0
VP

NP
1V@

NP SVP*

NP

ε

VP

(b)(a)

NP

ε

NP

S

S

(c)

Figure 4.2: Structures shared by the templates in Figure 4.1

between the lower S and the node NP indicates that the S node dominates the NP node,

but it is not necessarily the parent of the NP.

As the number of templates increases, building and maintaining templates by hand

presents two major problems. First, the reuse of tree structures in many templates creates

redundancy. To make certain changes in the grammar, all the related templates have to

be manually checked. The process is ineÆcient and cannot guarantee consistency (Vijay-

Shanker and Schabes, 1992). For instance, if the analysis for wh-movement is changed,

then templates #2, #3, and #6 in Figure 4.1 have to be manually changed as well. Second,

the underlying linguistic information is not expressed explicitly. For instance, the analysis

of wh-movement is expressed implicitly in three templates in Figure 4.1. As a result, from

the grammar itself (i.e., hundreds of templates plus the lexicon), it is hard to grasp the

characteristics of a particular language, to compare languages, and to build a grammar for

a new language given existing grammars for other languages.

4.2 The overall approach of LexOrg

At �rst sight, it seems that the problems described in Section 4.1 are caused by the

structures shared among templates. However, a closer look reveals that the problems

exist only because the templates are manually built. If there is a tool that combines

these structures to generate templates automatically (as illustrated in Figure 4.3), then

the task of grammar developers changes from building templates to building structures.

This change provides an elegant solution to the problems. First, because the number of

44

S

 0
VPNP

1
NPV@

NP

ε

NP

S

S

VP

NP
1

S

 0

NP

ε

NP

V@

S

(b)(a) (c)

Figure 4.3: Combining descriptions to generate templates

Generator
Frame Description

Selector

frame
descriptions

sets of

Generator
Tree

templates

descriptions

a subcat
frames
subcat

lexical rules

Figure 4.4: The architecture of LexOrg

these structures is much less than that of the templates, and the structures are smaller

and simplier than templates, the grammar development time will be reduced. If grammar

developers want to change the analysis of a certain phenomenon (e.g., wh-movement), they

need to modify only the structure that represents the phenomenon (e.g., the structure in

Figure 4.3(b) for wh-movement). LexOrg will propagate the modi�cation in the structure

to all the templates that subsume the structure. Therefore, the templates are consistent.

Second, the underlying linguistic information (such as wh-movement) is expressed explicitly

as a structure, so it is easy to grasp the main characteristics of a language, to compare

languages, and so on.

Based on this intuition, we built a system, LexOrg, which combines tree structures to

generate templates. Following (Vijay-Shanker and Schabes, 1992), we represent the shared

structures as descriptions. The inputs to LexOrg are a set of subcategorization frames, a

�nite set of lexical rules, and a �nite set of descriptions. As shown in Figure 4.4, LexOrg

has three components: a Frame Generator, a Description Selector, and a Tree Generator.

For each subcategorization frame fr that is a member of the input subcategorization

frames, the Frame Generator applies the set of input lexical rules to it and builds a set of

subcategorization frames that are related to fr. For each subcategorization frame produced

45

by the Frame Generator, the Description Selector chooses a subset of the input description

set. For each subset of descriptions, the Tree Generator combines the descriptions in

the subset to produce a set of templates. Therefore, the outputs of LexOrg are a set of

templates for fr and all the subcategorization frames that are derived from fr by applying

lexical rules. In the following sections, we �rst de�ne the notions of descriptions and trees,

then discuss each component of LexOrg in detail.4

4.3 The de�nition of a description

Vijay-Shanker and Schabes (1992) presented a scheme for eÆciently representing an LTAG

grammar using descriptions. Rogers and Vijay-Shanker (1994) later gave a formal de�-

nition of description. We extend their de�nition to include feature structures. In this

section, we �rst give a brief introduction to these two pieces of work, then introduce our

extended de�nition of description that is used in LexOrg.

4.3.1 A compact representation of LTAG grammars

Vijay-Shanker and Schabes (1992) presented a scheme for eÆciently representing an LTAG

grammar using descriptions. The scheme adopts two mechanisms. The �rst mechanism is

the use of hierarchy for lexical entries, a fragment of which is shown in Figure 4.5. The

value of an attribute of a lexical entry in the lexicon is either obtained by inheritance or

by local speci�cation. A class in a hierarchy (such as DITRANS-1) may have more than

one superclass, and the local speci�cation can overwrite inherited attributes. Figure 4.6

shows the lexicon entries for six classes of verbs; namely, VERB, TRANSITIVE, IOBJ,

NP-IOBJ, PP-IOBJ, and DITRANS1.5

The second mechanism is the use of lexical and syntactic rules to capture in
ectional

4To make it easier for readers to understand the system, we describe the three components of LexOrg

in reverse order; that is, we cover the Tree Generator �rst, then the Description Selector, and �nally the

Frame Generator.
5A class is an abstract data type. The notion of class in this context is more similar to the notion of

class in a program language such as C++ than to that of verb class in (Levin, 1993).

46

TRANSITIVE BQUI INTRANSITIVE

PP-IOBJ NP-IOBJ

DITRANS-1 DITRANS-2 OBJ-BQUI SIMPLE-TRANS

IOBJ

VERB

eatgive donate

Figure 4.5: The fragment of the lexicon given in (Vijay-shanker & Schabes, 1992)

v np

vp

v = head-daughter(vp)
anchor = v

s = completion(v)
arg: np
constraints equations:

superclasses: VERB
nodes: vp, v, np

description:

TRANSITIVE

vp

v np

constraints equations: ...
arg: np
anchor = v

description:

nodes: vp, v, np

superclasses: VERB

IOBJ

PP-IOBJ

superclasses: IOBJ
nodes: vp, v, pp, p, np

description: vp

v pp

p np
constraints equations:
arg: pp
np = arg(IOBJ)
anchor = v

DITRANS1

superclasses: TRANSITIVE, PP-IOBJ

LP: arg(TRANSITIVE) < arg(PP-IOBJ)

constraints equation: { s.<cat> = S
np.<agr> = vp.<arg>
np.<case> = nom

...

description:

s

np vp

v

vp = head-daughter(s)

np < vp
anchor = v

s = completion(v)
agr: np

NP-IOBJ

superclasses: IOBJ

description: vp

npv
constraints equations: ...
arg: np

anchor = v
np = arg(IOBJ)

nodes: vp, v, np

VERB

nodes: s, np, vp, v

(d) (e) (f)

(a) (b) (c)

Figure 4.6: The de�nition of six verb classes given in (Vijay-shanker & Schabes, 1992)

47

args(LE)i

output: LEo

LE .tree-description =
x’

S

S

y

x

ε

o

input: LEi

v (pp)

vp

by

npp

LE .tree-descriptiono

passive LE .CLASSESo

output: LEo

input: LEi

y = completion (LEi)
x’ = copy(x)

x

WH-QUESTION PASSIVE

LE .CLASSESo
LE .CLASSESoLE .CLASSi

CHANGE-ARITY(LE .CLASS) i

(a) (b)

Figure 4.7: Rules to handle wh-movement and passive

and derivational relationships among lexical entries. Figure 4.7 shows the rules for wh-

question and passive. The rules may make reference to the class hierarchy. For instance,

the passive rule uses the CHANGE ARITY relation, where C2 = CHANGE�ARITY (C1)

means that C2 is the immediate superclass of C1 distinct from TRANSITIVE.

Both mechanisms make use of descriptions. In a description, a dashed line from node

a to b means that a dominates b; a solid line means that a is the parent of b. Descriptions

di�er from trees in that descriptions can leave things underspeci�ed. This underspeci�ca-

tion is desirable because we want descriptions to be general enough. For instance, in the

description of the class IOBJ (see Figure 4.6(c)), the vp node dominates the np, but it is

not necessarily the parent of np. Leaving the number of intermediate nodes between vp

and np underspeci�ed makes the relation between them hold in both of IOBJ's subclasses:

in NP-IOBJ, the vp is the parent of the np; in PP-IOBJ, it is the grandparent of the

np. Similarly, in the description for wh-movement as shown in Figure 4.8(a), the node S1

dominates NP1. The description is general enough to cover both cases in Figure 4.8(b)

and (c). In the former case, NP1 is the subject of the sentence and a child of S1; in the

latter case, NP1 is the object of the sentence and a grandchild of S1.

48

S

NP

ε

NP

1

1

S

VP

NP

S

NP

ε V@

S

NP1

1

VP

S

NP

ε

V@

NP

S

NP1

1

(a) description for wh-movement (b) template with the subject moved (c) template with the object moved

Figure 4.8: A description and two templates that subsume it

4.3.2 The previous de�nition of description

Rogers and Vijay-shanker (1994) gave the formal de�nitions of a description and a tree, as

in Tables 4.1 and 4.2, respectively. According to these de�nitions, a description is a �nite

set of formulae based on a simpli�ed �rst-order language LK in which neither variables

nor quanti�ers occur. A tree is a structure which interprets the constants and predicates

of LK such that the interpretation of the predicates re
ects the properties of the trees. A

tree satis�es a description if the tree as a structure satis�es the description as a formula

in �rst-order logic. For instance, the logic form of the description in Figure 4.8(a) is

(S �NP) ^ (S � S1) ^ (NP � S1) ^ (S1 �
� NP1) ^ (NP1 � �)

The two trees in Figure 4.8(b) and (c) satisfy this description.

De�nition: For K a countable set of constant symbols, let LK be
the language built up from K and the systems:

�, ��, � | two place predicates, parent, domination, and left-of, respectively.
� | equality predicate.
^, _, : | usual logical connectives.
(,), [,] | usual grouping symbols.

The only terms of the language are constants.
Atoms, literals and well-formed formulae(w�s) are generated in the usual fashion.
A description is just an arbitrary, �nite set of formulae.

Table 4.1: The de�nition of a description given in (Rogers & Vijay-shanker, 1994)

49

De�nition: For any language LK , a model for LK is a tuple (U ; I;P;D;L), where
U is a nonempty universe,
I is a function from K to U ,
P;D;L are binary relations over U (interpreting �, ��, �, respectively).

A tree is a model satisfying the conditions:
(I) For some R 2 U and all w; x; y; z 2 U ,

/* T1 requires a tree to have a root */
T1: (R; x) 2 D

/* T2 | T4 require the domination relation to be re
exive,
anti-symmetric, and transitive */

T2: (x; x) 2 D
T3: (x; y); (y; x) 2 D) x = y
T4: (x; y); (y; z) 2 D) (x; z) 2 D

/* T5 | T7 relate the parent and domination relations */
T5: (x; y) 2 P) [(x; y) 2 D and (y; x) 62 D]
T6: [(x; z) 2 P and (x; y); (y; z) 2 D]) [(x = y or (y = z)]
T7: (x; y) 2 D) (y; x) 2 D or

(9x0; y0)[(x; x0); (y0; y) 2 P and (x; y0); (x0; y) 2 D]

/* T8 | T10 relate the domination and left-of relations */
T8: (x; y) 2 D or (y; x) 2 D or (x; y) 2 L or (y; x) 2 L
T9: (x; y) 2 L) (x; y) 62 D; (y; x) 62 D; and (y; x) 62 L
T10: [(x; y) 2 L and (x;w); (y; z) 2 D]) (w; z) 2 L

/* T11 requires the left-of relation to be transitive */
T11: (x; y); (y; z) 2 L) (x; z) 2 L

(II) For every x 2 U , the sets
Bx = fy j (y; x) 2 Dg and
Lx = fy j (9z)[(z; y); (z; x) 2 P and (y; x) 2 L]g
are �nite.

Table 4.2: The de�nition of a tree given in (Rogers & Vijay-shanker, 1994)

50

4.3.3 The de�nition of descriptions in LexOrg

When we built LexOrg, we extended the previous de�nitions of descriptions and trees.

The new de�nition of description

The major extension that we made to the previous de�nition is that we now include feature

structures. This extension is necessary for three reasons. First, in the LTAG formalism, fea-

ture structures are associated with the nodes in a template to specify linguistic constraints

(see Section 2.1.5). They should be included in descriptions so that when descriptions are

combined by LexOrg, the features are carried over to the resulting templates. Second, in

addition to features appearing in templates, each node in a description has three special

features. The �rst one, cat, is the category of the node. The second feature, type, is the

type of the node. The feature has four possible values: an internal node, a foot node, an

anchor node, or a substitution node. The third feature subsc is the subscript of the node.

An LTAG grammar may use subscripts to distinguish the nodes in a template with the

same category. For instance, it may name the subject NP0 and the object NP1. The third

reason why we include features in descriptions is that LexOrg can use feature uni�cation

to rule out incompatible combinations of descriptions (see Section 4.5). The new de�nition

of description is shown in Table 4.3. In the new de�nition, an atomic formula is either an

atomic formula in the original de�nition or is a feature equation, and a description is a w�

rather than a �nite set of w�s.

Figure 4.9 shows two ways of representing the same description: the left one is in the

logical form; the right one is a graph, in which the features of nodes (including the cate-

gories of nodes) are enclosed in parentheses. The graphic representation is more intuitive

and easier to read, but not every description can be displayed as a graph because a de-

scription may use negation and disjunctive connectives. In the following sections, we shall

use the graphical representation when possible and use the logic representation in other

cases.

51

De�nition: For K a countable set of constant symbols,
let L

K̂
be the language built up from K and the systems:

�, ��, � | two place predicates, parent, domination, and left-of, respectively.
� | equality predicate.
^, _, : | usual logical connectives.
(,), [,] | usual grouping symbols.
F | a �nite set of feature names.
V | a �nite set of feature values.
cat, type, subsc | three features in F .

cat is the syntactic category (e.g., S, NP) of a node,
type is the type of a node (e.g., internal node, foot node, and anchor node).
subsc is the subscript of the node.

� | the empty category, one of the values in V for the feature cat.
internal, foot, anchor, and subst | four values in V for the feature type.

The only terms of the language are constants.

An atomic formula is one of the following:
(1) t12t2, where 2 is �, ��, or �, and t1 and t2 are terms.
(2) t:f = v, where t is a term, f 2 F , and v 2 V.
(3) t1:f1 = t2:f2, where t1 and t2 are terms, and f1, f2 2 F .

Well-formed formulae(w�s) are generated in the usual fashion.

A description is a w�.

Table 4.3: The new de�nition of description used in LexOrg

(a) the logical representation

S

NP S

NP

0

0

1

1

(’S’)

(’S’)

(’NP’)

(’NP’)

(b) the graphical representation

Trace (’ε’)

(S0 �NP0) ^ (S0 � S1)
^(NP0 � S1) ^ (S1 �

� NP1)
^(NP1 � �) ^ (S0:label =

0 S0)
^(NP0:label =

0 NP 0) ^ (S1:label =
0 S0)

^(NP1:label =
0 NP 0) ^ (Trace:label =0 �0)

Figure 4.9: Two representations of a description

52

De�nition: For any language LK̂, a model for LK̂ is a tuple (U ; I;P;D;L), where
U is a nonempty universe,
I is a function from K to U ,
P;D;L are binary relations over U (interpreting �, ��, �, respectively).

A tree is a model satisfying the conditions (I), (II) in Table 4.2 and the following:
(III) For all w; x; y; z 2 U ,

/* L1 interprets the equation with respect to feature structures */
L1: x = y) (8f 2 F)(x:f = y:f)

/* L2 requires that each node has a category */
L2: x:cat is de�ned

/* L3 says that an empty category cannot have siblings */
L3: [(x:cat =0 �0) and (z; x); (z; y) 2 P]) x = y

/* L4 | L6 interprets the meaning of the feature type */
L4: (x:type = internal) or (x:type = foot) or (x:type = anchor)

or (x:type = subst)
L5: (x:type = internal)) (9y)[(x; y) 2 P].
L6: [(x:type 6= internal) and (x; y) 2 D]) x = y.

/* L7 requires that there is at most one foot node in a template */
L7: [(x:type = foot) and (y:type = foot)]) x = y.

Table 4.4: The new de�nition of tree used in LexOrg

53

The new de�nition of tree

Now that we have extended the de�nition of description, the de�nition of tree needs to be

revised as well. The new de�nition is in Table 4.4. Under this new de�nition, each node in

U is associated with a feature structure. For each feature in the feature structure, there are

three possibilities for its value: (1) the feature value is not de�ned; (2) the feature value

is equal to one of the constants in V; (3) the feature value is equal to the feature value of
another node. A tree is a model if it satis�es all the conditions in the original de�nition

plus the additional requirements L1 | L7. L1 says that, if two nodes are equal, all the

features of the nodes should have the same values. L2 requires each node to be assigned

a category. L3 says that an empty category cannot have any sibling. L4 | L6 give the

interpretation of four types of nodes: a node in a tree is either an internal node or a leaf

node; a leaf node is a foot or an anchor or a substitution node. L7 says that each tree

has at most one foot node.

This de�nition of tree is closely related to the traditional de�nition of rooted, ordered

tree. To avoid confusion, in this chapter, we use trees to refer to the former, and rooted,

ordered trees to the latter. The de�nition of tree in LexOrg is more complicated than the

traditional de�nition of rooted, ordered trees. First, each node in a tree is associated with

a feature structure. Second, a tree has a component I, which is a function from K to U .6

Given a tree T = (U ;I;P;D;L), we can draw a graphic tree T̂ as follows:

� For every x 2 U , build a unique node x̂ in T̂ .

� The edge (x̂; ŷ) is in T̂ if and only if (x,y) is a pair in P.

� The node x̂ appears to the left of ŷ in T̂ if and only if (x; y) is in L.

To represent the function I and features in T̂ , we write the node x̂ in the form

fkig(ffm = vmg), where fkig is a subset of K such that I(ki) = x; that is, x̂ represents the

set of symbols in K that map to x. For any kj in fkig, if kj :fm is equal to vm, we include

fm = vm in the parentheses. We often omit the curly brackets and all the features but cat

6If two nodes in K map to the same node in U , it means that these two nodes which appear in descriptions
are merged into a single node in the templates that are derived from the descriptions.

54

b -> b

c -> c

I: a -> a

d -> c

= {(a, b), (a, c)}

= {(a, b), (a, c), (a, a), (b, b), (c, c)}

= {(b, c)}

P

D

L

a(’VP’)

b(’V’) c, d (’NP’)

internal, subst, anchor, foot}

(b) the logical representation (c) the graphical representation

= {a, b, c, d}

 = {cat, type, subsc}

= {’VP’, ’V’, ’NP’, ’

F
K

V ε ’,

= {a, b, c}

a.cat = ’VP’
b.cat = ’V’

c.cat = ’NP’

U

(a) the de�nitions of K;F ;V in LK̂

Figure 4.10: Two representations of a tree

from the form. For example, instead of writing \Obj,ExtSite(cat =0 NP 0; :::; fm = vm)", we

write \Obj,ExtSite('NP')". Figure 4.10 shows two representations of the same tree. Unlike

descriptions, each tree in the logic form can always be drawn as a tree in the graphical

form. It is obvious that the graphical form is much easier to read than the logical one.

Therefore, we shall use the graphical form in �gures while using the logical representation

when explaining algorithms.

Notice that this notion of tree is related to, but not the same as, the notion of template

in the LTAG formalism. In Section 4.5, we shall show that it is trivial to build a unique

template from each tree. Figure 4.11 shows a tree and the template built from it.

4.4 The types of descriptions

LexOrg takes a set of descriptions and generates templates. In the previous section, we

de�ned descriptions as well-formed formulae in a simpli�ed �rst-order language. In this

section, we further de�ne four types of descriptions. This classi�cation is crucial for the

55

Subj(’NP’) HeadBar(’VP’)

Head(’V’) Obj,ExtSite(’NP’)

HeadP(’S’)NewSite(’NP’)

FHeadP(’S’)

(a) a tree (b) the corresponding template

S

NP S

NP VP

NPV@

Trace(0�0)
�

Figure 4.11: A tree and the template that is built from the tree

Description Selector to work properly, as will be discussed in Section 4.6.

For any simple template, there are numerous sets of descriptions that can generate the

template. Figure 4.12 shows two sets of descriptions that generate the template in Figure

4.11(a). In the �rst set, each description gives information about a particular aspect of

the target template: #1 for the head and its projections, #2 and #3 for the head and

its arguments, and #4 for the wh-movement. This property does not hold for the second

set. For instance, the information about wh-movement appears in two descriptions: the

antecedent NewSite is in #5, and the gap ExtSite is in #8. Also, the Head is not present

in #6. Intuitively, the set in (a) is more desirable than the set in (b), although both sets

generate exactly the same template.

Recall that in Chapter 3, we mentioned that a template has up to four types of informa-

tion: head and its projection, arguments, modi�ers, and syntactic variations. We require

the users of LexOrg to build descriptions such that each description provides exactly one

type of information. Therefore, descriptions can be divided into four types accordingly.

Then we can say that in Figure 4.12 the set in (a) is better than the one in (b) because

the former, but not the latter, satis�es this requirement. Now let us discuss each type of

description in detail.

4.4.1 Head and its projections

The �rst type of description gives the information about the head and its various projec-

tions. For instance, the description in Figure 4.13(a) says that a verb projects to a VP,

56

HeadP(’S’)

HeadBar(’VP’)

Head(’V’)

HeadP

HeadBarSubj(’NP’)

HeadBar

Head Obj(’NP’)

FHeadP

HeadP(’S’)

HeadBar

HeadBar

Head Obj(’NP’)

#1: #4:#3:#2:

(a) a more desirable set

(b) a less desirable set

FHead(’S’)

NewSite HeadP(’S’)

ExtSite

#5: #6: #7:

HeadP

Subj(’NP’)

Head(’V’)

#9:#8:

FHeadP(’S’)

NewSite

HeadBar(’VP’)

ExtSite

HeadP

Trace(0�0)

Trace(0�0)

Figure 4.12: Two sets of descriptions that generate the same tree

and the VP projects to an S. In this chapter,

4.4.2 Arguments of a head

The second type of description speci�es the number, the types, and the positions of argu-

ments that a head can take, and the constraints that a head imposes on its arguments. For

instance, the description in Figure 4.13(b) says that the subject | a left argument of the

head | is a sister of the HeadBar. The feature equation in the description ensures that the

subject and the HeadBar must agree on numbers, persons, and so on. The description in

Figure 4.13(c) says that a head can take a right argument, which appears as a sister of the

head. Combining the descriptions for the �rst two types forms a description for the whole

subcategorization frame, as in Figure 4.13(d); therefore, we use the term subcategorization

descriptions to refer to descriptions in either the �rst or the second type.

4.4.3 Modi�ers of a head

The third type of description speci�es the type and the position of a modi�er with respect to

the modi�ee, and any constraint on the modi�cation relation. For instance, the description

57

HeadP(’S’)

HeadBar(’VP’)

Head(’V’)

Subj(’NP’) HeadBar

HeadP

HeadP(’S’)

Head(’V’) Obj(’NP’)

Subj(’NP’) HeadBar(’VP’)

Subj.t:<agr>=HeadBar.t:<agr>

Obj(’NP’)

HeadBar

Head

Subj.t:<agr>=HeadBar.t:<agr>

(c) V_has_a_right_NP_arg(b) V_has_a_left_NP_arg(a) head_is_V (d) a new description

Figure 4.13: Subcategorization descriptions

ModFoot(’VP’)

ModRoot(’VP’)

HeadP(’S’)

Subj(’NP’)

PRO(0�0)

Figure 4.14: A description for purpose clauses

in Figure 4.14 says that a clause can modify a verb phrase from the right,7 but the clause

must be in�nitival.

4.4.4 Syntactic variations

The last type of description provides information on syntactic variations (e.g., wh-movement

and argument drop). The description in Figure 4.15 says that, in a wh-movement, a com-

ponent is moved from a position ExtSite under HeadP to the position NewSite; NewSite

is the left sister of HeadP; both NewSite and HeadP are children of FHeadP; FHeadP and

HeadP are Ss.

To summarize, we have discussed four types of descriptions. In Section 4.6, we shall

show that a template is generated from a set of descriptions that includes one description

of the �rst type, zero or more descriptions of the second type, zero or one description of

7In the sentence \I came here to see you", the purpose clause \to see you" modi�es the VP \came

here". One may choose the analysis where the purpose clause modi�es the whole main clause \I came

here", instead of just the VP \came here". To account for this analysis, we only have to change the labels

of ModRoot and ModFoot from VPs to Ss.

58

FHeadP(’S’)

HeadP(’S’)NewSite

ExtSite

Trace(0�0)

Figure 4.15: A description for wh-movement

the third type, and zero or more descriptions of the last type.

4.5 The Tree Generator

The most complicated component of LexOrg is called Tree Generator (TreeGen). The

function of the Tree Generator is to take a set of descriptions as input, and generate

templates as output. This is done in three steps: �rst, TreeGen combines the input set of

descriptions to get a new description; second, TreeGen builds a set of trees such that each

tree in the set satis�es the new description and has the minimal number of nodes; third,

TreeGen builds a template for each tree in the set. In Figure 4.16, the descriptions in (a)

are the input to TreeGen. The new description is in (b). Notice that in (b) the position

of ExtSite with respect to Subj and HeadBar is not speci�ed. There are many trees that

satisfy this description, but the two trees in (c) are the only ones with the minimal number

of nodes. From these two trees, TreeGen builds two templates in (d). In this section, we

explain each step in detail.

4.5.1 Step 1: Combine descriptions to form a new description

In this step, TreeGen combines a set of descriptions to form a new description. Recall

that a description is a w� in a simpli�ed �rst-order logic. Given a set of descriptions

f�i j 1 � i � ng, the new description �, which combines f�ig, is simply the conjunction of

�i; that is, � = �1 ^ �2::: ^ �n.

59

HeadP(’S’)

HeadBar(’VP’)

Head(’V’)

S

NP S

NP VP

V@ NPε

HeadBar

Head Obj(’NP’)

FHeadP(’S’)

HeadP(’S’)

Subj(’NP’) HeadBar

HeadP

#2: #3: #4:#1:

(b) the new description that combines the four descriptions in (a)

(a) four descriptions as the input to the Tree Generator

NewSite(’NP’)

#6: #7:
FHeadP(’S’)

NewSite(’NP’) HeadP(’S’)

HeadBar(’VP’)

Head(’V’) Obj(’NP’)

S

NP S

NP VP

V@ NP

ε

#8:
#9:

Subj, ExtSite(’NP’)

#5: FHeadP(’S’)

HeadP(’S’)

Subj(’NP’) HeadBar(’VP’)

Head(’V’) Obj(’NP’)

NewSite(’NP’)

ExtSite(’NP’)

NewSite(’NP’)

FHeadP(’S’)

HeadP(’S’)

Subj(’NP’)

Head(’V’) Obj, ExtSite(’NP’)

HeadBar(’VP’)

(c) trees generated from the new description

(d) the templates as the output of the Tree Generator

ExtSite(’NP’)

trace(�)

trace(�)trace(�)

trace(�)

Figure 4.16: The function of the Tree Generator

60

4.5.2 Step 2: Generate a set of trees from the new description

In the second step, TreeGen generates a set of trees Modmin(�) from the new description

�. A tree T satis�es a description � if and only if T j= �. Let Mod(�) be the set of trees

that satis�es �. The tree set Modmin(�) is the subset of Mod(�) such that each tree in

Modmin(�) has the minimal number of nodes; that is,

Modmin(�) = fTi 2Mod(�) j Num(Ti) ==minTj2Mod(�)Num(Tj)g (4.1)

where Num(Ti) is the number of nodes in Ti.

According to our de�nition of tree, each node in a tree must have a category (see L2

in Table 4.4); therefore, each tree in Mod(�) has at most Num(�) nodes, where Num(�)

is the number of nodes occurring in �. Let TS(i) denotes the set of trees with exactly i

nodes, the formula in (4.2) holds. Because TS(i) is �nite for any i, Mod(�) is �nite as

well.

Mod(�) �
[

i�Num(�)

TS(i) (4.2)

A naive algorithm

Based on formulae (4.1) and (4.2), we can write a naive algorithm for buildingModmin(�).

This algorithm (see Table 4.5) �rst generates a set TS that includes all the trees with

at most Num(�) nodes, then it chooses a subset Mod(�) of TS such that each tree in

the subset satis�es �, �nally it chooses a subset Modmin(�) of Mod(�) according to the

de�nition in (4.1). This approach is impractical because TS is too big.8 Furthermore,

8As mentioned in Section 4.3, the notion of tree in LexOrg is much more complicated than the notion

of rooted, order trees. We can build a tree of n nodes in three steps: �rst, we build a rooted, ordered tree

T with n nodes; second, we build a surjective function I from K to U , where U has n nodes; third, for each

node in U , we set the values for its features.
In the �rst step, the number of possible trees with n nodes is the (n � 1)th Catalan Number. The nth

Catalan Number is the number of rooted, ordered binary trees with n vertices. It is also the number of

rooted, ordered trees with n+1 vertices. The equation (4.3) for the nth Catalan Number bn is well-known

in the �eld of Graph Theory. A proof of this equation is mentioned in (Cormen et al., 1990, page 262)

61

Input: a description �
Output: Modm (i.e., Modmin(�))
Notation: Num(tr) is the number of nodes in a tree tr
Algorithm: void GenTrees(�, Modm)

/* count the number of nodes occurring in � */
(A) MaxNodeNum = Num(�);

/* calculate TS(i) */
(B) TS = fg;
(C) for (i=1; i�MaxNodeNum; i++)

(C1) TSi is the set of trees with exactly i nodes;
(C2) TS = TS

S
TSi;

/* calculate Mod(�) and a */
/* a is going to be minTj2Mod(�)Num(Tj) */

(D) a =MaxNodeNum+ 1;
(E) Mod = fg;
(F) for (each tr in TS)

if (tr satis�es �)
then Mod =Mod

Sftrg;
if (Num(tr) < a)
then a = Num(tr);

/* calculate Modmin(�) */
(G) Modm = fg;
(H) for (each tr in Mod)

if (Num(tr) == a)
then Modm =Modm

Sftrg;

Table 4.5: A naive algorithm for buildingModmin(�)

62

the majority of trees in TS are not in Mod(�), let alone in Modmin(�); these trees are

produced in Line (C1) and then thrown away in Lines (F) and (H). A revised version of

the algorithm is shown in Table 4.6, but it still needs to calculate TS(i).

Input: a description �
Output: Modm (i.e., Modmin(�))
Algorithm: void GenTreesRevised(�, Modm)

/* count the number of nodes occurring in � */
(A) MaxNodeNum = Num(�);

/* calculate TS(i) and Modm */
(B) Modm = fg;
(C) for (i=1; i�MaxNodeNum; i++)

(C1) TSi is the set of trees with exactly i nodes;
(C2) for (each tr in TSi)

if (tr satis�es �)
then Modm =Modm

Sftrg;
(C3) if (Modm is not empty)

break;

Table 4.6: A revised version of the naive algorithm for buildingModmin(�)

A more eÆcient algorithm

The problem of the naive algorithm is that the algorithm calculates the set TS(i) without

considering �; as a result, most trees in TS(i) do not satisfy � and have to be thrown away

in later steps.

among others.

bn =
1

n+ 1
�

2n

n

!
=

4np
� � n3=2

� (1 +O(1=n)): (4.3)

In the second step, the number of possible surjective functions from K to U is S(j K j; n) � n!, where
S(m;n) is a Stirling number of the second kind; that is, S(m;n) is the number of ways that a set with m

distinguishable elements can be partitioned into n pair-wise disjoint, non-empty subsets.

Therefore, even if we don't consider feature structures, the number of trees with n nodes | the size of

TS(n) | is S(j K j; n)� n!� bn�1, which is a huge number.

63

Input: a description �
Output: Modm (i.e., Modmin(�))
Algorithm: void GenTreesE�(�, Modm)

/* a description �) a new description �̂ */

(A) build a �̂ which satis�es the following two conditions:

(1) Mod(�) =Mod(�̂), and

(2) �̂ is in the disjunctive normal form and does not use negation connectives;

that is, �̂ = �̂1 _ ::: _ �̂m, where �̂i = ti1 ^ ti2 ::: ^ tin and tij is a term.

/* a description �̂) a set of trees TC */
(B) TC = fg;
(C) for (each �̂i)

/* a description �̂i) a graph Gi */
(C1) draw a directed graph Gi. In Gi, there is a dashed edge (a solid edge, resp.)

from the node x to y i� one of the terms in �̂i is x�
� y (x� y, resp.).

(C2) store with the graph the left-of information that appears in �̂i.

/* a graph Gi) a tree set TCi */
(C3) if (Gi has cycles)

then if (the set of nodes on each cycle are compatible)
then merge the nodes;
else TCi = fg; continue;

(C4) merge the nodes in Gi until it does not have any compatible set;
(this step may produce more than one new graph)

(C5) for (each new Gi)
build a set of trees TCi such that each tree

includes all the edges in Gi and
satis�es the left-of information,

TC = TC
S
TCi;

/* a set of trees TC) a set of minimal trees Modm */
(D) a = mintr2TCNum(tr);
(E) Modm = ftr j tr 2 TC and Num(tr) = ag;

Table 4.7: A much more eÆcient algorithm for building Modmin(�)

64

B(’b’)

A(’a’)

D(’d’)

C,E(’c’)

F(’b’)

G(’b’)
B(’b’) C(’c’)

A(’a’)

D(’d’) E

F(’b’)

G(’b’)

B(’b’)

A(’a’)

D(’d’)

C,E(’c’)

F,G(’b’)

A(’a’)

D(’d’)

B,G(’b’) C,E(’c’)

F(’b’)

(e) the trees built from the graphs

(d) the graphs after compatible sets are merged

(c) the graph after cycles are removed(b) a graph built from the description

(a) a description

A(’a’)

D(’d’)

C,E(’c’)B,G(’b’)

F(’b’)

B(’b’)

A(’a’)

D(’d’)

C,E(’c’)

F,G(’b’)

#3:

#1:

#2:

#4: #5:

#7:
#6:

(A�� B) ^ (A�� C) ^ (C �D) ^ (C �� E)
^(E �� C) ^ (E � F) ^ (G�H) ^ (B � E)
^(A:label =0 a0) ^ (B:label =0 b0) ^ (C:label =0 c0) ^ (D:label =0 d0)
(F:label =0 b0) ^ (G:label =0 b0) ^ (H:label =0 �0)

Left-of information: B � E

Left-of information: B � C;E

Left-of information: B � C;E

Left-of information: B;G � C;E

H(�)

H(�)

H(�)

H(�)

H(�)

H(�)

Figure 4.17: An example that illustrates how the new algorithm works

65

We propose an algorithm that is much more eÆcient. The main idea is as follows.

First, we build a new description �̂ such that a tree satis�es �̂ if and only it satis�es �, and

�̂ is in disjunctive normal form and it does not use negative connectives. Second, for each

branch �̂i in �̂, we build a graph Gi. A graph is a model for LK̂ as de�ned in Table 4.4,

but it is not necessarily a tree. Third, we turn each Gi into a tree. There may be more

than one possible tree; as a result, we get a set of trees TCi. Last, we choose the subset

of
S
TCi with the minimal number of nodes.

The new algorithm is in Table 4.7. Figure 4.17 shows a description and the output

after each major step. Some explanations about the algorithm are in order.

� Line (A): The algorithm builds �̂ from � in line (A) in order to create a graph for

each component �̂i of �̂. �̂ is not necessarily equivalent to �. In �rst-order logic,

two formulae are equivalent if any model that satis�es one formula also satis�es the

other formula and vice versa. The condition (1) in Table 4.7 requires that the sets of

trees (not models) that satisfy �̂ and � are identical. �̂ is built in three steps. First,

the algorithm builds a formula �0 which is equivalent to � and is in the disjunctive

normal form. In �0, negation connectives negate only terms, rather than formulae.

Second, if �0 includes negations of terms, the algorithm builds a new description �00

by replacing negations of terms with disjunctions of terms without negations. For

instance, it replaces :(a � b) with (a �� b) _ (b �� a) _ (b � a). This replacement

is possible because any tree | including the ones in Mod(�) | has to satisfy the

conditions in Tables 4.2 and 4.4. The resulting formula �00 does not include any

negative connective. Last, we build a formula �̂ in the disjunctive normal form

which is equivalent to �00, and �̂ does not include negative connectives.

� Lines (C3) and (C4): the process in Line (C1) can be easily reversed to build a

description �(G) from a graph G. We call a graph G consistent if there is at least

one tree that satis�es �(G). We call a set of nodes in a graph compatible if after

merging them into a single node, the resulting graph is still consistent. When nodes

are merged, the left-of information and dashed/solid edges in the graph have to be

updated accordingly, as shown in Figure 4.17(c){(d).

66

A node may appear in more than one compatible set. If a graphG has two compatible

sets, it is possible that after merging the nodes in one set, the other set is no longer

compatible in the new graph. Therefore, if a graph has more than one compatible

set, merging these sets in di�erent orders may result in di�erent graphs. Hence, line

(C4) may produce more than one graph. For instance, the graph in Figure 4.17(c)

has two compatible sets: fB, Gg and fF, Gg. Merging B with G results in #4, and

merging F with G results in #5.

� Line (C5): all the trees produced in this step have the same number of nodes as

the ones in Gi. Without the constraints imposed by the left-of information, building

trees from a graph is quite straightforward. The algorithm �rst chooses a node R as

the root, where R is not dominated by any other node in the graph. It then makes

x one of R's children in the tree if R is x's parent in the graph. For each remaining

node y, if y is not dominated by any node other than R and itself in the graph, the

algorithm can either make or not make y one of R's children in the tree. Repeat this

process until all the nodes in the graph are included in the tree. Because there may

be more than one choice at each step, the algorithm builds a set of trees from the

graph. Now with the constraints imposed by the left-of information, the algorithm

is more complicated. For instance, in #4 of Figure 4.17, the node A dominates

two nodes. Without the left-of information, these two nodes can be siblings or one

dominates the other. But with the left-of information, they have to be siblings.

� Lines (D) and (E): TC produced in Line (C) is a subset of Mod(�), and a superset

of Modmin(�). Therefore, the Modm produced in Line (E) is equal to Modmin(�).

This new algorithm is much faster than the naive algorithm because the tree set TC

produced by the new algorithm is much smaller than the TS set produced by the naive

algorithm.

4.5.3 Step 3: Build templates from the trees

In this step, LexOrg builds a unique template from each tree produced by the previous

step. As shown in Table 4.8, the process is very simple. Recall that a node in the tree has

67

Subj(’NP’) HeadBar(’VP’)

Head(’V’) Obj,ExtSite(’NP’)

HeadP(’S’)NewSite(’NP’)

FHeadP(’S’)

(a) a tree (b) the corresponding template

S

NP S

NP VP

NPV@

Trace(0�0)
�

Figure 4.18: A tree and the template built from it

the form fkig(ffm = vng). LexOrg replaces fkig(ffm = vng) with l(ffm = vng), where l is
the category of ki. If the type of a leaf node is unspeci�ed, LexOrg sets the type according

to the defaults given in line (A2) in Table 4.8. Figure 4.11 (repeated as Figure 4.18) shows

a tree and the template built from the tree.

4.6 The Description Selector

In this section, we introduce a second component of LexOrg named Description Selector,

which takes as input a subcategorization frame Fr and a set of description DescSet, and

outputs subsets of DescSet.

4.6.1 The function of the Description Selector

In the previous section, we showed that the Tree Generator builds elementary trees from

a set of descriptions, as illustrated in Figure 4.16. A simpli�ed version of the �gure is

repeated as Figure 4.19. The set of descriptions given to the Tree Generator is a subset

of the descriptions provided by the users. The function of the Description Selector is to

select the descriptions for the Tree Generator; that is, it takes as input a subcategorization

frame and a �nite set of descriptions, and produces sets of descriptions, which are then fed

to the Tree Generator. An example is given in Figure 4.20. In this example, the inputs

to the Description Selector are a set DescSet of descriptions (i.e., fD1, D2, D3, D4, D5g)
and a subcategorization frame Fr; the output is a set with four members: SD1, SD2,

SD3, and SD4. Each SDi is a subset of DescSet. The Tree Generator takes each SDi and

68

Input: a tree Tr
Output: a template Temp
Algorithm: void GenTemp(Tr, Temp)
(A) for (each node n in Tr)

(A1) Let n be of the form \fkig(cat = a; type = b; subsc = c; f1 = v1; :::; fn = vn)",
create a new node n0 of the form \a(f1 = v1; :::; fn = vn)";

(A2) if (n is a leaf node)
if (n:type is unspeci�ed)
then if (one of the symbols in fkig is Head)

then mark n0 as an anchor node;
else if (one of the symbols in fkig is ModFoot)

then mark n0 as a foot node;
else mark n0 as a substitution node;

else mark n0 according to the value of n:type;

(A3) if (n:subsc is de�ned)
then set the subscript of n0 to be n:subsc;

(B) for (each edge from n1 to n2 in Tr)
add an edge from n01 to n

0
2 in Temp

Table 4.8: An algorithm that builds a template from a tree

69

HeadP(’S’)

HeadBar(’VP’)

Head(’V’)

S

NP S

NP VP

V@ NPε

S

NP S

NP VP

V@ NP

ε

HeadBar

Head Obj(’NP’)

FHeadP(’S’)

HeadP(’S’)

Subj(’NP’) HeadBar

HeadP

NewSite(’NP’)

ExtSite(’NP’)

(a) the input of the Tree Generator

#5: #6:

#1: #2: #3: #4:

(b) the output of the Tree Generator

Trace(�)

Figure 4.19: The function of the Tree Generator

generates a set of trees Ti. Each Ti has zero or more trees. For instance, T2 has two trees,

whereas T4 is empty because the descriptions in SD4 (i.e., D4 and D5) are incompatible.

The input description sets are in fact divided into three subsets: one for subcategorization

descriptions, one for modi�cation relations, and the third one for syntactic variations. The

Description Selector handles the three subsets di�erently, as we shall discuss shortly.

4.6.2 The de�nition of a subcategorization frame

A subcategorization frame speci�es the categories of the predicate and arguments, the

positions of arguments with respect to the predicate, and other information such as fea-

ture equations. A subcategorization frame is actually a special kind of subcategorization

description. A frame such as (NP0; V;NP1) can be seen as the shorthand version of the

description

(leftarg � head) ^ (head � rightarg) ^ (leftarg:cat =0 NP 0) ^ (head:cat =0 V 0)

^(rightarg:cat =0 NP 0) ^ (leftarg:subsc = 0) ^ (rightarg:subsc = 1)

A subcategorization frame is di�erent from other descriptions in that it cannot refer

to any node other than the head and its arguments. For instance, it cannot refer to the

70

HeadP(’S’)

HeadBar(’VP’)

Head(’V’)

Subj(’NP’) HeadBar

HeadP HeadBar

Head Obj(’NP’)

S

V@ NP

VPNP

ε
1

 0

S

NP

S

NP S
NP VP

NPV@

ε

1

 0

VP*

VP

S

V@ NP

VPNP

ε
1

 0

S

NP VP

V@ NP1

 0

S

NP VP

V@ NP
1

 0

VP*

VP

S

V@ NP

VPNP

ε
1

 0

S

V@ NP

VPNP

ε
1

 0

S

NP

S

NP S
NP VP

NPV@

ε

1

 0

Tree Generator

Description Selector

FHeadP(’S’)

HeadP(’S’)NewSite(’NP’)

ExtSite(’NP’)

ModRoot(’VP’)

ModFoot(’VP’) HeadP(’S’)

Subj(’NP’)

tree family for the transitive verb

the union of the sets T

(D)

(T) 4
1 2(T) (T) (T)

3

(SD)(SD)(SD)1 2 3

(D) (D) (D) (D)
1 2 3 54

(NP0, V, NP1)

D3, D4, D5
Fr, D1, D2,

(SD)4

Fr:

Fr, D1, D2, D3 Fr, D1, D2,
D3, D4

Fr, D1, D2,
D3, D5

i

Trace(�) PRO(�)

Figure 4.20: The function of the Description Selector

71

VP which is the parent of the verb head. Another di�erence is that the categories of the

nodes in a subcategorization frame must be speci�ed.

4.6.3 The algorithm for the Description Selector

Now that we have described the function of the Description Selector, the next question is

how does it work? In Section 4.4, we classify descriptions into four types: the ones for head

projections, head-argument relations, syntactic variations, and modi�cation relations. The

�rst two types (e.g., D1;D2 andD3 in Figure 4.20) are also called subcategorization descrip-

tions since they specify structures for a particular subcategorization frame. Because the

elementary trees in a tree family have the same subcategorization frame, the Description

Selector should put in every SDi all the subcategorization descriptions for that subcate-

gorization frame. In addition to subcategorization information, an elementary tree may

include information about zero or more syntactic variations, and zero or one modi�cation

relation. Therefore, each SDi built by the Description Selector should include all the

related subcategorization descriptions, zero or more syntactic variation descriptions, and

zero or one modi�cation description.

The algorithm for the Description Selector is in Table 4.9. Some explanations are in

order.

� In Line (A), the algorithm chooses a subset of subcategorization descriptions by

matching the \headers" of descriptions with the \headers" that are automatically

generated from a subcategorization frame. To see how it works, just imagine that

each description is a function with a header and a body. The header is made

of a function name and a list of parameters in particular formats. The body is

a w� as de�ned before. For instance, the headers of the descriptions in D1 |

D3 in Figure 4.20 are head is V (Head), head V has left arg NP (Head, Subj), and

head V has right arg NP (Head, Obj), respectively. Given a subcategorization frame

(L1; L2; :::; Ln;X;R1; R2; :::; Rm), the algorithm generates a set of headers such as

head is X (Head), head X has a left arg Li (Head, LArgi), and head X has a right arg Ri

(Head, RArgi). Then it uses this set of headers to fetch the descriptions with the

72

Input: Fr: a subcategorization frame,
Subcat: a set of subcategorization descriptions,
Synvar: a set of syntactic variation descriptions,
Mod: a set of modi�cation descriptions.

Output: SDs: a set of description sets

Algorithm: void SelectDesc(Fr; Subcat; T rans;Mod, SDs)

/* select subcategorization descriptions */
(A) select a subset Subcat1 of Subcat according to Fr;

/* �lter out some of incompatible syntactic variation and modi�cation descriptions */
(B) select a subset Synvar1 of Synvar that seems to be compatible with Subcat1;
(C) select a subset Mod1 of Mod that seems to be compatible with Subcat1;

/* build SDs */
(D) SDs = f g;
(E) for (each subset tmp set of Synvar1)

TSet1 = fFrg [Subcat1 [tmp set;
SDs = SDs [TSet1;
for (each tmp mem in Mod1)

TSet2 = TSet1 [ftmp memg;
SDs = SDs [TSet2;

Table 4.9: The algorithm for the Description Selector

73

same function names and the same numbers of parameters.9 In our example, given

the subcategorization frame (NP; V;NP), the algorithm selects D1 | D3.

� In Line (B), the algorithm throws away syntactic variation descriptions that are

obviously incompatible to the ones in Subcat. For instance, if the HeadP in a

description of Subcat has the label S, the algorithm is going to throw away all the

descriptions in which HeadP has labels other than S. Line (C) works in a similar

way. Notice that the incompatibility between the descriptions can be detected by

the Tree Generator as well; therefore, Lines (B) and (C) are optional in the sense

that the Tree Generator would produce the same result with or without these two

lines. But these lines make LexOrg run much faster by reducing the number of

description sets that the Tree Generator has to consider from 2jSynvarj�(jMod j +1)
to 2jSynvar1j � (jMod1 j +1).

� Recall that a subcategorization frame is a special kind of subcategorization descrip-

tion; therefore, it should be included in every SD, as in Line (E).

Back to the example in Figure 4.20, Subcat is fD1;D2;D3g, Synvar is fD4g, andMod

is fD5g. The set of description sets produced by the Description Selector has four members:
SD1 | SD4. In this example, it happens that Subcat1 (Synvar1, Mod1, respectively) is

the same as Subcat (Synvar, Mod, respectively). In a real grammar, the former is much

smaller than the latter.

4.7 The Frame Generator

The third component of LexOrg is the Frame Generator. It takes a subcategorization frame

and a set of lexical rules as input and produces as output a set of related subcategorization

frames.

74

 0

NP

VP

1

NP
NP

NP

S

ε

VP

NP

 0

V@

#2:

S NP S

V@
1

NP
1

 0

V@

ε

#3:

S

S

VP1

V@

NP VP

S

NP

Transitive verbs: (NP0 V NP1)

#1: #4:

Ergative verbs: (NP1 V)

NP

S

ε

S

NP VP

VP

VP* S

VP

ε

NP

1

V@

1

V@

#5: #7:#6:

VP

VP* S

 0 VP

NPε

NP

1V@

Figure 4.21: Templates in two tree families

(NP0 V NP1) => (NP1 V)

Figure 4.22: The lexical rule for the causative/inchoative alternation

4.7.1 The function of the Frame Generator

In an LTAG grammar, each word anchors one or more elementary trees. Figure 4.1 (re-

peated as Figure 4.21) shows seven templates anchored by ergative verbs such as break. The

templates belong to two tree families because the subcategorization frames for them are

di�erent, but there is a clear connection between these two subcategorization frames, and

all the ergative verbs (such as break, sink, and melt) have both frames. Levin (1993) listed

several dozens of alternations and classi�ed English verbs according to the alternations

that are allowed for the verbs. In LexOrg, we use lexical rules to link related subcatego-

rization frames. Figure 4.22 shows the lexical rule that links the two subcategorization

frames in the causative/inchoative alternation. The function of the Frame Generator is to

apply lexical rules to a frame and generate all the related frames.

9Just like a function call, the names of parameters appearing in a function de�nition do not have to be

the same as the ones in a function call.

75

4.7.2 The de�nition of a lexical rule

The term lexical rule is heavily overloaded. For instance, the lexical rules in (Evans et al.,

1995) can manipulate tree structures. They are used to account for wh-movement, topical-

ization, and so on. In LexOrg, lexical rules can only manipulate subcategorization frames.

A lexical rule is of the form fr1) fr2, where fr1 and fr2 are just like subcategorization

frames except that the categories of the nodes in fr1 and fr2 do not have to be speci�ed.

A lexical rule fr1) fr2 is said to be applicable to a frame fr if fr and fr1 are

compatible; that is, fr and fr1 have the same number of arguments and the features of

the corresponding nodes can be uni�ed. Applying this rule to fr yields a new frame which

combines the information in fr and fr2. For instance, the lexical rule (Subj; V; S))
(Subj; V;NP) says that if a verb can take an S object, it can also take an NP object.

Applying this rule to the frame (NP0 V S1) generates a new frame (NP0 V NP). In this

new frame, the category of the subject comes from the input frame, where the category

of the object comes from the right frame of the lexical rule. Because the category of the

Subj in the lexical rule is not speci�ed, the lexical rule is also applicable to the frame (S0

V S1).

In addition to categories, the nodes in a lexical rule may include other features. For

instance, a lexical rule for passivization would look exactly like the one in Figure 4.22

except that the feature voice has the value 'active' for the verb in the left frame, and has

the value 'passive' for the same verb in the right frame. This feature will prevent the rule

from being applied to a verb that is already in the passive voice, such as given in John is

given a book.

4.7.3 The algorithm for the Frame Generator

The Frame Generator takes a subcategorization frame Fr and a set of lexical rules Rules

as input and produces as output a set of related frames. Initially, Fr is the only member

of FrSet . Then the Frame Generator applies each rule in Rules to each frame in FrSet,

and adds the resulting frames to FrSet. It repeats this step until no more new frames are

added to FrSet.

In this process, the Frame Generator may apply a rule r1 to a frame f1 and generate a

76

frame f2, and then apply r2 to f2 and generate f3, and so on. When that happens, we say

that a sequence [r1; r2; :::; rn] of lexical rules is applied to the frame f1 . The order of the

lexical rules in the sequence is important. For example, a passivization rule is applicable

after the dative shift rule is applied to the subcategorization frame for ditransitive verbs,

but the dative shift rule is not applicable after a passivization rule is applied to the same

frame. Also, the set of possible sequences of lexical rules is �nite because the set of distinct

lexical rules is �nite and in general each lexical rule appears in a sequence at most once.10

Therefore, this three-step process will eventually terminate.

Lexical rules and syntactic variation descriptions are very di�erent in several aspects.

First, a lexical rule is a function that takes a subcategorization frame as input, and produces

another frame as output; a syntactic variation description is a w� in a simpli�ed �rst-order

logic. Second, lexical rules are more idiosyncratic than syntactic variations. For instance,

the lexical rule in Figure 4.22 is only applicable to ergative verbs, rather than all the

transitive verbs. In contrast, the description for wh-movement applies to all the verbs.

Third, when lexical rules are applied to a subcategorization frame in a series, the order

of the lexical rules matters. In contrast, if a set of descriptions includes more than one

syntactic variation description (e.g., the descriptions for topicalization and argument drop

in Chinese), the order between the descriptions does not matter. Last, lexical rules can be

non-additive, allowing arguments to be removed; descriptions are strictly additive, meaning

a description can only add information, not remove information.

4.8 The experiments

In previous sections, we have described three components of LexOrg, which can be sum-

marized as follows:

� The goal of LexOrg is to provide an eÆcient way to generate templates for a language.

As shown in Figure 4.4 (repeated here as Figure 4.23), the inputs to LexOrg are a

10An arguable exception to this claim is the double causative construction in languages such as Hungarian

(Shibatani, 1976). But in this construction it is not clear whether the second causativization is done in

morphology or in syntax. Even if it is done at the morphological level, the two causativizations are not

exactly the same and they will be represented as two di�erent lexical rules in LexOrg.

77

Generator
Frame Description

Selector

frame
descriptions

sets of

Generator
Tree

templates

descriptions

a subcat
frames
subcat

lexical rules

Figure 4.23: The architecture of LexOrg

subcategorization frame of a word, a �nite set of lexical rules, and a �nite set of

descriptions; the output is a set of templates that the word can anchor.

� LexOrg has three components: the Frame Generator takes a subcategorization frame

and a set of lexical rules as input and produces a set FrSet that includes all the

related subcategorization frames; for each frame in FrSet, the Description Selector

chooses sets of descriptions; for each set of descriptions chosen by the Description

Selector, the Tree Generator creates a set of templates that satisfy the descriptions.

We have implemented the system in C. We also built subcategorization frames, lexical

rules, and descriptions for English verbs. When they are fed to our system, the system

produced a grammar with 638 templates. We compared this grammar with the XTAG

grammar and found that the grammar produced by LexOrg covered more than 90% of

the templates for verbs in the XTAG grammar. By comparing these two grammars, we

found gaps in the XTAG grammar that seemed unmotivated and needed to be investigated.

The types of gaps included missing subcategorization frames that were created by LexOrg's

Frame Generator and which would correspond to an entire tree family, a missing tree which

would represent a particular type of syntactic variation for a subcategorization frame, or

missing features. In addition, we used LexOrg to build a smaller grammar for Chinese.

Table 4.10 lists some of subcategorization frames, lexical rules, and descriptions for

English and Chinese. It highlights the similarities and di�erences between these two lan-

guages. For example, both languages have the subcategorization frame (NP, V, NP), but

only English has the frame (NP, V@, NP, NP, S) for verbs such as bet in I bet you �ve

dollars that Mary will not come tomorrow.

78

English Chinese

subcategorization (NP, V, NP) (NP, V, NP)
frames (NP, V, NP, NP, S) (V)

lexical passive short bei-const
rules dative-shift V-de construction

subcategorization head is V head is V
descriptions V has 3 right arg V has 2 right arg

syntactic variation wh-question topicalization
descriptions imperative argument drop

modi�cation S modify VP from right S modify VP from right
descriptions S modify NP from right S modify NP from left

Table 4.10: Some examples of subcategorization frames, lexical rules, and descriptions for
English and Chinese

4.9 Creating language-speci�c information

LexOrg generates templates from subcategorization frames, lexical rules, and descriptions.

It presumes that users of LexOrg provide this information to the system. A natural

question arises: how does a user create such information? We address this question in this

section.

4.9.1 Subcategorization frames and lexical rules

Only a limited number of categories (such as verbs and prepositions) take arguments and

therefore have nontrivial subcategorization frames and lexical rules. By nontrivial, we

mean subcategorization frames with at least one argument. Among these categories, verbs

are the most complicated ones. To create subcategorization frames and lexical rules for

verbs, the user of LexOrg can refer to the literature on verb classes such as (Levin, 1993).

In this book, Levin discussed verb classes and alternations for verbs. Many alternations in

her book are represented as lexical rules in LexOrg. In the next chapter, we shall discuss

another system (LexTract) which can extract subcategorization frames from bracketed

corpora.

79

4.9.2 Descriptions

In addition to subcategorization frames and lexical rules, the users of LexOrg need to

build descriptions. They can choose one or more of the following three approaches to build

descriptions.

From templates

In the �rst approach, users start with some templates that they want LexOrg to build and

see how they can decompose the templates into sets of descriptions. For instance, given a

template in Figure 4.24(a), we know that it is for a predicate-argument relation, and there-

fore the set of descriptions should include zero modi�cation descriptions, a head projection

description, several head-argument descriptions, and one or more syntactic variation de-

scriptions. One thing that is not clear from the template alone is whether the root S node

in the template is a lexical projection or a functional projection of the anchor V. If it is a

lexical projection, the verb has three NP arguments: two appears before the verb, and one

appears after the verb and it is dropped (recall that arguments can be dropped in Chinese

and Korean). In this case, the description set in Figure 4.24(b) should be used. In this

set, #1 is for the head and its projection, #2, #3, and #4 are for arguments of the head,

#5 is for a syntactic variation such as argument-drop. If the root S node is a functional

projection, the verb has two NP arguments: one appears before the verb, and the other is

generated after the verb but it is later moved to the sentence-initial position (e.g., it may

undergo wh-movement). In this case, the description set in Figure 4.25 should be used,

where #1 is for the head and its projection, #2 and #3 are for arguments, and #4 is for

a syntactic variation such as wh-movement. Although the template alone does not pro-

vide suÆcient information to make the decomposition unique, with the knowledge about

a language (e.g., the verb's projection levels and the existence of overt wh-movement and

argument-drop in the language), the users should be able to choose the correct description

set.

In Section 4.4, we classi�ed descriptions according to four types of information (i.e.,

head and it projections, arguments of a head, modi�ers of a head, and syntactic variations)

expressed in the descriptions. This classi�cation greatly reduces the number of possible

80

S

NP S

NP VP

V NP

ε

Y1(’NP’) X1(’S’)

X0(’S’)

Y3(’NP’)

X2

Head

Y2(’NP’)

X1

X2

(a) a template

#1:
#2:

#3:

(b) a set of descriptions

#4:

#5:
Y3(’NP’)

εZ1(’ ’)

X1(’S’)

X2(’VP’)

Head(’V’)

X0(’S’)

Figure 4.24: A template and a set of descriptions that can generate it

HeadP(’S’)

HeadBar(’VP’)

Head(’V’)

HeadBar

Head Obj(’NP’)

FHeadP(’S’)

HeadP(’S’)

Subj(’NP’) HeadBar

HeadP

#2: #3: #4:#1:

NewSite(’NP’)

ExtSite(’NP’)

trace(�)

Figure 4.25: A more desirable description set if the template is for English

81

ways that a template can be decomposed. Without the classi�cation, there are an in�nite

number of description sets for a template. To see this, just recall that a node in the

template may correspond to many symbols in the descriptions and a piece of information

(e.g., a pair in the dominance relation, the category of a symbol, and the value of a feature)

can appear in more than one description in a description set. Even if we require that every

description set should satisfy the following:

� a node in the template corresponds to exactly one symbol appearing in the description

set.

� a piece of information appears in exactly one description in the set.

� each description is a conjunction of terms.

the number of the description sets for a template is still a huge number.11 With

the classi�cation, a template can be decomposed only in certain ways. For instance, the

root node and the foot node of a modi�cation template should belong to a modi�cation

description, the head and its projections should belong to the head projection description,

and so on.

From language-speci�c tables

Another way of building descriptions is to use three language-speci�c tables: the head

projection table, the argument table, and the modi�cation table. Figure 4.26 shows entries

from the tables and the corresponding descriptions. For instance, for each entry (mod tag

x1=:::=xn y1=:::=ym) in the modi�cation table, we build m+ n modi�cation descriptions.

In each description, the root ModRoot has the category mod tag and it has two children:

one is a node ModFoot with the same category, and the other child is labeled as xi (for

the left modi�er) or yi (for the right modi�er). As discussed in Chapter 3, the grammar

built from the tables alone tends to over-generate. Therefore, the users of LexOrg should

11The number is the nth Bell number, where n is the number of pieces of information in the template, and

the nth Bell number is the number of ways that a set with n distinguishable elements can be partitioned

into disjoint, non-empty subsets.

82

head projection table:

V -> VP -> S

argument table

(V 0 2 NP/S)

HeadBar(’VP’)

Head(’V’) Obj(’S’)

HeadBar(’VP’)

Head(’V’) Obj(’NP’)

Head(’V’)

HeadP(’S’)

HeadBar(’VP’)
X(’DT’) ModFoot(’NP’)

ModRoot(’NP’)

modification descriptions:

X(’ADJP’) ModFoot(’NP’)

ModRoot(’NP’)

ModRoot(’NP’)

#4:

#5:

#6:

X(’S’)ModFoot(’NP’)

head-argument descriptions:head projection description:

#1: #2:

#3:

modification table
(NP DT/ADJP S)

Figure 4.26: Descriptions built from language-speci�c tables

re�ne these descriptions. For instance, the users may want to add the constraint to #6 in

Figure 4.26 that requires a node under X('S') to undergo wh-movement.

From de�nitions

The three language-speci�c tables do not provide information about syntactic variations.

To build a syntactic variation description, the users start with the de�nition of the corre-

sponding phenomenon. For example, wh-movement can be roughly de�ned as a constituent

in a clause is moved from its base position to a new position. Next, the users should re�ne

the de�nition as much as possible. For instance, they should specify that the new position

is to the left of the base position, the category of the parent of the new position is S, and so

on. After re�ning the de�nition, the users should be able to get the description in Figure

4.15 (repeated as Figure 4.27).

4.10 Comparison with other work

It has been long observed that the templates in an LTAG grammar are related to each other

and they should be organized in a compact way so that they can be built and maintained

eÆciently. In addition to LexOrg, there have been three approaches that address this issue.

83

FHeadP(’S’)

HeadP(’S’)NewSite

ExtSite

Trace(0�0)

Figure 4.27: A description for wh-movement

In this section, we compare LexOrg with them.

The systems di�er in how they handle the following two relations. The �rst relation

is among the templates in a tree family. The templates have the same subcategorization

frame, and therefore share tree structures that describe the subcategorization frame. The

second relation is between tree families. Each tree family can be represented as a class in

a hierarchy, such as the one in Figure 4.5 (repeated here as Figure 4.28).

One major di�erence between LexOrg and any of the other approaches is that, in

all other approaches, grammar developers manually create a hierarchy such as the one in

Figure 4.28. A class in the hierarchy inherits attributes from its superclasses. Although the

hierarchy seems intuitive, building it is by no means a trivial task. Grammar developers

have to answer questions such as should the hierarchy be a tree or a network? If it is a

network, how should the con
icts between multiple superclasses be resolved? Can a subclass

overwrite attributes that are inherited from its superclasses? If some verb classes share

certain structures, is it necessary to create an abstract superclass for them | such as the

node VERB in Figure 4.28? What information should be included in the de�nition of

what class? Answers to these questions may vary, resulting in di�erent hierarchies. Figure

4.29 shows another possible hierarchy for English verbs. In this hierarchy, abstract verb

classes (e.g., VERB and IOBJ) are removed, nodes TRANSITIVE, SIMPLE-TRANS, and

NP-IOBJ are merged, and INTRANSITIVE becomes the root of the hierarchy.

In LexOrg, no such hand-crafted hierarchies are needed. Two tree families are related

if there is overlap between the two subcategorization description sets chosen by LexOrg.

84

TRANSITIVE BQUI INTRANSITIVE

PP-IOBJ NP-IOBJ

DITRANS-1 DITRANS-2 OBJ-BQUI SIMPLE-TRANS

IOBJ

VERB

eatgive donate

Figure 4.28: The lexical hierarchy given in (Vijay-Shanker & Schabes, 1992)

BQUIPP-IOBJ

DITRANS-1

INTRANSITIVE

DITRANS-2 OBJ-BQUI

TRANSITIVE

give donate

eat

Figure 4.29: A di�erent hierarchy for English verb classes

85

In fact, LexOrg can be easily extended to create a hierarchy automatically given subcat-

egorization frames and subcategorization descriptions. In this extension, LexOrg builds a

link between two families if and only if the subcategorization description set selected by

LexOrg for one family is a superset of the set selected for the other family. In other words,

LexOrg does not need its users to manually build a hierarchy; furthermore, LexOrg can

build a hierarchy for the users if they need it.

In this section, we take a close look at the other three systems.

4.10.1 Becker's HyTAG

In Becker's HyTAG system, two mechanisms are used. The �rst one is an inheritance

network, which is similar to the lexicon hierarchy in Figure 4.28. As we just mentioned,

LexOrg does not need such an hierarchy. We shall focus on the second mechanism of

HyTAG: metarules.

Introduction to metarules in HyTAG

A metarule in general consists of an input pattern and an output pattern. When the input

pattern matches an elementary structure in a grammar, the application of the metarule to

the structure creates a new elementary structure. Metarules have been used in a number

of formalisms (such as HPSG) to capture generalizations among elementary structures.

Becker (1994) proposed to use metarules for LTAGs.

In this proposal, the input-pattern and the output-pattern of a metarule are elementary

trees with the exception that any node may be a meta-variable. A meta-variables describes

part of a template that is not a�ected if the metarule is applied. If a template matches

the input-pattern, the application of the metarule creates a new template which could

be added to the grammar. In Figure 4.30, (a) shows a metarule that links a declarative

template and a wh-movement template, where � is a meta-variable. Applying this metarule

to the template #1 in (b) results in the template #2, as the meta-variable � matches the

whole VP in #1. Similarly, applying the metarule to the template #3 in (c) results in the

template #4. Some explanations are in order.

� A metarule can erase structures from the input template. This happens when some

86

VP

V NP1

(a) a metarule

S

NP0 NP0

ε

S

S

NP

#1: #2:S

NP S

NP

S

NP

ε

0

0V

VP

VP

V

(b) two templates for intransitive verbs

#4:#3: S

NP0
S

NP

S

NP

ε

0 VP

V NP1

(c) two templates for transitive verbs

�
�

Figure 4.30: Applying metarules to templates

87

S

NP VP0

V NP1

S

NP VP

S

NP

ε

0

V NP1

S

NP

S

NP

ε

S

NP

S

NP VP

S

NP

0

V NP1

ε
(c)(b)

(a)

�
�

Figure 4.31: The result of applying a metarule to a template may not be unique

meta-variables in the input pattern do not appear in the output pattern. Such erasing

metarules are needed for rules like the passive metarule, which deletes the subject

NP in the input template.

� The input and output patterns of a metarule can specify dominance relations between

nodes. For instance, the input pattern of the metarule in Figure 4.31(a) shows that

the S node dominates the NP node. However, patterns in metarules are not as

expressive as descriptions in LexOrg because the patterns cannot express negations

or disjunctions, nor can they leave precedence relations unspeci�ed.

� The application of a metarule to a template may yield more than one template.

In Figure 4.31, when the metarule in (a) is applied to the template in (b), the

metavariable � matches either the S node or the VP node, resulting in the two

templates in (c).

� Metarules can apply to a template in a series. Without any constraint, a metarule

sequence can be in�nitely long, and the application process may never terminate.

To prevent this situation from happening, some restrictions are needed. One such

88

restriction is called the �nite closure constraint, which requires a metarule to appear

in a sequence at most once. Becker proposed a di�erent restriction which requires

that the output trees of metarules must be smaller than a given limitM of a grammar.

However, he did not de�ne what he meant by smaller, nor did he elaborate on where

the M comes from. Furthermore, having a limit on the size of output trees can

guarantee that the application process will terminate, but it may not guarantee that

all the output trees smaller than the limit are linguistically sound.

In HyTAG, an LTAG grammar G is represented as a tuple (G0, MV , MR, M), where

G0 is a �nite set of elementary trees, MV is a �nite set of metavariables, MR is a set of

metarules, and M is the boundary on the size of the output of metarules. An elementary

tree tr is in G if and only if it is smaller than M and can be derived from a tree tr0 in G0

by applying zero or more metarules in MR to tr0.

Comparison between HyTAG and LexOrg

A major di�erence between HyTAG and LexOrg is that HyTAG uses metarules to describe

both lexical and syntactic rules, whereas LexOrg uses two mechanisms: lexical rules and

descriptions. Table 4.11 shows the similarities and the di�erences between metarules,

lexical rules, and descriptions.

metarules lexical rules descriptions

format a rule a rule a w�

expressivity rich limited richer

function to link related to link related to provide information
templates subcat frames about templates

can erase info yes yes no

ordering matters yes yes no

Table 4.11: The similarities and the di�erences between metarules, lexical rules, and de-
scriptions

Aside from the linguistic debate that argues for di�erent treatments of lexical and syn-

tactic rules, using di�erent mechanisms for lexical and syntactic rules has advantages in

practice. First, because LexOrg distinguishes lexical rules from syntactic rules, the number

of lexical rules in LexOrg is fewer than that of the metarules in HyTAG. Also, lexical rules

89

are much simpler than metarules because there are no metavariables in lexical rules. As

a result, it is easier to ensure the termination of the application process when the rules

are lexical rules rather than metarules. Second, lexical rules are more idiosyncratic than

syntactic rules. For instance, the causative/inchoative alternation only applies to ergative

verbs, rather than to all the transitive verbs, whereas any verb with an NP argument

anchors an elementary tree in which the NP argument undergoes wh-movement. To rep-

resent such idiosyncrasy, Becker proposed that the grammar developers \state for each

entry in the (syntactic) lexicon and for each tree family in this entry, which metarules

are applicable for this entry in this tree family". If LexOrg adopted this approach, the

grammar developers (i.e., the users of LexOrg) would specify only the lexical rules that

are applicable, and not the syntactic rules. Syntactic rules are represented by syntactic

variation descriptions, whose applicability is checked by the Tree Generator automatically

and therefore does not needed to be speci�ed by grammar developers.

Another di�erence between HyTAG and LexOrg is the way templates are related. For

the templates in the same tree family, the users of HyTAG �rst build one template as

the basic tree, and then create metarules that link the basic tree and other trees in the

family. When creating a metarule m, the users should consider all the templates t1 to

which m is applied and all the templates t2 that are to be generated from t1 when m is

applied. The users have to specify in the input pattern all the information that is in t1

but not in t2, and specify in the output pattern all the information that is in t2 but not in

t1. For example, the users may choose the tree for declarative sentences as the basic tree,

and then build metarules to derive the trees for imperative, wh-movement, and so on. If

there is information that is in the declarative tree but not in other trees, the users have to

repeat this information in all the input patterns of the metarules that are applied to the

declarative tree. In contrast, the users of LexOrg provide a subcategorization frame and

a set of descriptions. For each tree in the tree family, the Description Selector of LexOrg

chooses the same set of subcategorization descriptions (according to the subcategorization

frame) but a di�erent set of syntactic variation and modi�cation descriptions. The trees

are related by the descriptions that they share, rather than by some rules that link them

explicitly. Figure 4.32 illustrates these two di�erent approaches. In this �gure, mi are

90

4 5 6 7d d d d d9d81 2 3

t 1

2t

t
3

m2

4
t

m3

1
m m

4 t
5

t
6

t
7

m6

5m

t t tttt t
1 2 3 4 5 6 7

d d d

modificationsubcategorization transformation
descriptions descriptionsdescriptions

(a) HyTAG (b) LexOrg

Input: t1 and fmig
Output: fti j i > 1g

Input: a subcat frame and fdig
Output: ftig and the lines between fdig and ftig

Figure 4.32: The ways that templates in a tree family are related in two systems

metarules, ti are templates, and di are descriptions. The inputs to HyTAG are t1 and fmig,
and the inputs to LexOrg are fdig and a subcategorization frame. LexTract generates all

the templates, whereas HyTAG generates all but t1.

For templates in two related tree families, HyTAG uses a metarule to link the basic

trees in the tree families. Once again, the input and output patterns have to specify

what information is in one tree but not in the other. Figure 4.33(a) shows a metarule

that links the transitive tree and the ergative tree. In the transitive tree, the surface

subject is NP0 and the subject-verb agreement is between NP0 and V P , whereas in the

ergative tree the surface subject is NP1 and the subject-verb agreement is between NP1

and V P . To get it right, the metarule has to specify the agreement features in both sides

of the metarule, although the agreement is always between the surface subject and the VP

and it has nothing to do with the causative/inchoative alternation. In contrast, to relate

templates in two tree families, LexOrg uses a lexical rule to link two subcategorization

frames of the tree families, which is much simpler than a metarule. In this example, the

lexical rule (see Figure 4.33(b)) does not include subject-verb agreement features because

for both subcategorization frames LexOrg will select a description head V has left NP arg,

in which the agreement feature is speci�ed.

91

S

NP VP

V@ NP

0

1

NP .arg = VP.arg0

NP VP

S

V@

1

NP .arg = VP.arg1

(a) metarule in HyTag (b) lexical rule in LexOrg

(NP , V, NP) => (NP , V)0 1 1

Figure 4.33: The ways that templates in di�erent tree families are related in two systems

S

NP VP

V NP

buy

(a) an elementary tree

buy:

<cat> = v
<parent cat> = vp

<parent left cat> = np

<parent parent cat> = s

<right cat> = np

(b) the DATR representation

Figure 4.34: An elementary tree and its DATR representation

4.10.2 The DATR system

Evans, Gazdar and Weir (1995) discussed a method for organizing the trees in a TAG

hierarchically, using an existing lexical knowledge representation language called DATR

(Evans and Gazdar, 1989). We shall refer to their system as the DATR system.

Introduction to the DATR system

In this system, an elementary tree is described from its lexical anchor upwards as a feature

structure using three tree relations : the left, right, and parent relations. Figure 4.34 shows

an elementary tree and its representation in DATR. In the DATR representation, the �rst

equation says that the category of the anchor is v, the second one says that the category

of the anchor's parent is vp, and so on.

Like HyTAG, the DATR system uses an inheritance hierarchy to relate verb classes.

Figure 4.35 shows the lexical hierarchy and the de�nitions of two classes given in (Evans

et al., 1995). For instance, the VERB+NP class inherits the structure from the VERB

92

VERB

Die VERB+NP

VERB+NP+PP VERB+NP+NP

SpareGive

Eat

VERB:

<> == TREENODE

<cat> == v

<type> == anchor

<parent> == VPTREE:<>

VERB+NP:
<> == VERB

<right> == NPCOMP:<>

(a) a lexical hierarchy

(b) the definitions of VERB and VERB+NP

Figure 4.35: The principal lexical hierarchy and the de�nitions of two classes which are
given in (Evans et. al., 1995)

class and adds a right NP complement as the sister of the anchor.

The system uses lexical rules to capture the relationships between elementary trees.

A lexical rule de�nes a derived output tree structure in terms of an input tree structure.

Because lexical rules in this system relate elementary trees rather than subcategorization

frames, they are more similar to metarules in HyTAG than to lexical rules in LexOrg.

Figure 4.36(a) shows the partial de�nitions of the lexical rules for topicalization and wh-

questions. The �rst two lines attach an additional S and an NP above the original S to

create a topicalized structure. The last line marks the newNP as wh, rather than as normal.

In the complete de�nitions of these rules, the new NP is syntactically cross-referenced to

a speci�c NP marked as null in the input tree.

In addition to topicalization and wh-movement, lexical rules are also used for passive,

dative-shift, subject-auxiliary inversion, and relative clauses.12 The lexical rule for passive

12In LexOrg , passive and dative-shift are handled by lexical rules. A parse tree for a subject-auxiliary

inversion sentence is created by adjoining an auxiliary tree that is anchored by an auxiliary verb to an

elementary tree that is anchored by the main verb. LexOrg uses descriptions to express the information in

93

<output topic parent parent parent cat> = = s
<output topic parent parent left cat> == np
<output topic parent parent left form> == normal

<output whq> == "<output topic>"
<output whq parent parent left form> == wh

(b) lexical rule for passive

(a) lexical rules for topicalization and wh-movement

<output passive form> == passive
<output passive right> == "<input passive right right>"

Figure 4.36: The lexical rules for topicalization, wh-movement, and passive in the DATR
system

is shown in Figure 4.36(b). Instead of stating that the �rst object of the input tree is the

subject of the output tree, the lexical rule simply discards the object. As a result, the

relation between that object in an active sentence and the subject in the corresponding

passivized sentence is lost.

Comparison between the DATR system and LexOrg

Almost all of our previous discussion about the di�erences between HyTAG and LexOrg

is true for the di�erences between the DATR system and LexOrg. Just like HyTAG,

the DATR system uses a lexical hierarchy; it uses lexical rules to handle both lexical

alternations (such as the causative/inchoative alternation) and syntactic rules (such as

wh-movement); the elementary trees are related by lexical rules. In contrast, LexOrg does

not use lexical hierarchies; it uses lexical rules for lexical alternations and descriptions for

syntactic rules; the elementary trees are related implicitly by the descriptions that they

share.

While descriptions in LexOrg can easily express dominance relations, the dominance

topicalization, wh-movement, and a relative clause.

94

relation in DATR can only be speci�ed by spelling out explicitly all of the di�erent possible

path lengths for every possible dominance relationship. For instance, in a wh-movement,

the moved NP is dominated by the S in the input tree. The NP can be the subject,

the object of the verb, or the object of a PP where the PP is an object of the verb. In

the DATR system, three lexical rules are needed to specify these three possibilities. In

contrast, since descriptions used by LexOrg are more expressive, only one description is

needed to cover all three cases.

4.10.3 Candito's system

Like LexOrg, Candito's system (Candito, 1996) is built upon the basic ideas expressed in

(Vijay-Shanker and Schabes, 1992) for the use of descriptions to encode tree structures

shared by several elementary trees.

Introduction to Candito's system

Candito's system uses a hand-written hierarchy which has three dimensions. In the �rst

dimension, canonical subcategorization frames are put into a hierarchy similar to the ones

in HyTAG and the DATR system. The second dimension includes all possible redistribu-

tions of syntactic functions. The association of a canonical subcategorization frame and

a compatible redistribution gives an actual subcategorization. The third dimension lists

syntactic realizations of the functions. It expresses the way that the di�erent syntactic

functions are positioned at the phrase-structure level. The de�nitions of classes in these

dimensions include descriptions and meta-equations.

A terminal class is formed in two steps. First, it inherits a canonical subcategorization

from dimension 1 and a compatible redistribution from dimension 2. This pair of super-

classes de�nes an actual subcategorization. Second, the terminal class inherits exactly

one type of realization for each function of the actual subcategorization from dimension

3. A terminal class is actually a description. Elementary trees are the minimal trees

that satisfy the description. For instance, a terminal class inherits the ditransitive frame

(NP0; V;NP1; NP2) from dimension 1 and the passive redistribution from dimension 2;

95

this yields the actual subcategorization frame (NP1; V;NP2). It then inherits subject-in-

wh-question and object-in-canonical-position realizations from dimension 3. The resulting

elementary tree is anchored by a passivized ditransitive verb whose surface subject (i.e.,

the indirect object in the active voice) undergoes wh-movement, such as given in who was

given a book?

A terminal class inherits one class from dimension 1, one from dimension 2, and one or

more from dimension 3. These superclasses may be incompatible. For instance, in English,

only one argument of a verb can undergo wh-movement; therefore, the classes subj-in-wh-

question and obj-in-wh-question from dimension 3 are incompatible. To ensure that all the

superclasses of a terminal class are compatible, the system provides several ways for its

users to express compatibility constraints.13 The users can mark a class C in the hierarchy

as a disjunctive node, meaning that a terminal class cannot inherit more than one subclass

of C. The user can also specify positive or negative inheritance constraints. A positive

constraint (A;B) requires that any class that inherits from A must also inherit from B. A

negative constraint (A;B) requires that any class that inherits from A cannot inherit from

B. Another type of constraint is called constrained crossing. A constrained crossing is a

tuple (A;B;C), meaning whenever a class inherits from A and B, it has to inherit from

C.

Comparison between Candito's system and LexOrg

There are many similarities between these two systems as both use descriptions to en-

code tree structures shared by several elementary trees. In both approaches, there is a

separation of lexical rules and syntactic rules. There is a parallel between her subcate-

gorization dimension and our subcategorization descriptions, between her redistribution

dimension and our lexical rules, and between her realization dimension and our syntactic

variation/modi�cation descriptions. However, there are several major di�erences between

these two systems.

The �rst di�erence is that Candito's system requires a hand-written hierarchy whereas

13The content of this paragraph comes from the handout of the talk that Candito gave at the University

of Pennsylvania in March 1997.

96

LexOrg does not. We have mentioned that LexOrg can automatically generate a lexical

hierarchy | which is similar to Candito's dimension 1 | when given a set of subcatego-

rization frames. As for dimension 2, Candito's system requires that each terminal class

should select exactly one class from this dimension. This means that if two lexical rules

can be applied in a series (such as passive and causative) to a subcategorization frame, a

node that represents that sequence must be manually created and added to her dimension

2. In other words, her dimension 2 should have a node for every lexical-rule sequence that

is applicable to some subcategorization frame. LexOrg does not need users to build this

dimension manually because LexOrg (the Frame Generator, to be more precise) automat-

ically tries all the lexical-rule sequences when given a subcategorization frame.

The two systems also di�er in the way that syntactic variations are represented. In

Candito's third dimension, each terminal node speci�es the way a speci�c function is real-

ized. Therefore, each argument/function in a subcategorization frame requires a terminal

node for each possible syntactic realization. For example, the subject of a ditransitive verb

has a di�erent terminal node for the canonical position, for wh-extraction, and so on. So

do the direct object and indirect object. To generate templates for wh-questions of ditran-

sitive verbs, Candito's system needs to build three terminal classes, as shown in Figure

4.37(a). In contrast, LexOrg does not need descriptions for various positions that each

argument/function can be in. It only needs one description for wh-movement. To generate

the template for wh-questions, LexOrg only needs one wh-movement description from this

dimension. Combining this description with the set of subcategorization descriptions will

yield all the templates for wh-questions, as in Figure 4.37(b).

Another di�erence between the two systems is that Candito's system requires its users

to specify constraints on the selection of superclasses. For instance, the user has to build a

class for wh-movement and a subclass for each position from which a constituent is moved

(e.g., subj-in-wh-position, indobj-in-wh-question, and dobj-in-wh-question). The users then

have to mark the extraction class as a disjunctive node, so that the system will not choose

more than one of its children for a terminal class. In LexOrg, only one description for

wh-movement is needed, which covers all possible cases of wh-movement. The description

appears in a description set at most once. As a result, there is no need to write constraints

97

#2:

#3:

#4:

#5:

#6:

#7:

indobj-in-wh-question

indobj-in-canon-pos

subj-in-wh-quest

subj-in-canon-pos#1: subcat desc

#1 + #3 + #4 + #6 => wh-subj

dobj-in-canon-pos

dobj-in-wh-question

#1 + #2 + #5 + #6 => wh-indobj

#1 + #2 + #4 + #7 => wh-dobj

(a) Candito’s system

#1’: subcat desc

#2’: wh-movement

wh-dobj

wh-subj
#1’ + #2’ => wh-indobj

(b) LexOrg

Figure 4.37: The di�erent ways that two systems handle wh-movement

to rule out illegal combinations such as the ones with both subj-in-wh-position and indobj-

in-wh-question.

In summary, LexOrg has several advantages over other systems. First, unlike all three

other systems, not only does LexOrg not require its users to build any lexical hierarchy,

but it can actually produce a hierarchy automatically by checking the descriptions selected

by subcategorization frames. Second, unlike HyTAG and the DATR system, LexOrg dis-

tinguishes lexical rules from syntactic rules and uses two di�erent mechanisms to represent

these rules. Making such distinction has advantages both in theory and in practice. Third,

unlike Candito's system, LexOrg does not require users to provide various kinds of con-

straints to ensure that a terminal class inherits the correct combinations of superclasses

from three dimensions. Fourth, unlike the DATR system and the Candito's system, LexOrg

needs only one description to specify the information for wh-movement.

4.11 Summary

In summary, we have presented a system, LexOrg, that takes three types of information

(i.e., subcategorization frames, lexical rules, and descriptions) as input and produces LTAG

grammars as output. Descriptions are further divided into four types according to the

information that they provide. The abstract level of representation for the grammar both

98

necessitates and facilitates an examination of the linguistic analyses. This can be very

useful for gaining an overview of the theory that is being implemented and exposing gaps

that remain unmotivated and need to be investigated. We have used LexOrg to build

grammars for English and Chinese. We also showed that LexOrg has several advantages

over other systems.

99

Chapter 5

LexTract: a system that extracts

LTAGs from Treebanks

In Chapter 3, we gave an algorithm that generates a grammar, GTable, from three tables |

the head projection table, the argument table, and the modi�cation table. The grammar

overgenerates because the tables do not provide suÆcient information about a language.

In Chapter 4, we presented a system, LexOrg, that solves this problem by requesting

more informative input (such as descriptions) from its users. Creating such input requires

linguistic expertise. Furthermore, there is no frequency information associated with the

grammars produced by LexOrg. To use the grammars for parsing, other sources of infor-

mation (such as heuristic rules) have to be found to help us select the most likely parse

trees.

To address these problems, we built another system, called LexTract. LexTract takes

a Treebank and three tables as input and produces as output LTAG grammars, derivation

trees and other types of information, as shown in Figure 5.1. The system has been used

in a number of applications. In this chapter, we describe core components of the system,

and leave the discussion of its applications to the next chapter.

This chapter is organized as follows. In Section 5.1, we give a brief introduction to

the English Penn Treebank, which is widely used in the NLP �eld. In Section 5.2, we

describe the overall approach of LexTract. In Section 5.3, we discuss three input tables to

100

LexTract

Treebank

Language-specific
information

Derivation trees

LTAGs

CFGs

MC sets

Figure 5.1: Architecture of LexTract

LexTract. In Section 5.4, we give an algorithm that extracts grammars from Treebanks.

In Section 5.5, we describe a method for building derivation trees for the sentences in the

Treebank. In Section 5.6, we demonstrate the process for building the multi-component

(MC) sets from derivation trees. In Section 5.7, we show that context-free grammars and

subcategorization information can be easily obtained from extracted LTAGs. In Section

5.8, we explain our treatment for several special cases. In Section 5.9, we compare LexTract

with other grammar extraction methods.

5.1 Overview of the English Penn Treebank

The English Penn Treebank (PTB) is widely used in the NLP community for training and

testing statistical tools such as POS taggers and parsers. It is also the �rst Treebank on

which LexTract was used. Therefore, we shall use examples from the PTB throughout this

chapter to demonstrate how LexTract works. The PTB was developed at the University

of Pennsylvania in the early 1990s. It includes about one million words of text from the

Wall Street Journal annotated in Treebank II style (Marcus et al., 1994). Its tagset has 72

syntactic labels (36 POS tags, 26 syntactic category tags, 10 tags for empty categories1)

and 20 function tags. Each bracketed item is labeled with one syntactic category, zero

or more function tags, and zero or more reference indices. For details, please refer to

(Santorini, 1990) and (Bies et al., 1995). The meanings of the tags that appear in this

chapter are listed in Table 5.1. Figure 5.2 is a simple example that shall be used throughout

1The PTB uses -NONE- for all empty categories, but it also uses 10 more speci�c tags to mark di�erent

types of empty categories. For example, a trace is marked as (-NONE- *T*-1), where -1 can be replaced

by any reference index.

101

this chapter.

POS tags

CC conjunction
DT determiner
IN preposition or

subordinating conjunction
NN noun, singular or mass
NNP proper noun, singular
NNS noun, plural
PRP pronoun
RB adverb
VBD verb, past tense
WP wh-pronoun

syntactic tags

NP noun phrase
PP preposition phrase
VP verb phrase
S simple declarative clause
SBAR embedded clause
WHNP wh-noun phrase

function tags

CLR closely related
LOC locative
PRD predicate
SBJ surface subject
TMP temporal

Types of empty categories

�T� trace for A'-movement
�ICH� interpret constituent here
�EXP� \trace" in it-extrapostion
0 zero complementizer

Table 5.1: Treebank tags that appear in this chapter

5.2 Overall approach of LexTract

Conceptually, LexTract works as follows: it �rst generates GTable using the algorithm in

Table 3.1, then chooses a subset G�
Table of GTable such that each template in the subset

is useful for a Treebank. A template is useful for a Treebank if it is used at least once

to produce correct derived trees for some grammatical sentences in the Treebank. This

process is illustrated in Figure 3.12, repeated as Figure 5.3.

How do we decide whether a template t inGTable is useful for a Treebank? By de�nition,

we need to (1) �nd all the grammatical sentences in a Treebank, (2) �nd the correct derived

trees for these grammatical sentences, and (3) check whether template t is used in one of

these derived trees. Because a Treebank is a collection of naturally occurring sentences,

we can assume that all the sentences in a Treebank are grammatical; therefore, we can

skip the �rst step.

Next we need to �nd the correct derived trees for the sentences. The phrase structures

102

((S (NP-SBJ (NN Supply) (NNS troubles))
(VP (VBD were)

 (PP-LOC-PRD (IN on)

(NP (NP (DT the) (NNS minds))

(PP (IN of)
(NP (NP (NNP Treasury) (NNS investors))

(SBAR (-NONE- *ICH*-2))))))

(NP-TMP (RB yesterday))
(, ,)

(SBAR-2 (WHNP-1 (WP who))
 (S (NP-SBJ (-NONE- *T*-1))
 (VP (VBD worried)
 (PP-CLR (IN about)

(. .)))
 (NP (DT the) (NN flood)))))))

Figure 5.2: The Treebank annotation for the sentence Supply troubles were on the minds
of Treasury investors yesterday, who worried about the
ood.

The algorithm

in Table 3.1

G
Table

G *
Table

a filter

LexTract

head projection table

modification table

argument table

a treebank

Figure 5.3: The conceptual approach of LexTract

103

in a Treebank are not always identical to the correct parse trees because of two reasons.

First, Treebank were built by humans; therefore, annotation errors in a Treebank are

inevitable. Second, the phrase structures in a Treebank are not based on the LTAG

formalism; therefore, they may have di�erent formats from the derived trees. For instance,

LTAG grammars distinguish heads, argument, and adjuncts. Recall that in Section 3.2,

we de�ned three prototypes of elementary trees: spine-etrees, mod-etrees, and conj-etrees.

Heads, arguments, and adjuncts occur at di�erent positions in these prototypes. The

arguments and adjuncts are never siblings in an LTAG derived tree. In a Treebank, quite

often the arguments and adjuncts are siblings, and the head/argument/adjunct distinction

is not explicitly marked. Therefore, we have to convert the phrase structures in a Treebank

into derived trees.

Once we build derived trees, the next step is to determine what elementary trees are

used to form the derived tree. A derived tree can be generated by more than one set of ele-

mentary trees. Figure 5.5(b){(c) show two sets of elementary trees. Both sets can generate

the derived tree in (a), but the corresponding derivations are di�erent, as shown in (d) and

(e). Nevertheless, we shall show that, if we know the type (i.e., head/argument/adjunct)

of each node in a derived tree, there is only one set of elementary trees that can form the

derived tree. For instance, in Figure 5.5(a), if verb can is marked as the head of V P1, the

derived tree in (a) can only come from the set in (b); if verb speak is marked as the head of

V P1, the derived tree can only come from the set in (c). In fact, we can simply decompose

the derived tree into a set of elementary trees.

In summary, LexTract builds an LTAG grammar in two stages: �rst, it converts the

phrase structures in a Treebank into derived trees; second, it decomposes the derived trees

into a set of elementary trees. The second stage is the reverse process of LTAG parsing.

The real implementation of LexTract is shown in Figure 5.4. You may notice that the

three input tables in Figures 5.3 and 5.4 are di�erent. We shall explain this in the next

section.

For the sake of clarity, from now on, we shall call the original phrase structures in a

Treebank ttrees, and the elementary trees in LTAG grammars etrees.

104

G
LexTract

LexTract

tagset table

argument table

head percolation table

a treebank

derived trees
convert ttrees into

derived trees trees into etrees

decompose derived

Figure 5.4: The real implementation of LexTract

α1

NP

N

John

S

VPNP

V

can

VP

α2
α1 α3

VP

V NP

speak

NP

N

John

VP

V NP

speak

β1

α 4 :

NP

N

English

α 4 :

NP

N

English

α2 (can)

α1 (John) α3

α4 (English)

α1 (John) β1(can) α4 (English)

α5 (speak)

(b) G1

(c) G 2

:

S

VP

VPV

can
John

NP

N

V

speak

NP

N

English

ttree(a) a

:: :

:
S

NP

:
VP

V

can

VP*

α5

(speak)

(d) derivation tree for G1

(e) derivation tree for G2

1

2

Figure 5.5: Two LTAG grammars that generate the same ttree

105

5.3 Three input tables to LexTract

In the English Penn Treebank (PTB), the phrase structures are partially
at because

heads, arguments and adjuncts are not explicitly marked, and arguments and adjuncts

can be siblings. In contrast, heads, arguments and adjuncts are treated di�erently in the

target grammars (i.e., the LTAG grammars that LexTract generates): heads are anchors

of spine-etrees, arguments are sisters of nodes on the spines, and adjuncts are sisters of

the foot nodes in mod-etrees.

To build a derived tree from a ttree, LexTract �rst determines the type of each node in

the ttree. People often do not agree on the types of certain nodes. For example, in Figure

5.5, some users may prefer to treat speak as the head of V P1, while others rather have

the word can as the head. To take the users' preferences into account and also to make

LexTract language independent so that it can run on Treebanks for other languages, we

do not include language-speci�c information or decisions on the head/argument/adjunct

distinction in the source code of LexTract. Instead, we require the users of LexTract

to provide three tables as input to LexTract. They are the head percolation table, the

argument table, and the tagset table.

5.3.1 Head percolation table

Head is an important notion in the target grammar, but it is not marked in the PTB. To

help LexTract to identify heads, the user needs to make a head percolation table. The

head percolation table was introduced in a statistical parser called SPATTER (Magerman,

1995), and later used in Collins' parsers (Collins, 1997) among others. It is called a head

percolation table because, in order for those parsers to extract lexicalized context-free rules

from a Treebank, the lexical items are percolated like features from the heads to their

various projections, as marked by the dashed lines in Figure 5.6(a).

Given a node X and its head Y in a ttree, each node on the path from X to Y is

called the head-child of its parent. For example, in Figure 5.6(a), the VBP node is the

head-child of the VP node, the VP is the head-child of the S node, and the NNP is the

head-child of the NP. LexTract uses the head percolation table to select the head-child

106

S(likes)

NP(John)

NNP(John)

John

VBP(likes) NP(apples)

NNS(apples)

apples

VP(likes) -> VBP(likes) NP(apples)
NP(apples) -> NNS(apples)

NP(John) -> NNP (John)
S(likes) -> NP(John) VP(likes)

VP(likes)

likes

(a) a ttree (b) a lexicalized CFG

Figure 5.6: The percolation of lexical items from heads to higher projections

of a node. The entry in the table is of the form (x direct y1=y2=:::=yn), where x and

yi are syntactic category tags, direct is either LEFT or RIGHT . fyig is the set of

possible tags of x's head-child. For instance, the entry for V P in the PTB can be (VP

left VP/VB/VBN/VBP/VBZ/VBG/VBD). The algorithm for selecting the head-child is

in Table 5.2 of Section 5.4. The head percolation table is essentially the same as the head

projection table except that it has an extra �eld direct.

5.3.2 Argument table

The argument/adjunct distinction is not explicitly marked in the PTB. LexTract marks

each sibling of a head-child as either an argument or an adjunct according to the tag of the

sibling, the tag of the head-child, and the position of the sibling with respect to the head-

child. An argument table informs LexTract about the types of arguments that a head-child

can take. As de�ned in Section 3.3, the entry in an argument table is of the form (head tag,

left arg num, right arg num, y1=y2=:::=yn). head tag is the syntactic tag of the head-child,

fyig is the set of possible tags for the head-child's arguments, left arg num (right arg num,

respectively.) is the maximal number of arguments to the left (right, respectively) of the

head-child. For example, the entry (IN, 0, 1, NP/S/SBAR) says that a preposition (IN)

can take at most one argument whose label is NP, S, or SBAR, and the argument appears

after the preposition. The algorithm for distinguishing arguments from adjuncts is shown

in Table 5.3 of Section 5.4.

107

5.3.3 Tagset table

The tagset table provides types and attributes of the tags in the Treebank's tagset, which

are used in many modules of LexTract. The most important attributes are as follows:

(1) the type of each tag in the tagset; namely, POS tag, syntactic tag, function tag, empty

category tag

(2) the tag(s) for conjunctions (e.g., CC in the PTB)

(3) the empty categories that mark \syntactic movement" (e.g., *T* for a trace)

(4) the function tags that always mark arguments (e.g., SBJ for a subject)

(5) the function tags that always mark adjuncts (e.g., TMP for a temporal phrase)

(6) the function tags that always mark heads (e.g., PRD for a predicate)

The last three attributes helps LexTract to make the head/argument/adjunct distinc-

tion. Recall that the algorithm in Table 3.1 which generates GTable requires the head

projection table, argument table, and modi�cation table. LexTract requires the head

percolation table, which has more information than the head projection table. LexTract

requires the argument table but not the modi�cation table because it assumes that any

category can modify any category. LexTract uses the tagset table to determine how the

function tags should be treated. Therefore, the three input tables to LexTract provide

more information than the three input tables to the algorithm that generates GTable. For

more details on all �ve types of tables, see Appendix A.

5.4 Extracting LTAG grammars from Treebanks

As discussed in Section 5.2, LexTract builds grammars in two stages: �rst, LexTract

converts a ttree into a derived tree; second, it decomposes the derived tree into a set of

etrees. In this section, we describe each stage in detail.

108

5.4.1 Stage 1: Converting ttrees into derived trees

In this stage, LexTract �rst determines the type of each node in a ttree, then builds a

derived tree by adding intermediate nodes so that, at each level of the new tree, exactly

one of the following holds:

(head-argument relation) there are one or more nodes: one is the head, the rest are

its arguments;

(modi�cation relation) there are exactly two nodes: one node is modi�ed by the other;

(coordination relation) there are three nodes: two nodes are coordinated by a conjunc-

tion.

To choose the head-child of a node N , the algorithm in Table 5.2 �rst checks the

function tags of N 's children and then uses the syntactic labels of N 's children and the

entry for N in the head percolation table. To mark each sibling sist as either an argument

or an adjunct of the head-child hc, the algorithm in Table 5.3 �rst checks the function tags

of sist, and then uses the syntactic labels of sist and the entry for hc in the argument

table. Once each child of a node is marked as a head, an argument, or an adjunct, LexTract

simply inserts extra nodes in certain places of the ttree, as shown in Table 5.4. Given the

example in Figure 5.2, repeated as Figure 5.7(a), the derived tree created by LexTract is

in Figure 5.7(b), where the nodes inserted by the algorithm are circled.2

5.4.2 Stage 2: Building etrees

In this stage, LexTract decomposes the derived tree into a set of etrees; that is, LexTract

removes recursive structures (which will become mod-etrees or conj-etrees) from the de-

rived tree, and builds spine-etrees for the remaining non-recursive structures. To be more

speci�c, starting from the root of a derived tree, LexTract �rst �nds the unique path from

the root to its head. It then checks each node hc on the path. If a sibling s of hc in the ttree

2The bracketing process may eliminate the potential ambiguity that exists in the original ttrees. For

example, if in the original ttree a head has a left modi�er and a right modi�er who are siblings, LexTract

always puts the left modi�er lower than the right modi�er in the derived tree. Nevertheless, this practice

will not a�ect the extracted etrees.

109

Input: a node N , the tagset table TagsetT b, the head percolation table HeadTb
Output: head-child hc of N
De�nition: syn-tag(N) is the syntactic category of the node N
Algorithm: ttree node* FindHeadChild(N , TagsetT b, HeadTb)

/* choose the head by the function tag */
(A) if (one child of N has a function tag that always marks a head)

then choose that child as the head-child hc; return hc;

/* choose the head by the head percolation table */
(B) x = syn-tag(N);
(C) Find the entry (x dir y1=y2=:::=yn) in HeadTb;
(D) for (each child ch of N , starting from the leftmost child

or rightmost child according to dir)
if (syn-tag(ch) 2 fy1; y2; :::yng)
then hc = ch; return hc;

/* choose the head-child by default */
(E) if (dir == LEFT)

then hc = leftmost-child(N)
else hc = rightmost-child(N)

return hc;

Table 5.2: Algorithm for �nding head-child of a node

((S (NP-SBJ (NN supply)

(VP (VP (VP

(NP (NNS troubles)))

(VP (PP-LOC-PRD

(VBD were)

(IN on)
(NP (NP (DT the)

(NP (NNS minds)))
(PP (IN of)

(NP (NP (NNP Treasury)
(NP (NNS investors)))

(SBAR (-NONE- *ICH*-2))))))
(NP-TMP (RB yesterday)))

(, ,)
(SBAR-2 (WHNP-1 (WP who))
 (S (NP-SBJ (-NONE- *T*-1))

(VP (VP (VBD worried))
(PP-CLR (IN about)

 (NP (DT the)
(NP (NN flood))))))))

(. .)))

(a) an original (b) fully bracketed ttreettree

(SBAR (-NONE- *ICH*-2))))))

(VP (VBD were)
 (PP-LOC-PRD

(IN on)
(NP (NP (DT the)

(NNS minds))

(PP (IN of)
(NP (NP (NNP Treasury)

(NNS investors))

(NP-TMP (RB yesterday))
(, ,)
(SBAR-2 (WHNP-1 (WP who))
 (S (NP-SBJ (-NONE- *T*-1))
 (VP (VBD worried)

 (PP-CLR (IN about)
 (NP (DT the)

 (NN flood)))))))
(. .)))

((S (NP-SBJ (NN supply)
(NNS troubles))

Figure 5.7: A ttree and the derived tree

110

Input: a head-child hc, a sister sist of hc, the position pos of sist with respect to hc,
the tagset table TagsetT b, the argument table ArgTb

Output: mark sist as either an argument or an adjunct of hc
Algorithm: void MarkSisterOfHead(sist, hc, pos, TagsetT b, ArgTb)

/* mark sist according to its function tags */
(A) if (sist has a function tag that always marks argument)

then mark sist as an argument; return;
(B) if (sist has a function tag that always marks adjunct)

then mark sist as an adjunct; return;

/* mark sist according to the argument table */
(C) head tag = syn-tag(hc);
(D) Find the entry (head tag, left arg num, right arg num, y1=y2=:::=yn) in ArgTb
(E) if (((pos == LEFT) and (left arg num == 0)) or

((pos == RIGHT) and (right arg num == 0)))
then /* hc does not have left (right, resp.) arguments */

mark sist as an adjunct;
return;

(F) if (the tag of sist matches any yi)
then mark sist as an argument; return;

/* mark sist using the default */
(G) mark sist as an adjunct.

Table 5.3: Algorithm that marks a node as either an argument or an adjunct

111

Input: a ttree T from a Treebank, the tagset table TagsetT b,
the head percolation table HeadTb, the argument table ArgTb

Output: T becomes a derived tree
Algorithm: void BuildDerivedTree(T , TagsetT b, HeadTb, ArgTb)

/* TargetList is a list of nodes below which the subtrees need to be checked */
(A) TargetList = fRootg, Root is the root of T ;
(B) while (TargetList is not empty)

Let R be the �rst node in TargetList;
TargetList = TargetList - fRg;
if (R is a leaf node)
then continue;

hc = FindHeadChild(R, TagsetTb, HeadTb); /* see Table 5.2 */
if (one of R's children is a conjunction)
then f
/* R's children are a list of coordinated nodes */
use conjunction(s) to partition non-conjunction children into m groups;
for (each group gr) f

if (gr has more than one node)
then insert a node R1 with the label syn-tag(R) as the new root

of the nodes in the group;
TargetList = TargetList [fR1g

else TargetList = TargetList [fchg, where ch is the only child in gr
g
if (m > 2)
then insert m� 2 new nodes with the label syn-tag(R) so that each level

has exactly two groups plus one conjunction
g
else f
/* R's children consist of a head, 0 or more arguments, 0 or more adjuncts */
add each child of R to TargetList;
mark each child other than hc as an argument or an adjunct (see Table 5.3)
put adjacent arguments into groups according to the argument table;
if (at least one child is marked as an adjunct)
then insert new nodes fRig between R and hc so that at each level

between R and hc exactly one of the following holds:
{ there are exactly one new node Ri and one adjunct,
where Ri has the same syntactic tag as its parent, or

{ there are a node (hc or a new node Ri) with the label syn-tag(hc)
and zero or a group of arguments of hc

g

Table 5.4: Algorithm for building a derived tree

112

is marked as an adjunct, the algorithm factors out from the ttree the recursive structure

that includes hc, s, and hc's parent. The recursive structure becomes a mod-etree (or a

conj-etree if hc has another sibling that is a conjunction), in which hc's parent is the root

node, hc is the foot node, and s is a sister of the foot node. Next, LexTract creates a

spine-etree with the remaining nodes on the path and their siblings. It repeats the process

for the subtrees whose roots are not on the path.

In this stage, each node X in the derived tree is split into two parts: the top part X:t

and the bottom part X:b. The reason for the splitting is as follows. When a pair of etrees

are combined during parsing, the root of one etree is merged with a node in the other etree.

Extracting etrees from a derived tree is a reverse process of parsing. Therefore, during the

extraction process, the nodes in the derived tree are split into the top and bottom parts.

To see how the algorithm works, let us look at an example. Figure 5.8 shows the same

derived tree as the one in Figure 5.7(b) except that some nodes are numbered and split

into the top and bottom parts. For the sake of simplicity, we show the top and the bottom

parts of a node only when the two parts will end up in di�erent etrees. In this �gure, the

path from the root S to the head IN3 is S ! V P1 ! V P2 ! V P3 ! V P4 ! PP ! IN .

Along the path the SBAR is a modi�er of V P2; therefore, V P1:b, V P2:t and the spine-etree

rooted at SBAR are factored out and form a mod-etree #13. Mod-etrees #11 and #3 are

built in similar way. For the remaining nodes on the path, V P1:t and V P4:b are merged

and the spine-etree #4 is created. Repeating this process for other nodes will generate

more trees such as trees #1 and #2. Notice that the tree #4 is broken into two parts by

intervening mod-etrees. The whole derived tree yields �fteen etrees, as shown in Figure

5.9.

The algorithm for building etrees is in Table 5.5. For the sake of simplicity, the algo-

rithm is written as if nodes from a derived tree are copied into etrees, which is equivalent

to decomposing the derived tree and gluing some components together to form etrees. The

top and bottom parts of the same node in derived tree are copied to either the same node

3We follow the XTAG grammar in choosing the preposition as the head of a small clause. If users

of LexTract prefer to have the verb were as the head of the clause, they can simply change the tables

mentioned in Section 5.3. To be more speci�c, they just need to change the entry for the function tag

-PRD in the tagset table so that the tag no longer marks the head of a phrase.

113

S

NP

NN

Supply VP
VPNNS

troubles VBD

IN

on

were

VP

yesterday

RB

NP

VP

worried

SBAR

#1

#2

#3

#4

#11

#13

#4

3.t

3.b

VP4.t
VP 4.b

2.b

2.t

1.t

1.bNP

2.t

NP 2.b

NP

VP 1.t
VP 1.b

NP 3.b
NP 3.t

PP

Figure 5.8: The etree set is a decomposition of the derived tree.

in one etree or two nodes in two distinct etrees. The lines labeled (EC1) and (EC2)

in Table 5.5 are used to handle empty categories, and their usage shall be explained in

Section 5.8.2.

Annotation errors in ttrees will result in linguistically implausible etrees. For example,

in the sentence in Figure 5.7(a), the word yesterday is incorrectly tagged as RB (adverb).

As a result, one of the etrees, #11 in Figure 5.9, is created. The etree is linguistically

implausible because an adverb should not be the head of an NP (noun phrase). In Section

6.1.3, we shall propose two methods for �ltering out implausible etrees.

5.4.3 Uniqueness of decomposition

So far, we have discussed the extraction algorithm used by LexTract. The algorithm takes

three tables with language-speci�c information and a ttree T , and creates (1) a derived

tree T �, and (2) a set Eset of etrees. One advantageous property of ESet is that it is the

only tree set that satis�es all the following conditions:

(C1) Decomposition: The tree set is a decomposition of T �; that is, T � can be generated

by combining the trees in the set via the substitution and adjoining operations.

114

Input: a derived tree T, tagset table TagsetT b, head percolation table HeadTb,
argument table ArgTb

Output: a set of etrees EtreeSet
Notations: Given a node x in T , x:top and x:bot are the top and bottom part of x.

f(x:top) (f(x:bot), resp.) is the etree node copied from x:top (x:bot, resp.).
Algorithm: etree-list BuildEtrees(T , TagsetT b, HeadTb, ArgTb)
(A) EtreeSet = fg; R = Root(T);
(B) hc = FindHeadChild(R, TagsetT b, HeadTb);

if (the head-child does not dominate any lexical word)
then /* This will ensure that no spine etree is anchored by empty categories */

choose its sibling to be hc; | (EC1)
(C) Based on the relation between hc and its sisters, go to one of the following:
(C1) predicate-argument relation (see Figure 3.3(a)):
/* build a spine-etree Ts, which is formed by a predicate and its arguments */
�nd a head-path p from R to a leaf node A in the T .
for (each non-link node x on p) f

/* a non-link node is a node whose head-child and other children
form a head-argument relation */

copy x:bot to Ts;
for (each child yi of x)

copy each yi:top to Ts, as f(x:bot)'s child.
if (yi does not dominate any lexical words)
then copy the whole subtree rooted at yi to Ts | (EC2)

g
mark f(A:top) as the anchor of Ts.
EtreeSet = EtreeSet [fTsg;

(C2) modi�cation relation (see Figure 3.3(b)):
/* build a mod-etree Tm, which is formed by a modi�er-modi�ee pair and a spine-etree */
At this stage, hc should have only one sister, call it mod;
Find a head-path p from mod to leaf node A in the derived tree;
Build an etree Ts from the path p as stated in (C1);
Copy R:bot, hc:top, mod:top to Tm;
Create a mod-etree Tm in which f(R:bot) is the root and has two children:
f(hc:top) and f(mod:top). f(hc:top) is the foot node;

Make Ts a subtree of Tm whose root is f(mod:top);
EtreeSet = EtreeSet [fTmg;

(C3) coordination relation (see Figure 3.3(c)):
/* build a conj-etree Tc. Tc is the same as Tm except that *
* the root of Tc has one extra conjunction child */

At this stage, hc should have two sisters. One is a conjunction.
Call the conjunction conj and the other sister mod.

Build an etree the same as in (C2) except f(R:bot) will have three children:
f(hc:top), f(mod:top) and f(conj:top).
EtreeSet = EtreeSet [fTcg

(D) Repeat step (B)-(C) for each child ch of R if ch:bot has not been copied to any etree;
(E) return EtreeSet;

Table 5.5: Algorithm for building etrees from a derived tree

115

NP

NPNN *

supply

NP

NNS

troubles

NP

the

NP

DT *

NP

NNS

minds

NP

NPNNP *

Treasury

NP

NNS

investors

VP

VP PP

IN NP

about

*

VP

VP NP

RB

yesterday

*

NP

NN

flood

#1 #2 #3 #4 #5 #6 #7 #8

#9 #10 #11 #12 #13 #14 #15

VP

VP* SBAR

S

NP VP

NPIN

PP

on

WHNP

WHNP

who

WP

VP

VBD VP

were

ICH

NP

NP * SBAR S

NP VP

VBD*T*

worried

NP

NP

NP PP

of

*

IN

*

Figure 5.9: The extracted etrees from the derived tree.

(C2) LTAG formalism: Each tree in the set is an elementary tree according to the

LTAG formalism. For instance, each tree is lexicalized and in an auxiliary tree the

foot node and the root node have the same label.

(C3) Target grammar: Each tree in the set falls into one of the three types as speci�ed

in Section 3.2.

(C4) Language-speci�c information: The head/argument/adjunct distinction in the

trees is made according to the language-speci�c information provided by the user.

This uniqueness of the tree set may be quite surprising at �rst sight, considering that

the number of possible decompositions of T � is
(2n), where n is the number of nodes

in T �.4 Instead of giving a proof of the uniqueness, we use an example to illustrate how

the conditions (C1)|(C4) rule out all the decompositions except the one produced by

LexTract. In Figure 5.10, the derived tree T � has 5 nodes (i.e., S, NP, N, VP, and V).

There are 32 distinct decompositions for T �, 6 of which are shown in the same �gure. Out

4Recall that the process of building etrees has two steps. First, LexTract treats each node as a pair of

the top and bottom parts. The derived tree is cut into pieces along the boundaries of the top and bottom

parts of some nodes. In any partition, the top and the bottom parts of each node belong to either two

distinct pieces or one piece; as a result, there are 2n distinct partitions for the derived tree. In the second

step, two non-adjacent pieces in a partition can be glued together to form a bigger piece under certain

conditions. Therefore, each partition will result in one or more decompositions of the derived tree. In total,

there are at least 2n decompositions for any derived tree with n nodes.

116

of these 32 decompositions, only �ve (i.e., E2 | E6) are fully lexicalized | that is, each

tree in these tree sets is anchored by a lexical item. The rest, including E1, are not fully

lexicalized, and are therefore ruled out by the condition (C2). For the remaining �ve etree

sets, E2 | E4 are ruled out by the condition (C3), because each of these tree sets has one

tree that violates the constraint that in a spine-etree an argument of the anchor should

be a substitution node, rather than an internal node.5 For the remaining two, E5 is ruled

out by (C4) because, according to the head percolation table provided by the user, the

head-child of the S node should be the VP node, rather than the NP node. Therefore,

E6, the tree set that is produced by LexTract, is the only etree set for T � that satis�es

(C1)|(C4).

N

NP VP

John left

V

S

N

NP VP

John

V

S
V

left

E 1 E 2 T*

3E

N

NP VP

John left

V

S
NP

N

John

VP

V

left

NP VP

S

NP VP

left

V

S

E 4 E5 E6

N

NP VP

left

V

S
N

John
N

NP VP

John

S

V

left

VP NP

N

John

)

) ())

()()

((

(

()

Figure 5.10: Several tree sets for a derived tree

5The prototypes actually allow the arguments of an anchor to be an internal node, but that happens

only when we know that the source Treebank has a way to mark non-compositional phrases such as idioms.

The PTB Treebank does not mark these phrases; therefore, all the etrees extracted from the PTB have

single anchors, and the arguments of the anchor are substitution nodes.

117

5.4.4 Relations between nodes in ttrees and etrees

When LexTract builds etrees from a derived tree, the set of the etrees is a decomposition

of the derived tree.6 In other words, if each node t in a derived tree is split into a (top,

bot) pair, then there is a function that maps each t.top (or t.bot) to a unique node in the

extracted etrees. In fact, a stronger claim can be made as follows:

Let Eset be the set of etrees extracted from a derived tree T ,
let R be the root of T ,
Assuming that
(a) each node t in T is split into (t.top, t.bot), and
(b) each node e in Eset is split into a pair (e.top, e.bot) except that

the foot and substitution nodes have only the top part and
the root nodes have only the bottom part

then there is a bidirectional function f from ft.top, t.botg - fR.topg to fe.top, e.botg
(for each node x in ft.top, t.botg - fR.topg, f(x) is the node in ESet
that was copied from x when ESet was built by the algorithm in Table 5.5).

Table 5.6: The bidirectional function between nodes in ttrees and etrees

Figure 5.11 shows a derived tree T and the set of etrees ESet extracted from T . The

nodes in T and ESet are split into top and bottom parts as speci�ed in Table 5.6. It is

obvious that each top and bottom part of the nodes in the derived tree corresponds to a

unique top or bottom part of the nodes in the etrees and vice versa.

This bidirectional mapping between the nodes in the derived tree and etrees makes

LexTract a useful tool for Treebank annotation and error detection, which we shall explore

in the next chapter.

5.5 Creating derivation trees

For the purpose of grammar development, a set of etrees may be suÆcient. However, to

train a statistical LTAG parser, derivation trees, which store the history of how etrees are

6For the sake of simplicity and without loss of generality, we assume that all the etrees extracted from

a derived tree are distinct.

118

S.t

S.b

NP.t VP1.t

VP1.b

VP2.t

VP2.b

V.t

V.b

came

NP.b

NNP.t
NNP.b

John

NP.t
NP.b

NN.t
NN.b

yesterday

α
1:

α2:

α1:

β :

S.b

NP.t VP.t
VP.b

V.t
V.b

came

α
1:

NP.b

NNP.t

NNP.b

John

α
2:

VP.t NP.t*

NP.b

NN.t
NN.b

yesterday

VP.bβ :

(a) a derived tree (b) the extracted etrees

Figure 5.11: An example of the bidirectional function between nodes in ttrees and etrees

combined to form derived trees, are required. Recall that, unlike in CFG, the derived trees

and derivation trees in the LTAG formalism are not identical. In this section, we give an

algorithm for building derivation trees.

First of all, there are two sightly di�erent de�nitions of derivation trees in the LTAG

literature. The �rst one adopts the no-multi-adjunction constraint, and the second does

not (Schabes and Shieber, 1992). The no-multi-adjunction constraint says that, when

etrees are combined, at most one adjunction is allowed at any node in any etree. As a

result, if a phrase XP in an etree Eh has several adjuncts (each adjunct belongs to a

mod-etree), according to the �rst de�nition, the mod-etrees will form a chain, with one

mod-etree adjoining to Eh and the rest adjoining to one another; whereas according to

the second de�nition, all the mod-etrees will adjoin to Eh. The two derivation trees for

the example in Figure 5.7 are in Figure 5.12. Notice that mod-etrees #3, #11, and #13

all modify #4; they form a chain as circled in Figure 5.12(a), whereas they are siblings in

Figure 5.12(b). In the following discussion, we assume that the �rst de�nition is used.7

As mentioned in Section 5.4, given a derived tree T and a set ESet of etrees which are

extracted from T , ESet can be seen as a decomposition of T . In other words, T would be

one of the derived trees for the sentence if the sentence were parsed with the etrees in ESet.

7Our algorithm in Table 5.7 can be easily modi�ed to work for the second de�nition.

119

#1 (Supply)

#2 (troubles)

#10 (*ICH*)

#8 (Treasury)

#7 (of)

#5 (the)

#6 (minds)#3 (were)

#4 (on)

#13 (worried)

#12 (who) #14 (about)

#5 (the)

#15 (flood)

#9 (investors)

(a) multi-adjunction is not allowed (b) multi-adjunction is allowed

#4 (on)

#2 (troubles)

#1 (Supply)
#13 (worried)#11 (yesterday)

#6 (minds)

#5 (the) #7 (of)

#9 (investors)

#8 (Treasury) #10 (*ICH*)

#12 (who) #14 (about)

#15 (flood)

#5 (the)

#11 (yesterday) #3 (were)

Figure 5.12: LTAG derivation trees for the sentence

However, given T and ESet, there may be more than one derivation tree that generates

T by combining etrees in ESet. This is because, when a phrase has several adjuncts, the

corresponding etrees will form a chain in the derivation tree and the order of these etrees

on the chain is not �xed. For instance, switching the order of tree #3, #11 and #13 in

Figure 5.12(a) will yield six di�erent derivation trees. All six trees would generate the

same derived tree. Nevertheless, if we add the no-adjunction (NA) constraint to the foot

nodes of all the auxiliary trees, as is the case in the XTAG grammar, the derivation tree

would become unique. Alternatively, if we add the NA constraint to the root nodes of all

the auxiliary trees, the derivation tree would be unique as well.

To summarize, given a derived tree T and a set ESet of etrees which are extracted

from T , there is a unique derivation tree that generates T by combining the etrees in ESet

under the following two assumptions: (1) at most one adjunction is allowed at any node,

and (2) no adjunctions are allowed at the foot node of any auxiliary tree in ESet. The

derivation tree is built in two steps. First, for each etree e in ESet, �nd the etree ê which

e substitutes/adjoins into. ê will be the parent of e in the derivation tree. We call ê the

d-parent of e, d stands for derivation trees. Second, build a derivation tree from those (e,

ê) pairs. The algorithm is given in Table 5.7.

For instance, in Figure 5.8 (repeated as Figure 5.13), the algorithm �rst decides that

#1 adjoins to #2 at NP2:b, and #2 substitutes into #4 at NP1:t, and so on. Then it

builds the derivation tree in Figure 5.12(a).

120

Input: a derived tree T ,
an etree set ESet which is extracted from T ,
a function f that maps the nodes in T to nodes of etrees in ESet

Output: a derivation tree D
De�nitions:
Two nodes Y1 and Y2 in two etrees are called buddies with respect to T i�
there exists a node X in T such that f(X:top) = Y1 and f(X:bot) = Y2.
(i.e., they are copied from the top and the bottom part of the same node in T)

An etree e1 is called t-parent of another etree e2 in T if the buddy of the root of e2
is in e1 (i.e., e1 is on top of e2 in T when ESet is seen as a decomposition of T).

ex is called a t-ancestor of ey in T if there is a sequence (e0 = ex; e1; :::; en = ey)
of etrees where ei (0 � i < n) is t-parent of ei+1.

Algorithm: deriv-tree* BuildDerivTree(T , ESet, f)

/* step 1: �nd the d-parent for each etree */
(A) for (each etree e in ESet) f

/* �nd the d-parent ê of e, i.e., the etree that e substitutes/adjoins to */
if (e is an initial tree)
then f
/* e substitutes to ê, which is immediately above e in T if we ignore
* all the mod-etrees and conj-etrees between them */
ê is the closest t-ancestor of e in T that is either an initial tree or
an auxiliary tree whose foot node does not dominate the root of e in T .
g

else f
/* e adjoins to ê, which is immediately below e */
Let fn be the foot node of e, and its buddy in T is bud;
ê is the etree whose root is bud;
g

g

/* step 2: build the derivation tree D */
(B) Find eR 2 ESet such that eR has no d-parent, make eR the root of D.
(C) Find all the d-children of eR, make them children of eR in D.
(D) Repeat (C) for each child of eR until D includes all the etrees in ESet;
(E) return D;

Table 5.7: Algorithm for building derivation trees

121

S

NP

NN

Supply VP
VPNNS

troubles VBD

IN

on

were

VP

yesterday

RB

NP

VP

worried

SBAR

#1

#2

#3

#4

#11

#13

#4

3.t

3.b

VP4.t
VP 4.b

2.b

2.t

1.t

1.bNP

2.t

NP 2.b

NP

VP 1.t
VP 1.b

NP 3.b
NP 3.t

PP

Figure 5.13: The ttree as a derived tree.

5.6 Building multi-component tree sets

So far, we have described algorithms for extracting LTAGs from Treebanks and build-

ing derivation trees for each ttree. There is one type of information that is present in

the Treebank but is missing from the extracted LTAGs: namely, coindexation. In the

Treebank, reference indices are used either to mark various kinds of movement (such as

wh-movement) or to indicate where a constituent should be interpreted. For instance, in

Figure 5.2 (repeated as Figure 5.14(a)), the reference index -1 marks the wh-movement of

who and the reference index -2 indicates that the relative clause who worried about the
ood

should be interpreted as a modi�er of the NP Treasury investors. The reference indices

in ttrees are very useful for sentence interpretation. Therefore, we want to keep them in

etrees, so that when etrees are combined the reference indices will be passed to the derived

trees.

A pair of co-indexed nodes (i.e., nodes with identical reference indices) in a derived tree

do not always map to nodes in the same etree. An important issue in the LTAG formalism

is whether syntactic movement satis�es certain locality constraints. One hypothesis claims

that the Tree-local MCTAG is powerful enough to handle all kinds of syntactic move-

ment; that is, the two etrees, one for the �ller and the other for the gap, should always

122

((S (NP-SBJ (NN supply)
(NP (NNS troubles)))

(VP (VP (VP (VBD were)
(VP (PP-LOC-PRD (IN on)

(NP (NP (DT the)
(NP (NNS minds)))

(PP (IN of)
(NP (NP (NNP Treasury)

(NP-TMP (RB yesterday)))
(, ,)

(SBAR-2 (WHNP-1 (WP who))

(VP (VP (VBD worried))
(PP-CLR (IN about)

 (NP (DT the)
(NP (NN flood))))))))

(S (NP-SBJ (-NONE- *T*-1))

(NP (NNS investors)))
(SBAR (-NONE- *ICH*-2))))))

(a)

(b)

(c)

VP

VP* SBAR

WHNP S

NP VP

VBD*T*

worried

ICH

NP

NP * SBAR

Figure 5.14: Etrees for co-indexed constituents

substitute/adjoin to a single etree. This hypothesis, which we shall call the Tree-locality

Hypothesis from now on, has been investigated extensively in the literature (Weir, 1988;

Kulick, 1998; Heycock, 1987; Becker et al., 1992; Bleam, 1994; Joshi and Vijay-Shanker,

1999; Kallmeyer and Joshi, 1999). Treebanks provide naturally occurring data for testing

this hypothesis. The strategy that we employ to test this hypothesis has three stages: �rst,

we use LexTract to �nd all the examples that seem to violate the hypothesis; second, we

classify the examples according to the underlying constructions (such as extrapositions);

third, we determine whether each construction would become tree-local if an alternative

analysis for the construction is adopted. In this section, we give an algorithm that �nds all

the examples that seem to be \non-tree-local". In Section 6.7, we shall discuss the second

and third stages and report the experimental results when we test this hypothesis on the

PTB.

The algorithm for �nding non-tree-local examples is in Table 5.8. For each pair (X1;X2)

of co-indexed nodes in a derived tree T , assuming the top parts of the two nodes map to

some nodes in two etrees e1 and e2, respectively, the algorithm checks whether e1 and e2

substitute/adjoin to a single etree. It also produces a multi-component (MC) set, which

includes e1, e2, and every etree that is on the path from e1 to e2 in the derivation tree.

123

Figure 5.15 shows three scenarios of a derivation tree. In (a), e1 and e2 are identical; that

is, the co-indexed nodes appear in the same etree. In (b), e1 and e2 substitute/adjoin

to the same etree ea. In (c), e1 and e2 do not substitute/adjoin to the same etree. The

relation between X1 and X2 is tree-local in (a) and (b), but it is not tree-local in (c).

X .top
2

1X .top

1X .top
X .top

2

1X .top X .top
2

e 1 e 2

e a

e 1 e 2

e a
e = e

21

(c) not tree-local(b) tree-local(a) within one tree

Figure 5.15: The coindexation between two nodes may or may not be tree-local

In Figure 5.14(a), theWHNP-1 and *T*-1 map to nodes in the same etree in (c), so the

movement from *T*-1 to WHNP-1 can be handled by the Tree-local MCTAG. In contrast,

as shown in Figures 5.16 and 5.17, the etrees for *ICH*-2 and SBAR-2 (i.e., #10 and

#13) do not adjoin to a single etree; therefore, the \movement" from *ICH*-2 to SBAR-2

cannot be handled by the Tree-local MCTAG according to the current annotation in the

ttree.8

8In (Xia and Bleam, 2000), we argue that this type of example (called NP-extraposition) is not syntactic

movement; therefore, it is not a counter-example to the Tree-locality Hypothesis.

#12 (who) #14 (about)

#15 (flood)

#11 (yesterday)
#2 (troubles)

#1 (Supply)
#3 (were)

#5 (the)

#8 (Treasury) #10 (*ICH*)

#9 (investors)

#7 (of)

#6 (minds)

#4 (on)

#13 (worried)

#5 (the)

Figure 5.16: The LTAG derivation tree for the sentence when multi-adjunction is allowed

124

Input: a derived tree T , the etree set Eset which is extracted from T ,
a derivation tree D for T , the mapping f from nodes in T to nodes in Eset,
and two co-indexed nodes X1 and X2 in T

Output: MCSet: the set of etrees that connects X1 and X2 in D
is local: 1 if the coindexation is tree-local;

0 otherwise
Algorithm: void TestTreeLocality(T , ESet, D, f , X1, X2, MCSet, is local)

(A) Let e1 be the etree that f(X1:top) belong to;
(B) Let e2 be the etree that f(X2:top) belong to;
(C) if (e1 == e2)

then /* f(X1:top) and f(X2:top) are in the same etree, see Figure 5.15(a) */
MCSet = f e1 g; is local = 1; return;

(D) Find the closest common ancestor ea of e1 and e2 in D;
(ea might be identical to e1 or e2)

(E) Find the path p1!a from e1 to ea and the path p2!a from e2 to ea in D;
(F) For each pair (e, ê) on each path

if (e and ê modify the same etree)
then mark ê;

(G) Put all the unmarked etrees and e1, e2 and ea into MCSet;
if (neither p1!a nor p2!a has unmarked etrees other than e1, e2 and ea)
then /* e1 and e2 join to the same etree ea, see Figure 5.15(b) */

is local = 1; return;
else /* e1 and e2 do not join to the same etree, see Figure 5.15(c) */

is local = 0; return;

Table 5.8: Algorithm for building MC sets and testing whether the coindexation between
a pair of nodes is tree-local

125

NP

NNS

investors

α3:

β1:

NP

NP

NP PP

of

*

IN

NP

NNS

minds

α
2:

α 1: VP

IN

on

NP

PP

S

NP

*

i

NP

NP SBAR

ε

β2:

*

β3:

VP SBAR i

VP

NP

worried

VBD

VP

SWHNP

ε

Figure 5.17: The etrees that connect the ones for *ICH*-2 and SBAR-2 in the derivation
tree.

5.7 Building context-free rules and sub-templates

LexTract is designed to extract LTAGs, but simply reading context-free rules o� the tem-

plates in an extracted LTAG will yield a CFG. For example, the template in Figure 5.18(a)

will yield two context-free rules in 5.18(b).

S

NP VP

NPVBD@

(1) S -> NP VP

(2) VP -> VBD NP

(a) a template (b) CFG rules derived from (a)

Figure 5.18: The context-free rules derived from a template

We can also obtain subcategorization information from a template by decomposing

the template into a set of sub-templates as follows: a spine-etree template is decomposed

into a subcategorization chain and a subcategorization frame; a mod-etree template is

126

VP

VP* PP

P@ NP

NP

NP* CC NP

N@

sub-templates:templates:

(a) spine-etree template

(b) mod-etree template

S

NP VP

NPV@

subcat frame: (NP, V@, NP)

subcat chain: S -> VP -> V

with root S

mod-pair: (VP*, PP)

subcat frame: (P@, NP)

subcat chain: PP-> P

with root PP

subcat chain: NP->N

subcat frame: (N@)
with root NP

(c) conj-etree template

conj-tuple: (NP*, CC, NP)

Figure 5.19: The decomposition of etree templates (In sub-templates, @ marks the anchor
in a subcategorization frame, * marks the modi�ee in a modi�er-modi�ee pair)

decomposed into a subcategorization chain, a subcategorization frame, and a modi�er-

modi�ee pair; a conj-etree template is decomposed into a subcategorization chain, a sub-

categorization frame, and a coordination tuple. Figure 5.19 shows some examples of this

decomposition.

A subcategorization chain is a subsequence of the spine in a spine-etree where each node

on the chain is a parent of some argument(s) in the subcategorization frame. The notion of

subcategorization chain allows us to capture the similarities between the templates that use

slightly di�erent annotation schemes. For example, suppose the two spine-etrees in Figure

5.20(a) and (c) come from two di�erent Treebanks. Both are used to represent a wh-clause

anchored by a transitive verb. (a) is similar to the structure used in GB-theory, whereas

(c) is the one used in the English Penn Treebank. Although the two spine-etrees are not

identical as their spines are very di�erent, they share the same subcategorization frame and

the same subcategorization chain (except that the node IP in the �rst subcategorization

chain is called S in the second chain). Sub-templates are useful for grammar comparison

127

spine: CP -> C’ -> IP -> I’ -> VP -> V

subcat chain: IP -> VP -> V

subcat frame: (NP, V@, NP)

spine: SBAR -> S -> VP -> V

subcat chain: S -> VP -> V

subcat frame: (NP, V@, NP)

(a)

(c)

(b)

(d)

SBAR

WHNP

NP VP

V@ NP

S

COMP

NP

IP

CP

WHNP

INFL VP

V@ NP

I’

C’

Figure 5.20: Spines, subcategorization chains, and subcategorization frames

and language comparison (See Sections 6.2 and 6.3).

5.8 Some special cases

In this section, we discuss four cases that require special consideration from LexTract.

5.8.1 Coordination

In this chapter, we de�ne a conj-etree as an etree with the conjunction represented as a

substitution node, one XP as the foot node and the other XP expanded (e.g., �1 in Figure

5.21). An alternative is to treat the conjunction as the anchor, one XP as the foot, and

the other XP as a substitution node (e.g., �2 in Figure 5.21). Figure 5.21 shows how these

two approaches handle a VP coordination in the sentence John bought a book and has read

it four times. In the �rst approach, the second verb read anchors the conj-etree �1, and

the singleton etree �1 substitutes into the CC node in �1. In the second approach, the

conj-etree �2 is anchored by the conjunction, and the etree �2 substitutes into the VP node

in �2. In either approach, the conj-etree adjoins to the etree �3.

Currently, we choose the �rst approach for two reasons. First, it can easily capture the

128

read

(QP (CD four)

S

NP VP

VBD NP

bought

and

CC

(NNS times)))))))

(b)

VP

VP

VBD NP

read

CCVP*

VP* CC VP

VP

and

(a)

VBD NP

VP

(NP (PRP it))
(VP (VBD read)

(NN book))

(NP (DT a)

(VP (VP (VBD bought)

((S (NP-SBJ (NNP John))

(CC and)
1:γ

1:

1:β

The second approach

The first approach

γβ
2: 2:α2:

α

(VP (VBP has)

read

and it

John book

bought

has

John bookand

read

bought

ithas

α 3:

Figure 5.21: Two ways to handle a coordinated VP in the sentence John bought a book
and has read it four times

dependency between the two verbs bought and read, as shown in the derivation tree
1;

Second, ideally an etree should encapsulate all the arguments of the anchor. Both �1 and

�2 are missing the subjects of the verb read. The di�erence is that in the �rst approach

the etree with the missing subject is con�ned to be a conj-etree, whereas in the second

approach it is an independent spine-etree.

5.8.2 Empty categories

There are two places where empty categories (ECs), such as *T* for A'-movement, require

special treatment. First, when the coindexation between an EC and its antecedent is due

to syntactic movement, the etrees for the two nodes should belong to an MC tree set.

Second, the etrees anchored by ECs should be avoided because the existence of such etrees

will slow down LTAG parsers. We have addressed the �rst issue in Section 5.6, in this

section, we shall concentrate on the second issue.

To parse a sentence, an LTAG parser �rst selects all the etrees anchored by the words

in a sentence, and then generates parses by combining these etrees. ECs are not part of

the input sentence. If we allow them to anchor etrees, the parser has to \predict" where

129

ECs \appear" in the sentence and then select the etrees anchored by these ECs. This will

complicate the parsing algorithm and slow down the parser. There is one exception: if

an etree anchored by an EC belongs to an MC set in which at least one of the etrees is

anchored by a non-EC word, the parsing eÆciency will be not a�ected, because the MC

set will not be selected unless the non-EC word appears in the input sentence.

The algorithm for building etrees (see Table 5.5) handles ECs properly with the two

lines that are marked by (EC1) and (EC2), respectively. Let XP be the parent of an EC in

a derived tree and XP:top is mapped to a node Y in an etree e. There are three possible

positions for Y in e:

� Y is a node on the spine of e. A common example is ellipsis, where a verb or a

verb phrase is omitted, as in Figure 5.22(a). Without (EC1), the algorithm in Table

5.5 would build �1 and �. With (EC1), the algorithm requires the head-child to

dominate at least one lexical word. Therefore, the algorithm will choose ADV P ,

rather than V P3, as the head-child of V P2. As a result, the algorithm will build �2,

rather than �1 and �. Notice that �2 could be generated by adjoining � to the VP

node in �1.
9

� Y is a sister of a node on the spine of e. A common example is wh-movement of an

argument. LexTract will copy the whole subtree rooted at XP:bot to e, as shown in

line (EC2) in Table 5.5. For instance, the subtree rooted at the NP subject of the

derived tree in Figure 5.23(a) is copied to �3 in 5.23(c).

� Y is an adjunct and maps to a sister of the foot node in a mod-etree or a conj-etree.

An example for this case is wh-movement of an adjunct. LexTract will group the

etrees for the gap and the �ller into an MC set. Because one or more etrees in the MC

set are anchored by lexical items, the parsing eÆciency will not be a�ected. Nothing

special is required for this case. In Figure 5.24, the PP is a modi�er of the VP and it

is moved to the beginning of the sentence. The etrees for the �ller and the gap form

9This fact implies that another way to handle ECs in this position is as follows: remove (EC1) from the

algorithm, but add a step at the end of algorithm in which each etree that is anchored by an EC is merged

with its \neighboring" etree to form a new etree.

130

NP VP

?

Sα1: VP

VP* ADVP

RB

too

β:
α2: S

NP VP

too
?

VP ADVP

RB

NP

John VBD

did

VP

VP ADVP

RB

too

VP

S

1

2

3

?

without (EC1)(b) (c) with (EC1)

(a) a ttree

Figure 5.22: Handling a sentence with ellipsis: fMary came yesterday,g John did too

an MC set, and both etrees adjoin to �1.

5.8.3 Punctuation marks

Punctuation marks help humans to comprehend sentences. They can help NLP tools as

well if used appropriately. In the XTAG grammar, there are 47 templates that contain

punctuation marks. Doran (1998) discussed all of the templates in detail. She divided

punctuation marks into three classes: balanced, structural, and terminal. The balanced

punctuation marks are quotes and parentheses; structural marks are commas, dashes,

semi-colons and colons; and terminals are periods, exclamation points and question marks.

Figure 5.25 shows four etrees with punctuation marks: �1 is an etree for non-peripheral

NP appositive, �2 is for a sentence such as \John will come, I think", �3 and �4 are for

balanced and terminal punctuation marks, respectively.10

This approach is appealing when the grammar is built by hand. However, automatically

extracting those etrees from Treebanks is not trivial. For example, in Figure 5.25, the

comma anchors �1, but it is a substitution node in �2. Given a sentence with a comma,

it is not clear how an extraction tool can decide whether the comma should anchor an

10�1 and �2 in Figure 5.25 come from (Doran, 2000).

131

WHNPi

SBAR

S

NP

ε

i VP

V

WP

who

bought the books

NP

NP

ε

SBAR
α α

1: 2:

SWHNP

NP VP

V NP

bought

WHNP

SBAR

S

VP

NPV

bought

NP

ε

α 3:

(b) without (EC2) (c) with (EC2)

ttree(a) a

Figure 5.23: Handling a sentence with wh-movement from an argument position

NP VP

V

stay

S

β β
2:

α 1:

1:

(b) extracted (a) a

S

PP i
S

V

did

S

NP

you

VP

VP

V

stay

PP

ε

hotel
at which

i

S

PP S*

P NP

at

VP

PPVP* i

ε

i

ttree etrees

Figure 5.24: Handling a sentence with wh-movement from an adjunct position

etree as in �1, and it should be a substitution node as in �2. Another problem is that the

usage of punctuation marks in naturally occurring data is very complicated. For instance,

balanced punctuation marks such as quotation marks are supposed to appear in pairs and

enclose a constituent in a ttree, but they are often not annotated that way in a Treebank

for various reasons. For example, the sentence He said , \S1 . S2 . S3 ." (Si's are clauses)

is broken into three ttrees in the PTB, according to the positions of three periods. The

left quotation mark belongs to the �rst ttree and the right quotation mark belongs to the

third ttree. Another example is in Figure 5.26, where the left quotation mark is a child of

132

S

S*Punct Punct

‘‘ ’’

β3:

S* Punct

.

Sβ4:

S*

S

Punct S

VPNP

β2:

V

think

NP

NP* Punct NP Punct

, ,

β 1:

Figure 5.25: Elementary trees with punctuation marks

the VP node, while the right quotation mark is forced to attach higher because the period

is a child of the S node and it appears before the right quotation mark.

((S (NP-SBJ (PRP he))
 (VP (VBD said)
 (, ,)

(‘‘ ‘‘)
(S (NP-SBJ (NNP John))

(VP (VBZ likes)
(NP (PRP her)))))

(. .)
(’’ ’’)))

Figure 5.26: A sentence with quotation marks

Due to these problems, our current system does not include punctuation marks in

the extracted grammars. This does not mean that the NLP tools that use our extracted

grammars cannot take advantage of punctuation marks in the data. For example, an NLP

tool can still include punctuation marks in its language model. Doran (2000) showed that

including punctuation marks in the training and testing data for Supertagging achieved

an error reduction of 10.9% on non-punctuation tokens.11 In the data she used, the etrees

(including the ones for punctuation marks) came from the XTAG grammar. Based on

this experiment, she claimed that having etrees for punctuation marks in an LTAG would

improve the performance of Supertagging. We have re-trained the same Supertagger but

with the data extracted by LexTract. For punctuation marks, we use dummy etrees named

after punctuation marks (e.g., an etree for comma will be named �comma, and the one for

semi-colons �semicolon). Interestingly, when we conduct the same experiment but with our

data, the Supertagging performance for non-punctuation tokens shows a similar rate of

improvement. From the results of both experiments, we conclude that punctuation marks

11More discussion on Supertagging can be found in Section 6.4.

133

are de�nitely useful for NLP tools such as a Supertagger, but there is more than one way

to take them into account: for example, they can be included in the etrees of an LTAG, or

they can be part of a language model, or both. Which approach works the best depends

on the application and the particular models used by the NLP tools.

5.8.4 Predicative auxiliary trees

Predicative auxiliary trees, such as the one in Figure 5.27(c) for the verb believe, represent

the head-argument relation, and therefore are spine-etrees. Nevertheless, the structures of

the trees are recursive in that the root and one leaf node have the same label. Following

(Kroch and Joshi, 1985; Kroch, 1989), the XTAG grammar treats this type of tree as an

auxiliary tree to account for long-distance movement such as the sentence what does Mary

think Mike believes John likes (see Section 2.3).

(NP (NP (DT the)

(NN person))

(SBAR (WHNP-1 (WP who))

(VP (VBD believed)
(SBAR (-NONE- 0)

(VP (VBD bought)
(NP (DT the)
 (NN book)))))))))

(NP-SBJ (NNP Mary))

(NP-SBJ (-NONE- *T*-1))

(S

(S

(c)(b)(a)

believed

VBD

VP

S

SBAR

NP

WHNP

SBAR*

NP

NP*

VP

VBD NP

S

SBAR

0

bought

NP

T

Figure 5.27: An example in which the etree for believed should be a predicative auxiliary
tree: the person who Mary believed bought the book

Several things are worth noting:

� When there is no long-distance movement, it does not make much di�erence whether

such an etree is treated as an auxiliary tree or not. For instance, to parse the sentence

Mary believed John would come, either G1 or G2 in Figure 5.28 will work although

the order between come and believed is
ipped in the derivation trees. For more

discussion on this topic, see (Joshi and Vijay-Shanker, 1999).

� The shape of the etree alone cannot determine whether it should be an initial tree

or an auxiliary tree. For instance, the etree in Figure 5.29 comes from the XTAG

grammar and it is used to handle gerund phrases such as Mary having a child in the

sentence Nobody heard of Mary having a child. The root of the etree is an NP because

134

S

come

NP VP

VB

S

come

NP VP

VB

3 (come)

1 (believed)

G1

G2

NP VP

S*

believed

S

NP VP

S

believed

S

VBD

VBD

α

β

1: α2:

α1: 3:

α

2(come)α

1 (believed)

α

β

γ2:

γ1:

Figure 5.28: Two alternatives for the verb believed when there is no long-distance movement

the gerund phrase has the same distribution as other NPs. The etree is treated as

an initial tree, although the object of the anchor has the same syntactic tag as the

root.

NP VP

NP

having

VBG NP

Figure 5.29: The etree for gerund in the XTAG grammar

� In some cases, the positions of ECs in the ttrees would determine whether an etree

should be a predicative auxiliary tree. For example, the ttree for the noun phrase

\the person who Mary believed bought the book" in Figure 5.27(a) looks identical to

the ttree for the noun phrase \the person who believed Mary bought the book" in

Figure 5.30(a) except that the positions for Mary and *T* are swapped. But the

etrees needed to parse the two sentences are very di�erent, as in (b) and (c) of Figure

135

5.27 and Figure 5.30. Only the ttree in Figure 5.27(a) requires the etree for the word

believed to be a predicative auxiliary tree.12

NP*

NP

(b)

believed

T VBD

VP

S

SBAR

NP

WHNP

SBAR

(NP (NP (DT the)

(NN person))

(WHNP-1 (WP who))

(VP (VBD believed)
(SBAR (-NONE- 0)

(VP (VBD bought)
(NP (DT the)
 (NN book)))))))))

(NP-SBJ (-NONE- *T*-1))(S

(S (NP-SBJ (NNP Mary))

(SBAR

(a) (c)

VP

VBD

S

SBAR

0

bought

NP

NP

Figure 5.30: An example in which the etree for believed should not be a predicative auxiliary
tree: the person who believed Mary bought the book

To conclude, it is not true that every spine-etree whose root and a leaf node have the

same syntactic tag should be treated as a predicative auxiliary tree. We shall leave the

task of detecting predicative auxiliary trees for future study.

5.9 Comparison with other work

In this section, we compare LexTract with other extraction algorithms for CFGs and

LTAGs proposed in the literature.

5.9.1 CFG extraction algorithms

Many systems that use Treebank context-free grammars simply read context-free rules o�

the phrase structures in Treebanks. Because the phrase structures in the source Treebanks

are partially
at, the resulting grammars are very large. One of the most recent works that

address this problem is (Krotov et al., 1998), which gave an algorithm that reduces the size

of the derived grammar by eliminating redundant rules. A rule is redundant if it can be

\parsed" (in the familiar sense of context-free parsing) using other rules of the grammar.

The algorithm checks each rule in the grammar in turn and removes the redundant rules

from the grammar.13 The rules that remain when all rules have been checked constitute

12The etree in Figure 5.30(b) is an auxiliary tree, but it is not a predicative auxiliary tree.
13For example, given a grammar that has the following rules: (1) VP ! VB NP PP, (2) VP ! VB NP,

and (3) NP ! NP PP, the algorithm would remove rule (1) because rule (1) can be parsed by rules (2)

136

the compacted grammar. The compact grammar for the PTB has 1122 context-free rules,

and the recall and precision of a CFG parser with the compact grammar are 30.93% and

19.18% respectively, in contrast to 70.78% and 77.66% of the same parser with the full

grammar, which has 15,421 context-free rules.

Krotov's method di�ers dramatically from LexTract in several ways. First, it does not

use the notion of head and it does not distinguish adjuncts and arguments. Second, the

compacting process may result in di�erent grammars depending on the order in which the

rules in the full grammar are checked. To maintain the order-independence, their algorithm

removed all unary and epsilon rules by collapsing them with the sister nodes. Because of

frequent occurrences of empty categories and unary rules in the Treebank, we suspect that

this practice will make the resulting grammars less intuitive and it might also contribute

to the low parsing accuracy when the compact grammar was used. Third, the growth of

their grammar is non-monotonic in that, as the corpus grows, the size of the grammar may

actually decrease because the new rules in the grammar may cause the existing rules to

become redundant and get eliminated. Although the size of the compact grammar might

approach a limit eventually in their experiment, it is not clear how stable the grammar

really is, considering the existence of annotation errors in the Treebank. For example, it is

possible that a few bad rules (e.g. fX) X ZPg, where ZP can be any syntactic label) can

ruin the whole grammar because they make many good rules become redundant and get

eliminated. They mentioned in their paper that they developed a linguistic compaction

algorithm that could retain redundant but linguistically valid rules, and they gave the sizes

of two grammars built by this new algorithm. Unfortunately, the description is too sketchy

for us to determine exactly how that algorithm works.

In contrast, LexTract uses the notion of head and it distinguishes arguments from

adjuncts. The CFG produced by LexTract is order-independent, and it allows unary

rules and epsilon rules. In addition, the growth of the grammar is monotonic, and the

existence of bad rules would not a�ect the good rules. As for the number of context-free

rules, the CFG built by LexTract from the PTB has 1524 rules (see Section 6.1), whereas

in Krotov's approach, the compact grammar has 1122 rules and the two linguistically

and (3).

137

compact grammars have 4820 and 6417 rules, respectively.14

5.9.2 LTAG extraction algorithms

In addition to LexTract, there are two systems that extract LTAGs from Treebanks.

Neumann's lexicalized tree grammars

Neumann (1998) describes an extraction algorithm and tests it on the PTB and a German

Treebank called Negra (Skut et al., 1997). There are several similarities between his

approach and LexTract. First, both approaches adopt notions of head and use a head

percolation table to identify the head-child at each level. Second, both decompose the

ttrees from the top downwards such that the subtrees rooted by non-head children are cut

o� and the cutting point is marked for substitution. The main di�erence between the two

is that Neumann's system does not distinguish arguments from adjuncts, and therefore it

does not factor out the majority of recursive structures with adjuncts. As a result, only

7.97% of the templates in his grammar are auxiliary trees, and the size of his grammar

is much larger than ours: his system extracts 11,979 templates from three sections of

the PTB (i.e., Sections 02-04), whereas LexTract extracts 6926 templates from the whole

corpus (i.e., Sections 00-24). It is also not clear from his paper how he treats conjunctions,

empty categories and coindexation; therefore, we cannot compare these two approaches on

these issues.

Chen & Vijay-shanker's approach

Chen & Vijay-shanker's method (2000) is similar to LexTract in that both use a head

percolation table to �nd the head and both distinguish arguments from adjuncts. Never-

theless, there are several di�erences.

The two systems di�er in their overall architectures. When we designed LexTract, we

explicitly de�ned three prototypes of elementary trees in the target grammars. The pro-

totypes are language independent and every etree built by LexTract falls into one of three

14Unfortunately, we don't have access to the CFG parser they used; therefore, we cannot compare our

grammar with their grammars with respect to the precision and recall rates of the parser.

138

prototypes. Given a Treebank and three tables containing language-speci�c information,

for each phrase structure (ttree) in the Treebank, LexTract �rst explicitly creates a derived

tree. It then decomposes the derived tree into a set of etrees. The bidirectional mapping

between the nodes in this derived tree and the etrees makes LexTract a useful tool for

Treebank annotation and error detection (see Section 6.6). LexTract also explicitly builds

a derivation tree and an MC set. Chen & Vijay-shanker's system does not explicitly de�ne

the prototypes of elementary trees. It does not create a derived tree; therefore, there are

no one-to-one mappings between the nodes in a ttree and the nodes in the extracted etrees.

The system does not build derivation trees and MC sets, either.

The two systems also di�er in their algorithms for making argument/adjunct distinc-

tions. Chen & Vijay-shanker's system uses a two-step procedure to determine whether a

node sist is an argument of the head hc. The �rst step considers the syntactic tags and

function tags of sist and its parent. Exactly this information is used as an index into a

manually constructed table. An example of an entry in this table is \if the current node

is PP-DIR and the parent node is VP, then assign adjunct to the current node". If the

index is not found in the table, then the second step of the following procedure is invoked:

� Nonterminal PRN is an adjunct.

� Nonterminal with semantic tags NOM, DTV, LGS, PRD, PUT, SBJ are comple-

ments.

� Nonterminals with semantic tags ADV, VOC, LOC, PRP are adjuncts.

� If none of the other conditions apply, the nonterminal is an adjunct.

In LexTract, the argument/adjunct distinction is made in two steps as well. In the

�rst step, LexTract checks the function tags of sist, which corresponds to the second step

in Chen and Vijay-shanker's system. The di�erence is that, rather than using a �xed

procedure, LexTract allows its users to specify in the tagset table their treatments for the

function tags. For instance, if the users include the entry (PRD HEAD) in the tagset

table, LexTract will treat every phrase with the -PRD (predicate) tag as a head-child.

If the users replace the entry with (PRD ARGUMENT), LexTract will then treat these

139

phrases as arguments. If sist does not have a function tag with which LexTract can decide

the type of the phrase in the �rst step, LexTract invokes a second step, which determines

the type of sist according to the entry for the head sibling hc in the argument table. Recall

that the argument table speci�es not only the possible tags of hc's arguments, but also

the maximal numbers of arguments to the left or the right of hc. In contrast, the �rst step

of Chen & Vijay-shanker's system considers the tags of sist and sist's parent. We believe

that the tag of hc is a better indicator of the type of sist than is the tag of sist's parent,

and the argument table is more informative than the manually constructed table in their

system.

These two systems also di�er in their treatments for coordinations, punctuation marks,

and so forth. Another way to compare these systems is to evaluate the performances of

a common NLP tool that is trained by the data produced by the systems. One of such

tools is Srinivas's Supertagger. In Section 6.4, we shall report the performances of the

Supertagger with the data produced by these two systems.

5.10 Summary

In this chapter, we have outlined a system named LexTract, which takes a Treebank

and language-speci�c information and produces grammars (LTAGs and CFGs), derivation

trees, and MC sets. LexTract has several advantageous properties. First, it takes very

little human e�ort to build three tables (i.e., the tagset table, the head percolation table,

and the argument table). Once the tables are ready, LexTract can extract grammars from

Treebank in little time. Because LexTract does not include any language-independent

code, it can be applied to various Treebanks for di�erent languages.15 Second, LexTract

builds a unique derivation tree for each sentence in the Treebank, which can be used to

train statistical LTAG parsers directly. Third, LexTract allows its users to have some

control over the kind of Treebank grammar to be extracted. For example, by changing

the entries in the head percolation table, the argument table, and the tagset table, users

can get di�erent Treebank grammars and then choose the ones that best �t their goals.

15In the next chapter, we shall apply LexTract to Treebanks for English, Chinese, and Korean.

140

Fourth, the grammar produced by LexTract is guaranteed to cover the source Treebank.

In the next chapter, we shall discuss several applications of LexTract.

141

Chapter 6

Applications of LexTract

In the previous chapter, we introduced a grammar extraction tool LexTract, which takes

Treebanks as input and produces grammars and derivation trees. In this chapter, we

discuss some applications of LexTract and report experimental results. These applications

roughly fall into four types:

� The Treebank grammars built by LexTract are useful for grammar development and

comparison (see Sections 6.1 { 6.3).

� The lexicon and derivation trees derived from Treebanks can be used to train statis-

tical tools such as Supertaggers and parsers (see Sections 6.4 { 6.5).

� The bidirectional mappings between ttree nodes and etree nodes makes LexTract a

useful tool for Treebank annotation (see Section 6.6).

� LexTract can retrieve the data from Treebanks to test theoretical linguistic hypothe-

ses (see Section 6.7).

We have conducted experiments on all of these applications except for parsing, which

was done by Anoop Sarkar at the University of Pennsylvania.

6.1 Treebank grammars as stand-alone grammars

The Treebank grammars extracted by LexTract can be used as stand-alone grammars for

languages that do not have wide-coverage grammars.

142

6.1.1 Two Treebank grammars for English

We ran LexTract on the English Penn Treebank (PTB) and extracted two Treebank gram-

mars. The �rst one, G1, uses PTB's tagset. The second Treebank grammar, G2, uses a

reduced tagset, where some tags in the PTB tagset are merged into a single tag, as shown

in Table 6.1. The reduced tagset is basically the same as the one used in the XTAG gram-

mar (XTAG-Group, 1998). We built G2 with this reduced tagset for two reasons. First,

we use G2 to estimate the coverage of the XTAG grammar (see Section 6.2). Second, G2

is much smaller than G1 and presumably the sparse data problem is less severe when G2 is

used. For some applications such as Supertagging and testing the Tree-locality Hypothesis,

our experiments show that G2 is preferred over G1.

tags in the PTB tags in XTAG
and G1 and G2

adjectives JJ/JJR/JJS A
adverbs RB/RBR/RBS/WRB Ad
determiners DT/PDT/WDT/PRP$/WP$ D
nouns CD/NN/NNS/NNP/NNPS/PRP/WP/EX/$/# N
verbs MD/VB/VBP/VBZ/VBN/VBD/VBG/TO V
clauses S/SQ/SBAR/SBARQ/SINV S
noun phrases NAC/NP/NX/QP/WHNP NP
adjective phrases ADJP/WHADJP AP
adverbial phrases ADVP/WHADVP AdvP
preposition phrases PP/WHPP PP

Table 6.1: The tags in the PTB that are merged to a single tag in the XTAG grammar
and in G2

The sizes of the two grammars are in Table 6.2. LexTract is designed to extract LTAGs,

but, as discussed in Section 5.7, simply reading context-free rules o� the templates in an

extracted LTAG yields a context-free grammar. The last column of the table shows the

number of context-free rules.

template etree etree word etree types context-free
types tokens types types per word type rules

LTAG G1 6926 1,173,756 131,397 49,206 2.67 1524

LTAG G2 2920 1,173,756 117,356 49,206 2.38 675

Table 6.2: Two LTAG grammars extracted from the PTB

143

6.1.2 Coverage of a Treebank grammar

Given a grammar, the �rst question that comes to mind is how complete is the grammar?

To answer the question, we plot the number of templates as a function of the percentage

of the corpus used to generate the templates, as in Figure 6.1. To reduce the e�ect of

the original ordering of the ttrees in the Treebank, we randomly shu�e the ttrees in the

Treebank before running LexTract. We repeat the process ten times, and calculate the

minimal, maximal, and average numbers of the templates generated by a certain percentage

of the corpus. The �gure shows that the curves for the minimal, maximal, and average

template numbers are almost identical. Furthermore, in all three curves the numbers of

templates does not converge as the size of the Treebank grows, implying that there are

many new templates in unseen data.

0

1000

2000

3000

4000

5000

6000

7000

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 e

tr
ee

 te
m

pl
at

es

Percentage of the corpus

average
maximal
minimal

Figure 6.1: The growth of templates in G1

Figure 6.2 shows that a few templates in G1 occur very often while others occur rarely

in the corpus. For example, out of 6926 templates in G1, 96 templates each occur more

than a thousand times, and they account for 86.91% of the template tokens in the PTB.

In contrast, 3276 templates occur only once, and they account for 0.27% of the template

tokens in the PTB. This phenomenon reminds us of Zipf's law for word frequency, which

says that in a large corpus the rank of a word multiplies by its frequency is a constant

(Zipf, 1949).1 Graphically, if the frequency of words is plotted as a function of rank on

1The rank of a word is the position of the word in the word list when the list is sorted in the descreasing

order according to the words' frequencies in the corpus.

144

1

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000

F
re

qu
en

cy

Rank

Figure 6.2: Frequency of etree templates versus rank (both on log scales)

doubly logarithmic axes, the curve is close to a straight line with slope -1. To achieve a

closer �t to the empirical distribution of words, Mandelbrot (1954) derives the following

more general relationship between the rank and frequency:

freq = P (rank + �)�B

where P, B and � are parameters of a text, that collectively measure the richness of

the text's use of words (Manning and Sch�utze, 1999). Interestingly, the curve in Figure

6.2 shows that the relationship between the rank and frequency of templates satis�es

Mandelbrot's equation.

We just mentioned that the numbers of templates do not converge as the size of the

Treebank grows. Nevertheless, if we consider only the core grammar, which consists of

templates that occur more than n times, the number of templates in the core grammar

does converge when n is large enough. Figure 6.3 shows the growth of the core grammar

when n is set to be four. It follows that, once a Treebank reaches a certain size, the

new templates extracted from additional data tend to have a very low frequency in the

Treebank. For example, although on average the second half of the PTB produces 1985

new templates (i.e., the ones that do not appear in the �rst half of the PTB), only ten of

these new templates are in the core grammar (i.e., they occur more than four times).

The core grammar does not include low frequency templates. Are these low frequency

templates linguistically plausible? To answer the question, we randomly selected 100

templates from the 3276 templates in G1 which occur only once in the corpus. After

145

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 e

tr
ee

 te
m

pl
at

es

Percentage of the corpus

average
maximal
minimal

Figure 6.3: The growth of templates in the core of G1

manually examining them, we found that 41 templates resulted from annotation errors,

two from missing entries in the language-speci�c tables that we made for the PTB, and the

remaining 57 were linguistically plausible. This experiment shows that, although the PTB

is pretty large, it is unlikely that G1 includes all the plausible templates for English.
2 On

the other hand, 5276 ttrees (about 10.7% of the corpus) can produce all the 6926 templates

in G1 and 1428 ttrees (about 2.9% of the corpus) can produce all the 1967 templates in

the core grammar with the threshold set to four.3 Therefore, the question is: if we are

going to build a Treebank of a certain size from scratch, how can we choose the raw data

to maximize the number of plausible templates in the resulting Treebank grammar? If we

randomly select 5276 ttrees from the PTB, the resulting Treebank grammar has only 2360

templates (about one third the size of G1). Similarly, randomly selected 1428 ttrees yield

1263 templates, 1043 of which are in the core grammar (about half the size of the core

2Chiang (2000) did similar experiments for the tree insertion grammar that he extracted from the PTB.

His grammar has 3626 templates, of which 1587 occur once. He found that out of 100 randomly selected

once-seen templates, 34 results from annotation errors, 50 from de�ciences in the heuristics used by his

extraction algorithm, four from performance errors, and only twelve appeared to be genuine. It is hard to

compare the results of these two experiments because the Treebank grammars and the extraction algorithms

in the experiments are di�erent, as mentioned in Section 5.9.2
3Finding the minimal number of ttrees that generate all the templates in a grammar is a set-covering

problem, which is NP-complete. Instead of computing the minimal number, we just count the ttrees that

produce the �rst occurrence of those templates as the extraction process goes, and the counts for G1 and

the core grammar are 5276 and 1428, respectively.

146

grammar). These results show that random sampling does not work well. We leave this

question for future study.

To summarize, we have shown that, although the size of a Treebank grammar does not

converge as the Treebank grows, the core of the grammar does remain roughly the same

once the Treebank reaches a certain size. In addition, the frequency and rank of templates

in the Treebank grammar seems to satisfy a more general version of Zipf's law, and about

half of the randomly selected 100 once-seen templates are linguistically plausible.

So far, the discussion has been based on templates, rather than on etrees. For parsing

purposes, a more important question is: how often do the unseen etrees occur in new

data? Recall that an etree is equivalent to a (word, template) pair. If an etree is unseen,

the word can be unseen (uw) or seen(sw), and the template can be unseen (ut) or seen

(st). Therefore there are four kinds of unseen pairs, where (sw, st) means both words and

templates have appeared in the training data, but not the pair. Table 6.3 shows that in G1

only 7.85% of the pairs in Section 23 of the PTB are not seen in Sections 2 to 21.4 Of all

the unseen (word, template) pairs in G1, only 4.20% (0.31%+0.02% divided by 7.85%) are

caused by the unseen templates, and the remaining 95.80% are caused by unseen words

or unseen combinations. This implies that the presence of unseen templates is unlikely to

have a signi�cant impact on Supertagging or parsing. Notice that the percentage of (sw,

st) is much higher than (sw, ut) plus (uw, ut), indicating that some type of smoothing over

sets of templates (e.g., the notion of tree families in the XTAG grammar) is important for

improving the parsing accuracy. In the table, we also list the percentage of unseen (word,

POS tag) pairs in same data for comparison.

of tags (sw, st) (uw, st) (sw, ut) (uw, ut) total

POS tags 48 0.44% 2.47% 0 0 2.91%

LTAG G1 6926 5.09% 2.43% 0.31% 0.02% 7.85%

LTAG G2 2920 4.20% 2.45% 0.10% 0.01% 6.76%

Table 6.3: The types of unknown (word, template) pairs in Section 23 of the PTB

4We chose those sections because most state-of-the-art parsers are trained and tested on those sections.

147

(NP (QP

 (NNS workers))

QP

IN QP*

(a) (b)

(IN about) (CD 160))

Figure 6.4: A frequent, incorrect etree template

6.1.3 Quality of a Treebank grammar

An ideal grammar should not only have good coverage on new data, but also have high

quality. A Treebank grammar is extracted from a Treebank; as a result, annotation errors

in the Treebank will result in linguistically implausible templates in the grammar.

A simple way of removing most implausible templates is to use a threshold to throw

away all the infrequent templates. Table 6.4 lists the numbers of the templates in G1

and G2 that occur more than the threshold values. One problem with this method is

that it throws away infrequent but plausible templates. For example, we mentioned in

Section 6.1.2 that out of 100 randomly selected once-seen templates in G1, 57 are plausible.

This method would throw away all these plausible templates. Another problem with this

approach is that it keeps frequent but implausible templates. For instance, in the phrase

structure shown in Figure 6.4(a), the adverb about is mis-tagged as a preposition (IN).

As a result, the template in Figure 6.4(b) was created by LexTract. The threshold-based

method cannot �lter it out because the template occurs 1832 times in the PTB. Many of

those frequent but implausible templates are caused by part-of-speech errors in the PTB.5

0 1 2 3 4 5 9 19 29 39
G1 6926 3650 2693 2257 1967 1771 1395 955 812 710
G2 2920 1684 1312 1114 981 895 696 477 405 350

Table 6.4: The numbers of templates in G1 and G2 with the threshold set to various values

We propose another method for �ltering out implausible templates. In this method,

5We suspect that the main reason that those POS errors remain in the PTB is that when the Treebank

was bracketed by annotators, POS tagging annotation was already completed but the POS tags were not

shown to annotators; therefore, the annotators were unaware that the syntactic tag that they added to a

phrase and the existing POS tags within the phrase might be incompatible.

148

we �rst decompose a template into a set of sub-templates (see Section 5.7), then mark

the template as plausible if and only if every sub-template is plausible. The plausibility of

the subcategorization chain, the subcategorization frame, and the modi�er-modi�ee pair

are checked against the entries in the head percolation table, the argument table, and the

modi�cation table, respectively.

This �lter works well when these three tables (the head percolation table, the argument

table and the modi�cation table) are correct and complete (i.e., there are no missing entries

in the tables). In that case, the templates that are marked as implausible by the �lter are

de�nitely implausible, but not vice versa. That is, it is possible, even though unlikely,

that a template made up of plausible sub-templates is not plausible. Our �lter marks

the template in Figure 6.4(b) as implausible because a preposition (IN) cannot modify a

quanti�er phrase (QP) according to the modi�cation table.

So far, we have discussed two �lters: one is based on the frequency of the templates,

and the other checks the sub-structures of the templates. Each �lter has its strengths and

weaknesses. The choice of them should be based on the size of the Treebank, the common

types of annotation errors in the Treebank, and other factors.

6.2 Treebank grammars combined with other grammars

If a language already has a wide-coverage hand-crafted grammar such as the XTAG gram-

mar, is a Treebank grammar still useful? De�nitely. A Treebank grammar can help a

hand-crafted grammar in two ways:

� To evaluate and improve the coverage of a hand-crafted grammar on a large Treebank

� To provide statistical information to the hand-crafted grammar

In this section, we shall concentrate on the former and leave the latter for future work.

Previous evaluations (Doran et al., 2000; Srinivas et al., 1998) of hand-crafted gram-

mars use raw data (i.e., a set of sentences without syntactic bracketing). The data are �rst

parsed by an LTAG parser and the coverage of the grammar is measured as the percentage

149

of sentences in the data that can be parsed.6 For more discussion on this approach, see

(Prasad and Sarkar, 2000).

We propose a new evaluation method that takes advantage of Treebanks and LexTract.

In this method, the coverage of a hand-crafted grammar is measured by the overlap of the

hand-crafted grammar and the Treebank grammar.

6.2.1 Methodology

The central idea of our method is as follows: given a Treebank T and a grammar Gh and

letting Gt be the set of templates extracted from T by LexTract, the coverage of Gh on

T can be measured as the percentage of template tokens in T that are covered by the

intersection of Gt and Gh. One complication is that the Treebank and Gh may choose

di�erent analyses for certain syntactic constructions; that is, although some constructions

are covered by both grammars, the corresponding templates in these grammars would look

very di�erent. To account for this, our method has four stages:

1. Extract a Treebank grammar from T . Let Gt be the set of templates in the Treebank

grammar.

2. Put into G0
t all the templates in Gt that match some templates in Gh.

3. Check each template in Gt � G0
t and decide whether the construction represented

by the template is handled di�erently in Gh. If so, put the template in G00
t . The

coverage of Gh on T is measured as count(G0
t [G00

t)=count(Gt). The templates in

Gt �G0
t �G00

t are the ones that are truly missing from Gh.

4. To improve the coverage of Gh, check templates in Gt�G0
t�G00

t and consider adding

the plausible ones to Gh.

In this experiment, we are focusing on general syntactic structures in two grammars,

rather than the completeness of lexicons. Therefore, for grammar coverage we use tem-

plates, instead of etrees. The method can be easily extended to compare etrees. Each stage
6There should be two measures for the coverage. The �rst one is the percentage of sentences for which

the correct parses are generated; the second one is the percentage of sentences for which at least one parse

is generated.

150

of the method is described in detail as follows.

6.2.2 Stage 1: Extracting templates from Treebanks

We choose G2 as our Treebank grammar (see Table 6.2 in Section 6.1) and the XTAG

grammar as the hand-crafted grammar. The former has 2920 templates, and the latter

has 1004 templates.

6.2.3 Stage 2: Matching templates in the two grammars

To calculate the coverage of the XTAG grammar, we need to �nd out how many templates

in G2 match some template in the XTAG grammar. We de�ne two types of matching:

t-match and s-match.

t-match

An obvious distinction between the two grammars is that feature structures and subscripts7

are present only in the XTAG grammar, whereas frequency information is available only

in G2. We say that two templates t-match (t for template) if they are identical barring the

types of information present only in one grammar. In Figure 6.5, the XTAG trees in (a)

and (b) t-match the G2 tree in (c).

S

NP VP

V

S

NP VP

V

S

NP VP

V

0 1

break sleep/break

(a) pure intransitive verbs (b) ergative verbs (c) intransitive verbs
in XTAG in XTAG

sleep

in G2

Figure 6.5: The templates for pure intransitive verbs and ergative verbs in XTAG t-match
the template for all intransitive verbs in G2

7In the XTAG grammar, the subscripts on the nodes mark the same semantic arguments in related

subcategorization frames. For example, an ergative verb break can be either transitive (e.g., Mike broke the

window.) or intransitive (e.g., The window broke.). The object of the transitive frame and the subject of

the intransitive frame are both labeled as NP1, whereas the subject of the transitive frame is labeled NP0.

151

XTAG also di�ers from G2 in that XTAG uses multi-anchor trees to handle idioms

(Figure 6.6(a)), light verbs (Figure 6.6(b)) and so on.8 In each of these cases, the multiple

anchors form the predicate. By having multiple anchors, each tree can be associated

with semantic representations directly (as shown in Figure 6.6), which is an advantage

of the LTAG formalism. These trees are the spine-etrees where some arguments of the

main anchor are expanded. G2 does not have multi-anchor trees because semantics is not

marked in the Treebank and consequently LexTract cannot distinguish idiomatic meanings

from literal meanings. Since expanded subtrees are present only in the XTAG grammar,

we disregard them when comparing templates.

sem: die(NP) 0 0 1

1

0

1

0

1

0

sem: kick(NP , NP)sem: walk(NP)0

the bucket

S

NP

kick/take

VP

V

NP VP

NP

Ntake

walk

kick

S

N

V

(a) idioms (c) transitive verbs
in XTAG in XTAG

(b) light verbs
in G

D

NPV

VPNP

S

NP

2

Figure 6.6: Templates in XTAG with expanded subtrees t-match the one in G2 when the
expanded subtrees are disregarded

s-match

t-match requires two trees to have exactly the same structure barring expanded subtrees;

therefore, it does not tolerate minor annotation di�erences between the two grammars.

For instance, in XTAG, a relative pronoun such as which and the complementizer that

occupy distinct positions in the template for relative clauses, whereas the Penn Treebank

treats both as pronouns and therefore they occupy the same position in G2, as shown in

Figure 6.7. Because the circled substructures occur in every template for relative clauses

and wh-movement, none of these templates would t-match their counterparts in the other

grammar. Nevertheless, the two trees share the set of sub-templates; namely, the same

subcategorization chain S ! V P ! V , the same subcategorization frame (NP, V, NP),

8For details on multi-anchor trees, see Section 2.1.4.

152

and the same modi�cation pair (NP;S). To capture this kind of similarity, we de�ne

the notion of s-match (s for sub-template). Two templates are said to s-match if they

are decomposed into the same set of sub-templates. According to this de�nition, the two

templates in Figure 6.7 s-match.

NP

NP

S NP

NP

* *

1

1

NP S

NP VP

S

NP*T*

S

NP VP

S

NP*T* V@

V@

(a) in XTAG

extroot

bar

lexroot

ext

Comp

NPnew

extroot

ext

new
lexroot

(b) in G2

Figure 6.7: An example of s-match

Matching results

So far, we have de�ned two types of matching. Notice that neither type of matching is

one-to-one. Table 6.5 lists the numbers of matched templates in two grammars. The

last row lists the percentage of the template tokens in the PTB that are covered by the

templates in G2 that match some templates in XTAG. For instance, the second column

says 162 templates in XTAG t-match 54 templates in G2, and these 54 templates account

for 54.6% of the template tokens in the PTB.

t-match s-match matched unmatched total
subtotal subtotal

XTAG 162 314 476 528 1004

G2 54 133 187 2733 2920

coverage 54.6% 5.3% 59.9% 40.1% 100%

Table 6.5: Matched templates and their coverage

Another di�erence between the XTAG and the Treebank annotation is that an adjective

modi�es a noun directly in the former, whereas in the latter an adjective projects to an

adjective phrase (AP) which in turn modi�es an NP, as shown in Figure 6.8. Similarly, in

XTAG an adverb modi�es a VP directly, whereas in the Treebank an adverb sometimes

projects to an ADVP �rst. If we disregard these annotation di�erences, the percentage

153

of matched template tokens increases from 59.9% to 82.1%, as shown in Table 6.6. The

magnitude of the increase is due to the high frequency of templates with nouns, adjectives

and adverbs.

N*

N

A@

NP

NP*

(a) in XTAG

AP

A@

(b) in G2

Figure 6.8: Templates for adjectives modifying nouns

t-match s-match matched unmatched total
subtotal subtotal

XTAG 173 324 497 507 1004

G2 81 134 215 2705 2920

coverage 78.6% 3.5% 82.1% 17.9% 100%

Table 6.6: Matched templates when certain annotation di�erences are disregarded

6.2.4 Stage 3: Classifying unmatched templates

The previous section shows that 17.9% of the template tokens do not match any template

in the XTAG grammar. There are several reasons for the mismatches:

T1: incorrect templates in G2 These templates result from Treebank annotation er-

rors, and therefore they are not in XTAG.

T2: coordination in XTAG the templates for coordination in XTAG are generated on-

the-
y while parsing (Sarkar and Joshi, 1996), and are not part of the 1004 templates.

Therefore, the conj-templates in G2, which account for 3.4% of the template tokens

in the PTB, do not match any templates in the XTAG grammar.

T3: alternative analyses XTAG and G2 sometimes choose di�erent analyses for the

same phenomena. As a result, the templates used to handle these phenomena do not

match each other by our de�nition.

154

T4: constructions not covered by XTAG Some constructions, such as the unlike co-

ordination phrase (UCP), parenthetical (PRN), and ellipsis, are not currently covered

by the XTAG grammar.

For the �rst three types, the XTAG grammar can handle the corresponding construc-

tions although the templates used in two grammars look di�erent and do not match ac-

cording to our de�nition. To �nd out what constructions are not covered by XTAG, we

manually classi�ed the 289 most frequent unmatched templates in G2 according to the

reason that they are absent from XTAG. These 289 templates account for 93.9% of all the

unmatched template tokens in the Treebank. The results are shown in Table 6.7, where the

percentage is with respect to all the tokens in the Treebank. From the table, it is clear that

most unmatched template tokens are due to (T3); that is, alternative analyses adopted in

the two grammars. Combining the results in Table 6.6 and 6.7, we conclude that 97.2%

of template tokens in the Treebank are covered by XTAG,9 while another 1.7% are not

covered. The remaining 1.1% of template tokens are covered by the 2416 unmatched tem-

plates in G2, which we have not checked manually. Therefore, it is not clear how many of

this remaining 1.1% template tokens are covered by XTAG.

T1 T2 T3 T4 total

of template types 51 52 93 93 289

% of template tokens 1.1% 3.4% 10.6% 1.7% 16.8%

Table 6.7: Classi�cation of 289 unmatched templates

6.2.5 Stage 4: Combining two grammars

Given the XTAG grammar and the Treebank grammar, simply taking the union of two

template sets will yield an inconsistent grammar. One way of improving the coverage of

the XTAG grammar is to analyze the constructions in T4, build new trees for them (or

use the corresponding trees in the Treebank grammar), and add these trees to the XTAG

grammar.

9The number 97.2% is the sum of two numbers: the �rst one is the percentage of matched template

tokens (82.1% from Table 6.6). The second number is the percentage of template tokens in T1|T3 (16.8%-

1.7%=15.1% from Table 6.7).

155

Another possibility is to use LexOrg to generate a new grammar. This process has

several steps. First, LexTract decomposes templates in both grammars into a set of sub-

templates such as subcategorization chains, subcategorization frames, and modi�cation

pairs. Second, we use LexTract's �lter to automatically rule out all the implausible sub-

templates in XTAG and G2. Third, we manually check the remaining sub-templates. If

two grammars adopt di�erent treatments for a certain construction, choose one treatment

and its corresponding sub-templates. Last, we use LexOrg to generate a new grammar

from these sub-templates. The new grammar will be consistent and have a good coverage

of the Treebank. We plan to explore this possibility in the future.

To summarize this section, we have presented a method for evaluating the coverage of a

hand-crafted grammar | the XTAG grammar | on a Treebank. First, we used LexTract

to automatically extract a Treebank grammar. Second, we matched the templates in

the two grammars. Third, we manually classi�ed unmatched templates in the Treebank

grammar to decide how many of them were due to missing constructions in the hand-crafted

grammar. Some of the unmatched templates can be added to the hand-crafted grammar

to improve its coverage. Our experiments showed that the XTAG grammar could cover at

least 97.2% of the template tokens in the English Penn Treebank.

This method has several advantages. First, the whole process is semi-automatic and

requires little human e�ort. Second, the coverage can be calculated at the sentence level,

template level and sub-structure level. Third, the method provides a list of templates that

can be added to the grammar to improve its coverage. Fourth, there is no need to parse

the whole corpus, which could have been very time-consuming.

6.3 Comparison of Treebank grammars for di�erent lan-

guages

In the last section, we compared a hand-crafted grammar with a Treebank grammar. In

this section, we shall compare grammars for di�erent languages for two reasons. First, we

want to know how similar or di�erent the languages are with respect to the elementary

trees in their grammars. Second, the links between the elementary trees in the grammars

156

are valuable resources for NLP applications such as machine translation (MT).

To compare grammars for di�erent languages, we can choose either hand-crafted gram-

mars or Treebank grammars. We chose Treebank grammars for the following reasons.

First, Treebank grammars can be easily extracted from Treebanks with little human ef-

fort. Second, the extracted grammars are guaranteed to cover the source Treebanks. Third,

the grammars built by the same extraction tool are based on the same formalisms, making

grammar comparison possible. A potential problem for using Treebank grammars is that

the grammars may include linguistic implausible templates while missing plausible ones

due to the imperfection of the source Treebanks. To alleviate this problem, a threshold-

based �lter is used to throw away low frequency templates.

Our approach for grammar comparison has three stages: First, we extract grammars

from Treebanks; Second, given a grammar pair, we count the number of templates that

appear in both grammars; Third, we classify the templates that appear in one but not

in the other grammar. In this section, we �rst introduce the three Treebanks used for

grammar comparison. Then, we report experimental results on grammar comparison.

Next, we point out the directions for future work.

6.3.1 Three Treebanks for three languages

The languages whose grammars are being compared are English, Chinese, and Korean.

They belong to di�erent language families: English is Germanic, Chinese is Sino-Tibetan,

and Korean is Altaic (Comrie, 1987). There are several major di�erences between these

languages. First, both English and Chinese have predominantly subject-verb-object (SVO)

word order, whereas Korean has underlying SOV order. Second, the word order in Korean

is freer than in English and Chinese in the sense that argument NPs are freely permutable

(subject to certain discourse constraints). Third, Korean and Chinese allow subject and

object deletion, but English does not. Fourth, Korean has richer in
ectional morphology

than English, whereas Chinese has little, if any, in
ectional morphology.

The Treebanks that we used in this section are the English Penn Treebank II (Marcus et

al., 1993), the Chinese Penn Treebank (Xia et al., 2000b), and the Korean Penn Treebank

(Han et al., 2001). All three Treebanks were developed at the University of Pennsylvania

157

in the last decade. The main parameters of these Treebanks are summarized in Table 6.8.

The tagsets include four types of tags: POS tags for head-level annotation, syntactic tags

for phrase-level annotation, function tags for grammatical function annotation, and empty

category (EC) tags for dropped arguments, traces, and so on. The average sentence length

for the Korean Treebank is much shorter than those for English and Chinese because the

Korean Treebank is a collection of military messages, whereas English and Chinese corpora

consist of newspaper articles. Because the Korean Treebank is a small corpus of a limited

sub-language, we shall mainly focus on the comparison between the English and Chinese

grammars.

Language corpus size ave sentence POS syntactic function EC
(words) length (words) tags tags tags tags

English 1,174K 23.85 words 36 26 20 10
Chinese 100K 23.81 words 34 25 26 7
Korean 54K 10.71 words 27 14 6 4

Table 6.8: Sizes of the Treebanks and their tagsets

We chose these Treebanks for two reasons: First, their annotation schemata are similar,

which facilitates the comparison between the extracted Treebank grammars. For example,

all three Treebanks use phrase structures, rather than dependency structures. They all

include empty categories, reference indexes, and function tags in addition to syntactic

labels. Second, all three Treebanks were designed by linguists and computational linguists

and the annotation were at least double checked. Therefore, the grammars extracted from

the Treebanks should have good quality.

The results of running LexTract on English, Chinese, and Korean Treebanks are shown

in Table 6.9. The last column in the table shows the numbers of the non-lexicalized context-

free rules.

template etree word context-free
types types types rules

English 6926 131,397 49,206 1524

Chinese 1140 21,125 10,772 515

Korean 632 13,941 10,035 152

Table 6.9: Grammars extracted from the three Treebanks

158

6.3.2 Stage 1: Extracting Treebank grammars that are based on the

same tagset

In this stage, we need to ensure that the Treebank grammars are based on the same tagset.

To achieve that, we create a new tagset that includes all the tags from the three Treebanks.

Then we merge several tags in this new tagset into a single tag.10 Next, we replace the

tags in the original Treebanks with the tags in the new tagset, and then run LexTract to

build Treebank grammars from those Treebanks.

After the tags in original Treebanks have been replaced with the tags in the new tagset,

the numbers of templates in the new Treebank grammars decrease by about 50%, as shown

in the second column of Table 6.10 (cf. the second column in Table 6.9). Table 6.10 also

lists the numbers of context-free rules and sub-templates in each grammar.

templates context-free sub-templates

rules subcat chains subcat frames mod-pairs conj-tuples total
Eng 3139 754 500 541 332 53 1426
Ch 547 290 108 180 152 18 458
Kor 256 102 43 65 54 5 167

Table 6.10: Treebank grammars with the new tagset

6.3.3 Stage 2: Matching templates

Now that the Treebank grammars are based on the same tagset, in the second stage, we

count the number of structures (templates, context-free rules, and sub-templates) that

appear in more than one grammar.11 Figure 6.9 shows six templates that appear in both

10Merging tags is necessary because certain distinctions among some tags in one language do not exist in

another language. For example, the English Treebank has distinct tags for past tense verbs, past participals,

gerunds, and so on; however, no such distinction is morphologically marked in Chinese and, therefore, the

Chinese Treebank uses the same tag for verbs regardless of the tense and aspect. To make the conversion

straightforward for verbs, we use a single tag for verbs in the new tagset.
11Ideally, to get more accurate comparison results, we would like to compare etrees, rather than templates

(which are non-lexicalized); however, comparing etrees requires bilingual parallel corpora, which we are

currently building.

159

NP

N@

VP

V@ VP*

NP

N@ NP*
ADV@

VP

ADVP VP*

S

VPNP

V@ S

S

NP VP

V@ NP

α

β

1:

3:

β1:
β2:

α 3:α 2:

9.98%/12.03% 0.90%/4.94%20.91%/20.83%

6.31%/0.81% 1.50%/2.18% 1.33%/1.08%

Figure 6.9: Some templates that appear in both the English and Chinese grammars

the English and the Chinese grammars.12 The numbers x/y under each template are

the percentages of the template tokens in the English Treebank (ETB) and the Chinese

Treebank (CTB), respectively. For example, the numbers under �1 says that the template

accounts for 20.91% of template tokens in the ETB, and 20.83% in the CTB.

Initial results

Table 6.11 lists the number of matched templates for each language pair. The third column

lists the numbers of template types shared by each pair of Treebank grammars and the

percentage of the template tokens in each Treebank that are covered by these matched

template types. For example, there are 237 template types that appear in both English

and Chinese Treebank grammars. These 237 template types account for 80.1% of the

template tokens in the ETB, and 81.5% of the template tokens in the CTB. There are

a few things worth mentioning. First, although the numbers of matched templates are

not very high, some of these templates have high frequency and therefore the percentages

of matched template tokens are pretty high. For example, the six templates in Figure

6.9 accounts for 40.95% of template tokens in the ETB and 41.90% in the CTB. Second,

the frequency of the same template in di�erent Treebanks may di�er substantially. For

example, �3 in Figure 6.9 accounts for 6.31% of template tokens in the ETB but 0.81% in

the CTB, while �2 accounts for 0.90% in the ETB but 4.94% in the CTB. A major reasons

12�1, �1, and �2 also appear in the Korean grammar. For �3, �2, and �3, if we reverse the positions of

the verb and its sister, the resulting templates are in the Korean grammar as well.

160

for this di�erence is that the set of words that anchor the same template may di�er across

languages; that is, if a word w in language l anchors a template f , it is possible that

the translation of w in language l0 does not anchor f . For example, in English the �3 is

anchored by auxiliary verbs including modals, be verbs as in progressive (e.g., is eating)

and passive (e.g., is eaten), and have verbs as in present perfect (e.g., have eaten). In

contrast, in Chinese the �3 is anchored only by modals. The be and have verbs in English

are translated into adverbs or aspect markers in Chinese. The adverbs anchor �2, and the

template for the aspect markers appears only in the Chinese grammar.

templates context-free rules sub-templates
(Eng, Ch) type (#) 237 154 246

token (%) 80.1/81.5 88.0/85.2 91.4/85.2
(Eng, Kor) type (#) 54 61 96

token (%) 47.6/85.6 53.4/92.2 58.9/98.4
(Ch, Kor) type (#) 43 44 69

token (%) 55.9/81.0 63.2/89.3 65.7/96.0

Table 6.11: Numbers of matched templates, context-free rules, and sub-templates in three
grammar pairs

If we compare context-free rules, rather than templates, the percentages of matched

context-free rules (as shown in the fourth column in Table 6.11) are higher than the

percentages of matched template tokens. This is because two distinct templates may share

common context-free rules. Similarly, the percentages of matched sub-templates (see the

last column in Table 6.11) are higher than the percentages of matched template tokens.

Results using thresholds

The comparison results shown in Table 6.11 used every template in the Treebank gram-

mars regardless of the frequency of the template in the corresponding Treebank. One

potential problem with this approach is that annotation errors in the Treebanks could

have a substantial e�ect on the comparison results. One such scenario is as follows: To

compare languages A and B, we use Treebanks TA for language A and Treebank TB for

language B. Let GA and GB be the grammars extracted from TA and TB, respectively, and

let t be a template that appears in both grammars. Now suppose that t is a linguistically

161

plausible template for language A and it accounts for 10% of the template tokens in TA,

but t is not a plausible template for language B and it appears once in Treebank B only

because of annotation errors. In this scenario, if GB excluding template t covers 50% of

the template tokens in Treebank A, then GB including t covers 60% of the template tokens

in Treebank A. In other words, the single error in Treebank B, which causes the template

t to be included in GB , changes the comparison results dramatically.

In Section 6.1.3, we propose two methods of �ltering out implausible templates caused

by Treebank annotation errors. In this experiment, we used the threshold-based �lter;

that is, we used a threshold to discard from the Treebanks and Treebank grammars all the

templates with low frequency in order to reduce the e�ect of Treebank annotation errors

on the comparison results. Table 6.12 shows the numbers of templates in the Treebank

grammars when the threshold is set to various values. For example, the last column lists

the numbers of templates that occur more than 39 times in the Treebanks.13

0 1 2 3 4 9 19 29 39
English 3139 1804 1409 1209 1065 762 524 444 386
Chinese 547 341 272 226 210 155 122 110 100
Korean 256 181 146 132 122 94 67 57 53

Table 6.12: The numbers of templates in the Treebank grammars with the threshold set
to various values

Table 6.13 shows the numbers of matched templates and the percentages of matched

template tokens when the low frequency templates are removed from the Treebanks and

Treebank grammars. As the value of the threshold increases, for each language pair the

number of matched templates decreases. The percentage of matched template tokens

might decrease a fair amount at the beginning, but it levels o� after the threshold reaches

a certain value. This tendency is further illustrated in Figure 6.10. In this �gure, the

X-axis is the threshold value, which ranges from 0 to 39; the Y-axis is the percentage of

matched template tokens in the English and Chinese Treebanks when the templates with

low frequency are discarded. The curve on the top is the percentage of template tokens

13The setting of the threshold should take the Treebank size into consideration. In general, the bigger a

Treebank, the higher the threshold can be.

162

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30 35

P
er

ce
nt

ag
e

of
 m

at
ch

ed
 te

m
pl

at
e

to
ke

ns

Cutoffs

English
Chinese

Figure 6.10: The percentages of matched template tokens in the English and Chinese
Treebanks with various threshold values

in the Chinese Treebank that are covered by the English grammar, and the curve on the

bottom is the percentage of template tokens in the English Treebank that are covered by

the Chinese grammar. Both curves become almost
at once the threshold value reaches 5

or larger.

threshold 0 1 2 3 4 5 19

(Eng, type (#) 237 165 128 111 100 73 54
Ch) token (%) 80.1/81.5 76.5/80.8 64.3/80.6 64.1/80.6 63.8/78.5 58.1/77.9 57.3/76.9

(Eng, type (#) 54 47 37 35 32 29 23
Kor) token (%) 47.6/85.6 47.5/81.0 47.2/81.0 47.3/80.7 47.3/80.7 47.3/80.4 47.5/79.3

(Ch, type (#) 43 36 34 29 27 22 18
Kor) token (%) 55.9/81.0 56.0/81.0 56.0/77.0 56.1/76.0 55.8/76.1 56.0/74.3 56.1/74.5

Table 6.13: Matched templates in the Treebank grammars with various threshold values

To summarize, in order to get a better estimate of the percentage of matched template

tokens, we disregard the low frequency templates in the Treebanks. We hope that this

strategy reduces the e�ect of annotation errors on the comparison results. This strategy

also makes the di�erence between the sizes of the three Treebanks less important because,

once a Treebank reaches a certain size, the new templates extracted from additional data

tend to have very low frequency in the whole Treebank (See Section 6.1.2) and they will

be thrown away by the threshold-based �lter.

163

6.3.4 Stage 3: Classifying unmatched templates

Our experiments (see Table 6.11 and 6.13) show that the percentages of unmatched tem-

plate tokens in three Treebanks range from 14.4% to 52.8%, depending on the language

pairs and the threshold value. Given a language pair, there are various reasons why a

template appears in one Treebank grammar, but not in the other. In the third step of the

grammar comparison, we divide those unmatched templates into two categories: spuriously

unmatched templates and truly unmatched templates.

Spuriously unmatched templates Spuriously unmatched templates are those that

either should have found a matched template in the other grammar or should not have

been created by LexTract in the �rst place if the Treebanks had been complete, uniformly

annotated, and error-free. A spuriously unmatched template exists because of one of the

following reasons:

(S1) Treebank coverage: The template is linguistically plausible in both languages,

and, therefore, should belong to the grammars for these languages. However, the template

appears in only one Treebank grammar because the other Treebank is too small to include

such a template. Figure 6.11(S1) shows a template that is plausible for both English and

Chinese, but it appears only in the English Treebank, not in the Chinese Treebank.

(S2) Annotation di�erences: Treebanks may choose di�erent annotations for the

same constructions; consequently, the templates for those constructions look di�erent.

Figure 6.11(S2) shows the templates used in English and Chinese for a VP such as \surged

7 (dollars)". In the template for English, the QP projects to an NP, but in the template

for Chinese, it does not.

(S3) Treebank annotation errors: A template in a Treebank may result from

annotation errors in that Treebank. If no corresponding mistakes are made in the other

Treebank, the template in the �rst Treebank will not match any template in the second

Treebank. For instance, in the English Treebank the adverb about in the sentence About 50

people showed up is often mis-tagged as a preposition, resulting in the template in Figure

6.11(S3). Not surprisingly, that template does not match any template in the Chinese

Treebank.

164

VP*

VP

CC

V@ NP NP

VP

English English Chinese
CD@

QP

NPVP*

VP VP

VP* QP

CD@

QP

P@ QP*

English

(S1) Treebank coverage (S2) annotation difference (S3) annotation error

Figure 6.11: Spuriously unmatched templates

Truly unmatched templates A truly unmatched template is a template that does not

match any template in the other Treebank even if we assume that both Treebanks are

perfectly annotated. Here, we list three reasons why a truly unmatched template might

exist.

(T1) Word order: The word order determines the positions of dependents with

respect to their heads. If two languages have di�erent word orders, the templates that

include dependents of a head are likely to look di�erent. For example, Figure 6.12(T1)

shows the templates for transitive verbs in English and Korean grammars. They do not

match because of the di�erent positions of the object of the verb.

(T2) Unique tags: For a pair of languages, some POS tags and syntactic tags ap-

pear in only one language. Therefore, the templates with those tags will not match any

templates in the other language. For instance, sentence-ending particles (SPs) are used in

Chinese, but not in English. Therefore, the template in Figure 6.12(T2) appears only in

the Chinese grammar.

(T3) Unique syntactic relations: Some syntactic relations may be present in only

one of the pair of languages being compared. For instance, a yes-no question is expressed

in English by subject-verb inversion or do-support, whereas a yes-no question is realized

in Chinese by attaching a particle ma at the end of the sentence. Therefore, the template

in Figure 6.12(T3), which is anchored by auxiliary verbs, appears only in the English

grammar.

So far, we have listed six possible reasons for unmatched templates. We have manually

classi�ed templates that appear in the Chinese grammar, but not in the English grammar.14

14For this experiment, we used all the templates in the grammars; that is, we did not throw away low

165

NPV@

VPNP

S

V@

NP

S

VP

NP

English Korean

(T3) unique relation(T2) unique tags(T1) word order

SP@S*

S

Chinese English

V@ S*

S

Figure 6.12: Truly unmatched templates

S1 S2 S3 T1 T2 T3 total

type(#) 1 70 53 22 99 65 310

token(%) 0.0 3.2 0.2 0.7 12.3 2.1 18.5

Table 6.14: The distribution of the Chinese templates that do not match any English
templates

The results are shown in Table 6.14. The table shows that, for the Chinese-English pair,

the main reason for unmatched templates is (T2) because many templates in the Chinese

grammar include tags for particles (such as classi�ers, aspect markers, and sentence-ending

particles), which do not exist in English. For other language pairs, the distribution of

unmatched templates may be very di�erent. For instance, Table 6.11 indicates that the

English grammar covers 85.6% of the template tokens in the Korean Treebank. If we ignore

the word order in the templates, that percentage increases from 85.6% to 97.2%. In other

words, the majority of the template tokens that appear in the Korean Treebank, but not in

the English Treebank, are due to the word order di�erence in the two languages. Note that

the word order di�erence only accounts for a small fraction of the unmatched templates

in the Chinese-English pair (see the �fth column in Table 6.14). This contrast is not

surprising considering that English and Chinese are predominantly head-initial, whereas

Korean is head-�nal.

6.3.5 The next step

So far, we have presented a method of comparing grammars extracted from Treebanks.

We have also described six possible reasons why a particular template does not match

frequency templates.

166

any templates in another language. An ummatched template that include unique tags or

unique syntactic relations (i.e., (T2) and (T3)) often indicates that the two languages in

the language pair express certain syntactic features in di�erent ways. For example, a yes-

no question is realized in Chinese by attaching a particle ma at the end of the sentence;

that is, ma anchors the template in Figure 6.12(T2). In contrast, a yes-no question is

realized in English by subject-verb inversion or do-support; that is, auxiliary verbs anchor

the template in Figure 6.12(T3). A MT system should pay attention to the di�erence and

handle the templates properly.

In addition to building Treebank grammars, LexTract can also be used to build etree-

to-etree mappings automatically from parallel Treebanks. The process can be simpli�ed

as follows:

(1) Run bitext mapping algorithms, such as the Smooth Injective Map Recognizer (SIMR)

algorithm (Melamed, 1999), on parallel Treebanks to align sentences and produce a

word-to-word mapping function in the aligned sentences.

(2) For each aligned sentence pair, run LexTract to produce grammars and derivation

trees from the ttrees.

(3) Link the nodes in the derivation trees using the word-to-word mapping, thus, creating

a etree-to-etree mapping.

This process is illustrated in Figure 6.13. In (a), T and T 0 are two ttrees in a parallel

English-Chinese Treebank. In (b), a bitext mapping algorithm decides that the sentences

in T and T 0 form a parallel sentence pair. Then it builds the word-to-word mapping fw.

In (c), LexTract produces Treebank grammars G and G0 and the derivation trees D and

D0 for the sentences. In (d), the etree-to-etree mapping function ft is created.

Quite often, the translation of a word consists of several words in another language.

For instance, in Figure 6.14(a), the word q�u in Chinese is translated into go to in English

and the word did in English roughly corresponds to le ma in Chinese.15 As a result, the

15The sentence-ending particle ma in Chinese indicates that the sentence is a yes-no question, whereas

in English the same information is expressed by subject-verb inversion or do-support. The sentence-ending

particle le in Chinese indicates that the action q�u x�uexi�ao/go to school happens in the past, whereas in

167

NP VP

N V NP

N

S

NP VP

N V

likes

NP

N

Mary

S

He ta xihuan

mali

T:

NP VP

N V NP

N

S

NP VP

N V

likes

NP

N

Mary

S

He ta xihuan

mali

T’:

(d) the nodes in derivation trees are linked and the
etree-to-etree mapping is created

NP

N

He

NP

N

ta

#1’:#1:

NP

N

He

NP

N

ta

S

VPNP

V NP

likes

NP

Mary

N

S

VPNP

V NP

xihuan

NP

mali

N

S

VPNP

V NP

likes

S

VPNP

V NP

xihuan

NP

Mary

N

NP

mali

N

(a) two ttrees in a parallel Treebank

T: T’:

(b) two sentences are aligned and the word-to-word mapping
 is produced by a bitext mapping algorithm

(c) the Treebank grammars and derivation trees are built by LexTract

f t:

He -> ta
likes -> xihuan

Mary -> mali

f w:

#1: #2: #3:

Treebank grammar G

#1’: #2’: #3’:

Treebank grammar G’

#2(likes)

#1(He) #3(Mary)

D:

#1’(ta)

D’: #2’(xihuan)

#3’(mali)

#2: #3: #3’:#2’:

#1(He)

D:

#1’(ta)

D’:

#3(Mary)

#2’(xihuan)

#3’(mali)

#2(likes)

Figure 6.13: Creating etree-to-etree mapping from a parallel Treebank

168

derivation trees D and D0 in Figure 6.14(b) are not isomorphic. However, if we group

the nodes in the derivation trees and build links between the groups instead of individual

nodes, the new derivation trees become isomorphic, as shown in Figure 6.14(c).

There are other types of structural divergence (Dorr, 1993). By comparing the deriva-

tion trees for parallel sentences, instances of structural divergence can be detected auto-

matically. Now that we have converted a parallel Treebank into a list of paired derivation

trees with instances of structural divergence marked, the next step is to train a MT system

on the data so that it can produce a target derivation tree given a source derivation tree.

We would like to pursue this line of research in the future.

6.4 Lexicons as training data for Supertaggers

As shown in Section 5.4, LexTract builds an etree for each word in the sentence. This etree

sequence has been used to train and test Supertaggers.

6.4.1 Overview of Supertaggers

A Supertagger (Joshi and Srinivas, 1994; Srinivas, 1997) assigns an etree template to

each word in a sentence. The templates are called Supertags because they include more

information than POS tags.16 In general, a word has many more Supertags than POS

tags because a word appearing in di�erent elementary trees will have di�erent Supertags

whereas its POS tag is likely to remain the same. For example, a preposition has di�erent

Supertags when the PP headed by the preposition modi�es a VP, an NP, or a clause. In the

English the tense is part of the in
ection for verbs.
16In this section, we use the term template and Supertag interchangeably. A word has x Supertags means

that the word can anchor x distinct templates.

169

V

V

P

did

go
to

NP

PP

school

yesterday

NPyou

NP

S

S

VP

S

VP

VP

V NP

SP SP

S

qu

NP

ni NP

zuotian

xuexiao

le ma

S*

S

V

did

#1:
NP

N

you

#2:

PP

P

to

VP*

VP

NP

#4:

NP

S

VP

go

V

#3:
NP

N

school

#5:

VP

VP* NP

N

yesterday

#6:
NP

N

ni

#1’:

NP VP*

N

VP

zuotian

#2’:

NP

S

qu

NP VP

V

#3’:

NP

N

xuexiao

#4’:

S

SP

le

S*

#5’:
S

SPS*

ma

#6’:

D’:

ni(#1’)
zuotian(#2’)

xuexiao(#4’) ma(#6’)le(#5’)

qu(#3’)
D:

did(#1)

school(#5)

to(#4)you(#2)

go(#3)

yesterday(#6)

#2’: VP

VP*NP

N
zuotian

#6:

yesterday

VP

VP* NP

N

#4’: NP

N

xuexiao

#5:
NP

N

school

PP qu

NPV

VP

#3’:

NP

S

P NP
VP*

#4:VP

#3: S
NP VP

V
go

to

#2:

N

NP

you

NP

N

ni

#1’:

V S*

did
S*

S#6’:

SP

S#1:

ma

#5’: S

S*

le

SP

f t:

f w:

(a) the paired sentences and the word-to-word mapping

Treebank grammar G Treebank grammar G’

(b) Treebank grammars and derivation trees

D’:

#1’(ni)
#2’(zuotian)

D:

#1(did) #2(you) #6(yesterday)#5(school)

#3(go)+#4(to) #3’(qu)

#5’(le)+#6’(ma)xuexiao(#4’)

did -> le ma
you -> ni

go to -> qu

school -> xuexiao
yesterday -> zuotian

(c) the mapping between groups of etrees and
the links between the groups of nodes in derivation trees

Figure 6.14: Handling instances of structural divergence

170

PTB, on average, a word type has 2.67 Supertags, and a word token has 34.68 Supertags.17

In contrast, on average a word type has 1.17 POS tags, whereas a word token has 2.29 POS

tags.18 Table 6.15 shows the top 40 words with the most numbers of Supertags in G2.
19

Srinivas implemented the �rst Supertagger and he also built a Lightweight Dependency

Analyzer (LDA) that assembles a Supertag sequence to create an almost-parse for a sen-

tence. A Supertagger can also be used as a preprocessor (just like a POS tagger) to speed

up parsing, because after the Supertagging stage an LTAG parser only needs to consider

one or a few templates (in case of n-best Supertagging) for each word in the sentence,

instead of every template that the word can anchor. Besides parsing, Srinivas (1997) has

shown in his thesis that Supertaggers are useful for other applications, such as information

retrieval, information extraction, language modeling, and simpli�cation.

6.4.2 Experiments on training and testing Supertaggers

One diÆculty in using Supertaggers is the lack of training and testing data. To use a

Treebank for that purpose, the phrase structures in the Treebank have to be converted

into (word, Supertag) sequences �rst. Besides LexTract, there have been two other at-

tempts at converting the English Penn Treebank to (word, Supertag) sequences in order

to train a Supertagger. To train his Supertagger, Srinivas (1997) �rst selects a subset of

templates from the XTAG grammar, then uses heuristics to map structural information

in the Treebank into the subset of templates. Chen & Vijay's method (2000) has been

17A word in this section, as usual, refers to an in
ected word, rather than a lemma. The average number

of Supertags per word type is calculated as P
w2W

stag(w)

jW j
The average number of Supertags per word token is calculated asP

w2W
stag(w) � freq(w)P
w2W

freq(w)

where W is the set of distinct words in a Treebank, stag(w) is the number of Supertags that a word w has,

and freq(w) is the number of occurrences of w in the Treebank.
18For these four numbers, we use PTB's tagset. The numbers would decrease a little bit if we use the

reduced tagset instead.
19A word may appear to have more Supertags (or POS tags) in the Treebank than they should due to

Treebank annotation errors.

171

word # of Supertags # of POS tags word frequency

in 171 6 18857
to 122 3 27249
and 122 5 19762
of 117 3 28338
on 108 3 6367
for 107 3 9890
put 101 6 343

as 94 3 5268
say 89 5 876
is 89 2 8499
set 82 6 331
up 81 5 2079
more 81 3 2339
out 80 5 1254

said 76 2 7132
by 76 3 5524
with 75 3 5170
make 74 3 727
made 73 2 650
like 73 4 603
take 72 3 510
from 72 1 5389
says 71 1 2431
about 71 5 2604
have 70 5 3777
at 70 3 5336

down 68 7 934
expected 67 4 665
over 66 4 1056
do 64 2 1156
pay 63 3 438
paid 61 3 265

sell 59 4 600
give 58 2 274
cut 58 6 323
sold 56 2 478
much 56 2 831
get 56 2 563
close 54 5 402

Table 6.15: The top 40 words with highest numbers of Supertags in G2

172

discussed in Section 5.9.2.

To compare these three methods with respect to Supertagging, we use the data con-

verted by these methods to train a Supertagger. In the experiment, the Supertagger

(Srinivas, 1997), the evaluation tool, and the original PTB data are identical, but the con-

version algorithms and the data produced by the conversion algorithms are di�erent. The

results are given in Table 6.16.20 The results of Chen & Vijay's method come from their

paper (Chen and Vijay-Shanker, 2000). They built eight grammars. We list two of them

that seem to be most relevant: C4 uses a reduced tagset while C3 uses the PTB tagset. As

for Srinivas' results, we had to rerun his Supertagger using his data on the sections that

we have chosen, because his previous results were trained and tested on di�erent sections

of the PTB.21

We calculated two baselines for each set of data produced by the conversion algorithms.

For the �rst baseline, we tagged each word in testing data with the most common Supertag

with respect to that word in the training data. For an unknown word, the most common

Supertag was used. For the second baseline, we used a trigram POS tagger to tag the

20As usual, we use Sections 2-21 of the PTB for training and Section 22 or 23 for testing. We include

the results for Section 22 because (Chen and Vijay-Shanker, 2000) is tested on that section and its results

on Section 23 are not available.
21Notably, the results we report on Srinivas' data, 85.78% on Section 23 and 85.53% on Section 22, are

lower than the 92.2% reported in (Srinivas, 1997), 91.37% in (Chen et al., 1999) and 88.0% in (Doran,

2000). There are several reasons for the di�erences. First, the size of training data in our experiment is

smaller than the one for his previous work, which was trained on Sections 0-24 except for Section 20 and

tested on Section 20. Second, we treat punctuation marks as normal words during evaluation because, like

other words, punctuation marks can anchor etrees, whereas he treated the Supertags for punctuation marks

as always correct. Third, he used some equivalence classes during evaluations. If a word is mis-tagged as

x, and its the correct Supertag is y, he did not consider that to be an error if x and y appeared in the

same equivalence class. We suspect that the reason that these Supertagging errors were disregarded is that

they might not a�ect parsing results when the Supertags are combined to form parse trees. For example,

both adjectives and nouns can modify other nouns. The two templates (i.e., Supertags) representing these

modi�cation relations look the same except for the POS tags of the anchors. If a word that should be

tagged with one Supertag is mis-tagged with the other Supertag, it is likely that the wrong Supertag can

still �t with other Supertags in the sentence to produce the correct parse tree. In our experiment, we did

not use these equivalence classes.

173

words �rst, and then for each word we used the most common Supertag with respect to

that (word, POS tag) pair. As shown in the table, the �rst baselines for Supertagging were

quite low, in contrast to the 91% for POS tagging. This indicates that Supertagging is much

harder than POS tagging. The results for the second baseline were slightly better than

the ones for the �rst baseline, indicating that using POS tags improves the Supertagging

accuracy. The Supertagging accuracy using G2 was 1.3{1.9% lower than the one using

Srinivas' data. This is not surprising because the size of G2 is 6 times that of Srinivas'

tagset. Notice that G1 is about twice the size of G2 and the accuracy using G1 is 2% lower.

of templates section base1 base2 accuracy

Srinivas' 483 23 72.59 74.24 85.78
22 72.14 73.74 85.53

our G2 2920 23 71.45 74.14 84.41
22 70.54 73.41 83.60

our G1 6926 23 69.70 71.82 82.21
22 68.79 70.90 81.88

Chen & Vijay's 2366 | 8996 22 - - 77.8 | 78.9
C4 4911 22 - - 78.90
C3 8623 22 - - 78.00

Table 6.16: Supertagging results based on three di�erent conversion algorithms

A word of caution is in order. Higher Supertagging accuracy does not necessarily mean

the quality of converted data is better because the underlying grammars di�er a lot with

respect to the size and the coverage. A better measure is the parsing accuracy; that is,

the converted data should be fed to a common LTAG parser and the evaluations should be

based on parsing results. Nevertheless, the experiments show that the (word, template)

sequences produced by LexTract are useful for training Supertaggers. Our results are

slightly lower than the ones trained on Srinivas' data, but our conversion algorithm has

two advantages. First, our algorithm does not use a pre-existing Supertag set. Instead,

it extracts the Supertag set directly from the Treebank. Second, the Supertags in his

converted data do not always �t together, due to the discrepancy between the XTAG

grammar and the Treebank annotation and the fact that the XTAG grammar does not

cover all the template tokens in the Treebank. In contrast, the Supertags in our converted

data always �t together; that is, it is guaranteed that the correct parse will be produced

174

by an LTAG parser if the parser is given the correct Supertag for each word and is asked

to produce all possible parses.

6.5 Derivation trees as training data for statistical LTAG

parsers

In the previous section, we have shown that the (word, template) sequences produced by

LexTract can be used to train a Supertagger. The output of a Supertagger can then be

fed to an LDA or a parser to produce parse trees. A problem with this approach is that

the Supertagging errors can hurt parsing performance.

Another way of using LexTract for parsing is to train an LTAG parser directly, without

using a Supertagger as a preprocessor. One of the parsers that have used LexTract's output

is a head-corner LTAG statistical parser built by Anoop Sarkar. In this section, we brie
y

describe his parser and its performance on the PTB; then we discuss one of the adjustments

that we have made to the Treebank grammar in order to improve the performance of the

parser.

6.5.1 Overview of Sarkar's parser

The parser uses a generative model. In this model, the LTAG derivation D that was built

starting from tree � with n subsequent attachments has the probability:

Pr(D) = Pinit(�)
Y

1�i�n

Pattach(�; � ! � 0)

where Pinit(�) is the probability that the initial tree � is selected to be the root of a

derivation tree; Pattach(�; � ! � 0) is the probability that � 0 is substituted/adjoined to the

node � in � . Both Pinit(�) and Pattach(�; � ! � 0) are estimated by using the frequency

information in the derivation trees produced by LexTract.

To reduce the amount of labeled data needed to train his parser, Sarkar adopts a co-

training method, which uses a small amount of labeled data, a large amount of unlabeled

data, and a tag dictionary. By labeled data, he means the sentences annotated with phrase

structures; unlabeled data are sentences stripped of all annotations; and a tag dictionary

175

is a set of (word, template) pairs. In his experiment, the labeled data are Sections 02-06

of the PTB, the unlabeled data are Sections 07-21 stripped of all annotation, and the tag

dictionary includes all the (word, sequence) pairs from Sections 02-21. When tested on

Section 23 of the PTB, the labeled bracketing precision and recall are 80.02% and 79.64%,

respectively. Considering that the labeled data used by the parser are only about 25% of

the training data used by other parsers, we believe that the results are very promising.

The details of the generative model, the co-training method, and the experiment can be

found in (Sarkar, 2001).

6.5.2 Adjustments to the Treebank grammars for parsing

To create a Treebank grammar that is more suitable to parsing, we have made a few

adjustments to LexTract. In this section, we discuss one of them, which is to add insertion

markers to some nodes in fully bracketed ttrees and to the corresponding nodes in extracted

etrees. Let us explain why such tags are needed with an example. In Figure 6.15, to build

etrees, LexTract �rst fully brackets the phrase structure T1 in (a), then decomposes the

fully bracketed structure T2 in (b) into a set of etrees in (c). In the process, LexTract

inserts an extra node V P3 to T2, and the corresponding etree node for V P3:top is the foot

node of �1 in (c). If no insertion tags are used, when an LTAG parser uses the etrees

in (c) to parse the sentence John will come tomorrow, it will produce T2 as a parse tree,

rather than T1. When the parse tree T2 is compared with the original phrase structure in

the Treebank (which is T1), the precision is less than 100%. In other words, the parser is

punished for producing the fully bracketed structure. To avoid this, LexTract now adds

insertion tags to both V P3:top in T2 and the VP foot node of �1. Now when the parser

takes the same etrees in (c) but with this extra tag in the foot node of �1, it will produce

the same parse tree T2 but with the extra insertion tag in V P3:top. The parser can then

remove all the nodes in T2 whose top part has an insertion tag, resulting in the parse tree

T1.
22

22LexTract inserts two types of nodes in the fully bracketed ttrees: one is for a modi�er that appears

outside the head and its arguments, as in this example; the other type is for a modi�er that appears between

the head and its arguments. For the �rst type, the insertion tag is added to the top part of the inserted

node in the fully bracketed ttree and to the corresponding node (which is the foot node of a mod-etree);

176

S

VPNNP

NP VP

John VB NP

NN

will

come

tomorrow

MD

NNP

NP

John

S

NP VP

VB

come

NP

NN

tomorrow

VP*

VP
α 1: β2:

NNP

NP

John

ttree

etrees(c) extracted

(a) a partially bracketed ttree (b) the fully bracketed

VP

MD

will

VP*

S

VP

will

MD

3

2

1

VP

NP

NN

tomorrow

VP

come

VB

1

2

T T

β1: α 2:

1: 2:

Figure 6.15: Marking the inserted nodes in the fully bracketed ttree and the corresponding
etrees

6.6 LexTract as a tool for error detection in Treebank an-

notation

As stated in Section 5.4.4, there is a bidirectional function between the top and bottom

parts of the nodes in a fully bracketed ttree T and those in the set of etrees extracted from

T . Linguistically implausible etrees may be generated from T because of annotation errors

in T . In other words, if an etree is considered implausible, it implies that the corresponding

nodes in the ttree are not annotated correctly. Based on this relation, we can use LexTract

to detect annotation errors in a Treebank.

6.6.1 Algorithm for error detection

The algorithm for using LexTract for error detection is in Table 6.17. It is semi-automatic,

and the steps that require human involvement are marked with (L1){(L4). For (L1) and

(L3), the two �lters proposed in Section 6.1.3 could be used to mark each template as

plausible or implausible; however, because the �lters are not perfect, the templates should

for the second type, the insertion tag is added to the bottom part of the inserted node in the ttree and to

the corresponding node (which is the root node of a mod-etree).

177

still be double checked by a linguistics expert. As for (L2) and (L4), the algorithm would

point out the nodes in ttrees that need to be checked, but it is up to the user of the tool

to decide what kind of modi�cation is needed to �x the errors in the ttree.

(A) run LexTract on the whole Treebank to generate a grammar G.
(B) check each template in G and decide whether it is plausible or not. | (L1)

(C) for (each Treebank �le f)
(C1) run LexTract to generate a grammar Gf ;
(C2) for (each template ef 2 Gf)

if (9e 2 G, such that ef and e have the same structure)
then if (e is marked as implausible in G)

then modify the ttree in f that generates ef ; | (L2)
else

/* ef is a new template */
check ef and decide whether it is plausible or not; | (L3)

add ef to G;
if (ef is implausible)
then modify the ttree in f that generates ef ; | (L4)

(C3) repeat (C1)-(C2) until Gf is a subset of G and Gf includes
only plausible templates;

Table 6.17: Algorithm for error detection

6.6.2 Types of error that LexTract detects

From the algorithm in Table 6.17, it is clear that annotation errors can be detected by

LexTract if and only if they result in implausible templates. These errors can be classi�ed

as follows:

� Formatting errors in ttrees such as unbalanced brackets and illegal tags: This type

of error can be totally avoided if the Treebank is built with proper annotation tools

(See Appendix B.7.2).23 When a ttree is not properly formatted, LexTract will give

a warning and exit without further processing of the ttree.

23For example, the English Penn Treebank uses a tool to add a left bracket and a right bracket in one

operation, so there should be no unbalanced brackets in that Treebank.

178

� Wrong syntactic labels (including POS tags, syntactic category tags and empty cat-

egory tags): Besides careless typos (e.g., using the tag LC (localizer) rather than CL

(classi�er) for a classi�er in the Chinese Treebank), wrong syntactic labels are often

due to incompatible labels at several levels. For example, in Chinese, a coordinat-

ing conjunction (CC) such as t�ong is also a preposition (IN); therefore, the sentence

\John t�ong/and with Mary z�ou/leave le/ASP" means either \John and Mary left"

or \John left with Mary", and both structures in Figure 6.16(a) and 6.16(b) are cor-

rect.24 However, the structure in Figure 6.16(c) is incorrect because the POS tag

CC and the syntactic category PP don't match, resulting in an implausible etree in

Figure 6.16(d). This type of error is relatively common because POS tagging and

bracketing are often done at separate annotation stages by di�erent annotators.

(c) the incompatible labels

(S (NP-SBJ (NNP John))
(VP (PP (CC tong)

(NP (NNP Mary)))
(VB zou)
(AS le)))

VP

PP VP*

NPCC

tong

(d) the resulting etree

(b) tong as a preposition

(S (NP-SBJ (NNP John))
(VP (PP (IN tong)

(NP (NNP Mary)))
(VB zou)
(AS le)))

(a) tong as a conjunction

(S (NP-SBJ (NP (NNP John))
(CC tong)
(NP (NNP Mary)))

(VP (VB zou)
(AS le)))

Figure 6.16: An error caused by incompatible labels

� Wrong or missing function tags: LexTract uses syntactic labels and function tags to

24Because most of the readers are more familiar with the English Penn Treebank than the Chinese Penn

Treebank, in this example we adopt the annotation convention and the tagset that are used in the English

Penn Treebank (except for the tag AS for an aspect marker, which does not appear in the English tagset).

179

distinguish arguments from adjuncts. Wrong or missing function tags may cause an

argument to be mistaken as an adjunct by LexTract or vice versa. For example, in

Figure 6.17, the structure in (c) is identical to the one in (a) except that the subject

in (c) is missing the function tag -SBJ; as a result, LexTract treats the subject in (c)

as an adjunct, and creates an implausible etree in (d) rather than the plausible etree

in (b).

S

VB

VPNP

zou

VP

VB

zou

S

(d) invalid etree

(a) the correct annotation

(VP (PP (IN tong)

(NP (NNP Mary)))

(VB zou)

(AS le)))

(S (NP-SBJ (NNP John))

(NP(S
(VP (PP (IN tong)

(NP (NNP Mary)))
(VB zou)

(AS le)))

(NNP John))

(b) valid etree

(c) the NP subject is missing

the function tag -SBJ

Figure 6.17: An error caused by a missing function tag

� Missing ttree nodes: One reason for this type of error in the Chinese Penn Treebank

is that annotators forgot to mark dropped arguments. In Figure 6.18, the dropped

argument should be marked as an empty category *pro*, as in (a). Failing to do

that, as in (c), would result in an implausible etree in (d).

� Extra ttree nodes: This type of error is rare and mostly caused by careless typos or

misunderstanding of the annotation guidelines.

180

(VP (PP (IN tong)

(VB zou)

(AS le)))

(S

(c) the sentence misses
the subject node

VP

VB

zou

S

(d) invalid etree

(VP (PP (IN tong)

(NP (NNP Mary)))

(VB zou)

(AS le)))

(S (NP-SBJ (-NONE- *pro*))

(a) the correct annotation

(NP (NNP Mary)))

S

VB

VPNP

zou

pro

(b) valid etree

Figure 6.18: An error caused by a missing subject node

Two observations are in order. First, the main function of LexTract is extracting

LTAGs and building derivation trees to train LTAG parsers and Supertaggers. Error

detection is only a byproduct of the system. Consequently, there are errors that LexTract

cannot detect; namely, the errors that do not result in implausible etrees. For example, in

English, a PP can modify either an NP or a VP. Given a particular context, in general,

only one attachment makes sense. If the Treebank chooses the wrong attachment, LexTract

cannot detect that error.

The second observation is that using templates can detect more annotation errors than

using context-free rules. For example, in English either the subject or the object of a verb

can undergo wh-movement and leave a trace in its position, as shown in Figure 6.19(a)

and 6.19(b). But the subject and the object cannot be moved at the same time, as in

Figure 6.19(c). That is, the �rst two templates are plausible but the third template is

not. However, all three templates consist of the same set of context-free rules as in Figure

6.19(d), and all the context-free rules are plausible. Thus, the annotation errors that result

in the implausible template in Figure 6.19(c) can be detected if we use templates, rather

181

than context-free rules.

S

NP S

NP VP

V@ NPε

S

NP S

NP VP

ε

NPV@

S

NP S

NP VP

ε

NPε V@ NP -> ε

S -> NP S

S -> NP VP

VP -> V NP

(a) (b) (c) (d)

Figure 6.19: Three templates and corresponding context-free rules

6.6.3 Experimental results

We used LexTract for the �nal cleanup of the Chinese Penn Treebank. The Treebank

contains about 100 thousand words after word segmentation, and the average sentence

length is 23.8 words. Before LexTract was used for the �nal cleanup, each Treebank �le

had been manually checked at least twice and the annotation accuracy was already above

95%. More details on the Treebank can be found in Appendix B.

Before the �nal cleanup, the Treebank grammar Go contained 1245 etree templates. It

took a linguistics expert about 10 hours to manually examine all the templates in Go to

determine whether they were plausible. After that, it took another person (who was one

of the two annotators in the Chinese Treebank project) about 20 hours to run LexTract

and correct each Treebank �le. After the cleanup, 169 templates in the old grammar

disappeared, and 38 templates were added to the new grammar; so the new grammar has

1114 etree templates.

To report the number of errors found by LexTract, we could have classi�ed the errors

according to the types listed in Section 6.6.2, such as POS tagging errors, missing func-

tion tags, and so on. However, keeping such a record is time-consuming. Due to time

constraints, we did not do that. Instead, we automatically counted the number of word

tokens in the Treebank that anchored distinct templates before and after the cleanup. We

found 579 word tokens (which account for 0.58% of the total number of word tokens in the

Treebank) whose templates had changed after the cleanup. The di�erences may not be

huge, but considering the accuracy before running LexTract was already above 95% (see

182

Appendix B.6), the results of the �nal cleanup were satisfactory.

6.7 MC sets for testing the Tree-locality Hypothesis

In Section 5.6, we discussed our strategy for testing the Tree-locality Hypothesis. It has

three stages. First, LexTract �nds all the examples that seem to violate the hypothesis. We

call these examples \non-tree-local", or \non-local" for short. Second, we classify all the

non-local examples according to the underlying constructions (such as NP-extraposition).

Third, we determine whether each construction could become tree-local if an alternative

analysis for the construction were adopted. In this section, we report our experimental

results on the PTB.

6.7.1 Stage 1: Finding \non-local" examples

Section 5.6 gave an algorithm that �nds all the examples that seem to violate the Tree-

locality Hypothesis (see Table 4.8). We ran this algorithm on the PTB and found many

non-local examples. Table 6.18 lists the the numbers of tree sets with particular sizes.

A tree set, in this context, includes (1) the two etree templates e1 and e2 in which the

co-indexed constituents appear, and (2) the etree templates that connect e1 and e2 in

the derivation trees. Out of 3151 tree sets, 999 have more than three templates (i.e., the

templates for the gap and the �ller do not adjoin to the same template), and they account

for 8.7% of all the occurrences of tree sets.

size of tree sets � 3 (tree-local sets) 4 5 6 7 8 subtotal total

types 2152(68.3%) 874 94 26 4 1 999(31.7%) 3151

tokens 19994(91.3%) 1772 102 26 4 1 1905(8.7%) 21899

Table 6.18: Numbers of tree sets and their frequencies in the PTB

6.7.2 Stage 2: Classifying \non-local" examples

We have manually classi�ed the \non-local" examples found in Stage 1. The results are

given in Table 6.19. Among the 999 sets, 71 are caused by obvious annotation errors, 65 are

183

tree-local but our extraction algorithm does not recognize that.25 For the remaining ones,

we divide them into seven classes according to the underlying syntactic constructions.26

PTB LexTract NP- extraction it- comparative of-PP paren- so .. others
errors errors EXP from coord. EXP construction thetical that

71 65 337 209 176 50 31 30 11 19

Table 6.19: Classi�cation of 999 MC sets that look non-tree-local

An example for each construction is given in (1) | (7). According to the Treebank an-

notation, every sentence except (2) has an empty category "i, which modi�es a constituent

Y P (in boldface) and is co-indexed with another constituent XP .27 Figures 6.20 to 6.26

show the simpli�ed Treebank annotation for these sentences and the corresponding etree

sets which include the etrees for "i, etrees for XP , and other etrees that connect them in

the derivation tree. The arrows in the �gures mark the positions of the empty categories

and the XPs that co-indexed with the empty categories.

(1) NP-extraposition:

Supply troubles were on the minds of Treasury investors "i yesterday, [who

worried about the
ood]i.

(2) Extraction from coordinated phrases:

His departure was nothing [that]i we desired "i or worked for "i.

(3) It-extraposition:

It "i is too early [to say whether that will happen]i.

25The reason for the LexTract errors is that LexTract does not factor out predicative auxiliary trees

(such as the one for \think") in a relative clause, as discussed in Section 5.8.4.

26We also use an additional class for 19 examples that belong to a number of uncommon constructions.
27All the examples come from the PTB. The treebank has 10 tags for empty categories. For example,

it uses *EXP* for the empty categories in the it-extraposition, *T* in the NP-extraposition, of-PP, and

parenthetical, and *ICH* in extraction from coordinated phrases, comparative construction, and so ... that

construction. For the sake of uniformity, in (1) | (7) and Figures 6.20 to 6.26, we use "i for all empty

categories.

184

Supply troubles

NP

S

VP

VBD

were IN

on

the minds IN

of NP

NP

PP

yesterday

NP

who worried

SBAR

Treasury investors

SBAR

NP

ε
i

i

NP PP
about the flood

NP

NNS

investors

α3:

β1:

NP

NP

NP PP

of

*

IN

NP

NNS

minds

α
2:

α 1: VP

IN

on

NP

PP

S

NP

*

i

NP

NP SBAR

ε

β2:

*

β3:

VP SBAR i

VP

NP

worried

VBD

VP

SWHNP

ε

(a) (b)

Figure 6.20: An example of the NP-extraposition construction

(4) Comparative construction:

Federal Express goes further "i in this respect [than any company that I know

of]i.

(5) Of-PP:

[Of all the ethnic tensions in America]i, which "i is the most troublesome right

now?

(6) Parenthetical:

[He spends most weekends
ying his helicopter to one of his nine courses, he said

"i, two of which were designed by Jack Nicklaus.]i

(7) So ... that construction:

The opposition parties are so often "i opposed to whatever LDP does [that it

would be a waste of time]i.

6.7.3 Stage 3: Studying \non-local" constructions

In the treebank, in addition to marking syntactic movement, empty categories and reference

indexes are also used to indicate where a constituent should be interpreted. If a constituent

185

εi

NP

His departure

S

VP

V

was

nothing

NP

NP

S

NP

we VP

desired

V NP

CC

or PP

VP

VP

S

P NP

for ε i

NP
i

worked

VP

V

that

CC

VP

VP

V

worked

VP*

εi

VP

VP* PP

P NP

for

εi

NP*

NP

S

S

NP

V

VP

desired

NP

NPi

(a) (b)

Figure 6.21: An example of extraction from coordinated phrases

that appears in position x should be interpreted as if it were in position y, it is possible

but not necessarily true that the constituent is base generated at position y and moved

to position x via syntactic movement. Therefore, for a \non-local" construction, we �rst

need to decide whether the relation between co-indexed constituents in the construction

is due to syntactic movement. If not, the construction is irrelevant to the Tree-locality

Hypothesis. If the relation is due to syntactic movement, the next question is whether the

relation could become tree-local if another plausible analysis for the construction is used

or the LTAG formalism is extended in some way. In other words, in this stage, we need to

NP

S

VP

ADJP S

is

VBZ

RB RB

it

PRP

NP

ε

S

to say whether

that will happen
too early

i

i

NP

PRP

it
VP

VP* S

VP

ε

NP

say

VB SBAR

i

NP

NP* S

ε i

β2:

α 2:

α
1:

β1:

ADJP

RB

early

S

VPNP

(a) (b)

Figure 6.22: An example of the it-extraposition construction

186

Federal express

S

NP

ADVP
VBZ

goes

PP

in this respect
than any company
that I know of

PP

further

RBR

ADVP

ε

PP

i

i

VP

VP*

VP

PP

NPP

than

β
3:

i

ADVP* PP

ADVP

ε

β2:

i

NP VP

VBZ

goes

Sα
1:

VP

VP* ADVP

RBR

further

β1:

(a) (b)

Figure 6.23: An example of the comparative construction

PP SBAR

SQ

NP VP

VBZ NP

SBAR

of all the ethnic

WHNP

WDT

which

PP

WHNP

ADVP

right nowis
ε

i
ε

j

tensions in America

i

j

troublesome
the most

SBAR

SQ

NP VP

troublesomeε

WHNP

WHNP

WHNP*

ε

PP

β1:

WHNP

WDT

which

α 2:

α 1:

i

β2: SBAR

IN

SBAR*PP

NP

of

i

(a) (b)

Figure 6.24: An example of the of-PP construction

study each \non-local" construction and put it into one of the following four classes:

(E1) The relation between the co-indexed constituents in the construction is not due

to syntactic movement; therefore, the construction is irrelevant to the Tree-locality

Hypothesis.

(E2) The relation between the co-indexed constituents in the construction is due to syn-

tacticmovement, but the construction becomes tree-local if another plausible analysis

for the construction is adopted.

187

VBZ

spends

NP

S

most
weekends

S

NP VP

VBG NPε
PP

IN

to

NP

NP

one

PP

IN

of

NP

PRN

VP

S

ε

i

isays

VP

SBAR

two of which
were designed
by Jack Nicklaus

NP

NP

he

VBZPRP

flying
his

helicopter

He

NP

his nine
courses

α2: S
NP VP

VBG

flying

NP

 PP

IN

to

NP

VP

VP*

β1:

S

VP

SNPVBZ

spends

NP

α 1:

NP

CD

one

α
3:

of

NP

NP* PP

IN NP

β2:

NP

NNS

courses

α 4:

β3:

NP

NP* PRN

NP VP

VBZ S

εsays

i

i

(a) (b)

Figure 6.25: An example of the parenthetical construction

The opposition

S

NP

ADVP
VBP

ADVP

ε
i

VP

parties

are SBAR

ADJP

opposed to that it would
be a waste
of time

whatever
LDP doesso often

SBAR i

S

NP VP

waste

NP VP

Sα
1:

opposed

VP

VP*

ADVP*

ADVP

ε

β1:

β2:

SBAR

i

ADVP

RB

often

VP*

VP

β
3:

SBAR

IN

i

(a) (b)

Figure 6.26: An example of the so ... that construction

(E3) The relation between the co-indexed constituents in the construction is due to syn-

tactic movement, but the construction becomes tree-local if the de�nitions of substi-

tution and adjoining operations in the LTAG formalism are modi�ed. Some recent

work on modifying these de�nitions to account for certain syntactic movement can

be found in (Joshi and Vijay-Shanker, 1999; Kulick, 2000).

(E4) The relation between the co-indexed constituents in the construction is due to syn-

tactic movement, and the construction is truly non-local. Therefore, the construction

is a counter-example to the Tree-locality Hypothesis.

For some of the constructions in Section 6.7.2 (such as NP-extraposition), there is no

consensus in the linguistics community on their treatments. Providing good analyses for

them requires linguistic expertise, and is beyond the scope of this thesis. Nevertheless, we

188

want to point out that for each construction there is strong evidence to support the view

that the relation between the co-indexed constituents is not due to syntactic movement.

For instance, in (Xia and Bleam, 2000), we argued that one type of extraposed phrase in

the NP-extraposition construction is anaphoric in the sense that the dependency is not

represented in the syntax or in the semantics (such as in the synchronous TAG analysis

given in (Abeill�e, 1994)). Rather, a process more like pronoun resolution should be applied

in a pragmatic component to determine the nature of the dependency.

In summary, the Tree-locality Hypothesis is an important hypothesis in the LTAG

formalism and is relevant to linguistic theories in general; therefore, it should be thoroughly

tested. The method that we propose to test the hypothesis with naturally-occuring data

has three steps: �nding non-local examples in the data, classifying non-local examples

according to the underlying constructions, and studying the non-local constructions and

deciding whether the examples are genuine counter-examples to the hypothesis. LexTract

enables us to automate the �rst step; that is, it can automatically extract all the non-local

examples from Treebanks.

6.8 Summary

In this chapter, we have discussed four types of applications for LexTract. First, Treebank

grammars produced by LexTract are useful for grammar development and comparison.

For example, a Treebank grammar can be used as a stand-alone grammar. We also used a

Treebank grammar extracted from the English Penn Treebank to estimate and improve the

coverage of the XTAG grammar. In addition, we have compared Treebank grammars for

English, Chinese, and Korean, and shown that the majority of the core grammar structures

for these three languages are easily inter-mappable. Second, the Treebank grammar and

derivation trees produced by LexTract were used to train a Supertagger and a statistical

LTAG parser with satisfactory results. Third, we have used LexTract to detect annotation

errors in the Chinese Penn Treebank. Last, we have used LexTract to �nd all the non-

local examples from the English Penn Treebank. These examples should be examined to

determine whether they are counter-examples to the Tree-locality Hypothesis. All these

189

applications indicate that LexTract is not only an engineering tool of great value, but it is

also very useful for investigating theoretical linguistics.

190

Chapter 7

Phrase structures and dependency

structures

Treebanks are of two types according to their annotation schemata: phrase-structure Tree-

banks such as the English Penn Treebank (Marcus et al., 1993) and dependency Treebanks

such as the Czech dependency Treebank (Haji�c, 1998). In Chapters 5 and 6, we have run

LexTract on phrase-structure Treebanks. In this chapter, we address the following ques-

tions:

� What's the relationship between phrase structures and dependency structures?

� Can LexTract run on a dependency Treebank?

Long before Treebanks were developed and widely used for natural language process-

ing, there had been much discussion of comparison between dependency grammars and

context-free phrase-structure grammars. For instance, Gaifman (1965) shows that depen-

dency grammars and context-free grammars (CFGs) are weakly equivalent, and depen-

dency grammars are strongly equivalent to a subclass of CFGs. In this chapter, we address

the relationship between dependency structures and phrase structures from a practical per-

spective; namely, we want to explore di�erent algorithms that convert between dependency

structures and phrase structures, and to determine what information should be present in

the structures to facilitate the conversion.

191

The chapter is organized as follows. In Section 7.1, we discuss a particular representa-

tion for dependency structures, which we choose to use in this chapter. In Section 7.2, we

give an algorithm that converts phrase structures to dependency structures. In Section 7.3,

we propose a new algorithm that converts dependency structures into phrase structures,

and compare it with two existing algorithms. In Section 7.4, we evaluate the performance

of the three algorithms in Section 7.3 using an existing phrase-structure Treebank. In

Section 7.5, we argue that the inclusion of empty categories in dependency structures will

simplify the conversion between the two representations. We also give an algorithm that

builds grammars and derivation trees from dependency Treebanks directly.

7.1 Dependency structures

There is much variety of the representation of dependency structures. Figures 7.1 and 7.2

show two common representations. In the �rst representation, heads are connected to their

dependents by downward-sloping lines. In the second one (we call it a dependency tree,

or d-tree for short), heads are parents of their dependents in a tree. If a d-tree is ordered

(that is, the dependents of the same head are ordered according to their positions in the

sentence) and the sentence is projective,1 then traversing a d-tree will yield the correct

word order of the sentence and therefore the two representations are equivalent. In this

chapter, we use the second representation because of its close resemblance to the derivation

trees in the LTAG formalism. We further assume that a d-tree is ordered. In addition to

the dependency links, a d-tree may also include other information such as Part-of-Speech

Tags for words and the type of dependency links (argument, modi�er, and so on).

Another variation in the representation of dependency structures is on the treatment of

empty categories. Empty categories (such as traces) are often used in phrase structures for

syntactic movement, dropped arguments, and so on. For example, in Figure 7.3, the empty

category � is coindexed with the WHNP which to mark the wh-movement. The sentence

is not projective because the wh-word who depends on the verb win, but the word believe

(which appears between who and win) does not directly or indirectly depend on win. Figure

1A sentence w1w2:::wn is projective if the following holds: for any pair of words (wi; wj), if wi depends

on wj , then any word between wi and wj in the sentence directly or indirectly depends on wj .

192

Vinken will join the board as a nonexecutive director Nov 29

Figure 7.1: A dependency analysis. Heads are connected to dependents by downward-
sloping lines.

join

willVinken

nonexecutivea

board as

the

29

Novdirector

Figure 7.2: A dependency tree. Heads are parents of their dependents in an ordered tree.

7.4 shows two alternative d-trees for the sentence. In (a), the empty category � depends

on win and the wh-word who appears higher in the d-tree. In (b), no empty category is

used and who depends on win. Neither alternative is totally satisfactory. For (a), we need

a new dependency type to indicate that who is di�erent from other dependents of believe;

For (b), traversing the d-tree would yield the wrong word order. In Section 7.5, we shall

talk more about empty categories and argue that it is better to include them in a d-tree.

From now on, we use the d-tree in Figure 7.4(a), rather than the one in 7.4(b).

NP VP

MD VP

will VB

win

ε

NP VP

PRP

you

VB

believe

S

S

WHNP

SBAR

S

VBZ

do

WDT

who

i

i

Figure 7.3: A phrase structure with a non-projective construction

193

do you win

willwho

believe

who do you

willε

win

believe

(a) a d-tree that uses an empty category (b) a d-tree that does not use empty categories

Figure 7.4: Two alternative d-trees for the sentence in Figure 7.3

7.2 Converting phrase structures to dependency structures

The notion of head is important in both phrase structures and dependency structures. In

many linguistic theories such as X-bar theory and GB theory, each phrase structure has

a head that determines the main properties of the phrase and a head has several levels

of projections; whereas in a dependency structure the head is linked to its dependents.

In practice, the head information is explicitly marked in a dependency Treebank, but not

always so in a phrase-structure Treebank. A common way to �nd the head in a phrase

structure is to use a head percolation table (Magerman, 1995; Collins, 1997), as discussed

in Sections 5.3.1 and 5.4.1. For example, the entry (S right S/VP) in the head percolation

table says that the head-child2 of an S node is the �rst child of the node from the right

with the label S or VP.

Once the heads in phrase structures are found, the conversion from phrase structures

to dependency structures is straightforward, as shown below:

(a) Mark the head-child of each node in a phrase structure, using the head percolation

table (see Section 5.4.1).

(b) In the dependency structure, make the head of each non-head-child depend on the

head of the head-child.

Figure 7.5 shows a phrase structure in the English Penn Treebank (Marcus et al., 1993).

In addition to the syntactic labels (such as NP for a noun phrase), the Treebank also uses

function tags (such as SBJ for the subject) for grammatical functions. In this phrase

2The head-child of a node XP is the child of the node XP that is the ancestor of the head of the XP in

the phrase structure.

194

structure, the root node has two children: the NP and the VP. The algorithm will choose

the VP as the head-child and the NP as a non-head-child, and make the head Vinkin of

the NP depend on the head join of the VP in the dependency structure. The dependency

structure of the sentence is shown in Figure 7.2 (repeated as Figure 7.6). As discussed in

Section 5.4.1, we can use two additional tables (namely, the argument table and the tagset

table) to mark each sibling of a head in a phrase structure as either an argument or an

adjunct of the head, and use it to label the corresponding dependency link in the d-tree.

NP

S

VP

NNP

Vinken

MD

will

VP

PP NP
VB

join

NP

DT NN

the board

as JJ

IN NP

NNP CD

29Nov

DT NN

nonexecutive
director

a

Figure 7.5: A phrase structure

join

willVinken

nonexecutivea

board as

the

29

Novdirector

Figure 7.6: The dependency tree produced by the conversion algorithm

The feasibility of using a head percolation table to identify the heads in phrase struc-

tures depends on the characteristics of the language, the Treebank schema, and the def-

inition of the correct dependency structure. For instance, the head percolation table for

a strictly head-�nal (or head-initial) language is very easy to build, and the conversion

algorithm works very well. For the English Penn Treebank, which we used in this chapter,

the conversion algorithm works very well except for the noun phrases with the appositive

195

construction. For example, the conversion algorithm would choose the appositive \the

CEO of FNX" as the head child of the phrase \John Smith, the CEO of FNX", whereas

the correct head child should be \John Smith".

7.3 Converting dependency structures to phrase structures

The main information that is present in phrase structures but not in dependency structures

is the type of syntactic category (e.g., NP, VP, and S); therefore, to recover syntactic

categories, any algorithm that converts dependency structures to phrase structures needs

to address the following questions:

Projections for each category: for a category X, what kind of projections can X have?

Projection levels for dependents: Given a category Y depends on a category X in a

dependency structure, how far should Y project before it attaches to X's projection?

Attachment positions: Given a category Y depends on a category X in a dependency

structure, to what position on X's projection chain should Y's projection attach?

In this section, we discuss three conversion algorithms, each of which gives di�erent

answers to these three questions. To make the comparison easy, we shall apply each

algorithm to the d-tree in Figure 7.6 and compare the output of the algorithm with the

phrase structure for that sentence in the English Penn Treebank, as in Figure 7.5.

Evaluating these algorithms is tricky because just like dependency structures there is

often no consensus on what the correct phrase structure for a sentence should be. In this

chapter, we measure the performance of the algorithms by comparing their output with an

existing phrase-structure Treebank (namely, the English Penn Treebank) because of the

following reasons. First, the Treebank is available to the public, and provides an objective

although imperfect standard. Second, one goal of the conversion algorithms is to make it

possible to compare the performance of parsers that produce dependency structures with

the ones that produce phrase structures. Because most state-of-the-art phrase-structure

parsers are evaluated against an existing Treebank, we want to evaluate the conversion

algorithms in the same way. Third, a potential application of the conversion algorithms

196

is to help construct a phrase-structure Treebank for one language, given parallel corpora

and the phrase structures in the other language. One way to evaluate the quality of the

resulting Treebank is to compare it with an existing Treebank.

7.3.1 Algorithm 1

According to X-bar theory, a category X projects to X', which further projects to XP.

There are three types of rules, as shown in Figure 7.7(a).

(1) XP -> YP X’

(2) X’ -> X’ WP

(3) X’ -> X ZP
Y

(Spec)

XP

X’

X’

X

YP(Spec)

ZP(Arg)

WP(Mod)

(c) phrase structure(b) d-tree(a) rules in X-bar theory

W
(Mod)

Z
(Arg)

X

Figure 7.7: Rules in X-bar theory and the algorithm that is based on it

Algorithm 1, as adopted in (Covington, 1994b; Covington, 1994a), strictly follows X-

bar theory and uses the following heuristic rules to build phrase structures.

Two levels of projections for any head: X has two levels of projection: X' and XP

Maximal projections for dependents: If Y depends on X, it is always Y's maximal

projection YP that attaches to X's projection.

Fixed positions of attachment according to dependency types: If Y depends on

X, YP attaches to the head X's projection according to the dependency type:

� If Y is an argument of X, YP is a sister of X;

� If Y is a modi�er of X, YP adjoins to X';

� If Y is a speci�er of X, YP is a sister of X' and a child of XP.

The algorithm requires a d-tree to distinguish three types of dependents. If a head has

multiple modi�ers, the algorithm can assume that either a single X' or stacked X' is used.

The algorithm converts the d-tree in Figure 7.7(b) to the phrase structure in Figure 7.7(c).

197

Figure 7.8 shows the phrase structure for the d-tree in Figure 7.6, where the algorithm

uses single X' for multiple modi�ers of the same head.3

VP

V’

MD

will

VB

join

NP

Vinken

NNP

N’ PP

P’

IN

as

NP

V’

nonexecutive

VP

N’

Nov

NNP

N’

NP

N’

NP

CD

29
ADJP

JJ

ADJ’

N’

NN

director

N’

V’

board

N’

NN

NP

DT

DT’

DTP

the

a

DT

DT’

DTP

Figure 7.8: The phrase structure built by algorithm 1 for the d-tree in Figure 7.6

7.3.2 Algorithm 2

Algorithm 2, as adopted by Collins and his colleagues (1999) when they converted the

Czech dependency Treebank (Haji�c, 1998) into a phrase-structure Treebank, produces a

phrase structure that is as
at as possible. It uses the following heuristic rules to build

phrase structures:

One level of projection for any head: X has only one level of projection: XP.

Minimal projection for dependents: A dependent Y does not project to Y P unless

it has its own dependents.

Fixed position of attachment: A dependent is a sister of its head in the phrase struc-

ture.4

The algorithm treats all kinds of dependents equally. It converts the pattern in Figure

7.9(a) to the phrase structure in Figure 7.9(b). Notice that in Figure 7.9(b), Y does not
3To make the phrase structure more readable, we use N' and NP as the X' and XP for all kinds of POS

tags for nouns (e.g., NNP, NN, and CD). Verbs and adjectives are treated similarly.
4If a dependent Y has its own dependents, it projects to YP and YP is a sister of the head X; otherwise,

Y is a sister of the head X.

198

project to YP because it does not have its own dependents. The resulting phrase structure

for the d-tree in Figure 7.6 is in Figure 7.10, which is much
atter than the one produced

by Algorithm 1.

Y W

XP

(dep) (dep) (dep)
Z

X

(a) d-tree (b) phrase structure

X ZP WPY

Figure 7.9: The scheme for Algorithm 2

VP

VB

join

MD NP

DT

PP

IN

nonexecutive

NP

NNP CD

Nov 29

NP

NNJJDT
the

NN

board as

directora

will

NNP

Vinken

Figure 7.10: The phrase structure built by Algorithm 2 for the d-tree in Figure 7.6

7.3.3 Algorithm 3

The previous two algorithms are linguistically sound. They do not use any language-

speci�c information, and as a result there are several major di�erences between the output

of the algorithms and the phrase structures in an existing Treebank, such as the Penn

English Treebank (PTB).

Projections for each category: Both algorithms assume that the numbers of projec-

tions for all the categories are the same, whereas in the PTB the number of pro-

jections varies from head to head. For example, in the PTB, determiners do not

project, adverbs project only one level to adverbial phrases, whereas verbs project

to VP, then to S, then to SBAR.5

5S is similar to IP (IP is the maximal projection of INFL) in GB theory, so is SBAR to CP (CP is the

199

Projection levels for dependents: Algorithm 1 assumes the maximal projections for

all the dependents, whereas Algorithm 2 assumes minimal projections; but in the

PTB, the level of projection of a dependent may depend on several factors such as

the categories of the dependent and the head, the position of the dependent with

respect to the head, and the dependency type. For example, when a noun modi�es

a verb (or VP) such as yesterday in he came yesterday, the noun always projects to

NP, but when a noun N1 modi�ers another noun N2, N1 projects to NP if N1 is to

the right of N2 (e.g., in an appositive construction) and it does not project to NP if

N1 is to the left of N2.

Attachment positions: Both algorithms assume that all the dependents of the same

dependency type attach at the same level (e.g., in Algorithm 1, modi�ers are sisters

of X', whereas in Algorithm 2, modi�ers are sisters of X); but in the PTB, that is not

always true. For example, an ADVP, which depends on a verb, may attach to either

an S or a VP in the phrase structure according to the position of the ADVP with

respect to the verb and the subject of the verb. Also, in noun phrases, left modi�ers

(e.g., JJ) are sisters of the head noun, but the right modi�ers (e.g., PP) are sisters

of the NP.

For some applications, these di�erences between the Treebank and the output of the

conversion algorithms may not matter much, and by no means are we implying that an

existing Treebank provides the gold standard for what the phrase structures should be.

Nevertheless, because the goal of this section is to provide an algorithm that has the

exibility to produce phrase structures that are as close to the ones in an existing Treebank

as possible, we propose a new algorithm with such
exibility. The algorithm distinguishes

two types of dependents: arguments and modi�ers. The algorithm also makes use of

language-speci�c information in the form of three tables: the head projection table, the

argument table, and the modi�cation table. As de�ned in Section 3.3, the projection table

speci�es the projections for each category, and the argument table (the modi�cation table,

maximal projection of Comp); therefore, it could be argued that only VP is a projection of verbs in the

PTB. Nevertheless, because PTB does not mark INFL and Comp, we treat S and SBAR as projections of

verbs.

200

respectively.) lists the types of arguments (modi�ers, respectively) that a head can take

and their positions with respect to the head. For example, the entry V ! V P ! S in the

projection table says that a verb can project to a verb phrase, which in turn projects to

a sentence; the entry (P, 0, 1, NP/S) in the argument table indicates that a preposition

can take an argument that is either an NP or an S, and the argument is to the right of

the preposition; the entry (NP DT/JJ PP/S) in the modi�cation table says that an NP

can be modi�ed by a determiner and/or an adjective from the left, and by a preposition

phrase or a sentence from the right.

Given these tables, we use the following heuristic rules to build phrase structures:6

One projection chain per category: Each category has a unique projection chain, as

speci�ed in the projection table.

Minimal projection for dependents: A category projects to a higher level only when

necessary.

Lowest attachment position: The projection of a dependent attaches to a projection

of its head as lowly as possible.

The last two rules require further explanation, as illustrated in Figure 7.11. In the

�gure, the node X has three dependents: Y and Z are arguments, and W is a modi�er

of X. Let's assume that the algorithm has built the phrase structure for each dependent.

To form the phrase structure for the whole d-tree, the algorithm needs to attach the

phrase structures for dependents to the projection chain X0;X1; :::Xk of the head X. For

an argument such as Z, suppose its projection chain is Z0; Z1; :::Zu and the root of the

phrase structure headed by Z is Zs. The algorithm will �nd the lowest position Xh on

the head projection chain, such that Z has a projection Zt that can be an argument of

Xh�1 according to the argument table and Zt is no lower than Zs on the projection chain

for Z. The algorithm then makes Zt a child of Xh in the phrase structure. Notice that

based on the second heuristic rule (i.e., minimal projection for dependents), Zt does not

further project to Zu in this case although Zu is a valid projection of Z. The attachment
6In theory, the last two heuristic rules may con
ict each other in some cases. In those cases, we prefer

the third rule over the second. In practice, such con
icting cases are very rare, if exist.

201

for modi�ers is similar except that the algorithm uses the modi�cation table instead of the

argument table.7

Z

X

Y W
(Arg) (Arg) (Mod)

k

0

j

j-1

h

l

m

n

W

W

W

W
00

h-1

X

X

X

X

X

X

Y

X i

Y

Y

Y

q

Z

Z

0

P

r

s

Zt

Zu

(b) phrase structure(a) d-tree

Figure 7.11: The scheme for Algorithm 3

The algorithm is in Table 7.1 and 7.2. We use a variable low visib index to store the

position of the lowest visible node on the chain; that is, the lowest node on the head chain

that the following dependents can attach to. The value of the variable is updated every

time a new dependent is attached to the head (see steps (E) and (G) in Table 7.1 and step

(F) in Table 7.2). We use another variable root index to store the position of the current

root of the phrase structure. Both variables start from 0 (i.e., the index of the head word

is 0).

The phrase structure produced by Algorithm 3 for the d-tree in Figure 7.6 is in Figure

7.12. In Figure 7.12, (a)-(e) are the phrase structures for �ve dependents of the head

join; (f) is the projection chain for the head. The arrows indicate the positions of the

attachment. Notice that to attach (a) to (f), the NNP Vinken needs to further project to

NP because according to the argument table, VP can take an NP, but not an NNP, as its

argument.

Algorithm 3 has been extended to handle two types of modi�ers, punctuation marks

and conjunctions. The extended algorithm is shown in Table 7.6:

7Note that once Zt becomes a child of Xh, other dependents of X (such as W) that are on the same

side as Z but are further away from X can attach only to Xh or higher on the projection chain of X.

202

Input: a d-tree D, the projection table ProjT b, the argument table ArgTb,
the modi�cation table ModTb

Output: a phrase structure T
Algorithm: ttree BuildTtree(D, ProjT b, ArgTb, ModTb)

Starting from the root RD of D, let the node be w/X and
it has k dependents wi/Yi (1 � i � k).

(A) build a node w/X, let it be the root of T;
(B) if (RD is a leaf node)

return T ;
(C) Let X chain (X0;X1; :::Xk) be the projection chain for head X

according to ProjT b;
(D Let X chain.root index be 1;

Project X to X1 and let X1 be the root of T;

/* (E) { (F) attach left dependents */
(E) Let X chain.low visib index be 1;
(F) for (i = kl; i >= 1; i ��) /* kl is the number of X's left dependents */

Let the current left dependent be wi/Yi; dep type is its dependency type
Let Y chain be the projection chain for Yi according to ProjT b;
build a phrase structure Ti for the sub-dtree Di rooted at wi/Yi;
AttachDepToHead(T , Ti, X chain, Y chain, dep type, LEFT,

ArgTb, ModTb);

/* (G) { (H) attach right dependents */
(G) Let X chain.low visib index be 1;
(H) for (i = kl + 1; i <= k; i++)

Let the current right dependent be wi/Yi; dep type is its dependency type;
Let Y chain be the projection chain for yi according to ProjT b;
build a phrase structure Ti for the sub-dtree Di rooted at wi/Yi;
AttachDepToHead(T , Ti, X chain, Y chain, dep type, RIGHT,

ArgTb, ModTb);

Table 7.1: Algorithm 3 for converting d-trees to phrase structures

203

Input: a phrase structure T whose head is w=X, a phrase structure T 0

whose head is w0=Y , (w0 depends on w in a dtree),
X chain is the projection chain for X, Y chain is the projection chain for Y ,
dep type is the dependency type of w0=Y (i.e., ARGUMENT or MODIFIER),
dep pos is the position of w0 with respect to w,
the argument table ArgTb, the modi�cation table ModTb.

Output: a new phrase structure T with T 0 attached to some node in T
Notation:
ArgList(X;ArgTb; dep pos) returns the list of arguments of X from ArgTb.
ModList(X;ModTb; dep pos) returns the list of modi�ers of X from ModTb.

Algorithm: void AttachDepToHead(T , T 0, X chain, Y chain, dep type, dep pos,
ArgTb, ModTb)

(A) Let X chain (the projection chain for x) be X0;X1; :::Xk,
the root of T be Xa, and Xb be the lowest visible position on X chain;

(B) Let Y chain be Y 0; Y 1; :::Y r, the label of the root of T 0 be Y p,
and list1 be fY p; :::; Y rg;

(C) /* �nd the lowest attachment position on X chain */
x proj cat = Xb; /* default attaching position */
y proj cat = Y p; /* default projection for Y */
for (j=b; j�k; j++)

if (dep type == ARGUMENT)
then list2 = ArgList(Xj�1; ArgTb; dep pos);
else list2 = ModList(Xj ;ModTb; dep pos);

if (Y q is the �rst common tag in both list1 and list2)
then x proj cat = Xj ; y proj cat = Y q; break;

(D) /* further project the dependent chain if needed */
if (Y p is lower than y proj cat)
then project Y p further until the new projection is y proj cat;

the new projection becomes the new root of T 0;
(E) /* further project the head chain if needed */

if (Xa is lower than x proj cat)
then project Xa further until the new projection is x proj cat;

the new projection is the new root of T ;
new parent of dep = the new root of T ;

else new parent of dep = the node on X chain whose label is x proj cat;
(F) X chain.low visib index = the position of x proj cat on x chain;

X chain.root index = the position of the new root of T on x chain;
(G) /* attach the dependent sub-tree to the main tree */

make the root of T 0 the leftmost or rightmost child of new parent of dep in T
according to dep pos;

Table 7.2: Algorithm for attaching the phrase structure for the dependent to that for the
head

204

MD

will

VB

join

VP

S

NNP

Vinken
NP

DT NN

boardthe

PP

NP

DT JJ NN

a director
nonexecutive

IN

as

CD

NP

NNP

Nov 29

NP

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.12: The phrase structure produced by Algorithm 3

Two types of modi�ers: In an existing Treebank such as the PTB, a modi�er either

sister-adjoins or Chomsky-adjoins to the modi�ee. For example, in Figure 7.5, MD

Chomsky-adjoins while the NP Nov. 29 sister-adjoins to the VP node. To account

for that, we distinguish these two types of modi�ers in the modi�cation table and

apply the algorithm in Table 7.3 to insert extra nodes so that Chomsky-adjoining

modi�ers can be attached higher than sister-adjoining modi�ers. This step will insert

an extra VP node between the S node and the old VP node in the phrase structure

in Figure 7.12 and attach the MD will to the new VP node; the resulting phrase

structure would be identical to the original structure in the PTB (i.e., the one in

Figure 7.5).

Attachment of conjunctions: A coordinated phrase has three or four components: two

conjuncts and one or two conjunctions. For a coordinated phrase such as the one in

Figure 7.13(a), there are alternative representations for it in a d-tree, as shown in

Figure 7.13(b)-(d). We assume that the input d-tree is in the form of 7.13(b).8 The

algorithm in Table 7.1 produces phrase structures in the form of Figure 7.14(b). The

algorithm in Table 7.4 would push the conjunction higher in the phrase structure

8We prefer (b) over (c) and (d) because of two reasons: �rst, only in (b) there is a direct dependency

link between two conjuncts so that the constraint that two conjuncts should be of the similar types can be

expressed; second, (b) satis�es the assumption that the head of a phrase XP should be of the category X.

205

and result in the structure in Figure 7.14(c).

XP CC XP

XP

X X21

X

X

CC

1

2 CC

X

X

1

2

CC

X X1 2

(b) (d)(a) (c)

Figure 7.13: Three alternative representations for a coordinated phrase in a d-tree

X

X

CC

1

2

X

CC

X X1 2

a

X

X

X1 2

a

CC

X

(a) d-tree (c) phrase structure after

moving up the conjunction

(b) phrase structure built

by the basic algorithm

Figure 7.14: Coordinated phrases before and after applying the algorithm in Table 7.4

Attachment of punctuation marks: Punctuation marks are often missing from a d-

tree, but they are part of input sentences and Treebank phrase structures. We use

the algorithm in Table 7.5 to put them back into the phrase structures by attaching

them as high as possible.

7.3.4 Algorithm 1 and 2 as special cases of Algorithm 3

Although the three algorithms adopt di�erent heuristic rules to build phrase structures,

the �rst two algorithms are special cases of the last algorithm; that is, we can design a

distinct set of projection/argument/modi�cation tables for each of the �rst two algorithms

so that running Algorithm 3 with the associated set of tables for Algorithm 1 (Algorithm

2, respectively) would produce the same results as running Algorithm 1 (Algorithm 2,

respectively).

For example, to produce the results of Algorithm 2 with the code for Algorithm 3, the

three tables should be created as follows:

206

Input: a phrase structure T, the modi�cation table ModTb
Output: a new T
Algorithm: void HandleChomAdjNodes(T , ModTb)

Starting from the root R of T :
(A) if (R is a leaf node)

return;
(B) for (each child Ni of R)

HandleChomAdjNodes(Ti, ModTb), where Ti is the subtree of T rooted at Ni

(C) �nd the leftmost child Ni and rightmost child Nj that are not
chomsky-modi�ers according to ModTb;

(D) if ((Ni is not the leftmost child of N) or
(Nj is not the rightmost child of N))
then add a new node N� as the new parent of the children

between Ni and Nj (inclusive);
let N� have the same syntactic label as N ;
let N be the parent of the remaining children and N�;

Table 7.3: Algorithm for handling Chomsky modi�ers

Input: a d-tree D, a phrase structure T for D
Output: a new phrase structure T
Algorithm: void MoveUpConjNode(T , D)
(A) for (each conjunction node CC in T)

Let X1 and X2 in T be the heads of the two conjuncts connected by CC;
�nd the lowest common ancestor Xa of X1 and X2 in T;
move up CC so that it becomes a child of Xa;

Table 7.4: Algorithm for moving up conjunctions

207

Input: a phrase structure T, the input sentence W (w1w2:::wn)
Output: a new phrase structure T
Algorithm: void AttachPuncMarkToTtree(T , W)
(A) for (each punctuation mark w)

create a leaf node Nl for w;
�nd the word wi (wj , resp.) such that wi (wj , resp.) is the closest word to w
that is to the left (right, resp.) of w and is not a punctuation mark;

if (both wi and wj exist)
then �nd the leaf nodes Ni and Nj in T for the two words;

�nd the lowest common ancestor Nr of Ni and Nj in T ;
make Nl a child of Nr;

else make Nl a child of the root of T ;

Table 7.5: Algorithm for attaching punctuation marks to phrase structures

Input: a sentence W , the d-tree D for W ,
the projection table ProjT b, the argument table ArgTb,
modi�cation table ModTb

Output: a phrase structure T
Algorithm: ttree ConvDtreeToTtree(W , D, ProjT b, ArgTb, ModTb)
(A) T = BuildTtree(D, ProjT b, ArgTb, ModTb);
(B) HandleChomAdjNodes(T , ModTb);
(C) MoveUpConjNode(T , D);
(D) AttachPuncMarkToTtree(T , W);
(E) return T ;

Table 7.6: The complete Algorithm 3 for converting d-tree to phrase structure

208

� In the projection table, each head X has only one projection XP;

� In the argument table, if a category Y can be an argument of a category X in a

d-tree, then include both Y and YP as arguments of X;

� In the modi�cation table, if a category Y can be a modi�er of a category X in a

d-tree, then include both Y and YP as sister-modi�ers of XP.

Algorithm 1 assumes that the input d-tree distinguishes three types of dependents:

argument, modi�ers and speci�ers. To use the code of Algorithm 3 with such a d-tree

input, we �rst need to map a speci�er to either an argument or a modi�er according to

some linguistic convention. For example, the subject of a sentence, which is in [Spec, VP]

or [Spec, IP] position in the GB-theory, can be treated as an argument of V' or INFL';

whereas the determiner, which is in [Spec, NP] position, can be treated as a modi�er of

N'. Once we have created such a mapping, we can use the code for Algorithm 3 to produce

results for Algorithm 1, when the three tables are built as follows:

� In the projection table, each head X has two projections: X' and XP;

� In the modi�cation table,

{ if a category Y can be a modi�er of a category X in a d-tree, then include YP

as a Chomsky-modi�er of X';

{ if the speci�er Y of XP is mapped to a modi�er, then include YP as a sister-

modi�er of XP.

� In the argument table,

{ if a category Y can be an argument of a category X in a d-tree, include YP as

arguments of X;

{ if the speci�er Y of XP is mapped to an argument, then include YP as an

argument of X'.

209

7.4 Experiments

So far, we have described two existing algorithms and proposed a new algorithm for con-

verting d-trees into phrase structures. As explained at the beginning of Section 7.3, we

evaluated the performance of the algorithms by comparing their output with an existing

Treebank. Because there are no English dependency Treebanks available, we �rst ran the

algorithm in Section 7.2 to produce d-trees from the PTB, then applied these three algo-

rithms to the d-trees and compared the output with the original phrase structures in the

PTB.9 The process is shown in Figure 7.15.

tagset table
argument table

head percolation table

modification table

results
new phrase

d-tree
phr-struct => d-tree => phr-struct

(alg1, alg2, alg3)

structures

structures

d-trees compare
structures

in the PTB

phrase

projection table
argument table

Figure 7.15: The
ow chart of the experiment

The results on Section 0 of the PTB are shown in Table 7.7. The precision and recall

rates are for unlabeled brackets. No crossing is the percentage of sentences that has zero

crossing brackets. Average crossing is the average number of crossing brackets per sentence.

The last column shows the ratio of the number of brackets produced by the algorithms

and the number of brackets in the original Treebank. From the table (especially the

last column), it is clear that Algorithm 1 produces many more brackets than the original

Treebank, resulting in a high recall rate but low precision rate. Algorithm 2 produces very

at structures, resulting in a low recall rate and high precision rate. Algorithm 3 produces

roughly the same number of brackets as the Treebank and has the best recall rate, and its

precision rate is almost as good as that of Algorithm 2.

The di�erences between the output of the algorithms and the phrase structures in the

PTB come from four sources:

9Punctuation marks are not part of the d-trees produced by LexTract. We use the algorithm in Table

7.5 to attach them as high as possible to the phrase structures produced by the conversion algorithms.

210

recall precision no crossing average test/
(%) (%) (%) crossing gold

Alg1 81.34 32.81 50.81 0.90 2.48
Alg2 54.24 91.50 94.90 0.10 0.59
Alg3 86.24 88.72 84.33 0.27 0.98

Table 7.7: Performance of three conversion algorithms on Section 0 of the PTB

(S1) Annotation errors in the PTB

(S2) Errors in the language-speci�c tables used by the algorithms in Sections 7.2 and 7.3

(e.g., the head percolation table, the projection table, the argument table, and the

modi�cation table)

(S3) The imperfection of the conversion algorithm in Section 7.2 (which converts phrase

structures to d-trees)

(S4) Mismatches between the heuristic rules used by the algorithms in Section 7.3 and

the annotation schemata adopted by the PTB

To estimate the contribution of (S1){(S4) to the di�erences between the output of

Algorithm 3 and the phrase structures in the PTB, we manually examined the �rst twenty

sentences in Section 0. Out of thirty-one di�erences in bracketing, seven are due to (S1),

three are due to (S2), seven are due to (S3), and the remaining fourteen mismatches are

due to (S4).

While correcting annotation errors to eliminate (S1) requires much human e�ort, it

is quite straightforward to correct the errors in the language-speci�c tables and therefore

eliminate the mismatches caused by (S2). For (S3), we mentioned in Section 7.2 that the

algorithm chose the wrong heads for the noun phrases with the appositive construction.

As for (S4), we found several exceptions (as shown in Table 7.8) to the one-projection-

chain-per-category assumption (i.e., the assumption that there is a unique projection chain

for each POS tag), an assumption which was used by all three algorithms in Section 7.3.

The performance of the conversion algorithms in Section 7.2 and 7.3 could be improved

by using additional heuristic rules or statistical information. For instance, Algorithm 3 in

Section 7.3 could use a heuristic rule that says that an adjective (JJ) projects to an NP if

211

the JJ follows the determiner the and the JJ is not followed by a noun as in the rich are

getting richer, and it projects to an ADJP in other cases. Notice that such heuristic rules

are Treebank-dependent.

most likely projection other projection(s)

JJ ! ADJP JJ ! NP
CD ! NP CD ! QP ! NP
VBN ! VP ! S VBN ! VP ! RRC
NN ! NP NN ! NX ! NP
VBG ! VP ! S VBG ! PP

Table 7.8: Some examples of heads with more than one projection chain

7.5 Discussion

In this section, we argue for including empty categories in dependency structures. We also

give an algorithm that builds grammars and derivation trees from dependency structures

directly.

7.5.1 Extending Algorithm 3

We can extend Algorithm 3 in two ways. First, in the current algorithm, we assume that

the argument/adjunct distinction is marked explicitly in the input dependency structure.

We can relax this constraint: instead of requiring the type of a dependency link to be AR-

GUMENT or ADJUNCT, the dependency type can be things such as agent and theme,

or no label at all. We treat these dependency types the same way as we treat the function

tags in a phrase-structure. Now to build a phrase structure from a dependency structure,

the only thing that we need to change in Algorithm 3 is line (C) in Table 7.2. Another

extension to Algorithm 3 is to relax the constraint that each category has only one pro-

jection chains for a category. Once the multiple projection chains are We then need to use

either heuristic rules or statistical information to

212

7.5.2 Empty categories in dependency structures

Empty categories are often explicitly marked in phrase-structures, but they are not always

included in dependency structures. We believe that including empty categories in depen-

dency structures has many bene�ts. First, empty categories are useful for NLP applications

such as machine translation. To translate a sentence from one language to another, many

machine translation systems �rst create the dependency structure for the sentence in the

source language, then produce the dependency structure for the target language, and �-

nally generate a sentence in the target language. If the source language (e.g., Chinese and

Korean) allows argument deletion and the target language (e.g., English) does not, it is

crucial that the dropped argument (which is a type of empty category) is explicitly marked

in the source dependency structure, so that the machine translation systems are aware of

the existence of the dropped argument and can handle the situation accordingly. The sec-

ond bene�t of including empty categories in dependency structures is that it can improve

the performance of the conversion algorithms in Section 7.3, because the phrase structures

produced by the algorithms would then have empty categories as well, just like the phrase

structures in the PTB. Third, if a sentence includes a non-projective construction such as

wh-movement in English, and if the dependency tree did not include an empty category to

show the movement, traversing the dependency tree would yield the wrong word order.10

7.5.3 Running LexTract on a dependency Treebank

In Chapter 5, we give algorithms that takes phrase-structure Treebanks as input, and

produce grammars (LTAGs and CFGs) and derivation trees as output. In Section 7.3,

we have proposed an algorithm for converting dependency structures to phrase structures.

Therefore, given a dependency Treebank, we can simply convert the dependency Treebank

to a phrase-structure Treebank using that conversion algorithm, then run algorithms in

Chapter 5 to produce Treebank grammars and derivation trees.

We can also produce grammars and derivation trees from the dependency structures

directly without �rst creating the corresponding phrase structures. The algorithm (shown

10For more discussion of non-projective constructions, see (Rambow and Joshi, 1997).

213

in Table 7.9 and 7.10) is very similar to the Algorithm 3 in Section 7.3 (see Table 7.1

and 7.2). The main di�erence is that the algorithm in Table 7.9 and 7.10 produces an

elementary tree for each word in the d-tree, whereas the algorithm in Section 7.3 produces

one phrase structure for the whole d-tree.

Figure 7.16 shows a d-tree, which is the same as the one in Figure 7.6 except that

it includes the POS tags for the words and marks dependents as either arguments (with

solid lines) or adjuncts (with dashed lines). Similar notation is used in Figures 7.18 and

7.19 later on. Given this d-tree, the algorithm will produce the elementary trees in Figure

7.17. Another way to understand the algorithm is: the algorithm decomposes the d-tree in

Figure 7.16 into a list of dependent units as in Figure 7.18, and each unit corresponds to an

elementary tree in Figure 7.17. By decompose, we mean that we can de�ne two operations

as shown in Figure 7.19. The �rst operation is similar to the substitution operation in the

LTAG formalism, where the lexical head wi of an argument is added to the dependency

tree. The second one is similar to the adjoining operation, where the lexical head wj of an

adjunct is added to the dependency tree.11 Combining the units in Figure 7.18 via these

two operations will produce the d-tree in Figure 7.16.

Vinken/NNP will/MD board/NN

the/DT

as/IN

nonexecutive/JJa/DT

director/NN Nov/NNP

29/CD

join/VB

Figure 7.16: A dependency tree that marks the argument/adjunct distinction

Once we have built an elementary tree for each word in the d-tree, adding those ele-

mentary trees to the nodes in the d-tree will result in the derivation tree for the sentence.

11In the second operation, the position of the adjunct with respect to the arguments of the head is not

speci�ed in the resulting d-tree. For example, a right modi�er can appear before the �rst right argument,

after the last right argument, or any position in between.

214

Input: a d-tree D, the projection table ProjT b, the argument table ArgTb,
the modi�cation table ModTb

Output: a list of elementary trees ESet
Notation: Ei is the current elementary tree for the word wi;

Di is the sub-dtree of D whose root is wi

ESeti is the set of elementary trees for the sub-dtree Di;
Yi is the POS tag of the word wi;

Algorithm: etrees BuildEtrees(D, ProjT b, ArgTb, ModTb)

Starting from the root RD of D, let the node be w/X and
it has k dependents wi/Yi (1 � i � k).

(A) build a node w/X, let E be a singleton elementary tree that includes only
the node w/x as its anchor;

(B) if (RD is a leaf node)
then ESet = f E g;

return ESet;
(C) Let X chain (X0; :::;Xk) be the projection chain for head X according to ProjT b;
(D) Let X chain.root index be 1;

Project X to X1 and let X1 be the root of E

/* (E) { (F) handle left dependents */
(E) Let X chain.low visib index be 1;
(F) for (i = kl; i >= 1; i��) /* kl is the number of X's left dependents */

Let the current left dependent be wi/Yi; dep type is its dependency type;
Let Y chain be the projection chain for Yi according to ProjT b;
build a set of elementary tree ESeti for the sub-dtree Di rooted at wi/Yi;
let Ei be the current elementary tree anchored by wi;
UpdateEtrees(E, Ei, X chain, Y chain, dep type, LEFT, ArgTb, ModTb);
ESet = ESet [ESeti;

/* (G)-(H) attach right dependents */
(G) Let X chain.low visib index be 1;
(H) for (i = kl + 1; i <= k; i++)

Let the current right dependent be wi/Yi; dep type is its dependency type;
Let Y chain be the projection chain for yi according to ProjT b;
build a set of elementary tree ESeti for the sub-dtree Di rooted at wi/Yi;
let Ei be the current elementary tree anchored by wi;
UpdateEtrees(E, Ei, X chain, Y chain, dep type, LEFT, ArgTb, ModTb);
ESet = ESet [ESeti;

(I) ESet = ESet [fEg; return ESet;

Table 7.9: Algorithm for building elementary trees directly from a d-tree

215

Input: an elementary tree E whose head is w=X, an elementary tree E0 whose
head is w0=Y , (w0 depends on w in a dtree),

X chain is the projection chain for X, Y chain is the projection chain for Y ,
dep type is the dependency type of w0=Y (i.e. ARGUMENT or MODIFIER),
dep pos is the position of w0 with respect to w,
the argument table ArgTb, the modi�cation table ModTb

Output: elementary tree E and Ei are updated
Algorithm: void UpdateEtrees(E, E0, X chain, Y chain, dep type, dep pos,

ArgTb, ModTb)
(A) Let X chain (the projection chain for x) be X0;X1; :::Xk ,

the root of E be Xa, and Xb be the lowest visible position on X chain;
(B) Let Y chain be Y 0; Y 1; :::Y r, the label of the root of E0 be Y p,

and list1 be fY p; :::; Y rg;
(C) /* �nd the lowest attachment position on X chain */

x proj cat = Xb; /* default attaching position */
y proj cat = Y p; /* default projection for Y */
for (j=b; j�k; j++)

if (dep type == ARGUMENT)
then list2 = ArgList(Xj�1; ArgTb; dep pos);
else list2 = ModList(Xj ;ModTb; dep pos);

if (Y q is the �rst common tag in both list1 and list2)
then x proj cat = Xj ; y proj cat = Y q; break;

(D) /* further project the dependent chain if needed */
if (Y p is lower than y proj cat)
then in E0 project Y p further until the new projection is y proj cat;

the new projection becomes the new root of E0.
(E) /* further project the head chain if needed */

if (Xa is lower than x proj cat)
then in E project Xa further until the new projection is x proj cat;

the new projection is the new root of E;
new parent of dep = the new root of E;

else new parent of dep = the node on X chain whose label is x proj cat;
(F) X chain.low visib index = the position of x proj cat on x chain;

X chain.root index = the position of the new root of E on x chain;
(G) /* modify E or E0 according to dep type */

if (dep type == ARGUMENT)
then create a new substitution node that has the same label as y proj cat;

make the node the leftmost or rightmost child of new parent of dep in E
according to dep pos;

else create two new nodes Nf and Nr, both have the same label as x proj cat;
Nr has two children: Nf and the current root of E0;
make Nr the new root of E0 and Nf the foot node of E0.

Table 7.10: Algorithm for updating the elementary trees for the head and the dependent
216

NP

Vinken

NNP

S

NP

VB

join

NP

VP
DT NP*

NP

the

NP

board

NN

(a) (b) (c) (d) (e)

VP

VP* PP

NPP

as

DT NP*

NP

a

NP

NP*JJ

nonexecutive

NP

NN

director

NP

CD

29

NP*NNP

Nov

NP

(f) (g) (h) (i) (k)(j)

VP

MD VP*

will

Figure 7.17: The elementary trees built directly from the dependency tree in Figure 7.16

-/VB

will/MD

join/VB

_/NNP _/NN

_/NN

the/DT

_/VB

as/IN

_/NN

_/NN

a/DT

_/NN

nonexecutive/JJ

CD

Nov/NNP

Vinken/NNP board/NN

NN/director 29/CD

(g)

(b)(a) (c) (d) (e)

(f) (h) (i) (j) (k)

Figure 7.18: The dependency units that form the dependency tree in Figure 7.16

7.6 Summary

In this chapter, we have proposed a new algorithm that converts dependency structures

to phrase structures and compared it with two existing ones. We have shown that our

algorithm subsumes the two existing ones. By using simple heuristic rules and taking as

input certain kinds of language-speci�c information such as the types of arguments and

modi�ers that a head can take, our algorithm produces phrase structures that are very

close to the ones in an existing phrase-structure Treebank; moreover, the quality of the

phrase structures produced by our algorithm can be further improved when more language-

speci�c information is used. We also give an algorithm that converts phrase structures to

dependency structures.

217

_/Yn

w/X

i-/Y 1 _/Y
... ...

... ... _/Yn

w/X

i-/Y 1

... ...

... ...w /Y i

_/Yn

w/X

i-/Y 1 _/Y
... ...

... ...
w /Zj j w /Zj j_/Yn

w /Y ii

w/X

...

_/X

-/Y 1 ... _/Y i ...

...

(a) an operation that adds an argument to the d-tree

(b) an operation that adds an adjunct to the d-tree

Figure 7.19: The operations that combine dependency units to form a dependency tree

In addition, we argue that it is better to include empty categories in the dependency

structures. We also show that we can build grammars (LTAGs and CFGs) and derivation

trees from a dependency Treebank in two ways: in the �rst approach, we can simply

use the conversion algorithm in Section 7.3 to convert the dependency Treebank to a

phrase-structure Treebank �rst, then run the algorithms in Chapter 5 to produce Treebank

grammars and derivation trees. In the second approach, we give a new algorithm that

builds grammars and derivation trees directly from dependency structures. Intuitively, the

algorithm decomposes a dependency structure into a set of dependency units and then

builds an elementary tree from each dependency unit.

218

Chapter 8

Conclusion

Grammars are valuable resources for natural language processing. In this dissertation,

we pointed out the problems with the traditional approach to grammar development and

provided two systems that build grammars automatically from either descriptions or Tree-

banks. In this chapter, we summarize the contributions of this work and point out direc-

tions for further study.

8.1 Contributions

Traditionally, grammars are built by hand. In Chapter 1, we listed six problems with

this approach. To address these problems, we �rst de�ned the prototypes of the target

grammars, then built two systems, LexOrg and LexTract, that generate grammars auto-

matically from either descriptions or Treebanks. The di�erences between the traditional

approach, LexOrg, and LexTract are summarized in Table 1.1, repeated as Table 8.1. We

use symbols �, 2, and p to indicate that an approach did not solve the problem, partially

solved the problem, and solved the problem, respectively. From the table, it is clear that

LexOrg and LexTract have advantages over the traditional approach.

8.1.1 The prototypes of elementary trees

Before building a grammar for a particular language, we identi�ed four types of information

that should be included in elementary trees of a grammar. They are the head and its

219

traditional approach LexOrg LexTract

human e�ort tremendous (�) some (2) little (
p
)

exibility very little (�) some (2) some (2)

coverage hard to can be inferred covers the source
evaluate (�) from the input (2) Treebank (2)

statistical info not available (�) not available (�) available (
p
)

consistency not guaranteed (�) consistent (
p
) not guaranteed (�)

generalization hidden in elementary expressed hidden in elementary
trees (�) explicitly (

p
) trees (�)

Table 8.1: The comparison between three approaches for grammar development

projections, the arguments of the head, the modi�ers of the head, and syntactic variations.

Next we de�ned three prototypes of elementary trees, which are spine-etrees, mod-etrees,

and conj-etrees. Every elementary tree in the LTAG grammar produced by LexOrg or

LexTract should belong to one of these three types. Then we gave an algorithm that

builds a grammar GTable from three tables (i.e., the head projection table, the argument

table, and the modi�cation table). We showed that GTable overgenerates because the

tables do not provide suÆcient information about a language. In order to produce better

grammars, we developed two systems: LexOrg and LexTract.

8.1.2 LexOrg: a system that generates grammars from descriptions

LexOrg generates elementary trees by combining descriptions. The main idea is as follows:

an elementary tree has one or more of the four types of information. Since the three

language-speci�c tables do not provide suÆcient information about a language, LexOrg

uses descriptions, which are much more expressive than the tables. LexOrg treats these

descriptions as building blocks of elementary trees. Given a subcategorization frame,

LexOrg automatically selects subsets of descriptions to build elementary trees for the

subcategorization frame. LexOrg also uses lexical rules to produce new subcategorization

frames given a subcategorization frame. The output of LexOrg is a grammar in which

elementary trees are grouped into tree families. We used the system to develop two LTAG

grammars, one for English and the other for Chinese.

Out of the six problems of the traditional approach, LexOrg solves two (i.e., consis-

tency and generalization) and alleviates three (i.e., human e�ort,
exibility, and coverage).

220

First, the tree structures that are shared by many templates are represented as descrip-

tions. Users of LexOrg build and maintain descriptions, rather than templates. If they

want to change the analysis of a certain phenomenon (e.g., wh-movement), they need to

modify only the description that represents the phenomenon. LexOrg will propagate the

modi�cation in the description to all the templates that subsume the description. As a

result, LexOrg greatly improves the consistency of a grammar, reduces human e�ort, and

makes it easier to modify a grammar. It is also easy to infer from the input of LexOrg

(i.e., subcategorization frames, lexical rules, and descriptions) what syntactic phenomena

are covered by the resulting grammar. Second, the underlying linguistic information (such

as wh-movement) is expressed explicitly as descriptions and so forth, so it is easy to grasp

the main characteristics of a language and to compare languages. Compared with three

other systems (namely, HyTAG, the DATR system, and Candito's system), LexOrg is more

elegant in that it does not need hand-crafted lexical hierarchies (or inheritance networks),

it does not require users to provide constraints on how descriptions should be combined,

and it needs only one description to specify the information for a syntactic variation such

as wh-movement.

8.1.3 LexTract: a system that extracts grammars from Treebanks

Conceptually, LexTract uses a Treebank as a �lter to throw away the elementary trees in

GTable that are not used to handle the sentences in a Treebank. In practice, it extracts

grammars in two steps. In the �rst step, it determines the types (i.e., head, argument, or

adjunct) of each node in a ttree, and then creates a derived tree in which the three types

of nodes are treated di�erently. In the second step, it decomposes the derived tree into a

set of etrees.

Out of six problems of the traditional approach, LexOrg solves two (i.e., human e�ort

and statistical information) and alleviates two (i.e.,
exibility and coverage). First, given a

Treebank, it takes very little human e�ort to build three language-speci�c tables. Once the

tables are ready, running LexTract on the Treebank will produce a grammar in little time.

Second, LexTract produces not only a Treebank grammar, but also the information about

how frequently certain elementary structures are combined to form syntactic structures;

221

to be more speci�c, the system produces a unique derivation tree for each sentence in the

Treebank. This frequency information can be used to train a statistical LTAG parser.

Third, LexTract allows its users to have some control over the type of Treebank grammar

to be extracted. The users can run LexTract with di�erent settings of the tables and

other parameters to get several di�erent Treebank grammars, and then choose the one

that best �ts their goals. Fourth, the grammar produced by LexTract is guaranteed to

cover the source Treebank. If the Treebank is a good representative of the language itself,

the Treebank grammar will have very good coverage of the language.

In addition to providing Treebank grammars, LexTract is also used in several tasks:

� A Treebank grammar can be used as a stand-alone grammar. In addition, matching

templates in a Treebank grammar with the templates in a hand-crafted grammar

allows us to estimate the coverage of the hand-crafted grammar and �nd the con-

structions that are not covered by that grammar. Our experiments show that the

XTAG grammar covers 97.2% of the template tokens in the English Penn Treebank

(Xia and Palmer, 2000).

� We have compared the Treebank grammars for three languages (English, Chinese,

and Korean) and shown that the majority of the core grammar structures for these

three languages are easily inter-mappable (Xia et al., 2001).

� The Treebank grammar and derivation trees produced by LexTract are used to train

a Supertagger (Xia et al., 2000a) and a statistical LTAG parser (Sarkar, 2001) with

satisfactory results.

� We have used the Treebank grammar to detect certain types of annotation errors in

the Chinese Penn Treebank.

� We have used LexTract to �nd all the examples in the English Penn Treebank that

seem to violate the Tree-locality Hypothesis and classi�ed them according to the

underlying constructions (Xia and Bleam, 2000).

All these applications indicate that LexTract is not only an engineering tool of great

value, but it is also useful for investigating theoretical linguistics.

222

For people who want to use LexOrg or LexTract to build a grammar, they should

choose one system or the other based on the availability of Treebanks, the applications for

which the target grammar is used, and other considerations. If a Treebank is available,

LexTract is often more desirable because it requires little human e�ort, it allows its users to

change the language-speci�c tables or other parameters to get di�erent grammars from the

same Treebank, and it provides statistical information that can be used to train statistical

parsers or Supertaggers. If a Treebank is not available, there are two options: one is to

create descriptions, subcategorization frames, and lexical rules and then use LexOrg to

generate a grammar; the other is to create a Treebank and then use LexTract to extract a

grammar from it. Creating a Treebank requires more human e�orts than creating the input

to LexOrg. Nevertheless, once a Treebank is available, all kinds of NLP tools including

LexTract can bene�t from it.

8.1.4 The role of linguistic experts in grammar development

LexOrg and LexTract greatly reduce human e�ort in grammar development, but they

cannot replace the role of linguistic experts. In LexOrg, the users have to provide LexOrg

with descriptions, subcategorization frames, and lexical rules. Creating such input requires

linguistic knowledge. Building language-speci�c tables for LexTract does not require much

linguistic expertise but LexTract needs a Treebank which is often designed by scholars with

a solid linguistic background. In Appendix B, we discuss in detail the approach that we

used for building the Chinese Penn Treebank, including the development of the guidelines

for segmentation, POS tagging and syntactic bracketing, our methodology for quality

control, and the roles of various NLP tools. From this experience, we conclude that the

process of writing annotation guidelines for a Treebank | which is one of the major tasks

in Treebank development | is very similar to the process of manually crafting a grammar

in that both processes require a thorough study of the linguistics literature, extensive

discussion with linguists, and possible revisions to account for new data. Therefore, it is

not surprising that a grammar extracted from a high-quality Treebank by LexTract may

look very much like a hand-crafted grammar. We believe that the participation of linguistic

experts is crucial for the success of any grammar or Treebank development project.

223

8.1.5 Relationship between two types of syntactic representation

Two of the most commonly used syntactic representations are phrase structures and de-

pendency structures. In Chapter 7, we addressed the relationship between dependency

structures and phrase structures from a practical perspective; namely, we explored dif-

ferent algorithms that convert between dependency structures and phrase structures. We

proposed an algorithm that converts dependency structures into phrase structures. By us-

ing simple heuristic rules and taking three language-speci�c tables as input, our algorithm

produces phrase structures that are very close to the ones in a phrase-structure Treebank;

moreover, the quality of the phrase structures produced by our algorithm can be further

improved when more language-speci�c information is used. We also argue that including

empty categories in the dependency structures would make the conversion much easier. In

addition, we give an algorithm that converts phrase structures to dependency structures.

This experiment showed that the conversion between phrase structures and dependency

structures is pretty easy as long as suÆcient information (such as empty categories) is

included in the structures.

Furthermore, we proposed two ways to build grammars (LTAGs and CFGs) and deriva-

tion trees from a dependency Treebank: in the �rst approach, we can simply convert the

dependency Treebank to a phrase-structure Treebank using the conversion algorithm in

Section 7.3, and then run the algorithms in Section 5.4 to produce Treebank grammars

and derivation trees. In the second approach, we gave a new algorithm that builds gram-

mars and derivation trees directly from dependency structures. Intuitively, the algorithm

decomposes a dependency structure into a set of dependency units and then builds an

elementary tree from each dependency unit.

8.2 Future work

In this section, we point out directions for future work.

224

8.2.1 Combining the strengths of LexOrg and LexTract

From Table 8.1, it is clear that both LexOrg and LexTract have advantages over the

traditional approach. Grammars generated by LexOrg are consistent and linguistic gener-

alizations are expressed explicitly, whereas running LexTract on a Treebank requires little

human e�ort and the resulting grammar has statistical information. A natural question is

as follows: how can we combine the strengths of both systems?

modification table

argument table
other info

TG
head percolation table

G*
T

subcat frames

lexical rules

descriptions
LexOrg

module

new
LexTract

Treebank

Figure 8.1: One way to combine LexOrg and LexTract

One possible scenario is shown in Figure 8.1. In this scenario, LexTract extracts from a

Treebank T a grammar GT and other information (such as derivation trees and frequencies

of elementary trees in GT). GT may include implausible elementary trees that are caused

by annotation errors in the Treebank T . It may also exclude plausible trees which do

not appear in the Treebank. To get a better grammar, we need a new module that takes

the output of LexTract as input and produces subcategorization frames, lexical rules, and

descriptions as output. In Sections 4.9.2 and 5.7, we show that it is possible to decompose

templates to get descriptions and subcategorization frames, but such decompositions are

not always unique. Ideally, the new module should be able to take advantage of frequency

information produced by LexTract to choose the most plausible decompositions. The

output of the new module is then fed to LexOrg to generate a new grammar G�
T . If the

new module works properly, the new grammar G�
T should be able to exclude implausible

elementary trees in GT that are caused by random annotation errors in the Treebank T ,

and to include plausible elementary trees that are missing from GT as long as other related

elementary trees appear in the Treebank.

To see how G�
T can actually include elementary trees that are not in GT , let us assume

a Treebank T has only two sentences: one is who bought that car? the other one is

225

Mary gave John a book. GT built by LexTract has only two elementary trees that are

anchored by verbs, as shown in Figure 8.2(a). Decomposing the templates in GT would

yield the descriptions and subcategorization frames in Figure 8.2(b). When they are fed

to LexOrg, LexOrg builds a new grammar G�
T , which has seven elementary trees for verbs,

as shown in Figure 8.2(c). Two of them (i.e., #2 and #4) are in GT , but the other �ve

are new. As a result, G�
T can handle not only wh-questions anchored by transitive verbs

and declarative sentences anchored by ditransitive verbs, but also declarative sentences

anchored by transitive verbs and wh-questions anchored by ditransitive verbs.

In summary, the approach shown in Table 8.1 inherits the strengths of both LexOrg

and LexTract: the input to this new system requires little human e�ort, and the users can

change the input tables to get di�erent grammars; the output of the system is a consistent

grammar and linguistic generalizations are expressed explicitly; the output grammar G�
T

also has a better coverage than the Treebank grammar GT , as illustrated in Figure 8.2. To

implement this approach, two details need to be worked out. First, how does the module

produce descriptions, subcategorization frames, and lexical rules, given the grammar GT

and frequency information produced by LexTract? Second, how do we assign probabilities

to the elementary trees in G�
T , given the frequency information assigned to the trees in

GT ? We leave these for future work.

8.2.2 Building and using parallel Treebanks

Treebanks are a prerequisite for running LexTract and training NLP tools such as POS

taggers and parsers. In Appendix B, we discuss three topics in creating a monolingual

Treebank { making annotation guidelines, ensuring annotation accuracy, and using NLP

tools. Building a parallel Treebank will face a series of new challenges.

The �rst issue is the choice of the corpus for the Treebank. Unlike monolingual texts,

it is not trivial to �nd high-quality bilingual texts that are freely available to the public.

An alternative is to �nd a monolingual corpus and then have it translated into the other

language. A question about the translation is: should we choose the most natural trans-

lation or the one that is as literal as possible so that presumably it is easier for a machine

translation system to learn useful patterns from the parallel Treebank?

226

VPNP

V

S

NP NP

gave

1 2

0

S

bought

0

1

VPNP

V NP

NP

S

S

bought

0

1

VPNP

V NP
ε

VPNP

V

S

NP NP

gave

1 2

0

S

NP

ε

HeadP(’S’)

HeadBar(’VP’)

Head(’V")

Subj(’NP’) HeadBar

HeadP

Obj(’NP’)

HeadBar

Head

NewSite(’NP’)

FHeadP(’S’)

HeadP(’S’)

ExtSite(’NP’)

ε

NP

S

S

bought

0

1

VPNP

V

S

NP NP

gave

1 2

0
VPNP

V NP
ε

NP

S

S

bought

0

1

VPNP

V NP

ε

VPNP

V

S

NP NP

gave

1 2

0

S

NP

ε

VPNP

V

S

NP NP

gave

1 2

0

S

NP

ε

#1: #2: #3:

#4: #5: #6: #7:

Subcat frames:

(NP0, V, NP1)

(NP0, V, NP1, NP2)

Descriptions:

(a) elementary trees in GT

(b) descriptions and subcategorization frames

(c) elementary trees in G�
T

Figure 8.2: The etrees in GT and G�
T

227

Another issue is the development of NLP tools for parallel Treebank annotation. For

example, given a bilingual text (A, B), if one side (say A) is already bracketed, is there

any way to speed up the annotation of the other side (i.e., B) using the information from

A? A possible approach is to �rst convert the phrase structure PA of language A into its

dependency structure DA (see Section 7.2), then map DA into the dependency structure

DB for language B, next convert DB into the phrase structure PB (see Section 7.3). A

diÆculty of this approach is the well-known structural divergence problem (Dorr, 1993);

that is, a sentence and its translation in other languages may have di�erent syntactic

structures. In another scenario, if A is bracketed and B is not, but there is a parser for

language B, which is trained and tested on a di�erent Treebank, could the information

from A help to improve the parser's performance on B?

Once a parallel Treebank becomes available, we plan to run LexTract on parallel Tree-

banks. For example, running an alignment algorithm on the Treebank would produce

word-to-word mappings. Given such word-to-word mappings and our template matching

algorithm in Section 6.3, we can automatically create lexicalized etree-to-etree mappings,

which can be used for semi-automatic transfer lexicon construction. Furthermore, Lex-

Tract can build derivation trees for each sentence in the corpora. By comparing derivation

trees for parallel sentences in two languages, instances of structural divergence can be

automatically detected.

228

Appendix A

Language-speci�c tables

In this dissertation, we have used �ve language-speci�c tables (namely, the head percolation

table, argument table, tagset table, modi�cation table, and head projection table) to

perform the following tasks:

� We use the head projection table, argument table, and modi�cation table to build the

grammar GTable (see Section 3.3), to �lter out linguistically implausible templates

(See Section 6.1.3), and to convert a dependency structure into a phrase structure

(See Section 7.3.3).

� We use the head percolation table, argument table, and tagset table to build elemen-

tary trees (See Section 5.4).

In this appendix, we �rst explain the formats of the tables, then show the tables that

we built for the English, Chinese and Korean Penn Treebanks.

A.1 The formats of the language-speci�c tables

We brie
y mentioned the formats of the language-speci�c tables in Sections 3.3 and 5.3.

In this section, we describe the tables in detail.

229

A.1.1 Tagset table

Each tag in a Treebank tagset must have an entry in the tagset table. An entry has three

�elds. The �rst �eld uses a number to mark the type of the tag; namely, 0 for POS tag, 1

for syntactic tag, 2 for empty category, and 3 for function tag. The second �eld is the name

of the tag (e.g., JJ for an adjective). The third �eld is a possibly empty set of attributes

for the tag, as explained below:

� CONJ: a tag for conjunctions

� UCP: a tag for unlikely coordinated phrase

� PU: a tag for punctuation marks

� PRN: a tag for parenthetical

� ELLIPSIS: a tag for ellipsis

� IGNORE: the word with that tag will be ignored when LexTract builds etrees.

� BUILDMC: an empty category tag that marks \movement". LexTract will build

multi-component sets for the word with that tag and its antecedent (see Sections 5.6

and 6.7).

� HEAD: a tag that always marks heads

� ADJUNCT: a tag that always marks adjuncts

� ARGUMENT: a tag that always marks arguments

A user can use the last three attributes (HEAD, ADJUNCT, ARGUMENT) to inform

LexTract how a function tag should be interpreted when LexTract determines the types

(heads, arguments, and adjuncts) of nodes.

A.1.2 Head percolation table

LexTract uses the head percolation table and the tagset table to choose the head-child of

a category. Each entry in the head percolation table is of the form (x direct y1=y2=:::=yn),

230

where x and yi are syntactic tags, direct is either LEFT or RIGHT . fyig is the set of

possible tags for x's head-child. Unlike most people who use this table, we treat y1=y2=:::=yn

as a set, rather than as a list. Treating it as a set makes the construction of the head

percolation table easier than treating it as a list, and the former works better than the

latter in some scenarios (e.g., the selection of the head-child of noun phrases in the English

Penn Treebank). However, in other scenarios, the latter works better. David Chiang at

the University of Pennsylvania suggested a more general form; that is, the tags of possible

head-children for each x are put into a list of sets:

(x (direct1 y11=:::=y1n1)

...

(directm ym1=:::=ymnm))

Each yi1=:::=yini is interpreted as a set, but the ordering between yi1=:::=yini and

yj1=:::=yjnj matters. For some cases we need to use this general format.

A.1.3 Argument table

An argument table informs LexTract about the types and maximal numbers of arguments a

head-child can take. The entry in an argument table is of the form (head tag, left arg num,

right arg num, y1=y2=:::=yn). head tag is the syntactic tag of the head-child, fyig is the

set of possible tags for the head-child's arguments, left arg num and right arg num are the

maximal numbers of arguments to the left and to the right of the head-child, respectively.

Several points are worth mentioning:

� The default: if LexTract cannot �nd an entry for a category x in the table, LexTract

assumes that x cannot take any arguments. Therefore, the user needs to include in

this table only the categories that can take arguments, such as verbs and prepositions.

� The meaning of argument: if X is an argument of Y but X is not a sibling of Y in

the phrase structures (ttrees) in a Treebank, we treat X as an argument of Y � when

we build the argument table, where Y � is a projection of Y which is a sibling of X

in the ttrees. For instance, in all three Penn Treebanks, the subject NP is a sibling

231

of a VP in a ttree. We treat the subject as an argument of the VP, not that of the

verb.

� The possible extension of the table: each entry has only one list for possible tags

for the head-child's arguments. If a category happens to have both left and right

arguments, LexTract assumes that the argument types on both sides are the same.

If this assumption is wrong, we can easily change the format of the table entry to

include two lists, instead of one. If necessary, we may also want to add the minimal

numbers of arguments to the table.

A.1.4 Modi�cation table

A modi�cation table speci�es the types of modi�ers a constituent can take. Each entry

of the table is of the form (mod tag, x1=:::=xn, y1=:::=ym), which means a mod tag can

be modi�ed by xi from the left and by yi from the right. In Section 7.3.3, we used an

extended version of the modi�cation table to distinguish two types of modi�ers: sister-

adjoining modi�ers and Chomsky-adjoining modi�ers; as a result, in this extended version

there are four sets of tags associated with mod tag, rather than two sets.

A.1.5 Head projection table

A head projection table is a set of (x; y) pairs, where y projects to x. Sometimes, we

represent the pair (x; y) as y ! x, and represent the pairs (x; y) and (y; z) as z ! y ! x,

and so forth.

A.2 Tables for the English Penn Treebank

In this section, we show the language-speci�c tables that we built in order to run LexTract

on the English Penn Treebank (see Chapters 6 and 7).

A.2.1 Tagset table

The tagset table for English. Everything after the semicolon is a comment and is optional.

The meaning of each tag comes from (Santorini, 1990) and (Bies et al., 1995).

232

0 JJ ; adjective

0 JJR ; comparative adjective

0 JJS ; superlative adjective

0 RB ; adverb

0 RBR ; comparative adverb

0 RBS ; superlative adverb

0 WRB ; wh-adverb (e.g., the word ``how'')

0 DT ; determiner

0 PDT ; predeterminer (e.g., ``all'' in ``all his marbles'')

0 WDT ; wh-determiner (e.g., the word ``which'')

0 CD ; cardinal number

0 CC CONJ ; coordinating conjunction

0 NN ; singular or mass common noun

0 NNS ; plural common noun

0 NNP ; singular proper noun

0 NNPS ; plural proper noun

0 POS ; possessive ending

0 PRP ; personal pronoun

0 PRP$; possessive pronoun

0 WP ; wh-pronoun

0 WP$; possessive wh-pronoun (e.g., the word ``whose'')

0 MD ; modal verb

0 VB ; base form of a verb

0 VBP ; present tense verb, other than 3rd person singular

0 VBZ ; present tense verb, 3rd person singular

0 VBN ; past participle

0 VBD ; past tense verb

0 VBG ; gerund or present participle

0 TO ; the word ``to''

0 IN ; preposition or subordinating conjunction

233

0 RP ; particle (e.g., ``up'' in ``pick up'')

0 LS ; list item marker

0 UH ; exclamation

0 EX ; existential ``there''

0 FW ; foreign word

0 SYM ; symbol

0 , PU/IGNORE ; comma

0 . PU/IGNORE ; period

0 : PU/IGNORE ; colon

0 $; dollar sign

0 `` PU/IGNORE ; left double quotation mark

0 '' PU/IGNORE ; right double quotation mark

0 # ; pound sign

0 -LRB- PU/IGNORE ; left round bracket

0 -RRB- PU/IGNORE ; right round bracket

0 -LCB- PU/IGNORE ; left curly bracket

0 -RCB- PU/IGNORE ; right curly bracket

0 -LSB- PU/IGNORE ; left square bracket

0 -RSB- PU/IGNORE ; right square bracket

0 ; CONJ ; semicolon

0 -- PU/IGNORE ; dash

0 ... PU/IGNORE ; ellipsis mark

0 - PU/IGNORE ; hyphen

0 ' PU/IGNORE ; single quotation mark

1 S ; simple declarative clause

1 SQ ; inverted yes/no question

1 SBAR ; clause introduced by a subordinating conjunction

1 SBARQ ; direct question introduced by a wh-word or wh-phrase

1 SINV ; inverted declarative sentence

1 ADJP ; adjective phrase

234

1 ADVP ; adverb phrase

1 CONJP ; conjunction phrase

1 FRAG ; fragment

1 INTJ ; interjection

1 LST ; list marker

1 NAC ; ``not a constituent'', used within a noun phrase

1 NP ; noun phrase

1 NX ; used within certain complex noun phrases

1 PP ; prepositional phrase

1 PRN PRN ; parenthetical

1 PRT ; particle

1 QP ; quantifier phrase

1 RRC ; reduced relative clause

1 UCP UCP ; unlike coordinated phrase

1 VP ; verb phrase

1 WHADJP ; wh-adjective phrase

1 WHADVP ; wh-adverb phrase

1 WHNP ; wh-noun phrase

1 WHPP ; wh-prepositional phrase

1 X ; unknown, uncertain, or unbracketable

2 -NONE- ; empty category

2 *T* BUILDMC ; trace of A'-movement

2 * ; arbitrary PRO, controlled PRO, and trace of A-movement

2 *NP* ; arbitrary PRO, controlled PRO

2 *PAS* ; trace of A-movement

2 *PPA* ; permanent predictable ambiguity

2 *U* ; unit

2 *NOT* ; anti-placeholder in template mapping

2 0 ; the null complementizer

2 *?* ELLIPSIS ; placeholder for ellipsed material

235

2 *RNR* BUILDMC ; right node raising

2 *ICH* BUILDMC ; ``interpret constituent here'' (discontinuous dependency)

2 *EXP* BUILDMC ; expletive (extraposition)

3 ADV ADJUNCT ; adverbial

3 NOM ; nominal

3 DTV ARGUMENT ; dative

3 LGS ; logical subject

3 PRD HEAD ; predicate

3 PUT ARGUMENT ; marks the locative complement of the word ``put''

3 SBJ ARGUMENT ; surface subject

3 TPC ADJUNCT ; topicalized element

3 VOC ADJUNCT ; vocative

3 BNF ; benefactive

3 DIR ADJUNCT ; direction

3 EXT ADJUNCT ; extent

3 LOC ADJUNCT ; locative

3 MNR ADJUNCT ; manner

3 PRP ADJUNCT ; purpose or reason

3 TMP ADJUNCT ; temporal

3 CLR ADJUNCT ; closely related

3 CLF ; cleft

3 HLN ; headline

3 TTL ; title

4 *T* ; trace of A'-movement

4 * ; arbitrary PRO, controlled PRO, and trace of A-movement

4 0 ; the null complementizer

4 *U* ; unit

4 *?* ; placeholder for ellipsed material

4 *NOT* ; anti-placeholder in template mapping

4 *RNR* ; right node raising

236

4 *ICH* ; ``interpret constituent here'' (discontinuous dependency)

4 *EXP* ; expletive (extraposition)

4 *PPA* ; permanent predictable ambiguity

A.2.2 Head percolation table

The head percolation table for English:

S right VP/SBAR/S

SINV right VP/SINV

SQ right VP/SQ

SBAR right S/SBAR/SINV

SBARQ right SQ/SBARQ

RRC right VP/RRC

NX right NX/NN/NNS/NNP/NNPS

NP right NP/NN/NNS/NNP/NNPS/NX/EX/CD/QP/JJ/JJR/JJS/PRP/DT/POS

NAC right NAC/NN/NNS/NNP/NNPS/NX

WHNP right WDT/WP/NP/NN/NNS/NNP/NNPS/NX/WHNP

QP right CD/QP

ADJP right JJ/JJR/VBN/ADJP/*?*

WHADJP right JJ/WHADJP

VP right VP/VB/VBN/VBP/VBZ/VBG/VBD/*?*

PP left IN/TO/VBG/PP

WHPP left IN/WHPP

ADVP right ADVP/RB/RBR/RBS/WRB

WHADVP right WRB/WHADVP

PRT right RP/PRT

INTJ left UH/INTJ

UCP right UCP

X right X

LST left LS

237

A.2.3 Argument table

The argument table for English is as follows:

VB 0 3 PRT/NP/PP-PUT/PP-DTV/S/SBAR/SBARQ

VBP 0 3 PRT/NP/PP-PUT/PP-DTV/S/SBAR/SBARQ

VBZ 0 3 PRT/NP/PP-PUT/PP-DTV/S/SBAR/SBARQ

VBN 0 3 PRT/NP/PP-PUT/PP-DTV/S/SBAR/SBARQ

VBD 0 3 PRT/NP/PP-PUT/PP-DTV/S/SBAR/SBARQ

VBG 0 3 PRT/NP/PP-PUT/PP-DTV/S/SBAR/SBARQ

JJ 0 1 S/NP

IN 0 1 NP/S/SBAR

VP 1 1 NP-SBJ/S-SBJ/SBAR-SBJ

ADJP 0 1 S/SBAR

A.2.4 Modi�cation table

For the modi�cation table, the following is the basic version. We put the left modi�er set

and the right modi�er set in two adjacent lines. If a set is too big to be displayed in one

line, we break it into two lines, and use \+++" at the end of the �rst line and at the

beginning of the second line to indicate that. The empty list is represented as \-".

S LST/RB/RBR/RBS/ADVP/NP/PP/S/SBAR/SBARQ/SQ/SINV/INTJ/IN

S/SBAR/SBARQ/PP/ADVP

SINV MD/VB/VBD/VBP/VBZ/RB/RBR/RBS/ADVP/NP/PP/S/SBAR/SBARQ/SQ/SINV/INTJ

S/SBAR/SBAR/PP/ADVP

SQ MD/VB/VBD/VBP/VBZ/RB/RBR/RBS/ADVP/NP/WHNP/PP/S/SBAR/INTJ

S/SBAR/SBARQ/PP/ADVP/NP

SBAR RB/RBR/RBS/ADVP/NP/PP/S/SBAR/WHADVP/WHNP/WHPP/WHADJP/WRB/0/IN

S/SBARQ

SBARQ MD/VB/VBD/VBN/VBP/VBZ/VBG/RB/RBR/RBS/ADVP/NP/PP/S/SBAR/WHADVP/+++

+++WHNP/WHPP/WHADJP/WRB/0/IN

S/SBARQ/PP/ADVP/NP

238

ADJP RB/RBR/RBS/ADVP/CD/QP/NP/NN/NNP/NNS/WRB/WHADVP

PP

ADVP RB/RBR/RBS/ADVP/WRB/WHADVP

PP

NAC NP/DT/PRP$/JJ/JJR/JJS/RB/RBR/ADVP/ADJP/QP/CD/NN/NNS/NNP/NNPS/NAC/+++

+++POS/VBN/VBG/$

ADVP/RB/RBR/ADVP/PP/RRC/S/SBAR/SBARQ/SQ/VP

NP NP/PDT/DT/PRP$/JJ/JJR/JJS/RB/RBR/ADVP/ADJP/QP/CD/NN/NNS/NNP/NNPS/+++

+++NAC/NX/POS/VBN/VBG/$

ADJP/RB/RBR/ADVP/PP/RRC/S/SBAR/SBARQ/SQ/NP

NX NP/DT/PRP$/JJ/JJR/JJS/RB/RBR/ADVP/ADJP/QP/CD/NN/NNS/NNP/NNPS/NAC/+++

+++NX/POS/VBN/VBG/$

ADJP/RB/RBR/ADVP/PP/RRC/S/SBAR/SBARQ/SQ/VP

WHNP WP$

RB/RBR/ADVP/PP

VP RB/RBR/RBS/ADVP/PP/MD/VB/VBD/VBN/VBP/VBZ/VBG/TO/VP

RB/RBR/RBS/ADVP/PP/NP/S/SBAR

RRC RB/RBR/RBS/ADVP/NP/PP/S/SBAR

S/SBARQ

QP RB/RBR/RBS/ADVP/CD/$/DT

-

PP RB/RBR/RBS/ADVP/WHADVP/PP

PP/ADVP

A.2.5 Head projection table

The head projection table for English used in Chapter 6.

JJ -> ADJP

JJR -> ADJP

JJS -> ADJP

RB -> ADVP

239

RBR -> ADVP

RBS -> ADVP

WRB -> ADVP

DT -> NP

PDT -> NP

WDT -> WHNP

CD -> NP

CC -> UCP

NN -> NP

NNS -> NP

NNP -> NP

NNPS -> NP

POS -> NP

PRP -> NP

PRP$ -> NP

WP -> WHNP

WP$ -> WHNP

MD -> VP

VB -> VP -> S -> SBAR

VBP -> VP -> S -> SBAR

VBZ -> VP -> S -> SBAR

VBN -> VP -> S -> SBAR

VBD -> VP -> S -> SBAR

VBG -> VP -> S -> SBAR

IN -> PP

RP -> PRT

LS -> LST

EX -> NP

FW -> NP

240

A.3 Tables for the Chinese Penn Treebank

In this section, we show the �rst three language-speci�c tables, which we built in order to

run LexTract on the Chinese Penn Treebank. We are not showing the last two tables as

we did not run the experiments in Section 7.4 on the Chinese Treebank.

A.3.1 Tagset table

The tagset table for Chinese. The meaning of each tag comes from (Xia, 2000a) and (Xue

and Xia, 2000).

0 AD ; adverb

0 AS ; aspect marker

0 BA ; the word ``ba'' in ba-construction

0 CC CONJ ; coordinating conjunction

0 CD ; cardinal number

0 CS ; subordinating conjunction

0 DEC ; the word ``de'' in a relative clause

0 DEG ; associative ``de''

0 DER ; the word ``de'' in V-de and V-de-R constructions

0 DEV ; the word ``de'' before a VP

0 DT ; determiner

0 ETC ; for the words ``deng'' and ``dengdeng''

0 FW ; foreign word

0 IJ ; interjection

0 JJ ; other noun-modifier

0 LB ; the word ``bei'' in long bei-construction

0 LC ; localizer

0 M ; measure word

0 MSP ; miscellaneous particle

0 NN ; common noun

0 NR ; proper noun

241

0 NT ; temporal noun

0 OD ; ordinal number

0 ON ; onomatopoeia

0 P ; preposition

0 PN ; pronoun

0 PU PU/IGNORE ; punctuation mark

0 SB ; the word ``bei'' in short bei-construction

0 SP ; sentence-final particle

0 VA ; predicative adjective

0 VC ; copula

0 VE ; the word ``you'' as a main verb

0 VV ; other verb

0 X ; unknown

0 -LRB- PU/IGNORE ; left round bracket

0 -RRB- PU/IGNORE ; right round bracket

0 -LCB- PU/IGNORE ; left curly bracket

0 -RCB- PU/IGNORE ; right curly bracket

0 -LSB- PU/IGNORE ; left square bracket

0 -RSB- PU/IGNORE ; right square bracket

1 ADJP ; adjective phrase

1 ADVP ; adverbial phrase

1 CLP ; classifier phrase

1 CP ; clause headed by complementizer

1 DNP ; phrase formed by ``XP + DEG''

1 DP ; determiner phrase

1 DVP ; phrase formed by ``XP + DEV''

1 FRAG ; fragment

1 INTJ ; interjection phrase

1 IP ; simple clause

1 LCP ; phrase formed by ``XP + LC''

242

1 LST ; list marker

1 NP ; noun phrase

1 PP ; preposition phrase

1 PRN PRN ; parenthetical

1 QP ; quantifier phrase

1 UCP UCP ; unlike coordinated phrase

1 VCD ; coordinated verb compound

1 VCP ; verb compounds formed by VV + VC

1 VNV ; verb compounds formed by A-not-A or A-one-A

1 VP ; verb phrase

1 VPT ; potential form V-de-R or V-bu-R

1 VRD ; verb resultative compound

1 VSB ; verb compounds formed by a modifier plus a head

1 WHNP ; wh-noun phrase

1 WHPP ; wh-preposition phrase

2 -NONE- ; empty category

2 *OP* ; operator

2 *pro* ; dropped argument

2 *PRO* ; arbitrary PRO, controlled PRO

2 *RNR* ; right node raising

2 *T* BUILDMC ; trace of A'-movement

2 *?* ELLIPSIS ; ellipsis

2 * ; trace of A-movement

3 FW ; foreign word

3 ADV ADJUNCT ; adverbial

3 APP ; appositive

3 BNF ; beneficiary

3 CND ; condition

3 DIR ; direction

3 EXT ; extent

243

3 FOC ; focus

3 HLN ; headline

3 IJ ; interjectional

3 IMP ; imperative

3 IO ; indirect object

3 LGS ; logic subject

3 LOC ; locative

3 MNR ; manner

3 OBJ ; direct object

3 PN ; proper name

3 PRD ; predicate

3 PRP ; purpose or reason

3 Q ; question

3 SBJ ; subject

3 SHORT ; short form

3 TMP ; temporal

3 TPC ; topic

3 TTL ; title

3 WH ; wh-phrase

4 *OP* ; operator

4 *pro* ; dropped argument

4 *PRO* ; arbitrary PRO, controlled PRO

4 *RNR* ; right node raising

4 *T* ; trace of A'-movement

4 *?* ; ellipsis

4 * ; trace of A-movement

A.3.2 Head percolation table

The head percolation table for Chinese:

ADJP right ADJP/JJ

244

ADVP right ADVP/AD

CP right CP/IP

DNP right DNP/DEG

DP left DP/DT

INTJ left INTJ/IJ

IP right IP/VP

LCP right LCP/LC

NP right NP/NN/NT/NR/QP

PP left PP/P

QP right QP/CD/OD

VP right VP/VA/VC/VE/VV/BA/LB/VCD/VSB/VRD/VNV/VCP

VV right VV

VA right VA

VE right VE

VC right VC

VCD right VCD/VV/VA/VC/VE

VRD right VRD/VV/VA/VC/VE

VSB right VSB/VV/VA/VC/VE

VCP right VCP/VV/VA/VC/VE

VNV right VNV/VV/VA/VC/VE

A.3.3 Argument table

The argument table for Chinese:

VA 0 1 NP-OBJ

VC 0 1 NP-OBJ/LCP-OBJ/QP-OBJ/DP-OBJ/IP/CP/UCP-OBJ/NP-PRD/LCP-PRD/QP-PRD/

DP-PRD/PP-PRD/DNP-PRD/UCP-PRD

VV 0 2 NP-OBJ/LCP-OBJ/QP-OBJ/DP-OBJ/IP/CP/UCP-OBJ/NP-IO/LCP-IO/UCP-IO

VE 0 2 NP-OBJ/LCP-OBJ/QP-OBJ/DP-OBJ/IP/CP/UCP-OBJ

BA 0 1 IP

LB 0 1 IP/CP

245

VCD 0 2 NP-OBJ/LCP-OBJ/QP-OBJ/DP-OBJ/IP/CP/UCP-OBJ/NP-IO/LCP-IO/UCP-IO

VSB 0 2 NP-OBJ/LCP-OBJ/QP-OBJ/DP-OBJ/IP/CP/UCP-OBJ/NP-IO/LCP-IO/UCP-IO

VCP 0 2 NP-OBJ/LCP-OBJ/QP-OBJ/DP-OBJ/IP/CP/UCP-OBJ/NP-IO/LCP-IO/UCP-IO

VRD 0 2 NP-OBJ/LCP-OBJ/QP-OBJ/DP-OBJ/IP/CP/UCP-OBJ/NP-IO/LCP-IO/UCP-IO

VNV 0 2 NP-OBJ/LCP-OBJ/QP-OBJ/DP-OBJ/IP/CP/UCP-OBJ/NP-IO/LCP-IO/UCP-IO

VP 1 0 DP-SBJ/QP-SBJ/NP-SBJ/LCP-SBJ/IP-SBJ/CP-SBJ/UCP-SBJ

P 0 1 NP/LCP/QP/DP/IP/CP/UCP

DEG 1 0 DP/QP/NP/LCP/PP/ADJP/UCP

DEV 1 0 DP/NP/QP/VP/ADVP/UCP

LC 1 0 NP/QP/DP/LCP/PP/IP/UCP

A.4 Tables for the Korean Penn Treebank

In this section, we show the language-speci�c tables that our colleague Chunghye Han built

in order to run LexTract on the Korean Penn Treebank.

A.4.1 Tagset table

The tagset table for Korean. The meaning of each tag comes from (Han and Han, 2001)

and (Han et al., 2001).

0 CO ; copula

0 NPR ; proper noun

0 NNU ; ordinal or cardinal number

0 NNC ; common noun

0 NNX ; dependent noun

0 NPN ; demonstrative pronoun

0 NFW ; foreign word

0 VV ; verb

0 VJ ; adjective

0 VX ; auxiliary predicate

0 ADV ; constituent adverb, clausal adverb

246

0 ADC CONJ ; conjunctive adverb

0 DAN ; configurative, demonstrative

0 IJ ; exclamation

0 LST ; list marker

0 LV ; light verb

0 CV ; complex verb

0 SCM PU/IGNORE ; comma

0 SFN PU/IGNORE ; sentence-ending punctuation (i.e., ``.'', ``?'', and ``!'')

0 SLQ PU/IGNORE ; left quotation mark

0 SRQ PU/IGNORE ; right quotation mark

0 SSY PU/IGNORE ; other punctuation mark

0 PQO ; complementizer

0 PAD ; adverbial postposition

0 PAU ; auxiliary adverbial postposition

0 PCA ; case postposition

0 PCJ ; conjective postposition

1 S ; simple sentential clause

1 ADJP ; adjective phrase

1 ADVP ; sentential and phrasal adverb phrase

1 ADCP ; coordinate adverb phrase

1 INTJ ; interjection

1 LST ; list marker

1 VP ; verb phrase

1 NP ; noun phrase

1 DANP ; adnominal phrase

1 PRN ; parenthetical

1 X ; unknown

1 WHNP ; wh-noun phrase

1 LVP ; light verb phrase

2 -NONE- ; empty category

247

2 *T* BUILDMC ; trace of movement

2 *pro* ; dropped argument

2 *OP* ; empty operator

2 *?* ELLIPSIS ; ellipsis

3 LV ; used coupled with the LV tag on the light verb

3 ADV ADJUNCT ; marks NP when it is used adverbially

3 SBJ ARGU ; marks NP subject with nominative case marker

3 OBJ ARGU ; marks NP complements with accusative case marker

3 COMP ARGU ; marks NP complements that occur with adverbial postposition

3 VOC ADJUNCT ; marks nouns of address

4 *T* ; trace of movement

4 *pro* ; dropped argument

4 *OP* ; empty operator

4 *?* ELLIPSIS ; ellipsis

A.4.2 Head percolation table

The head percolation table for Korean:

S right S/VP/ADJP

ADJP right ADJP/VJ

ADVP right ADVP/ADV

ADCP right ADCP/ADC

VP left VP/VV/VX/ADJP

NP right NP/NNC/NPR/NPN/NNX/*pro*/*T*

WHNP right WHNP/*OP*

A.4.3 Argument table

The argument table for Korean:

VV 2 0 NP-OBJ/NP-COMP/S-COMP

VJ 2 0 NP-OBJ/NP-COMP/S-COMP

248

VP 3 0 NP-SBJ/S-SBJ/NP-OBJ/NP-COMP/S-COMP/S-OBJ

ADJP 1 0 NP-OBJ/NP-COMP/S-COMP/S-OBJ

S 2 0 NP-OBJ/NP-COMP/S-COMP/S-OBJ/WHNP

249

Appendix B

Building a high-quality Treebank

Treebanks are a prerequisite for running LexTract and training any supervised NLP tools

such as POS taggers and parsers. It is well-known that building a large high-quality Tree-

bank is very challenging. In this appendix, we want to address the following question:

how to best build a high-quality Treebank from scratch? The discussion on this issue is

mainly based on my experience as the project manager and one of the guideline designers

of the Chinese Penn Treebank Project (Xia et al., 2000b) and as a user of various Tree-

banks including the three Penn Treebanks. Instead of examining each aspect of Treebank

development, we shall concentrate on the following three topics.

Guideline preparation: Preparing good guidelines is never easy, and doing so for Chi-

nese is even more diÆcult because of certain characteristics of Chinese, which we

shall discuss in Section B.2.

Quality control: We have explored various methods to improve inter-annotator consis-

tency and annotation accuracy.

The role of NLP tools: It is well-known that using NLP tools (e.g., POS taggers and

parsers) for preprocessing can reduce human annotation time. In this appendix, we

shall show that they can also be used for guideline preparation and quality control.

Although our approach was aimed at solving problems that we encountered in the

Chinese Penn Treebank Project, we believe that our methodology is general enough to

250

be applied to text annotation for other languages as well. This appendix is organized as

follows: in Section B.1, we give an overview of the Chinese Penn Treebank Project; in

Section B.2, we describe the methodology for guideline preparation; in Section B.3 | B.5,

we highlight the challenges encountered while making three sets of guidelines; in Section

B.6, we discuss a strategy for quality control; in Section B.7, we explore various ways that

NLP tools are used to speed up annotation and to improve the quality of the Treebank. in

Section B.8, we address the similarities and di�erences between Treebank guidelines and

hand-crafted grammars.

B.1 Overview of the Chinese Penn Treebank Project

The on-going Chinese Penn Treebank Project started in late 1998. The goal of the project

is to build a large-scale high-quality Treebank for Chinese. The �rst portion of the Tree-

bank, which has about 100 thousand words, was released to the public in December 2000.

Since then, more data from various sources have been annotated. In this appendix, by

the Treebank, we mean this 100-thousand-word portion of the Treebank unless speci�ed

otherwise.

The Treebank consists of 325 articles from the Xinhua newswire published in 1994-

1998.1 It contains 172 thousand hanzi (Chinese characters), or 100 thousand words after

word segmentation. The corpus has 4183 sentences, averaging 41 hanzi (or 23.8 words

after segmentation) per sentence.2 A preliminary version of the Treebank was released to

the public in June 2000, and the �nal version was released in December 2000.

Our team includes two linguistics professors, three computational linguists, two anno-

tators (both are linguistics graduate students) and several external consultants. As the

project manager and one of the guideline designers, my responsibilities include writing

word segmentation and POS tagging guidelines, co-authoring bracketing guidelines, de-

signing strategies for quality control, organizing weekly meetings and leading discussions

1The majority of these documents focus on economic developments, while the rest describe general

political and cultural topics.
2A sentence is anything that ends with a period, a exclamation mark or a question mark. We also treat

the headline of each article as a sentence.

251

with a group of linguists, organizing a number of workshops and meetings in USA and

abroad, and so on.

B.1.1 Project inception

With growing interest in Chinese Language Processing, numerous NLP tools (e.g., word

segmenters, POS taggers, and parsers) for Chinese have been developed all over the world.

However, when we started the project in late 1998, there were no large-scale Chinese

Treebanks available to the public; as a result, it was diÆcult to compare results and gauge

progress in the �eld.

To assess community interest in a Chinese Treebank, we organized a three-day work-

shop on Chinese language processing at the University of Pennsylvania in June 1998. The

aim of this workshop was to bring together in
uential researchers from mainland China,

Hong Kong, Taiwan, Singapore, and the United States in a move towards consensus build-

ing with respect to word segmentation, POS tagging, syntactic bracketing and other areas.3

The workshop included presentations of guidelines that were used in mainland China and

Taiwan, as well as segmenters, POS taggers and parsers. There were also several work-

ing groups that discussed speci�c issues in segmentation, POS tagging and the syntactic

annotation of newswire text.

There was general consensus at this workshop that an e�ort to create a large-scale

Chinese Treebank would be well-received, and that linguistics expertise was a necessary

prerequisite to successful completion of such a project. The workshop made considerable

progress in de�ning criteria for segmentation guidelines as well as addressing the issues of

POS tagging and syntactic bracketing. The Chinese Penn Treebank Project began shortly

after the workshop.4

3The American groups included the Institute for Research in Cognitive Science and the Linguistics Data

Consortium (which distributes the English Treebank) at the University of Pennsylvania, the University of

Maryland, Queens College, the University of Kansas, the University of Delaware, Johns Hopkins University,

New Mexico State University, Systran, BBN Technology, AT & T, Lucent Technology, Xerox, West, Unisys

and the US Department of Defense. We also invited scholars from mainland China, Taiwan, Hong Kong

and Singapore.
4Our Chinese Penn Treebank website, http://www.ldc.upenn.edu/ctb, includes segmentation, POS tag-

ging and bracketing guidelines, as well as sample �les, information on two Chinese Language Processing

252

B.1.2 Annotation process

The annotation was done in two phases: the �rst phase was word segmentation and POS

tagging, and the second phase was syntactic bracketing. At each phase, all the data

were annotated at least twice with a second annotator correcting the output of the �rst

annotator. During the process, we held several meetings to get feedback from the Chinese

NLP community and revised our guidelines accordingly. Figures B.1 and B.2 summarize

the milestones of the project. Throughout the project, we also used various NLP tools to

speed up and improve the quality of the annotation (see Section B.7 for details).

workshops and meetings

guidelines and annotations

6/98 8/98 9/98 11/98 1/99 3/99

fin
ish

 1
st

dr
af

t

Beijing, China
ICCIP-98
meeting during

Canada
Montreal
ACL-98
meeting during

USA
Philadelphia
workshop
3-day CLP

sta
rt

1s
t p

as
s

fin
ish

 2
nd

 d
ra

ft

fin
ish

 1
st

pa
ss

sta
rt

2n
d

pa
ss

fin
ish

 2
nd

 p
as

s

co
m

pil
e

lex
ico

n

an
d

cle
an

 th
e

co
rp

us

"draft": draft of word segmentation and
POS tagging guidelines

"pass": segmenting and POS tagging the corpus

Figure B.1: The �rst phase: segmentation and POS tagging

fin
al

cle
an

up

fin
ish

 1
st

dr
af

t

sta
rt

1s
t p

as
s

fin
ish

 1
st

pa
ss

fin
ish

 2
nd

 d
ra

ft

sta
rt

2n
d

pa
ss

fin
ish

 2
nd

 p
as

s

fin
ali

ze
 g

uid
eli

ne
s

ex
tra

ct
gr

am
m

ar
s

workshops and meetings

5/99 12/99

guidelines and annotations

release of the Treebank

"draft": draft of bracketing guidelines

"pass": bracketing the corpus

4/00 6/00

prelim release

9/00

Hong Kong
workshop
2nd CLP

10/00 12/00

2nd release

6/99
meeting during
ACL-99
Maryland, USA

10/99

Figure B.2: The second phase: bracketing and data release

workshops and much more.

253

B.2 Methodology for guideline preparation

To build a Chinese Treebank we need three sets of guidelines | word segmentation, part-

speech tagging and bracketing guidelines. Making these guidelines for Chinese is especially

challenging because of the following characteristics of Chinese.

� Unlike Western writing systems, Chinese writing does not have a natural delimiter

between words, and the notion of word is very hard to de�ne.

� Chinese has very little, if any, in
ectional morphology. Words are not in
ected with

number, gender, case, or tense. For example, a word such as hu��-mi�e in Chinese

corresponds to destroy/destroys/destroyed/destruction in English. This fuels the dis-

cussion in Chinese NLP communities on whether the POS tags should be based on

meaning or on syntactic distribution. If only the meaning is used, hu��-mi�e should be

a verb all the time. If syntactic distribution is used, the word is either a verb or a

noun according to the context.

� There are many open questions in Chinese syntax. To further complicate the sit-

uation, Chinese, like any other language, is under constant change. With its long

history, a seemingly homogeneous phenomenon in Chinese (such as long and short

bei-construction) may be, in fact, a set of historically related but syntactically inde-

pendent constructions (Feng, 1998).

� Chinese is widely spoken in areas as diverse as mainland China, Hong Kong, Taiwan,

and Singapore. There is a growing body of research in Chinese natural language

processing, but little consensus on linguistic standards along the lines of the EAGLES

initiative in Europe.5

To tackle these issues, we adopted the following approach:

� In addition to studying the literature on Chinese morphology and syntax, we collab-

orated closely with our linguistics experts to work out plausible analyses for syntactic

constructions.
5EAGLES stands for the Expert Advisory Group on Language Engineering Standards. For more infor-

mation, please check out its website at http://www.ilc.pi.cnr.it/EAGLES/home.html.

254

� When there were no clear winners among several alternatives, we chose one, and

annotated the corpus in a way that our annotation could be easily converted to

accommodate other alternatives when needed.

� We studied other groups' standards or guidelines, such as the Segmentation Standard

in mainland China (Liu et al., 1993) and the one in Taiwan (Chinese Knowledge

Information Processing Group, 1996), and accommodated them in our guidelines if

possible.

� We organized regular workshops and meetings and invited experts from the United

States and abroad to discuss open questions, share resources and seek consensus. We

also visited mainland China, Hong Kong, and Taiwan to present our work and ask

for feedback.

� Annotators were encouraged to ask questions during the annotation process, and

in the second pass of bracketing randomly selected �les were re-annotated by both

annotators to evaluate their consistency and accuracy. Annotation errors and inter-

annotator inconsistencies revealed places in the guidelines that needed revision.

In an ideal situation, guidelines should be �nalized before annotation begins. However,

the raw data from a Treebank are far more complicated and subtle than the examples

discussed in the linguistics literature. Many problems do not surface until suÆcient data

have been studied. In this project, we divided each phase of the annotation and guideline

development into several steps:

1. Before the �rst pass, we created the �rst version of guidelines based on corpus anal-

ysis, review of the literature, and consultation with experts in Treebanking and

Chinese linguistics.

2. During the �rst pass, these guidelines evolved gradually through the resolution of

annotation diÆculties and annotator inconsistencies.

3. After the �rst pass, the guidelines were partially �nalized and when possible the

corpus was automatically converted to be consistent with the new guidelines before

the second pass began;

255

4. In the second pass, we applied our quality control method (see Section B.6) to detect

places in the guidelines that needed revision. Fortunately, very little revision at this

stage was needed.

5. After the second pass, the guidelines were �nalized and the annotation was revised

if necessary.

In this process, through careful design of the �rst version of the guidelines, no sub-

stantial changes were made in the following versions and most revision of the annotation

was done automatically by simple conversion tools. In the next three sections, we discuss

highlights from each set of guidelines.

B.3 Segmentation guidelines

The central issue for word segmentation is how the notion of word should be de�ned.

B.3.1 Notions of word

There are many di�erent notions of words. Sciullo andWillams (1987) discuss four of them;

namely, morphological object, syntactic atom, phonological word and listeme. According

to (Sciullo and Williams, 1987), the syntactic atoms are the primes of syntax. They

possess the syntactic atomicity properties; that is, the inability of syntactic rules to analyze

the contents of X0 categories.6 Packard (2000) de�nes eight notions of word; namely,

orthographic word, sociological word, lexical word, semantic word, phonological word,

morphological word, syntactic word, and psycholinguistic word. Because our goal was to

build syntactic structures for sentences, we adopted the notion syntactic word (or syntactic

atom in (Sciullo and Williams, 1987)) for our word segmentation task.7

6Whether morphology and syntax are truly independent is still an open question (Sciullo and Williams,

1987). We shall not go into details in this thesis.
7In the word segmentation and POS tagging phase, we broke the sentences into segments. Most segments

are syntactic words, but we treat certain bound morphemes (such as aspect markers) as segments to make

the Treebank more compatible with several widely used standards in the Chinese NLP community.

256

Once the notion of word is de�ned, the notions of aÆx, bound morpheme, compound

and phrase can be de�ned accordingly. However, the distinction between a word and a non-

word is not always clear-cut. For example, in English, the morpheme pro- (which means

supporting) cannot be used alone; therefore, it looks like a bound morpheme. However,

it can appear in a coordinated structure, such as pro- and anti-abortion. Based on the

assumption that only words and phrases can be coordinated, it behaves like a word.8

Therefore, the status of pro- is somewhere between a bound morpheme and a word. Making

the word and non-word distinction is even more diÆcult for Chinese for a number of

reasons:

� Chinese is not written with word delimiters, so segmenting a sentence into "words"

is not a natural task even for a native speaker.

� Chinese has little in
ectional morphology to ease the word segmentation problem.

� The structures within words and phrasal structures are similar in many cases, making

the distinction between words and phrases more elusive.

� There is little consensus in the community on the treatment of some constructions

that could a�ect word segmentation. For example, there are two competing views for

verb resultatives (e.g., chu��-g�an/blow-dry). One view believes that a verb resultative

is formed in the lexicon, and therefore should be one word; whereas the other view

says that a simple sentence with a verb resultative is actually bi-clausal and the verb

resultative is formed by movement; therefore, it should be treated as two words.

� Many monosyllabic morphemes that used to be able to stand alone become bound

in Modern Chinese. The in
uence of non-Modern Chinese makes it diÆcult to draw

the line between bound morphemes and free morphemes, the notions which could

otherwise have been very useful for deciding word boundaries.

Not surprisingly, the de�nition of word in Chinese has been notoriously controversial

in the Chinese linguistic community; as a result, the word standards adopted by various

8For example, both a- and im- are bound morphemes and \amoral and immoral" cannot be shortened

into \a- and immoral".

257

research groups, including the national standard in mainland China (Liu et al., 1993) and

the word standard used by the Academia Sinica in Taiwan (Chinese Knowledge Information

Processing Group, 1996), di�er substantially.

B.3.2 An experiment

To test how well native speakers agree on word segmentation of written texts, we randomly

chose 100 sentences (5060 hanzi) from the Xinhua newswire and asked the participants of

the �rst Chinese Language Processing (CLP) workshop to segment the sentences according

to their personal preferences.9 We got replies from seven groups, almost all of whom hand

corrected their output before sending the results to us. Table B.1 shows the results of

comparing the output between each group pair. Here, we use three measures that are

commonly used to measure parsing accuracy: precision, recall, and the number of crossing

brackets (Black et al., 1991).10

The experiment was similar to the one discussed in (Sproat et al., 1996) in which six

native speakers were asked to mark all the places they might pause if they were reading the

text aloud. In both experiments, the native speakers (or judges) were not given any speci�c

segmentation guidelines. Following (Sproat et al., 1996), we calculated the arithmetic

mean of the precision and the recall as the measure of agreement between each output

9We did not give them any segmentation guidelines. Some participants applied their own standards for

which they had automatic segmenters, while others simply followed their intuitions.
10Given a candidate �le and a Gold Standard �le, the three metrics are de�ned as: the precision is

the number of correct constituents in the candidate �le divided by the number of constituents in the

candidate �le, the recall is the number of correct constituents in the candidate �le divided by the number

of constituents in the Gold Standard �le, and the number of crossing brackets is the number of constituents

in the candidate �le that cross a constituent in a Gold Standard �le.

If we treat each word as a constituent, a segmented sentence is similar to a bracketed sentence whose

depth is one. To compare two outputs, we chose one as the Gold Standard, and evaluated the other output

against it. As noted in (Sproat et al., 1996), for two outputs J1 and J2, taking J1 as the Gold Standard and

computing the precision and recall for J2 yields the same results as taking J2 as the Gold Standard and

computing the recall and the precision respectively for J1. However, the number of crossing brackets when

J1 is the Gold Standard is not the same as when J2 is the Gold Standard. For example, if the string is

ABCD and J1 segments it into AB CD and J2 marks it as A BC D, then the number of crossing brackets

is 1 if J1 is the Gold Standard and the number is 2 if J2 is the Gold Standard.

258

1 2 3 4 5 6 7 average

1 - 90/88/6 90/90/4 83/88/3 92/91/3 91/91/3 92/84/9 90/89/5

2 88/90/3 - 87/90/3 80/88/14 89/90/4 86/89/3 89/83/7 87/88/6

3 90/90/3 90/87/5 - 82/88/2 89/88/5 89/89/4 89/82/10 88/87/5

4 88/83/9 88/80/10 88/82/7 - 92/86/7 86/81/9 87/74/16 88/81/10

5 91/92/3 90/89/4 88/89/4 86/92/9 - 90/90/4 92/85/8 90/90/5

6 91/91/3 89/86/6 89/89/4 81/86/3 90/90/4 - 91/83/10 89/88/5

7 84/92/1 83/89/2 82/89/2 74/87/4 85/92/1 83/91/1 - 82/90/2

Table B.1: Comparison of word segmentation results from seven groups

pair. The average agreement in our experiment was 87.6%, much higher than 76% in

(Sproat et al., 1996). Without comparing the raw text used in these two experiments,

we do not know for sure why the numbers di�ered so much. One factor that might have

contributed to the di�erence is that the instructions given to the judges were not exactly

the same: in our experiment, the judges were asked to segment the sentences into words

according to their own de�nitions of word, whereas in their experiment, the judges were

asked to mark all places they might possibly pause if they were reading the text aloud.

There are places in Chinese { for example, between a verb and the aspect marker that

follows the verb { where native speakers do not pause, but they still treat the verb and

the aspect marker as two words. Another factor that might explain why the degree of the

agreement in our experiment was much higher is that in our experiment all the judges were

well-trained computational linguists. Some judges had their own segmentation guidelines

and/or segmenters. They either followed their guidelines or used their segmenters to

automatically segment the data and then hand corrected the output. Either way, their

outputs may be more consistent than the output of an average native speaker.

The fact that the average agreement in our experiment was 87.6% and the highest

agreement among all the pairs was 91.5% con�rms the belief that, without a set of seg-

mentation guidelines, native speakers often disagree on where word boundaries should be.

On the other hand, in our experiment the average number of crossing brackets between

each pair for the whole 100 sentences was only 5.4. Furthermore, most of these crossing

brackets were caused by careless human errors. This implies that much of the disagree-

ment was not critical and if the judges had been given good segmentation guidelines, the

agreement between them should have improved greatly.

259

B.3.3 Tests of wordness

Now that we have decided to use the notion of syntactic words for word segmentation, the

next task is to come up with a set of tests for establishing word boundaries. The following

tests have been proposed in the literature: (Without loss of generalization, we assume the

string that we are trying to segment is X-Y, where X and Y are two morphemes)

� Bound morpheme: a bound morpheme should be attached to its neighboring mor-

pheme to form a word when possible.

� Productivity: if the rule that combines the expression X-Y is not productive, then

X-Y is likely to be a word.

� Frequency of co-occurrence: if the expression X-Y occurs very often, it is likely to

be a word.

� Complex internal structure: strings with complex internal structures should be seg-

mented when possible.

� Compositionality: if the meaning of X-Y is not compositional, it is likely to be a

word.

� Insertion: if another morpheme can be inserted between X and Y, then X-Y is

unlikely to be a word.

� XP-substitution: if a morpheme cannot be replaced by a phrase of the same type,

then it is likely to be part of a word.

� The number of syllables: several guidelines (Liu et al., 1993; Chinese Knowledge

Information Processing Group, 1996) use syllable numbers on certain cases. For ex-

ample, in (Liu et al., 1993), a verb resultative is treated as one word if the resultative

part is monosyllabic, and it is treated as two words if the resultative part has more

than one syllable.

Notice that these tests are aimed at di�erent notions of head. For instance, the com-

positionality test is related to the notion of semantic word, whereas the XP-substitution

260

test is more relevant to syntactic word. Furthermore, none of these tests is suÆcient by

itself for covering the entire range of diÆcult cases. Either the test is applicable only to

limited cases (e.g., the XP-substitution test) or there is no objective way to perform the

test as the test refers to vaguely de�ned properties (e.g., in the productive test, it is not

clear where to draw the line between a productive rule and a non-productive rule). For

more discussion on this topic from the linguistics point of view, please refer to (Sciullo and

Williams, 1987; Packard, 1998; Packard, 2000).

Because the segments in our Treebank roughly correspond to syntactic words, we always

apply the tests for syntactic words (e.g., the XP-substitution test) �rst. If these tests are

not suÆcient, the tests for other notions of word are used. The rationale behind this

decision is that, although various notions of word di�er in their de�nitions and applicable

�elds, in most cases these notions of word do coincide with one another.11 Rather than

having the annotators memorize and apply these tests themselves, in the guidelines we

spell out what the results of applying the tests would be for all of the relevant phenomena.

For example, for the treatment of verb resultatives, we select the relevant tests (in this case

the number of syllables and the insertion test), and give several examples of the results of

applying these tests to the verb resultatives. This approach makes it straightforward, and

thus eÆcient, for the annotators to follow the guidelines.

The guidelines are organized according to the internal structure of the corresponding

expressions (e.g., a verb resultative is represented as V+V, whereas a verb-object form is

represented as V+N), so it is easy for the annotators to search the guidelines for reference.

The complete segmentation guidelines, including the comparisons between our guidelines

and the ones used in mainland China and Taiwan, can be found in (Xia, 2000b).

11For example, Packard (2000) de�nes a morphological word as the output of word-formation rules in

the language, and a syntactic word as a form that can stand as an independent occupant of a syntactic

form class slot. He also shows that mi�ao-t�ou/cat-head is a morphological word, but not a syntactic word.

Nevertheless, most morphological words are syntactic words and vice versa.

261

B.4 POS tagging guidelines

The central issue on POS tagging is how POS tags should be de�ned and distinguished

from one another.

B.4.1 Criteria for POS tagging

People generally agree that a POS tagset for Chinese should include the tags for nouns,

verbs, prepositions, adverbs, conjunctions, determiners, classi�ers, and so on, but they

di�er in how these tags should be de�ned. Because Chinese has little, if any, in
ectional

morphology, the de�nition of a POS tag is based on either semantics or syntax. The �rst

view believes that the tags should be de�ned based on meaning, whereas the second one

de�nes POS tags based on syntactic distribution. As mentioned before, a word such as hu��-

mi�e in Chinese can be translated into destroy/destroys/destroyed/destroying/destruction

in English, and it is used roughly the same way as its counterparts in English. According

to the �rst view, POS tags should be based solely on meaning. Because the meaning of

the word remains roughly the same across all of these usages, the word should always be

tagged as a verb. The second view claims that POS tags should be determined by the

syntactic distribution of the word. When hu��-mi�e is the head of a noun phrase, it should

be tagged as a noun in that context. Similarly, when it is the head of a verb phrase, it

should be tagged as a verb. These two competing views have been under debate since the

1950s (Gong, 1997) and the controversy remains.

We choose syntactic distribution as our main criterion for POS tagging, because this

approach complies with the principles adopted in contemporary linguistics theories (such

as the notion of head projections in X-bar theory and GB theory) and it captures the

similarity between Chinese and other languages. One argument that is often used against

this approach is as follows: because many verbs in Chinese can also occur in noun positions,

using this approach will require these verbs to have two tags, thus increasing the size of the

lexicon. We �nd this argument not convincing. First, many verbs (such as monosyllabic

verbs) cannot occur in noun positions. The extra POS tag allows us to distinguish the

verbs that can occur in noun positions from the ones that cannot. Second, if there are

262

generalizations about what verbs can occur in noun positions and what cannot, these

generalizations can be represented as morphological rules, which allows the lexicon to

be expanded automatically. On the other hand, if no such generalizations exist and the

nominalization process is largely idiosyncratic, it supports the view that verbs that can

be nominalized should be marked by having two POS tags in the lexicon. Third, the

phenomenon that many verbs can also occur in noun positions is not unique to Chinese,

and the standard treatment in other languages is to give them both tags.

B.4.2 Choice of a POS tagset

Once we have decided that the POS tagging should be based on syntactic distribution of

words, the next step is choosing a POS tagset and then �nding tests to distinguish each

pair of POS tags in the tagset. The annotators then use the tests to tag the words in the

Treebank.

The syntactic distribution of a word can be seen as a set of positions at which the word

can appear, such as the argument position of a VP, the head of a VP and so on. The task

of choosing a tagset and tagging a corpus with the tagset can be stated as follows (see

Figure B.3):

Given the set of wordsW , a set of positions P , and a relation f � f(w; p) j w 2
W;p 2 Pg, �nd a set of POS tags T , a relation f1 � f(w; t) j w 2 W; t 2 Tg,
and a relation f2 � f(t; p) j t 2 T; p 2 Pg, such that f is a subset of f1 Æ f2.12

In this representation, f speci�es the positions in which the words in W can appear, f1

gives all possible POS tags of a word, and f2 speci�es the positions in which each POS

tag can appear. Once T , f1, and f2 are de�ned, any pair (t1; t2) of POS tags can be

distinguished by comparing the sets of positions in which t1 and t2 can appear. To tag a

word w in a sentence, the annotator �rst decides the position p of the word in the sentence,

then chooses a tag t such that (w; t) 2 f1 and (t; p) 2 f2.

Given W , P and f , it is obvious that the choice of T , f1 and f2 is not unique. For the

purpose of Treebank annotation, we prefer the following measures to be small:
12f1 Æ f2 is the composition of two relations; that is, (x; y) 2 f1 Æ f2 if and only if there exists z such that

(x; z) 2 f1 and (z; y) 2 f2.

263

w1
w2
w3

adverb
noun VP

modVP

arg

headVP

POS tags(T)

w1
w2
w3

VP

modVP

head

arg

VP

(a)

(b)

words(W) positions(P)

words(W) positions(P)

f1 f 2

f

...

... ...

...

...
verb

Figure B.3: Words, POS tagset and positions

(1) The number of over-generated (word, position) pairs (i.e., j f1 Æ f2 � f j)

(2) The size of the tagset (i.e., j T j)

(3) The average number of POS tags per word (i.e., j f1 j = jW j)

(4) The average number of positions per POS tag (i.e., j f2 j = j T j)

Notice that, even with this preference, there is no optimal solution for the choice of

T , f1, and f2 because the four measures cannot be minimalized at the same time. For

example, when T has only one tag (i.e., all the words have the same tag), (2) and (3) are

minimal but (1) and (4) are not. At the other extreme, if T has a distinct tag for each

word, (1) and (3) are minimal, but (2) is not.

Because there is no optimal solution, we used the approach in Table B.2 to �nd T , f1

and f2. Steps (A), (B), and (C) were done during the writing of the �rst draft of the POS

guidelines, and step (D) was done during the POS tagging annotation and the revision

of the POS guidelines. For the Chinese Treebank, in step (A) we chose a tagset with 11

tags (noun, verb, determiner, number, measure word, adverb, preposition, coordinating

conjunction, interjection, punctuation and a tag for the rest). The tagset had 34 tags

after step (C). Several observations are in order. First, splitting tags under the condition

in (C) may be desirable because, although the splitting slightly increases the size of the

264

tagset, it greatly reduces the number of over-generated (word, position) pairs while the

other two measures (i.e., (3) and (4)) remain roughly the same. Second, splitting the tags

in step (D-4) is much more expensive than doing it in step (C); therefore, the borderline

examples (i.e., the examples that might cause some tags to be split) should be considered

as early as possible. In an ideal situation, all the borderline examples should be considered

and the POS tagset should be �xed before the POS tagging starts, and step (D-4) should

be unnecessary. However, in practice, when guideline designers write the �rst draft of

the guidelines, they have not examined the whole Treebank; therefore, they do not know

all the possible (word, position) pairs in the Treebank (i.e., f is not completely de�ned).

As a result, they may fail to split some tags in step (C) and have to do it in step (D-4)

instead; in other words, the tagset may have to be expanded after the �rst pass of the POS

annotation starts. Fortunately, through careful design of the �rst version of the guidelines,

no such revision was needed in our project.

B.5 Syntactic bracketing guidelines

In this section, we discuss three issues on bracketing guidelines.

B.5.1 Representation scheme

The �rst issue is the choice of a representation scheme. Given that the sentences in the

corpus are very long and complex, the representation scheme needs to be robust enough

to be able to represent all the important grammatical relations and at the same time be

suÆciently simple so that the annotators can follow it easily and consistently. An overly

complicated scheme will slow down productivity and jeopardize consistency and accuracy.

At the syntactic level, we �rst need to decide what type of syntactic representation

should be used in the Treebank. Two commonly used representations are phrase struc-

tures and dependency structures. To choose between these two representations, we need to

consider many factors such as the feasibility of the conversion between them (see Chapter

7), the amount of linguistic work based on each representation, the preferences of guide-

line designers, annotators, and the potential users of the Treebank, and the availability of

265

/* Steps (A)-(C) are used to create the �rst draft of the POS tagging guidelines */
(A) choose an initial tagset T , which includes only the well-established tags (such

as nouns, verbs, and adverbs) and a tag that captures the rest of tags;
(B) choose f2 so that it includes only the basic positions for each tag;

(For example, nouns can be the argument of VPs and verbs can be the heads of VPs)
(C) for (each tag t in T)

if (there is a position p 2 P , such that both Wt;p and Wt;p� are large)
/* Wt;p is the set of words with tag t that can appear in position p */
/* Wt;p� is the set of words with tag t that cannot */
then consider splitting t into two tags t1 and t2 and updating f2 accordingly;

/* Step (D) is used during the POS tagging stage */
(D) for (each word token w in the Treebank)

(D-1) choose a position p for the word;
if (w; p) 62 f
then add (w; p) to f ;

(D-2) choose a tag t in T ;
(D-3) if (w; t) 62 f1

then add (w; t) to f1;
(D-4) if (t; p) 62 f2

then add (t; p) to f2;
if (both Wt;p and Wt;p� are large)
then consider splitting the tag t into two tags t1 and t2 and
updating f1 and f2 accordingly;

Table B.2: The process of creating and revising POS guidelines

266

annotation tools. We chose phrase structures for the Chinese Treebank for several reasons:

First, it seems that for Chinese the conversion from phrase structures to dependency struc-

tures is easier than the conversion in the opposite direction; Second, there is more Chinese

linguistic work done based on phrase structures than dependency structures; Third, most

tools available to us (such as parsers and corpus search tools, see Section B.7) are based

on phrase structures.

The next question is what information should be included in a phrase structure. We

decided to use syntactic labels, function tags, reference indexes, and empty categories. In

our representation scheme, each bracket has a syntactic label, zero or more function tags,

and zero or more reference indexes. The syntactic label indicates the syntactic category of

the phrase, whereas the function tags provide additional information such as adjunct type.

For example, when a noun phrase such as zu�o-ti�an/yesterday modi�es a verb phrase, its

syntactic label will be NP (for noun phrase) and it is given a function tag -TMP, indicating

that the NP is a temporal phrase and its function is similar to that of an adverbial phrase.

Reference indexes and a subset of empty categories (such as trace and operator) are used

to mark syntactic movement or to indicate where a phrase should be interpreted. Other

empty categories are used to mark dropped arguments, ellipsis, and so on. Our scheme is

similar to the one adopted in the Penn English Treebank (Marcus et al., 1994).

B.5.2 Syntactic constructions

The bracketing guidelines have to specify the treatment of various syntactic constructions.

Many of them (such as the ba-construction and the bei-construction) have been studied for

decades, but there is still no consensus on their treatment. To tackle this issue, we

� studied the linguistics literature,

� attended conferences on Chinese linguistics,

� had discussions with our linguistic colleagues,

� studied and tested our analyses on the relevant sentences in our corpus, and

� used special tags to mark crucial elements in these constructions.

267

For example, the word b�a in the ba-construction has been argued to be a case marker, a

secondary topic marker, a preposition, a verb, and so on in the literature. The word is

clearly di�erent from other prepositions and other verbs, and there is no strong evidence

to support the view that Chinese has overt case markers or topic markers. We believe that

the word is more likely to be a verb than a preposition, but to distinguish it from other

verbs, we assign a unique POS tag BA to it, and in the bracketing guidelines we provide

detailed instructions on how to annotate the construction. If some users of our Treebank

prefer to treat it as a preposition, our annotation can be easily converted to accommodate

that approach.

B.5.3 Ambiguities

Another issue with respect to bracketing guidelines is the treatment of ambiguous sen-

tences. In the guidelines, we classi�ed ambiguous sentences according to the cause of the

ambiguity, and speci�ed the treatment for each type. We decided to give each sentence

exactly one syntactic structure even if the sentence was ambiguous because of several

reasons. First, our Treebank is a collection of newspaper articles, rather than a list of in-

dependent sentences; as a result, very few sentences are truly ambiguous once they are put

into the context of the whole article. Second, people often don't see the ambiguity until

it is pointed out by someone else. Asking annotators to mark more than one reading of a

truly ambiguous sentence not only substantially slows down the annotation but also a�ects

the consistency of the annotation as it is almost certain that the annotators would miss

certain readings. Third, some sentences could be annotated in several ways and all these

annotations are closely related and have roughly the same meaning. For these sentences,

giving one annotation is suÆcient, and other related annotations can be derived easily if

needed. For example, some Chinese adverbs can occur either before the subject or after

it. When the subject is phonologically empty as a result of subject drop or relativization,

the empty subject (which is an empty category) can be put either before the adverb or

after the adverb with no di�erence in meaning. Consequently, the adverb either attaches

to the VP or the S, and there is no syntactic evidence to favor one annotation over the

other. If nothing is speci�ed in the guidelines and the annotator is allowed to mark the

268

empty subject in either place, inconsistency is bound to occur as either annotation can be

chosen. To eliminate this kind of inconsistency, in the guidelines we speci�ed one of the

two positions as the "default" position for the empty subject, and required annotators to

always put the empty subject in that position.

B.6 Quality control

A major challenge in providing a high-quality Treebank is ensuring consistency and ac-

curacy. Carefully documented guidelines (see Section B.2 | B.5), linguistically trained

annotators,13 and annotation supporting tools (see Section B.7) are pre-requisites to cre-

ating a high quality Treebank. In this section, we describe our strategy for quality control.

B.6.1 Two passes in each phase

As mentioned in Section B.1, the Treebank annotation was done in two phases: the �rst

phase was word segmentation and POS tagging, and the second phase was syntactic brack-

eting. At each phase, all the data were annotated at least twice with a second annotator

correcting the output of the �rst annotator. In addition to correcting human errors made

in the �rst pass, the second pass was necessary also because the guidelines had been revised

after the �rst pass (see Section B.2).

B.6.2 Double re-annotation in the bracketing phase

During the second pass of the bracketing phase, we randomly selected 20% of the Treebank

for double re-annotation. By double re-annotation, we mean that annotators re-annotate

the same �les from the output of the �rst pass. Double re-annotation allowed us to

quantitatively evaluate inter-annotator consistency and annotation accuracy. The process

of this evaluation was as follows: First, some �les from the output of the �rst pass were

13Both of our annotators are linguistics graduate students, one of whom co-authored the Bracketing

Guidelines and regularly participated in our meetings on Chinese syntax. Their knowledge of linguistics in

general, and syntax in particular, was crucial for the success of the project.

269

randomly selected and double re-annotated. Next, a software tool named evalb14 was

used to compare the two re-annotations, and any discrepancies were carefully examined

and the annotation was revised | this may in turn lead to revisions of the guidelines to

prevent a recurrence of similar inconsistencies. Then, the corrected, reconciled annotation

was considered the Gold Standard, and each of the two original re-annotations was then

run against the Gold Standard and against each other, to provide a measure of individual

annotator accuracy and inter-annotator consistency.

We �rst used this method to re-train annotators at the beginning of the second pass,15

when forty �les from the output of the �rst pass were randomly selected for double re-

annotation. After that, the annotators continued to correct �rst pass data and each week

two �les were randomly selected and double re-annotated, and the re-annotations were

compared. In this way, we continued to monitor the consistency and accuracy and to

enhance guidelines. Figure B.4 shows the accuracy of each annotator (denoted by 1st

annotator and 2nd annotator in the chart) compared to the Gold Standard and the inter-

annotator consistency during the second pass after the re-training period. The Figure

shows both measures are in the high 90% range, which is very satisfactory.16

B.6.3 Error detection using LexTract

After the second pass of the word segmentation and POS tagging phase, a list of (word,

POS tag) pairs was compiled out of the Treebank and manually checked. This process

revealed many POS tagging errors.

As discussed in Section 6.6, we also ran LexTract to build a Treebank grammar after the

second pass of bracketing phase. We then checked the grammar for implausible templates

and �xed the corresponding errors in the Treebanks.

14The software tool was written by Satoshi Sekine and Mike Collins. It takes two input �les as input

and produces precision, recall, numbers of crossing brackets, and other measures.

15The re-training process was necessary because we had revised the guidelines after the �rst pass.
16Because only two �les (about 600 words) were double re-annotated and compared each week and the

complexity of sentences varied a lot from �le to �le, the consistency and accuracy rates for these �les did

not keep improving as time went by, as one might have expected.

270

80

85

90

95

100

0 2 4 6 8 10 12

(P
re

ci
si

on
+R

ec
al

l)/
2

week

1st annotator
2nd annotator

agreement

Figure B.4: Accuracy and inter-annotator consistency during the second pass

B.7 The role of NLP tools

Throughout the project, we used various NLP tools to speed up and improve the quality

of the Treebank annotation.

B.7.1 Preprocessing tools

Before the �rst pass of the word segmentation and POS tagging phase, our Treebank

was automatically segmented and POS tagged by the BBN/GTE integrated stochastic

segmenter and POS tagger. The tagger was trained on the Academia Sinica Balanced

Corpus (ASBC). Because our tagset and the one used by the ASBC are quite di�erent

(Xia, 2000a), we wrote a tool to convert the ASBC tags into our tags automatically.

Although the mapping between the two tagsets was not one-to-one and the conversion

introduced new errors, this pre-processing process greatly accelerated annotation.

When the bracketing phase began, a Chinese parser was not available to us; therefore,

we started the bracketing annotation from scratch. Since the completion of our 100K-

word Treebank, two parsers have been trained on the data and their precision and recall

rates were about 80% (Bikel and Chiang, 2000). One of these parsers has been used

to pre-process the new data that we are annotating, and the pre-processing doubles the

bracketing speed (Chiou et al., 2001).

271

B.7.2 Annotation and conversion tools

To facilitate human annotation, our annotators used an interface that was created for

the English Penn Treebank (Marcus et al., 1994), which was then extended to include

word segmentation operations and other features for Chinese. The interface restricted

the combinations of keys that annotators could use, and therefore reduced the number

of careless human errors. For example, only legitimate tags (whose names appear in a

prede�ned tagset) could be entered, and the left and right brackets were added or removed

in one operation so that there were no unmatched brackets. The interface also indented

the phrase structures automatically.

In addition, we developed a collection of tools that converted the Treebank from one

format to another, as various NLP tools used slightly di�erent formats. When we revised

the guidelines after the �rst pass of each phase, some modi�cation of the Treebank was

done automatically by these conversion tools.

B.7.3 Corpus search tools

One reason that the annotation guidelines require revision is that, quite often when the

guideline designers write the draft of the guidelines, they have not checked all the relevant

data in the Treebank; as a result, they don't realize that the guidelines do not cover certain

cases until the annotators �nd these cases in the Treebank.

Corpus search tools allow the guideline designers to extract from the Treebank the

relevant sentences that match certain patterns. A search can be conducted on raw data,

segmented and POS tagged data, or bracketed data. For the �rst two types of data, sim-

ple string matching tools (such as grep in UNIX) are suÆcient. For pattern matching

on bracketed data, more sophisticated tools are needed. One of such tools (called Cor-

pusSearch) was developed by Beth Randall.17 We used this tool after the �rst pass of the

bracketing to pull out all the sentences in the Treebank that were relevant to a particular

syntactic construction, and then examined these sentences to ensure that our guidelines

could handle all these sentences correctly.

17More information about this tool can be found at http://www.cis.upenn.edu/ brandall/CSManual and

http://www.ling.upenn.edu/mideng/ppcme2dir/corpussearch.html.

272

B.7.4 Quality-control tools

As mentioned in Section B.6, we used two tools for quality control: one is the evalb, which

calculates the precision rate, recall rate, and the number of crossing brackets given two

annotations; the other is LexTract, which extracts grammars from Treebanks.

It is worth noting that both guideline preparation and Treebank annotation require

much human e�ort. While there is no doubt that using the NLP tools mentioned in this

section (such as word segmenter, POS tagger, and parser) can greatly speed up Treebank

annotation, it does not help a lot with guideline preparation because a thorough linguistic

study of the language is an irreplaceable and substantial part of guideline preparation.

B.8 Treebank guidelines and hand-crafted grammars

In many aspects, the process of making Treebank guidelines is very similar to the process

of creating a grammar by hand: both require a thorough study of the linguistics literature

and extensive discussion with linguists (see the discussion in Section B.2 { B.5); both

guidelines and hand-crafted grammars require revisions when they cannot account for

new data. Therefore, it is not surprising that the grammar extracted from a high-quality

Treebank by LexTract may look very much like a hand-crafted grammar.

On the other hand, there are two major di�erences between guidelines and hand-

crafted grammar. First, unlike hand-crafted grammars, the guidelines can use special tags

to mark a phenomenon without deciding the nature of the phenomenon. For example,

distinguishing arguments from adjuncts is notoriously diÆcult. For each dependent of a

head, the developers of a hand-crafted LTAG have to decide whether to treat the dependent

as an argument or an adjunct. In contrast, the designers of a Treebank can use function

tags to mark the function of the dependent (e.g., location, time, purpose, and so on)

without making the argument/adjunct decision, and later the users of the Treebank can

determine whether they want to treat the dependent with certain function tags as an

argument. Another example is the usage of empty categories in Treebanks and hand-

crafted grammars. To treat constructions such as NP-extraposition (see Section 6.7),

the developers of a hand-crafted LTAG have to decide whether the relation between the

273

extraposed phrase and the position where the phrase is interpreted is due to syntactic

movement. If it is due to syntactic movement, the gap and the \antecedent" should

appear in one elementary tree or one multi-component set. If it is not, this tree-locality

requirement should not be imposed. In contrast, the designers of the Treebank can use a

special empty category to mark the NP-extraposition construction without deciding the

nature of the movement.

The second di�erence between annotation guidelines and hand-crafted grammars is that

annotation guidelines have to explicitly specify the treatment for ambiguous sentences,

whereas grammars for human languages are always ambiguous and the selection of the

most likely parse for ambiguous sentences is left to the parsers that use the grammars.

B.9 Summary

We have discussed in details the approach that we used to build the Chinese Penn Tree-

bank, including the development of the guidelines for word segmentation, POS tagging

and syntactic bracketing, our methodology for quality control, and the roles of various

NLP tools. We believe that our approach is general enough to apply to monolingual text

annotation for other languages as well, and will be testing this hypothesis.

274

References

Anne Abeill�e. 1994. Syntax or Semantics? Handling Nonlocal Dependencies with MC-

TAGs or Synchronous TAGs. Computational Intelligence, 10:471{485.

Breckenridge Baldwin, Christine Doran, Je�rey Reynar, Michael Niv, B. Srinivas, and

Mark Wasson. 1997. EAGLE: An Extensible Architecture for General Linguistic En-

gineering. In Proc. of RIAO97, Montreal.

Tilman Becker, Owen Rambow, and Michael Niv. 1992. The Derivational Generative

Power, or, Scrambling is Beyond LCFRS. Technical Report IRCS-92-38, University of

Pennsylvania.

Tilman Becker. 1994. Patterns in Metarules. In Proc. of the 3rd International Workshop

on TAG and Related Frameworks (TAG+3), Paris, France.

Ann Bies, Mark Ferguson, Karen Katz, and Robert MacIntyre. 1995. Bracketing Guide-

lines for Treebank II Style Penn Treebank Project.

Daniel M. Bikel and David Chiang. 2000. Two Statistical Parsing Models Applied to the

Chinese Treebank. In Proc. of the 2nd Chinese Language Processing Workshop, Hong

Kong, China.

E. Black, S. Abney, D. Flickinger, C. Gdaniec, and et. al. 1991. A Procedure for Quantita-

tively Comparing the Syntactic Coverage of English grammars. In Proc. of the DARPA

Speech and Natural Language Workshop.

Tonia Bleam. 1994. Clitic Climbing in TAG: A GB Perspective. In Proc. of 3rd Interna-

tional Workshop on TAG and Related Frameworks (TAG+3).

J. Bresnan, R. Kaplan, S. Peters, and A. Zaenen. 1982. Cross-Serial Dependencies in

Dutch. Linguistic Inquiry.

Marie-Helene Candito. 1996. A Principle-Based Hierarchical Representation of LTAGs.

In Proc. of COLING-1996, Copenhagen, Denmark.

275

R. Chandrasekar and B. Srinivas. 1997. Gleaning information from the Web: Using Syntax

to Filter out Irrelevant Information. In Proc. of AAAI 1997 Spring Symposium on NLP

on the World Wide Web.

Eugene Charniak. 1997. Statistical Parsing with a Context-Free Grammar and Word

Statistics. In Proc. of AAAI-1997.

John Chen and K. Vijay-Shanker. 2000. Automated Extraction of TAGs from the Penn

Treebank. In Proc. of the 6th International Workshop on Parsing Technologies (IWPT-

2000), Italy.

John Chen, Srinivas Bangalore, and K. Vijay-Shanker. 1999. New Models for Improving

Supertag Disambiguation. In Proc. of EACL-1999.

David Chiang. 2000. Statistical Parsing with an Automatically-Extracted Tree Adjoining

Grammar. In Proc. of ACL-2000.

Chinese Knowledge Information Processing Group. 1996. Shouwen Jiezi - A study of

Chinese Word Boundaries and Segmentation Standard for Information Processing (in

Chinese). Technical report, Taipei: Academia Sinica.

Fu-Dong Chiou, David Chiang, and Martha Palmer. 2001. Facilitating Treebank Annotat-

ing Using a Statistical Parser. In Proc. of the Human Language Technology Conference

(HLT-2001), San Diego, CA.

Michael Collins, Jan Haji�c, Lance Ramshaw, and Christoph Tillmann. 1999. A Statistical

Parser for Czech. In Proc. of ACL-1999, pages 505{512.

Mike Collins. 1997. Three Generative, Lexicalised Models for Statistical Parsing. In Proc.

of ACL-1997.

Bernard Comrie. 1987. The World's Major Languages. Oxford University Press, New

York.

Thomas Cormen, Charles Leiserson, and Ronald Rivest. 1990. Introduction to Algorithms.

The MIT Press.

276

Michael Covington. 1994a. An Empirically Motivated Reinterpretation of Dependency

Grammar. Research Report AI-1994-01.

Michael Covington. 1994b. GB Theory as Dependency Grammar. Research Report AI-

1992-03.

Christy Doran, Beth Ann Hockey, Anoop Sarkar, Bangalore Srinivas, and Fei Xia. 2000.

Evolution of the XTAG System. In Anne Abeill�e and Owen Rambow, editors, Tree

Adjoining Grammar: Formalism, Computation, Applications. CSLI Publications.

Christine Doran. 1998. Incorporating Punctuation into the Sentence Grammar: A Lexi-

calized Tree Adjoining Grammar Perspective. Ph.D. thesis, University of Pennsylvania.

Christine Doran. 2000. Punctuation in a Lexicalized Grammar. In Proc. of 5th Interna-

tional Workshop on TAG and Related Frameworks (TAG+5).

B. J. Dorr. 1993. Machine Translation: a View from the Lexicon. MIT Press, Boston,

Mass.

Roger Evans and Gerald Gazdar. 1989. Inference in DATR. In Proc. of EACL-1989.

Roger Evans, Gerald Gazdar, and David Weir. 1995. Encoding Lexicalized Tree Adjoin-

ing Grammars with a Nonmonotonic Inheritance Hierarchy. In Proc. of ACL-1995,

Cambridge, MA.

Shengli Feng. 1998. Short Passives in Modern and Classical Chinese. In The 1998 Yearbook

of the Linguistic Association of Finland (41-68).

Haim Gaifman. 1965. Dependency Systems and Phrase-Structure Systems. Information

and Control, pages 304{337.

Qianyan Gong. 1997. Zhongguo Yufaxue Shi (The History of Chinese Syntax). Yuwen

Press.

J. Goodman. 1997. Probabilistic Feature Grammars. In Proc. of the International Work-

shop on Parsing Technologies.

277

XTAG Research Group. 2001. A lexicalized tree adjoining grammar for english. Technical

Report IRCS 01-03, University of Pennsylvania.

Jan Haji�c. 1998. Building a Syntactically Annotated Corpus: The Prague Dependency

Treebank. Issues of Valency and Meaning (Festschrift for Jarmila Panevov�a).

Chunghye Han and Na-Rae Han. 2001. Part-of-Speech Tagging Guidelines for the Penn

Korean Treebank (forthcoming).

Chunghye Han, Na-Rae Han, and Eon-Suk Ko. 2001. Bracketing Guidelines for the Penn

Korean Treebank (forthcoming).

Caroline Heycock. 1987. The Structure of the Japanese Causative. University of Pennsyl-

vania.

J. Higginbotham. 1984. English Is Not a Context-Free Language. Linguistic Inquiry.

Aravind Joshi and Yves Schabes. 1997. Tree Adjoining Grammars. In A. Salomma and

G. Rosenberg, editors, Handbook of Formal Languages and Automata. Springer-Verlag,

Herdelberg.

Aravind Joshi and B. Srinivas. 1994. Disambiguation of Super Parts of Speech (or Su-

pertags): Almost Parsing. In Proc. of COLING-1994.

Aravind Joshi and K. Vijay-Shanker. 1999. Compositional Semantics with LTAG: How

Much Underspeci�cation Is Necessary? In Proc. of 3nd International Workshop on

Computational Semantics.

Aravind K. Joshi, L. Levy, and M. Takahashi. 1975. Tree Adjunct Grammars. Journal of

Computer and System Sciences.

Aravind K. Joshi. 1985. Tree Adjoining Grammars: How Much Context Sensitivity Is Re-

quired to Provide a Reasonable Structural Description. In D. Dowty, I. Karttunen, and

A. Zwicky, editors, Natural Language Parsing, pages 206{250. Cambridge University

Press, Cambridge, U.K.

278

Aravind K. Joshi. 1987. An Introduction to Tree Adjoining Grammars. In Alexis

Manaster-Ramer, editor, Mathematics of Language. John Bebjamins Publishing Co,

Amsterdam/Philadelphia.

Laura Kallmeyer and Aravind Joshi. 1999. Underspeci�ed Semantics with LTAG.

R. Kasper, B. Kiefer, K. Netter, and K. Vijay-Shanker. 1995. Compiling HPSG into TAG.

In Proc. of ACL-1995.

Karin Kipper, Hoa Trang Dang, and Martha Palmer. 2000. Class-based Construction of

a Verb Lexicon. In Proc. of AAAI-2000.

Anthony S. Kroch and Aravind K. Joshi. 1985. The Linguistic Relevance of Tree Ad-

joining Grammars. Technical Report MS-CIS-85-16, Department of Computer and

Information Science, University of Pennsylvania.

Anthony S. Kroch. 1989. Asymmetries in Long Distance Extraction in a TAG Gram-

mar. In M. Baltin and A. Kroch, editors, Alternative Conceptions of Phrase Structure.

University of Chicago Press.

Alexander Krotov, Mark Hepple, Robert Gaizauskas, and Yorick Wilks. 1998. Compacting

the Penn Treebank Grammar. In Proc. of ACL-1998.

Seth Kulick. 1998. TAG and Clitic Climbing in Romance. In Proc. of 4th International

Workshop on TAG and Related Frameworks (TAG+4).

Seth Kulick. 2000. Constraining Non-Local Dependencies in Tree Adjoining Grammar:

Computational and Linguistic Perspectives. Ph.D. thesis, University of Pennsylvania.

Beth Levin. 1993. English Verb Classes and Alternations: A Preliminary Investigation.

The University of Chicago Press.

Y. Liu, Q. Tan, and X. Shen. 1993. Segmentation Standard for Modern Chinese Informa-

tion Processing and Automatic Segmentation Methodology.

David M. Magerman. 1995. Statistical Decision-Tree Models for Parsing. In Proc. of

ACL-1995.

279

Benoit Mandelbrot. 1954. Structure formelle des textes et communication. Word, 10.

Christopher D. Manning and Hinrich Sch�utze. 1999. Foundations of Statistical Natural

Language Processing. The MIT Press.

M. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993. Building a Large Annotated

Corpus of English: the Penn Treebank. Computational Linguistics.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, et al. 1994. The Penn Treebank:

Annotating Predicate Argument Structure. In Proc of ARPA speech and Natural lan-

guage workshop.

K. F. McCoy, K. Vijay-Shanker, and G. Yang. 1992. A Functional Approach to Generation

with TAG. In Proc. of ACL-1992.

Dan Melamed. 1999. Bitext maps and alignment via pattern recognition. Computational

Linguistics.

Gunter Neumann. 1998. Automatic Extraction of Stochastic Lexicalized Tree Grammars

from Treebanks. In Proc. of the 4th International Workshop on TAG and Related

Frameworks (TAG+4).

Jerome L. Packard, editor. 1998. New Approaches to Chinese Word Formation: Morphol-

ogy, Phonology and the Lexicon in Modern and Ancient Chinese. Berlin ; New York :

Mouton de Gruyter.

Jerome L. Packard. 2000. The Morphology of Chinese: A linguistic and Cognitive Ap-

proach. Cambridge University Press.

Martha Palmer, Owen Rambow, and Alexis Nasr. 1998. Rapid Prototyping of Domain-

Speci�c Machine Translation System. In Proc. of AMTA-1998, Langhorne, PA.

Martha Palmer, Joseph Rosenzweig, and William Schuler. 1999. Capturing motion verb

generalizations with synchronous tag. In Patrick St. Dizier, editor, Predicative Forms

in NLP: Text, Speech and Language Technology Series, pages 229{256. Kluwer Press,

Dordrecht, The Netherlands.

280

Rashmi Prasad and Anoop Sarkar. 2000. Comparing Test-Suite Based Evaluation and

Corpus-Based Evaluation of a Wide-Coverage Grammar for English. In Proc. of LREC

satellite workshop Using Evaluation within HLT Programs: Results and Trends, Athen,

Greece.

Owen Rambow and Aravind K. Joshi. 1997. A Formal Look at Dependency Grammars

and Phrase Structure Grammars with Special Consideration of Word-Order Phenom-

ena. In L. Wenner, editor, Recent Trends in Meaning-Text Theory. John Benjamin,

Amsterdam, Philadelphia.

Adwait Ratnaparkhi. 1998. Maximum Entropy Models for Natural Language Ambiguity

Resolution. Ph.D. thesis, University of Pennsylvania.

James Rogers and K. Vijay-Shanker. 1994. Obtaining Trees from Their Descriptions: An

Application to Tree Adjoining Grammars. Computational Intelligence, 10(4).

Beatrice Santorini. 1990. Part-of-Speech Tagging Guidelines for the Penn Treebank

Project. Technical report, Department of Computer and Information Science, Uni-

versity of Pennsylvania.

Anoop Sarkar and Aravind Joshi. 1996. Coordination in Tree Adjoining Grammars:

Formalization and Implementation. In Proc. of COLING-1996, Copenhagen, Denmark.

Anoop Sarkar. 2001. Applying Co-Training Methods to Statistical Parsing. In Proc. of

NAACL-2001.

The XTAG-Group. 1998. A Lexicalized Tree Adjoining Grammar for English. Technical

Report IRCS 98-18, University of Pennsylvania.

Yves Schabes and Stuart Shieber. 1992. An Alternative Conception of Tree-Adjoining

Derivation. In Proc. of ACL-1992.

Yves Schabes and Richard Waters. 1995. Tree insertion grammar: a cubic-time parsable

formalism that lexicalizes context-free grammar without changing the trees produced.

Computational Linguistics.

281

Yves Schabes. 1990. Mathematical and Computational Aspects of Lexicalized Grammars.

Ph.D. thesis, University of Pennsylvania.

Anna Maria Di Sciullo and Edwin Williams. 1987. On the De�nition of Word. The MIT

Press.

Masayoshi Shibatani, editor. 1976. The Grammar of causative constructions. New York:

Academic Press.

S. Shieber. 1984. Evidence Against the Context-Freeness of Natural Language. SRI

International Technical Note no. 330.

W. Skut, B. Krenn, T. Brants, and H. Uszkoreit. 1997. An Annotation Scheme for Free

Word Order Languages. In Proc. of 5th International Conference of Applied Natural

Language.

R. Sproat, W. Gale, C. Shih, and N. Chang. 1996. A Stochastic Finite-state Word

Segmentation Algorithm for Chinese. Computational Linguistics.

B. Srinivas, Anoop Sarkar, Christine Doran, and Beth Ann Hockey. 1998. Grammar and

Parser Evaluation in the XTAG Project. In Proc. of the Workshop on Evaluation of

Parsing Systems, Granada, Spain.

B. Srinivas. 1997. Complexity of Lexical Descriptions and Its Relevance to Partial Parsing.

Ph.D. thesis, University of Pennsylvania.

Matthew Stone and Christine Doran. 1997. Sentence Planning as Description Using Tree

Adjoining Grammar. In Proc. of ACL-1997.

K. Vijay-Shanker and Yves Schabes. 1992. Structure Sharing in Lexicalized Tree Adjoining

Grammar. In Proc. of COLING-1992, Nantes, France.

K. Vijay-Shanker. 1987. A Study of Tree Adjoining Grammars. Ph.D. thesis, Department

of Computer and Information Science, University of Pennsylvania.

282

Bonnie Webber and Aravind Joshi. 1998. Anchoring a Lexicalized Tree Adjoining Gram-

mar for Discourse. In Proc. of ACL-COLING Workshop on Discourse Relations and

Discourse Markers.

Bonnie Webber, Alistair Knott, Matthew Stone, and Aravind Joshi. 1999. What Are

Little Trees Made of: A Structural and Presuppositional Account Using Lexicalized

TAG. In Proc. of International Workshop on Levels of Representation in Discourse

(LORID-1999).

D. Weir. 1988. Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D.

thesis, University of Pennsylvania.

Fei Xia and Tonia Bleam. 2000. A Corpus-Based Evaluation of Syntactic Locality in TAGs.

In Proc. of 5th International Workshop on TAG and Related Frameworks (TAG+5).

Fei Xia and Martha Palmer. 2000. Evaluating the Coverage of LTAGs on Annotated

Corpora. In Proc. of LREC satellite workshop Using Evaluation within HLT Programs:

Results and Trends.

Fei Xia, Martha Palmer, K. Vijay-shanker, and Joseph Rosenzweig. 1998. Consistent

Grammar Development Using Partial-tree Descriptions for Lexicalized Tree-Adjoining

Grammar. In Proc. of tag+4.

Fei Xia, Martha Palmer, and K. Vijay-Shanker. 1999. Toward Semi-Automating Grammar

Development. In Proc. of 5th Natural Language Processing Paci�c Rim Symposium

(NLPRS-1999), Beijing, China.

Fei Xia, Martha Palmer, and Aravind Joshi. 2000a. A Uniform Method of Grammar

Extraction and its Applications. In Proc. of Joint SIGDAT Conference on Empirical

Methods in Natural Language Processing and Very Large Corpora (EMNLP-2000).

Fei Xia, Martha Palmer, Nianwen Xue, Mary Ellen Okurowski, John Kovarik, Shizhe

Huang, Tony Kroch, and Mitch Marcus. 2000b. Developing Guidelines and Ensuring

Consistency for Chinese Text Annotation. In Proc. of the 2nd International Conference

on Language Resources and Evaluation (LREC-2000), Athens, Greece.

283

Fei Xia, Chunghye Han, Martha Palmer, and Aravind Joshi. 2001. Automatically Ex-

tracting and Comparing Lexicalized Grammars for Di�erent Languages. In Proc. of

the Seventeenth International Joint Conference on Arti�cial Intelligence (IJCAI-2001),

Seattle, Washington.

Fei Xia. 2000a. The Part-of-Speech Guidelines for Chinese Treebank Project. Technical

Report IRCS 00-07, University of Pennsylvania.

Fei Xia. 2000b. The Segmentation Guidelines for Chinese Treebank Project. Technical

Report IRCS 00-06, University of Pennsylvania.

Nianwen Xue and Fei Xia. 2000. The Bracketing Guidelines for Chinese Treebank Project.

Technical Report IRCS 00-08, University of Pennsylvania.

George Kingsley Zipf. 1949. Human Behavior and the Principle of Least E�ort. Hafner

Publishing Company.

284

