AUTOMATIC GRAMMAR GENERATION FROM TWO DIFFERENT PERSPECTIVES

Fei Xia

A DISSERTATION
in
Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2001

Professor Martha Palmer and Aravind Joshi
Supervisors of Dissertation

Val Tannen
Graduate Group Chair
COPYRIGHT
Fei Xia
2001
To my family
Acknowledgements

I thank everyone at the University of Pennsylvania (UPenn) and elsewhere who has helped me to mature not only as a scientist but also as a human being.

I thank my advisors Martha Palmer and Aravind Joshi. Martha is not only a wonderful mentor, but also a dear friend. Her steady support and encouragement helped me to go through many difficult times. Dr. Joshi has always been my role model. He taught me to trust myself and follow my heart.

I thank my dissertation committee members — ChuRen Huang from the Academia Sinica in Taiwan, Vijay Shanker from the University of Delaware, Mitch Marcus, Steven Bird, and Tony Kroch from UPenn — for their valuable suggestions and comments about my thesis research. I would also like to thank Hiyan Alshawi from the AT&T Research Lab for being a great mentor when I worked there as a summer intern.

I thank people at the Computer and Information Science Department (CIS) and the Institute for Research in Cognitive Science (IRCS) at the University of Pennsylvania from whom I have learned a lot about natural language processing, linguistics, psycholinguistics, and more. This includes people in the XTAG group (Bangalore Srinivas, Christy Doran, Beth Ann Hockey, Seth Kulick, Rajesh Bhatt, Rashmi Prasad, Carlos Prolo, Karin Kipper, William Schuler, Hoa Trang Dang, Alexandra Kinyon, Libin Shen, David Chiang), CIS/IRCS faculty members (Bonnie Webber, Mark Steedman, Lyle Ungar, Scott Weinstein, Jean Gallier, Sampath Kannan, Insup Lee, Peter Buneman, Susan Davison, Val Tannen, Carl Gunter, Dale Miller, Robin Clark, and Ellen Prince), students/alumni (Michael Collins, Adwait Ratnaparkhi, Jason Eisner, Dan Melamed, Matthew Stone, Breck Baldwin, Jeff Raynar, Owen Rambow, Nobo Komagata, Jong Park, Joseph Rosenzweig, Tom
Morton, Dan Bikel, Szuting Yi, Dimitris Samaras, Kyle Hart, Wenfei Fan, Hongliang Xie, Jiaping Shi, Liwei Zhao, Suejung Huh, Hee-Hwan Kwak, Peggy Li, Alexander Williams, John Bell, and Allan Lee), visiting scholars and PostDocs (Michelle Strube, Paola Merlo, Mark Dras, Mickey Chandrashekhar, and Shuly Wintner), and stuff members (Mike Felker, Gail Shannon, Amy Dunn, Amy Deitz, Christine Metz, Laurel Sweeney, Ann Bies, Nicole Bolden, Trisha Yannuzzi, and Jennifer MacDougall). I especially like to thank Anoop Sarkar, Chunjhye Han, Susan Converse, Tonia Bleam and Jeffrey Lidz for their supports and friendships.

I thank Nianwen Xue, Fu-Dong Chiou, Shizhe Huang, Zhibiao Wu, Shudong Huang, John Kovarik, Mary Ellen Okurowski, James Huang, Shengli Feng, Andi Wu, Zhixing Jiang, DeKai Wu, Jin Wang, Shiwen Yu, Huang Changning, and others for helping me and my team to build the Chinese Penn Treebank. I especially thank Tony Kroch for inspiring my love for linguistics.

I would like to thank my friends with whom I have spent time enjoying life itself. Special thanks go to Xiaobai Wang, Zheng Xue, Mingkang Xu, Yujin Zhao, Yuanyuan Zhou, Hong Jin, Zhijun Zhang, Zhijun Liu, Qin Lin, Aimin Sun, and Jin Yu.

Last, but not the least, I thank my family for supporting me all these years. I thank my parents for their unconditional love and for letting me to pursue my dreams. I thank my two sisters for supporting me in every stage of my life. I thank my kids for bringing so much joy to my life. I especially thank my husband for showing me a totally different perspective of life and for making me a better person.
Abstract

AUTOMATIC GRAMMAR GENERATION FROM TWO DIFFERENT
PERSPECTIVES

Fei Xia

Supervisors: Professor Martha Palmer and Aravind Joshi

Grammars are valuable resources for natural language processing. We divide the process of grammar development into three tasks: selecting a formalism, defining the prototypes, and building a grammar for a particular human language. After a brief discussion about the first two tasks, we focus on the third task. Traditionally, grammars are built by hand and there are many problems with this approach. To address these problems, we built two systems that automatically generate grammars. The first system (LexOrg) solves two major problems in grammar development: namely, the redundancy caused by the reuse of structures in a grammar and the lack of explicit generalizations over the structures in a grammar. LexOrg takes several types of specification as input and combines them to automatically generate a grammar. The second system (LexTract) extracts Lexicalized Tree Adjoining Grammars (LTAGs) and Context-free Grammars (CFGs) from Treebanks, and builds derivation trees that can be used to train statistical LTAG parsers directly. In addition to creating Treebank grammars and producing training materials for parsers, LexTract is also used to evaluate the coverage of existing hand-crafted grammars, to compare grammars for different languages, to detect annotation errors in Treebanks, and to test certain linguistic hypotheses. LexOrg and LexTract provide two different perspectives on grammars. In LexOrg, elementary trees in an LTAG grammar are the result
of combining language specifications such as tree descriptions. In LexTract, elementary
trees are building blocks of syntactic structures in a Treebank. LexOrg makes explicit the
language specifications that form elementary trees, whereas LexTract makes explicit the
elementary trees that form syntactic structures. The systems provide a rich set of tools
for language description and comparison that greatly enhances our ability to build and
maintain grammars and Treebanks effectively.
Contents

Acknowledgements iv

Abstract vi

1 Introduction 1

1.1 Problems with the traditional approach 2
1.2 Our approach to grammar development 3
1.2.1 Task 1: selecting a formalism 3
1.2.2 Task 2: defining the prototypes 5
1.2.3 Task 3: building a grammar for a human language 5
1.3 Chapter summaries .. 7

2 Overview of LTAG 10

2.1 Basics of the LTAG formalism 11
2.1.1 Elementary trees 11
2.1.2 Two operations ... 11
2.1.3 Derived trees and derivation trees 13
2.1.4 Multi-anchor trees 13
2.1.5 Feature structures 15
2.2 LTAG for natural languages 16
2.3 Multi-component TAGs (MCTAGs) 18
2.4 Components of LTAG grammars for natural languages 20
2.4.1 An LTAG grammar is divided into a set of templates and a lexicon. 20

viii
2.4.2 A lexicon is split into a syntactic database and a morphological
database ... 22
2.4.3 Templates are grouped into tree families 23
2.5 The XTAG grammar .. 24
2.6 Summary .. 25

3 The target grammars .. 26
3.1 Four types of structural information .. 26
3.1.1 Head and its projections .. 27
3.1.2 Arguments of a head .. 28
3.1.3 Modifiers of a head .. 29
3.1.4 Syntactic variations .. 29
3.2 The prototypes of the target grammars .. 29
3.3 \(G_{Table} \): a grammar generated from three tables 32
3.4 The problems with \(G_{Table} \) .. 35
3.5 Two approaches .. 38
3.5.1 LexOrg: building grammars from descriptions 39
3.5.2 LexTract: extracting grammars from Treebanks 40
3.6 Summary .. 41

4 LexOrg: a system that builds LTAGs from descriptions 42
4.1 Structure sharing among templates .. 43
4.2 The overall approach of LexOrg .. 44
4.3 The definition of a description .. 46
4.3.1 A compact representation of LTAG grammars 46
4.3.2 The previous definition of description .. 49
4.3.3 The definition of descriptions in LexOrg .. 51
4.4 The types of descriptions .. 55
4.4.1 Head and its projections .. 56
4.4.2 Arguments of a head .. 57
4.4.3 Modifiers of a head .. 57
4.4.4 Syntactic variations ... 58
4.5 The Tree Generator ... 59
 4.5.1 Step 1: Combine descriptions to form a new description 59
 4.5.2 Step 2: Generate a set of trees from the new description 61
 4.5.3 Step 3: Build templates from the trees 67
4.6 The Description Selector 68
 4.6.1 The function of the Description Selector 68
 4.6.2 The definition of a subcategorization frame 70
 4.6.3 The algorithm for the Description Selector 72
4.7 The Frame Generator ... 74
 4.7.1 The function of the Frame Generator 75
 4.7.2 The definition of a lexical rule 76
 4.7.3 The algorithm for the Frame Generator 76
4.8 The experiments ... 77
4.9 Creating language-specific information 79
 4.9.1 Subcategorization frames and lexical rules 79
 4.9.2 Descriptions ... 80
4.10 Comparison with other work 83
 4.10.1 Becker’s HyTAG .. 86
 4.10.2 The DATR system 92
 4.10.3 Candito’s system 95
4.11 Summary .. 98

5 LexTract: a system that extracts LTAGs from Treebanks 100
 5.1 Overview of the English Penn Treebank 101
 5.2 Overall approach of LexTract 102
 5.3 Three input tables to LexTract 106
 5.3.1 Head percolation table 106
 5.3.2 Argument table 107
 5.3.3 Tagset table .. 108
 5.4 Extracting LTAG grammars from Treebanks 108
5.4.1 Stage 1: Converting \textit{trees} into derived trees ... 109
5.4.2 Stage 2: Building \textit{etrees} ... 109
5.4.3 Uniqueness of decomposition ... 114
5.4.4 Relations between nodes in \textit{trees} and \textit{etrees} .. 118
5.5 Creating derivation trees .. 118
5.6 Building multi-component tree sets .. 122
5.7 Building context-free rules and sub-templates 126
5.8 Some special cases .. 128
 5.8.1 Coordination .. 128
 5.8.2 Empty categories ... 129
 5.8.3 Punctuation marks ... 131
 5.8.4 Predicative auxiliary trees .. 134
5.9 Comparison with other work .. 136
 5.9.1 CFG extraction algorithms .. 136
 5.9.2 LTAG extraction algorithms ... 138
5.10 Summary .. 140

6 Applications of \textsc{LexTract} .. 142
 6.1 Treebank grammars as stand-alone grammars 142
 6.1.1 Two Treebank grammars for English ... 143
 6.1.2 Coverage of a Treebank grammar ... 144
 6.1.3 Quality of a Treebank grammar .. 148
 6.2 Treebank grammars combined with other grammars 149
 6.2.1 Methodology .. 150
 6.2.2 Stage 1: Extracting templates from Treebanks 151
 6.2.3 Stage 2: Matching templates in the two grammars 151
 6.2.4 Stage 3: Classifying unmatched templates 154
 6.2.5 Stage 4: Combining two grammars ... 155
 6.3 Comparison of Treebank grammars for different languages 156
 6.3.1 Three Treebanks for three languages .. 157
6.3.2 Stage 1: Extracting Treebank grammars that are based on the same tagset .. 159
6.3.3 Stage 2: Matching templates .. 159
6.3.4 Stage 3: Classifying unmatched templates 164
6.3.5 The next step ... 166
6.4 Lexicons as training data for Supertaggers 169
6.4.1 Overview of Supertaggers .. 169
6.4.2 Experiments on training and testing Supertaggers 171
6.5 Derivation trees as training data for statistical LTAG parsers ... 175
6.5.1 Overview of Sarker’s parser .. 175
6.5.2 Adjustments to the Treebank grammars for parsing 176
6.6 LexTract as a tool for error detection in Treebank annotation ... 177
6.6.1 Algorithm for error detection ... 177
6.6.2 Types of error that LexTract detects 178
6.6.3 Experimental results ... 182
6.7 MC sets for testing the Tree-locality Hypothesis 183
6.7.1 Stage 1: Finding “non-local” examples 183
6.7.2 Stage 2: Classifying “non-local” examples 183
6.7.3 Stage 3: Studying “non-local” constructions 185
6.8 Summary ... 189

7 Phrase structures and dependency structures 191
7.1 Dependency structures .. 192
7.2 Converting phrase structures to dependency structures 194
7.3 Converting dependency structures to phrase structures 196
7.3.1 Algorithm 1 .. 197
7.3.2 Algorithm 2 .. 198
7.3.3 Algorithm 3 .. 199
7.3.4 Algorithm 1 and 2 as special cases of Algorithm 3 206
7.4 Experiments .. 210
7.5 Discussion ... 212
7.5.1 Extending Algorithm 3 .. 212
7.5.2 Empty categories in dependency structures 213
7.5.3 Running LexTract on a dependency Treebank 213
7.6 Summary .. 217

8 Conclusion .. 219

8.1 Contributions .. 219
8.1.1 The prototypes of elementary trees 219
8.1.2 LexOrg: a system that generates grammars from descriptions 220
8.1.3 LexTract: a system that extracts grammars from Treebanks 221
8.1.4 The role of linguistic experts in grammar development 223
8.1.5 Relationship between two types of syntactic representation 224
8.2 Future work .. 224
8.2.1 Combining the strengths of LexOrg and LexTract 225
8.2.2 Building and using parallel Treebanks 226

A Language-specific tables .. 229

A.1 The formats of the language-specific tables 229
A.1.1 Tagset table ... 230
A.1.2 Head percolation table .. 230
A.1.3 Argument table .. 231
A.1.4 Modification table .. 232
A.1.5 Head projection table ... 232
A.2 Tables for the English Penn Treebank 232
A.2.1 Tagset table ... 232
A.2.2 Head percolation table 237
A.2.3 Argument table .. 238
A.2.4 Modification table .. 238
A.2.5 Head projection table ... 239
A.3 Tables for the Chinese Penn Treebank 241
A.3.1 Tagset table ... 241

xiii
A.3.2 Head percolation table 244
A.3.3 Argument table ... 245
A.4 Tables for the Korean Penn Treebank 246
A.4.1 Tagset table ... 246
A.4.2 Head percolation table 248
A.4.3 Argument table ... 248

B Building a high-quality Treebank 250
B.1 Overview of the Chinese Penn Treebank Project 251
 B.1.1 Project inception .. 252
 B.1.2 Annotation process 253
B.2 Methodology for guideline preparation 254
B.3 Segmentation guidelines 256
 B.3.1 Notions of word .. 256
 B.3.2 An experiment ... 258
 B.3.3 Tests of wordness 260
B.4 POS tagging guidelines 262
 B.4.1 Criteria for POS tagging 262
 B.4.2 Choice of a POS tagset 263
B.5 Syntactic bracketing guidelines 265
 B.5.1 Representation scheme 265
 B.5.2 Syntactic constructions 267
 B.5.3 Ambiguities .. 268
B.6 Quality control ... 269
 B.6.1 Two passes in each phase 269
 B.6.2 Double re-annotation in the bracketing phase 269
 B.6.3 Error detection using LexTract 270
B.7 The role of NLP tools .. 271
 B.7.1 Preprocessing tools 271
 B.7.2 Annotation and conversion tools 272
 B.7.3 Corpus search tools 272
B.7.4 Quality-control tools ... 273
B.8 Treebank guidelines and hand-crafted grammars 273
B.9 Summary .. 274

Bibliography ... 275
List of Tables

1.1 The comparison between three approaches for grammar development ... 7

3.1 An algorithm that builds templates using three tables 34

4.1 The definition of a description given in (Rogers & Vijay-shanker, 1994) ... 49
4.2 The definition of a tree given in (Rogers & Vijay-shanker, 1994) 50
4.3 The new definition of description used in LexOrg 52
4.4 The new definition of tree used in LexOrg 53
4.5 A naive algorithm for building Modmin(ϕ) 62
4.6 A revised version of the naive algorithm for building Modmin(ϕ) 63
4.7 A much more efficient algorithm for building Modmin(ϕ) 64
4.8 An algorithm that builds a template from a tree 69
4.9 The algorithm for the Description Selector 73
4.10 Some examples of subcategoryization frames, lexical rules, and descriptions for English and Chinese .. 79
4.11 The similarities and the differences between metarules, lexical rules, and descriptions ... 89

5.1 Treebank tags that appear in this chapter 102
5.2 Algorithm for finding head-child of a node 110
5.3 Algorithm that marks a node as either an argument or an adjunct 111
5.4 Algorithm for building a derived tree 112
5.5 Algorithm for building etrees from a derived tree 115
5.6 The bidirectional function between nodes in ttrees and etrees 118
5.7 Algorithm for building derivation trees ... 121
5.8 Algorithm for building MC sets and testing whether the coindexation be-
 tween a pair of nodes is tree-local .. 125
6.1 The tags in the PTB that are merged to a single tag in the XTAG grammar
 and in G_2 ... 143
6.2 Two LTAG grammars extracted from the PTB 143
6.3 The types of unknown (word, template) pairs in Section 23 of the PTB 147
6.4 The numbers of templates in G_1 and G_2 with the threshold set to various
 values .. 148
6.5 Matched templates and their coverage .. 153
6.6 Matched templates when certain annotation differences are disregarded 154
6.7 Classification of 289 unmatched templates 155
6.8 Sizes of the Treebanks and their tagsets 158
6.9 Grammars extracted from the three Treebanks 158
6.10 Treebank grammars with the new tagset 159
6.11 Numbers of matched templates, context-free rules, and sub-templates in
 three grammar pairs .. 161
6.12 The numbers of templates in the Treebank grammars with the threshold set
 to various values .. 162
6.13 Matched templates in the Treebank grammars with various threshold values 163
6.14 The distribution of the Chinese templates that do not match any English
 templates ... 166
6.15 The top 40 words with highest numbers of Supertags in G_2 172
6.16 Supertagging results based on three different conversion algorithms 174
6.17 Algorithm for error detection .. 178
6.18 Numbers of tree sets and their frequencies in the PTB 183
6.19 Classification of 999 MC sets that look non-tree-local 184

7.1 Algorithm 3 for converting d-trees to phrase structures 203
7.2 Algorithm for attaching the phrase structure for the dependent to that for
the head ... 204
7.3 Algorithm for handling Chomsky modifiers 207
7.4 Algorithm for moving up conjunctions 207
7.5 Algorithm for attaching punctuation marks to phrase structures 208
7.6 The complete Algorithm 3 for converting d-tree to phrase structure 208
7.7 Performance of three conversion algorithms on Section 0 of the PTB . 211
7.8 Some examples of heads with more than one projection chain 212
7.9 Algorithm for building elementary trees directly from a d-tree 215
7.10 Algorithm for updating the elementary trees for the head and the dependent 216

8.1 The comparison between three approaches for grammar development . 220

B.1 Comparison of word segmentation results from seven groups 259
B.2 The process of creating and revising POS guidelines 266
List of Figures

1.1 Combining elementary trees to generate a parse tree for a sentence 4
1.2 Three prototypes of elementary trees in the target grammars 5
1.3 The organization of the dissertation ... 8

2.1 The substitution operation ... 12
2.2 The adjoining operation ... 12
2.3 Elementary trees, derived tree and derivation tree for *underwriters still draft policies* .. 13
2.4 Two derivation trees for a derived tree .. 14
2.5 Multi-anchor trees ... 14
2.6 The substitution operation with features ... 15
2.7 The adjoining operation with features .. 15
2.8 Features for the subject-verb agreement .. 16
2.9 An LTAG grammar that generates the language $\{a^n b^n c^n d^n\}$ 16
2.10 Cross-serial dependencies in Dutch .. 18
2.11 Trees for the wh-question *What does John like* 19
2.12 Trees for the wh-question *What does Mary think Mike believes John likes* 19
2.13 Tree-local MCTAG ... 20
2.14 An elementary tree is equivalent to a (word, template) pair 21
2.15 A set of elementary trees is equivalent to a set of templates plus a lexicon 21
2.16 A lexicon is split into two databases ... 22
2.17 A tree family .. 23
2.18 The components of an LTAG grammar .. 24
3.1 The notions of head in X-bar theory and GB-theory 28
3.2 Four templates in the transitive tree family 28
3.3 The three forms of elementary trees in the target grammar 30
3.4 A spine-etree in which an argument is further expanded 31
3.5 A spine-etree which is also an auxiliary tree 32
3.6 An example that shows the input and the output of the algorithm in Table
3.1 .. 36
3.7 Among four of the templates in G_{Table} for ditransitive verbs, the last two
are implausible. ... 37
3.8 Among four of the templates in G_{Table} for relative clauses, the last two are
implausible. .. 38
3.9 The algorithm that generates grammars from tables alone 39
3.10 The input and output of LexOrg 39
3.11 Tree description for a relative clause 40
3.12 The conceptual approach of LexTract 40
3.13 The relations between G_{Table}, G_L and G_{Table}^* 41

4.1 Templates in two tree families 43
4.2 Structures shared by the templates in Figure 4.1 44
4.3 Combining descriptions to generate templates 45
4.4 The architecture of LexOrg 45
4.5 The fragment of the lexicon given in (Vijay-shanker & Schabes, 1992) 47
4.6 The definition of six verb classes given in (Vijay-shanker & Schabes, 1992) . 47
4.7 Rules to handle wh-movement and passive 47
4.8 A description and two templates that subsume it 49
4.9 Two representations of a description 52
4.10 Two representations of a tree 55
4.11 A tree and the template that is built from the tree 56
4.12 Two sets of descriptions that generate the same tree 57
4.13 Subcategorization descriptions 58
4.14 A description for purpose clauses 58

xx
4.15 A description for wh-movement .. 59
4.16 The function of the Tree Generator 60
4.17 An example that illustrates how the new algorithm works 65
4.18 A tree and the template built from it 68
4.19 The function of the Tree Generator 70
4.20 The function of the Description Selector 71
4.21 Templates in two tree families ... 75
4.22 The lexical rule for the causative/inchoative alternation 75
4.23 The architecture of LexOrg .. 78
4.24 A template and a set of descriptions that can generate it 81
4.25 A more desirable description set if the template is for English 81
4.26 Descriptions built from language-specific tables 83
4.27 A description for wh-movement 84
4.28 The lexical hierarchy given in (Vijay-Shanker & Schabes, 1992) 85
4.29 A different hierarchy for English verb classes 85
4.30 Applying metarules to templates 87
4.31 The result of applying a metarule to a template may not be unique 88
4.32 The ways that templates in a tree family are related in two systems 91
4.33 The ways that templates in different tree families are related in two systems 92
4.34 An elementary tree and its DATR representation 92
4.35 The principal lexical hierarchy and the definitions of two classes which are 93
given in (Evans et. al., 1995) ... 93
4.36 The lexical rules for topicalization, wh-movement, and passive in the DATR 94
 system .. 94
4.37 The different ways that two systems handle wh-movement 98

5.1 Architecture of LexTract ... 101
5.2 The Treebank annotation for the sentence Supply troubles were on the minds 103
 of Treasury investors yesterday, who worried about the flood.103
5.3 The conceptual approach of LexTract 103
5.4 The real implementation of LexTract 105
5.5 Two LTAG grammars that generate the same *tre* 105
5.6 The percolation of lexical items from heads to higher projections 107
5.7 A *tre* and the derived tree .. 110
5.8 The *etre* set is a decomposition of the derived tree. 114
5.9 The extracted *etrees* from the derived tree. 116
5.10 Several tree sets for a derived tree 117
5.11 An example of the bidirectional function between nodes in *trees* and *etrees* 119
5.12 LTAG derivation trees for the sentence 120
5.13 The *tre* as a derived tree .. 122
5.14 *Etrees* for co-indexed constituents 123
5.15 The coindexation between two nodes may or may not be *tree-local* 124
5.16 The LTAG derivation tree for the sentence when multi-adjunction is allowed 124
5.17 The *etrees* that connect the ones for *ICH*-2 and SBAR-2 in the derivation tree .. 126
5.18 The context-free rules derived from a template 126
5.19 The decomposition of *etree* templates (In sub-templates, @ marks the anchor in a subcategorization frame, * marks the modifiee in a modifier-modifiee pair) ... 127
5.20 Spines, subcategorization chains, and subcategorization frames 128
5.21 Two ways to handle a coordinated VP in the sentence *John bought a book and has read it four times* ... 129
5.22 Handling a sentence with ellipsis: {Mary came yesterday,} *John did too* 131
5.23 Handling a sentence with wh-movement from an argument position 132
5.24 Handling a sentence with wh-movement from an adjunct position 132
5.25 Elementary trees with punctuation marks 133
5.26 A sentence with quotation marks .. 133
5.27 An example in which the *etre* for *believed* should be a predicative auxiliary tree: *the person who Mary believed bought the book* 134
5.28 Two alternatives for the verb *believed* when there is no long-distance movement 135
5.29 The *etre* for gerund in the XTAG grammar 135

xxii
5.30 An example in which the *etree* for *believed* should not be a predicative auxiliary *tree*: the person who believed Mary bought the book

6.1 The growth of templates in G_1 .. 144
6.2 Frequency of *etree* templates versus rank (both on log scales) 145
6.3 The growth of templates in the core of G_1 .. 146
6.4 A frequent, incorrect *etree* template .. 148
6.5 The templates for pure intransitive verbs and ergative verbs in XTAG *t-match* the template for all intransitive verbs in G_2 151
6.6 Templates in XTAG with expanded subtrees *t-match* the one in G_2 when
 the expanded subtrees are disregarded ... 152
6.7 An example of *s-match* ... 153
6.8 Templates for adjectives modifying nouns ... 154
6.9 Some templates that appear in both the English and Chinese grammars .. 160
6.10 The percentages of matched template tokens in the English and Chinese

 Treebanks with various threshold values 163
6.11 Spuriously unmatched templates .. 165
6.12 Truly unmatched templates ... 166
6.13 Creating *etree-to-etree* mapping from a parallel Treebank 168
6.14 Handling instances of structural divergence 170
6.15 Marking the inserted nodes in the fully bracketed *ttree* and the corre-
 sponding *etrees* ... 177
6.16 An error caused by incompatible labels .. 179
6.17 An error caused by a missing function tag ... 180
6.18 An error caused by a missing subject node ... 181
6.19 Three templates and corresponding context-free rules 182
6.20 An example of the NP-extraposition construction 185
6.21 An example of extraction from coordinated phrases 186
6.22 An example of the *d*-extraposition construction 186
6.23 An example of the comparative construction 187
6.24 An example of the *of*-PP construction ... 187
Chapter 1

Introduction

Grammars are valuable resources for natural language processing (NLP). A large-scale grammar may incorporate a vast amount of information on morphology, syntax, and semantics for a human language, and it takes tremendous human effort to build and maintain. The last decade has seen a surge of research on various statistical approaches, which do not rely on hand-crafted grammars. In many NLP tasks such as parsing, statistical approaches often outperform rule-based approaches. A question that has often been raised is do we need grammars for NLP tasks such as parsing and machine translation?

We believe that the answer is positive. Instead of listing all the benefits of having a grammar, we just want to point out the following. First, the notions of statistical approaches and grammars are not mutually exclusive. A statistical system might not use a hand-crafted grammar, but that does not necessarily mean that it does not benefit from grammars that are implicit in the data that the system used. For instance, most, if not all, statistical parsers such as (Collins, 1997; Goodman, 1997; Charniak, 1997; Ratnaparkhi, 1998) are trained and tested on Treebanks.¹ Some of these parsers explicitly use the grammars extracted from the Treebanks, whereas others choose a more indirect way. In Appendix B, we shall show that the process of building a Treebank is very similar to the process of manually crafting a grammar. Therefore, we can say that the parsers that are trained on Treebanks actually benefit from the implicit grammars provided by

¹A Treebank is a collection of sentences annotated with syntactic structures.
Treebank developers via the Treebanks. Second, there are statistical systems that do not use grammars at all. These systems were designed this way either because no high-quality grammars were available or the designers of the systems did not find a way to take advantage of grammars. It is likely that the performance of such systems could be improved if the information in high-quality grammars were properly used.

Traditionally, grammars are built by hand. As the sizes of grammars grow, this approach presents a series of problems. The main goal of this dissertation is to provide two alternatives for grammar development. This chapter is organized as follows: in Section 1.1, we discuss the problems with the traditional approach; in Section 1.2, we present an overview of our approach; in Section 1.3, we give a summary of the chapters in the dissertation.

1.1 Problems with the traditional approach

Traditionally, grammars are built by hand. As the sizes of grammars grow, this approach presents several problems as follows:

Human effort: The process of creating a grammar is very labor-intensive and time-consuming.

Flexibility: Because making a grammar requires much human effort, it is impossible for grammar developers to provide a set of different grammars for the same human language so that grammar users can choose the ones that best fit their applications.

Coverage: It is difficult to evaluate the coverage of a hand-crafted grammar on naturally occurring data. The most common way to evaluate a grammar is to create a test suite and check whether the grammar can generate the grammatical sentences and reject the ungrammatical ones in the test suite. It is difficult to extend this evaluation method to large-scale naturally occurring data.

Statistical information: There are no weights associated with the primitive elements in a hand-crafted grammar. To use the grammar for parsing, other sources of information (such as heuristic rules) have to be found to help us select the most likely parse
trees.

Consistency: Primitive elements of a grammar often share common structures. For instance, the primitive elements of a lexicalized tree adjoining grammar are called *elementary trees.* The structures for syntactic movement such as wh-movement appear in many elementary trees. To make certain changes in a grammar, all the related primitive elements have to be manually checked. The process is inefficient and cannot guarantee consistency.

Generalization: Quite often, the underlying linguistic information (such as the description for wh-movement) is not expressed explicitly in a grammar. As a result, from the grammar itself (which includes hundreds of primitive elements), it is difficult to grasp the characteristics of a particular language, to compare languages, and to build a grammar for a new language given existing grammars for other languages.

To address these problems, we built two systems that generate grammars automatically, one from descriptions and the other from Treebanks, as described in the next section.

1.2 Our approach to grammar development

We divide the work of grammar development into three tasks: (1) selecting a formalism, (2) defining the prototypes, and (3) building a grammar for a particular human language. Our main focus is on the third task.

1.2.1 Task 1: selecting a formalism

Various formalisms have been proposed for natural languages, such as Context-Free Grammars (CFGs), Head-Driven Phrase Structure Grammars (HPSGs), and Combinatory Categorial Grammars (CCGs). In this dissertation, we choose the Lexicalized Tree-Adjoining Grammar (LTAG) formalism because its linguistic and computational properties make it appealing for representing various phenomena in natural languages and it has been used in several aspects of natural language understanding (e.g., parsing (Schabes, 1990; Srinivas,
1997), semantics (Joshi and Vijay-Shanker, 1999; Kallmeyer and Joshi, 1999), lexical semantics (Palmer et al., 1999; Kipper et al., 2000), and discourse (Webber and Joshi, 1998; Webber et al., 1999) and a number of NLP applications (e.g., machine translation (Palmer et al., 1998), information retrieval (Chandrasekar and Srinivas, 1997), generation (Stone and Doran, 1997; McCoy et al., 1992), and summarization applications (Baldwin et al., 1997)). Many issues and strategies covered in this dissertation apply to other formalisms as well.

The primitive elements of an LTAG grammar are called elementary trees. They are combined by two operations: substitution and adjoining. Each elementary tree is anchored by a lexical item. As an example, Figure 1.1 shows a set of elementary trees that are used to generate a parse tree for the sentence They still draft policies. A more detailed introduction to LTAG is given in Chapter 2.

Figure 1.1: Combining elementary trees to generate a parse tree for a sentence
1.2.2 Task 2: defining the prototypes

In the second task, we decide what kinds of information should be included in a grammar. In addition to the lexical item that anchors an elementary tree, there are four types of information that are important and should be included. They are the head and its projection, the arguments of the head, the modifiers of the head, and syntactic variations.

Once we have decided what should be included in a grammar, we then define the prototypes of grammatical structures for natural languages. The LTAG formalism is a general framework. It can be used to generate formal languages such as \(\{a^n b^n c^n\} \) in addition to natural languages. Because its usage is not restricted to natural languages, the formalism itself has no constraints on the elementary trees in an LTAG grammar. In this dissertation, we are interested only in grammars for natural languages. To ensure that the target grammars (i.e., the grammars built by our two systems) are linguistically plausible, we define three prototypes of elementary trees according to the relationship between the anchor of the elementary tree and other nodes in the tree, as shown in Figure 1.2. Every elementary tree in the target grammars falls into one of the prototypes. The details about the prototypes are covered in Chapter 3.

1.2.3 Task 3: building a grammar for a human language

The prototypes that we just defined are language independent. The next task is to use them to build a grammar for a particular human language. We provide two systems that
automatically generate grammars.

The first system, called LexOrg, generates elementary trees in a grammar by combining tree descriptions. The main idea is as follows. Each elementary tree includes one or more of the four types of information mentioned previously. They are the head and its projections, the arguments of the head, the modifiers of the head, and syntactic variations. Each type of information by itself provides only a partial description of an elementary tree, but combining these partial descriptions will provide complete information about the elementary tree. LexOrg requires its users to specify tree descriptions for these four types of information. To produce the grammar, LexOrg takes these tree descriptions as the input and combines them to automatically generate the elementary trees. LexOrg has two major advantages: first, grammars created by LexOrg are consistent because elementary trees are generated automatically from tree descriptions; second, the underlying linguistic information is expressed explicitly as tree descriptions, subcategorization frames, and lexical rules. The details about LexOrg are covered in Chapter 4.

The second system, LexTract, extracts grammars from Treebanks. Currently, most large-scale Treebanks, such as the English Penn Treebank (Marcus et al., 1993), are not based on existing grammars. Instead, these Treebanks were annotated by human beings who followed annotation guidelines. Because the process of creating annotation guidelines is similar to the process of building a grammar by hand, we can assume that an implicit grammar, which is hidden in the annotation guidelines, generates the syntactic structures in a Treebank. We call this implicit grammar a Treebank grammar. LexTract takes as input a Treebank and three tables containing information about the Treebank, and produces a Treebank grammar and associated information. For instance, given the parse tree in Figure 1.1(b) and three tables which we shall explain in Section 5.3, LexTract will produce a grammar that includes all the elementary trees in Figure 1.1(c). LexTract also builds a derivation tree that shows how the elementary trees are combined to form the parse tree. LexTract has several advantages. First, the system is totally language-independent. Given a new Treebank, it only takes a linguistic expert a few hours to create the language-specific tables. Once the tables are ready, LexTract can extract a grammar from the Treebank in a few seconds. Second, the system allows its users to have some control over the type of
Table 1.1: The comparison between three approaches for grammar development

<table>
<thead>
<tr>
<th></th>
<th>traditional approach</th>
<th>LexOrg</th>
<th>LexTract</th>
</tr>
</thead>
<tbody>
<tr>
<td>human effort</td>
<td>tremendous (×)</td>
<td>some (□)</td>
<td>little (√)</td>
</tr>
<tr>
<td>flexibility</td>
<td>very little (×)</td>
<td>some (□)</td>
<td>some (□)</td>
</tr>
<tr>
<td>coverage</td>
<td>hard to evaluate (×)</td>
<td>can be inferred from the input (□)</td>
<td>covers the source Treebank (□)</td>
</tr>
<tr>
<td>statistical info</td>
<td>not available (×)</td>
<td>not available (×)</td>
<td>available (√)</td>
</tr>
<tr>
<td>consistency</td>
<td>not guaranteed (×)</td>
<td>consistent (√)</td>
<td>not guaranteed (×)</td>
</tr>
<tr>
<td>generalization</td>
<td>hidden in elementary trees (×)</td>
<td>expressed explicitly (√)</td>
<td>hidden in elementary trees (×)</td>
</tr>
</tbody>
</table>

Treebank grammar to be extracted. The users can run LexTract with different settings to get several different Treebank grammars, and then choose the one that best fits their goals. Third, the system produces not only a Treebank grammar, but also the information about how frequently certain elementary structures are combined to form syntactic structures. This information can be used to train statistical parsers. In Chapters 5 and 6, we describe LexTract and its applications in detail.

The differences between the traditional approach, LexOrg, and LexTract are summarized in Table 1.1. We use the symbols ×, □, and √ to indicate that an approach did not solve the problem, partially solved the problem, and solved the problem, respectively. From the table, it is clear that both LexOrg and LexTract have advantages over the traditional approach.

1.3 Chapter summaries

The structure of the dissertation is shown in Figure 1.3. An arrow from one chapter to another indicates that the former should be read before the latter. Unlike many dissertations that have a separate chapter for a literature survey, we include the comparison between our approaches and related work in three individual chapters (i.e., Chapter 4, 5, and 7). The following is a summary of the chapters in this dissertation:

Chapter 2: In this chapter, we first give a brief overview of the LTAG formalism; then we discuss the properties of LTAG grammars; next we describe an extension of the formalism (namely, multi-component TAGs); later we discuss the components of
an LTAG grammar; finally we briefly introduce the XTAG grammar, a large-scale hand-crafted grammar for English.

Chapter 3: In this chapter, we first define the prototypes of the target grammars; that is, we specify the kind of grammars that our systems produce. Then we give an algorithm that generates grammars from three tables that contain language information. Next we point out the problems with this approach and show two alternatives.

Chapter 4: In this chapter, we present a grammar development system (called LexOrg). The system takes three types of specifications of a language (namely, subcategorization frames, lexical rules, and tree descriptions), and automatically generates an LTAG grammar by combining these specifications. We have used the system to build a grammar for English and another for Chinese. We shall compare our approach with related work, including HyTAG (Becker, 1994), the DATR system (Evans et al., 1995), and Candito’s system (Candito, 1996).

Chapter 5: In this chapter, we present a system, called LexTract, which extracts grammars from Treebanks and produces derivation trees for the sentences in the Treebanks. We compare the system with other grammar extraction algorithms, including (Krotov et al., 1998), (Neumann, 1998), and (Chen and Vijay-Shanker, 2000).

Chapter 6: In this chapter, we present a number of applications for LexTract and report experimental results of these applications. First, we describe our methodology for using Treebank grammars to estimate and improve the coverage of hand-crafted grammars. Second, we discuss our experiments on the comparison of Treebank grammars for different languages. Third, we have re-trained Srinivas’ Supertagger and
compared the results with the ones that use other extraction algorithms. Fourth, we show that the grammars and derivation trees produced by LexTract have been successfully used to train a statistical LTAG parser (Sarkar, 2001). Fifth, we have used the Treebank grammar to detect certain types of annotation errors in the Chinese Penn Treebank (Xia et al., 2000b). Last, we test the Tree-locality Hypothesis (Xia and Bleam, 2000) using the Treebank grammar extracted from the English Penn Treebank.

Chapter 7: Throughout the dissertation, we use phrase structures as the syntactic representation for grammars and Treebanks. Another commonly used syntactic representation is dependency structure. In this chapter, we discuss the relationship between phrase structures and dependency structures, and explore various algorithms for conversion between them. Our experiments show that, using simple heuristic rules and language-specific information, the conversion algorithms that we propose work very well for most cases.

Chapter 8: In this chapter, we summarize the dissertation and point out directions for further work.

In addition to the eight chapters, this dissertation also includes two appendices. In Appendix A, we show the formats and content of the language-specific tables that are used by LexTract to extract grammars from the English, Chinese and Korean Penn Treebanks. In Appendix B, we discuss our experience in designing the Chinese Penn Treebank, and show that the process of creating a high-quality Treebank bears much similarity to the process of building a grammar by hand.
Chapter 2

Overview of LTAG

There are various grammar frameworks proposed for natural languages: Context-free grammars (CFGs), Head Grammars (HGs), Head-driven Phrase Structure Grammars (HPSGs), Combinatory Categorial Grammars (CCGs) and so on. For a discussion of the relations among these formalisms, see (Weir, 1988; Kasper et al., 1995) among others. We take Lexicalized Tree-adjoining Grammars (LTAGs) as representative of a class of lexicalized grammars. LTAG is appealing for representing various phenomena in natural languages due to its linguistic and computational properties. In the last decade, LTAG has been used in several aspects of natural language understanding (e.g., parsing (Schabes, 1990; Srinivas, 1997), semantics (Joshi and Vijay-Shanker, 1999; Kallmeyer and Joshi, 1999), lexical semantics (Palmer et al., 1999; Kipper et al., 2000), and discourse (Webber and Joshi, 1998; Webber et al., 1999)) and a number of NLP applications (e.g., machine translation (Palmer et al., 1998), information retrieval (Chandrasekar and Srinivas, 1997), generation (Stone and Doran, 1997; McCoy et al., 1992), and summarization applications (Baldwin et al., 1997)).

LTAG is a formalism, rather than a grammar. To avoid the confusion, from now on, we shall use the LTAG formalism to refer to the formalism, and use an LTAG grammar to refer to a grammar that is based on the LTAG formalism.

In this chapter, we give an overview of the LTAG formalism and its relevance to natural languages. Due to the large amount of work based on LTAG, the overview is not intended to be comprehensive. Instead, we shall focus on the aspects that are most relevant to this
dissertation. For a more comprehensive discussion on the formalism, see (Joshi et al., 1975; Joshi, 1985; Joshi, 1987; Joshi and Schabes, 1997). This chapter is organized as follows. In Section 2.1, we give a brief introduction of the basic LTAG formalism. In Section 2.2, we discuss the properties of LTAG that make it an appealing formalism for natural language processing. In Section 2.3, we describe an extension of the LTAG formalism, namely, Multi-component TAG (MCTAG). In Section 2.4, we introduce the components of an LTAG grammar. In Section 2.5, we briefly discuss the XTAG English grammar, which is going to be used in later chapters.

2.1 Basics of the LTAG formalism

LTAGs are based on the Tree Adjoining Grammar (TAG) formalism developed by Joshi, Levy, and Takahashi (Joshi et al., 1975; Joshi and Schabes, 1997).

2.1.1 Elementary trees

The primitive elements of an LTAG are elementary trees. An LTAG is lexicalized, as each elementary tree is associated with at least one lexical item (which is called the anchor of the tree) on its frontier. The elementary trees are minimal in the sense that all and only the arguments of the anchor are encapsulated in the tree. The elementary trees of LTAG possess an extended domain of locality. The grammatical constraints are stated over the elementary trees, and are independent of all recursive processes. There are two types of elementary trees: initial trees and auxiliary trees. Each auxiliary tree has a unique leaf node, called the foot node, which has the same label as the root. In both types of trees, leaf nodes other than anchors and foot nodes are called substitution nodes.

2.1.2 Two operations

Elementary trees are combined by two operations: substitution and adjoining. In the substitution operation (see Figure 2.1), a substitution node in an elementary tree is replaced by another elementary tree whose root has the same label as the substitution node. In an adjoining operation (see Figure 2.2), an auxiliary tree is inserted into another elementary
tree. The root and the foot nodes of the auxiliary tree must match the node label at which the auxiliary tree adjoins. The resulting structure of the combined elementary trees is called a parse tree or a derived tree. The history of the combination process is recorded as a derivation tree.

In Figure 2.3, the four elementary trees in (a) are anchored by words in the sentence underwriters still draft policies. $\alpha_1 - \alpha_3$ are initial trees, and β_1 is an auxiliary tree. Foot and substitution nodes are marked by $*$ and \downarrow, respectively. To generate the derived tree for the sentence, α_1 and α_3 substitute into the nodes NP_0 and NP_1 in α_2 respectively, and β_1 adjoins to the VP node in α_2, thus forming the derived tree in (b). The solid and dash arrows between the elementary trees stand for the substitution and adjoining operations, respectively. The history of the composition of the elementary trees is recorded in the derivation tree in (c). In a derivation tree, a dash line is used for an adjoining operation and a solid line for substitution. The number within square brackets is the address of the node at which the substitution/adjoining operation took place. The address is useful when there are two or more nodes with the same label in an elementary tree. For the sake of simplicity, from now on we shall drop these addresses from derivation trees.
2.1.3 Derived trees and derivation trees

Unlike in CFGs, the derived trees and derivation trees in the LTAG formalism are not identical; that is, several derivation trees may produce the same derived tree. For instance, in Figure 2.4, G_1 in (b) and G_2 in (c) are two different grammars. The derived tree in (a) can be produced by combining either the elementary trees in G_1 or the ones in G_2. The corresponding derivation trees are shown in (d) and (e). This property becomes relevant in Chapter 5, where we discuss a system, LexTract, that automatically constructs elementary trees and derivation trees from derived trees.

2.1.4 Multi-anchor trees

An elementary tree is normally anchored by a single lexical item, but multi-anchor trees are used in a number of cases. Two of them are shown in Figure 2.5(a) and 2.5(b). The first one is for idioms such as *kick the bucket* (which means someone *dies*), and the second
one is for expressions with light verbs, such as *take a walk*. In each case, the multi-anchors form the predicate. By having multi-anchors, each tree can be associated with semantic representations directly, which is an advantage of the LTAG formalism. Notice that the sentence *He kicked the bucket* now will have two correct parses, one for the idiomatic meaning, the other for the literal meaning. Because multi-anchor trees are used only in a number of cases, from now on we shall assume that each elementary tree has exactly one anchor unless specified otherwise.

\footnote{Notice that the determiner in Figure 2.5(a) is a co-anchor, whereas it is not part of the tree in Figure 2.5(b). This is because in the former the determiner has to be present and it has to be the word *the*, whereas in the latter the determiner is optional (e.g., *take walks*), and it can be any determiner (e.g., *take a walk, take several walks*).}
2.1.5 Feature structures

In an elementary tree, a feature structure is associated with each node (Vijay-Shanker, 1987). This feature structure contains information about how the node interacts with other nodes in the tree. It consists of a top part and a bottom part. When two elementary trees are combined, the feature structures of corresponding nodes from these two trees are unified, as shown in Figure 2.6 and 2.7. For a derived tree to succeed, the top and bottom features for each node in the tree must unify.

Features are used to specify linguistic constraints. For instance, in Figure 2.8, the feature <agr> is introduced to enforce subject-verb agreement in English. Let X.t (X.b, resp.) denote the top (bottom, resp.) feature structures of the node X. The subject-verb agreement constraint is expressed as the requirement that NP.t and VP.t in α_2 must have the same value, as indicated by the index <2>.\footnote{If two features have the same index, it means that they must have the same value.} Meanwhile, in α_1 and α_3, the value of the <arg> feature propagates from N.t to NP.b (as marked by the index <1>). If nothing adjoins at the N and NP nodes, the value of NP.t:<arg> in α_1 is 3rdsg (third person singular), and the value of NP.t:<arg> in α_3 is 3rdpl (third person plural). Similarly, the value of the feature <agr> propagates from V.t to VP.b in α_2 (as marked by the index <3>), and if nothing adjoins to the V and VP nodes, the value of VP.t:<arg> is 3rdsg.
parse the sentence *John likes dogs*, α_1 substitutes into the NP_0 node in α_2, and the values of $NP_0.t:<agr>$ and $VP.t:<agr>$ agree. For the sentence *Dogs likes John*, α_3 substitutes into the NP_0 node, but the values of $NP_0.t:<agr>$ and $VP.t:<agr>$ are different and cannot unify; therefore, the subject-verb agreement constraint is violated. This example shows that, with the subject-verb agreement constraint, the toy grammar that consists of only three elementary trees in Figure 2.8 can correctly accept the former sentence and reject the latter.

From now on, for the sake of simplicity, we shall not show the feature structures in elementary trees unless necessary.

2.2 LTAG for natural languages

LTAG is a constrained mathematical formalism. As a formalism, LTAG is more powerful than CFG in that an LTAG grammar can generate a mildly context-sensitive language. For example, the grammar in Figure 2.9 generates the language $\{a^n b^n c^n d^n\}$, which is a content-sensitive language. The NAs in the first elementary tree mark that no adjoining operations are allowed at the S nodes.
LTAG is an appealing formalism for representing various phenomena, especially syntactic phenomena, in natural languages because of its linguistic and computational properties, some of which are listed below:

- **Lexicalized grammar:** A grammar in the LTAG formalism is fully lexicalized in the sense that each elementary tree is associated with a lexical item. It is generally agreed that lexicalized grammars are preferred over non-lexicalized grammars for NLP tasks such as parsing (Schabes, 1990).

- **Extended Domain of Locality:** Every elementary tree encapsulates all and only the arguments of the anchor; thus, elementary trees provide extended locality over which the syntactic and semantic constraints can be specified. This is in contrast with CFGs, where the arguments of the predicate may appear in separate context-free rules. For example, the subject and the object of a transitive verb appear in two rules: (1) $S \rightarrow \text{subject} \ VP$, and (2) $VP \rightarrow V \ object$.

- **Generative capacity:** Recent research (Bresnan et al., 1982; Higginbotham, 1984; Shieber, 1984) has found that natural languages are beyond context free. For instance, the cross-serial dependency relation in Dutch is context-sensitive. In this aspect, LTAG is appealing because it is more powerful than CFG, but only “mildly” so (Joshi et al., 1975; Joshi, 1985; Joshi, 1987). As shown in (Joshi, 1985), LTAG, but not CFG, can handle cross-serial dependencies in Dutch. An example of cross-serial dependencies and its treatment in LTAG are shown in Figure 2.10.\(^3\)

On the other hand, the parsing time for an LTAG grammar is $O(n^6)$, where n is the sentence length; that is, given an LTAG grammar, an LTAG parser can produce a tree forest that includes all possible parse trees for a sentence of length n in $O(n^6)$. This is much longer than the parsing time for a CFG grammar, which is $O(n^3)$. To address the efficiency issue, people have proposed some variances of the LTAG formalism. One of them is the Tree Insertion Grammar (Schabes and Waters, 1995), which is weakly equivalent to CFG and has $O(n^3)$ parsing time.

\(^3\)Both the example and the grammar in Figure 2.10 come from (Joshi, 1985). We changed the grammar slightly to be consistent with current notation conventions.
In this dissertation, we choose LTAG as the formalism for the grammars that LexOrg and LexTract produce. Given an LTAG grammar, it is trivial to build a context-free grammar; that is, reading context-free rules off the elementary trees in an LTAG grammar will yield a CFG.

2.3 Multi-component TAGs (MCTAGs)

A number of extensions have been proposed to handle constructions that pose challenges to the basic LTAG formalism. In this section, we describe one of them, namely, Multi-component TAG (MCTAG), as it shall be used in Sections 5.6 and 6.7.

MCTAG is proposed to handle various types of syntactic movement that are difficult for the basic LTAG. In the basic LTAG, syntactic movement is restricted to a single elementary tree: that is, the filler and the gap must appear in the same elementary tree. For example, in Figure 2.11, the filler NP and the gap NP₁ are both in α₃. Substituting α₁ into NP, substituting α₂ into NP₀, and adjoining β₁ into S will yield the correct parse for a simple wh-question What does John like. A sentence with long-distance movement, such as What
does Mary think Mike believes John likes, is handled similarly, as shown in Figure 2.12. This type of movement is “unbounded” in the sense that in the sentence there can be an unbounded number of verbs between the filler and the gap, but the treatment in the LTAG formalism is still elementary tree bound in the sense that the gap and the filler are in the same elementary tree.

This analysis runs into problems when the moved constituent is an adjunct. In Figure 2.13(a), the NP trace and the filler NP cannot be in the same elementary tree because the PP (the parent of the NP trace) is a modifier of the VP and therefore should not be part of the elementary tree anchored by the verb stay. An MCTAG is required to handle such cases. MCTAG extends the basic LTAG so that the adjoining operation in MCTAG is defined on elementary tree sets rather than on a single elementary tree. Weir (1988) gave four ways of defining the adjoining operation. Two of them are commonly used in the literature. One is called tree-local MCTAG, which requires the elementary trees in a
multi-component set (MC set) to be adjoined into distinct nodes of a single elementary tree. The other is set-local MCTAG, which requires the elementary trees in an MC set to be adjoined into distinct nodes of trees in another MC set. In Figure 2.13, the extraction from PP can be easily handled by the tree-local MCTAG in (a), where β_1 and β_2 form an MC set and both adjoin to nodes in α_1, forming the derived tree in (b).

Weir (1988) has shown that tree-local MCTAG does not change the generative capacity of the LTAG formalism, whereas set-local MCTAG does. The former has been used for wh-movement and extraposition (Kroch, 1989), whereas the latter has been used to handle clitic-climbing in Spanish (Bleam, 1994).

2.4 Components of LTAG grammars for natural languages

As mentioned in Section 2.1, an LTAG grammar consists of a set of elementary trees. In practice, an LTAG grammar for a natural language is divided into two parts: a lexicon and a set of tree templates. The lexicon can be further divided into two parts: a syntactic database and a morphological database, and the tree templates are grouped into tree families. In this section, we introduce each component of an LTAG grammar.

2.4.1 An LTAG grammar is divided into a set of templates and a lexicon

An elementary tree is anchored by a lexical item (or word). If the lexical item is removed from the tree, the remaining part is called a tree template, or template for short. An
(a) an elementary tree

(b) a (word, template) pair

Figure 2.14: An elementary tree is equivalent to a (word, template) pair

(a) elementary trees

(b) templates

(c) lexicon

Figure 2.15: A set of elementary trees is equivalent to a set of templates plus a lexicon

Elementary tree is equivalent to a (word, template) pair, as shown in Figure 2.14. @ marks the distinguished node in the template (called anchor node) where the word is inserted to form an elementary tree.

Many words can anchor the same template. For instance, all the intransitive verbs can anchor template #1, and all the nouns can anchor template #2 in Figure 2.15(b). In order to avoid storing each template more than once in an LTAG grammar, we divide the grammar into two parts: a Tree database (i.e., a set of tree templates) and a lexicon, as illustrated in Figure 2.14. A lexicon associates words with templates that they can anchor.
Figure 2.16: A lexicon is split into two databases

2.4.2 A lexicon is split into a syntactic database and a morphological database

In Figure 2.15, both swim and swum can anchor the template #1, and both apple and apples can anchor the template #2. In general, inflections (such as adding -s to singular nouns in English) rarely change the templates that a word can anchor. Therefore, when building a grammar for a language with rich inflectional morphology, we split its lexicon into two parts: a syntactic database and a morphological database. In the syntactic database, each uninflected form is associated with a list of templates that it can anchor. In the morphological database, each inflected form is associated with its corresponding uninflected form and the grammatical features (such as number, person, and tense) that are related to the inflection. For example, in Figure 2.16, the lexicon is split into two databases. In the databases, the uninflected forms are enclosed by a pair of slash lines (/), whereas the inflected forms are not.

4We use the term uninflected form, rather than the term stem, to avoid confusion because the meaning of the latter term is subject to different interpretations in the NLP field. For example, for the word teachers, its uninflected form is the word teacher, but its stem could be either teacher or teach depending on how the term stem is defined.
2.4.3 Templates are grouped into tree families

Templates in a grammar are related in many ways, the point that we shall elaborate more in Chapter 4. The templates in Figure 2.17 show five syntactic environments in which a transitive verb appears; namely, a declarative sentence, a wh-question with the subject extracted, a wh-question with the object extracted, a relative clause with the subject extracted, and a relative clause with the object extracted. Every transitive verb can anchor these templates, and it would be very redundant to list all these templates for every transitive verb in the lexicon. To avoid this type of redundancy, we group tree templates into tree families, where a tree family is defined as the set of trees generated from a base tree by the syntactic transformations which are available in the grammar. Now in the lexicon we only need to associate each word with an appropriate tree family or families, rather than with a set of templates. In this example, we group the templates in Figure 2.17 into one tree family, and every transitive verb will select this tree family.

To summarize, an LTAG grammar is a set of elementary trees. To avoid storing the same template more than once, we store a grammar as a set of templates and a lexicon. The set of templates are grouped into tree families, and the lexicon is further split into a syntactic database and a morphological database. In the syntactic database, an uninflected form is associated with appropriate tree families, and in the morphological database, each inflected form is associated with its corresponding uninflected form and the grammatical features that are related to the inflection. The process is illustrated in Figure 2.18.
Figure 2.18: The components of an LTAG grammar

2.5 The XTAG grammar

There have been a number of LTAG grammars developed at the University of Pennsylvania and elsewhere in the world for languages such as English, French, Chinese, and Korean. Among them, arguably the most well-known one is the XTAG English grammar, which is a large-scale English grammar that has been developed by the XTAG Research Group at the University of Pennsylvania since the early 1990s.5 The latest version of the grammar was released to the public in March 2001. It has 1226 templates. The templates for verbs are grouped into 57 tree families. The morphological database has entries for about 317 thousand inflected words, and the syntactic database has entries for about 30 thousand uninflected words. Conceptually, there are 1.8 million elementary trees in total. The templates of the grammar were built by hand, whereas the lexicon was extracted from two dictionaries (Oxford Dictionary for Contemporary Idiomatic English and Oxford Advanced Learner’s Dictionary) and then manually checked. For more information about the XTAG

5XTAG is the name of a system that allows grammar developers to build and test LTAG grammars in the X-window environment. The name is also used to refer to the research group at the University of Pennsylvania who has built and used the system for language processing.
grammar, please refer to (Group, 2001).

In Sections 4.8 and 6.2, we compare the grammars built by LexOrg and LexTract with an early version of the XTAG grammar, which has 1004 tree templates. The templates for verbs are grouped into 53 tree families. Some common families are intransitive (e.g., *sleep*), transitive (e.g., *buy*), ditransitive (e.g., *ask*), ergative (e.g., *melt*), intransitive verb particle (e.g., *sign off*), transitive verb particle (e.g., *pick up*), and so on.

2.6 Summary

To summarize this chapter, LTAG is a tree rewriting system. An LTAG consists of a set of elementary trees, which are combined via two operations (substitution and adjoining) to form a parse tree (derived tree) for a sentence. LTAG is appealing for the representation of various phenomena in natural languages due to its linguistic and computational properties. To handle various phenomena in natural language, a number of extensions of the basic LTAG have been proposed. MCTAG is one of them, and it is aimed at handling various types of syntactic movement. In practice, an LTAG grammar is divided into a lexicon and a set of templates. The lexicon can be further divided into two parts: a syntactic database and a morphological database, and the tree templates are grouped into tree families. Finally, we briefly discuss the XTAG English grammar, which is going to be used in later chapters.
Chapter 3

The target grammars

In Chapter 2, we gave a brief introduction to the LTAG formalism and its main properties. In the next two chapters, we describe two systems that we designed to facilitate grammar development: LexOrg generates grammars from descriptions, and LexTract extracts grammars from Treebanks. Before getting into the detail of the systems, we would like to first define the prototypes of the target grammars; that is, we specify the kind of grammars that our systems produce. Then we give an algorithm that generates grammars from language-specific tables. Next we point out the problems with this approach and show the two alternatives that address these problems.

3.1 Four types of structural information

In this chapter, we first define the kind of LTAG grammars that our systems build for natural languages. Recall that the LTAG formalism is a general framework. It can be used to generate formal languages such as \(\{a^n b^m c^n\} \) in addition to natural languages. Because its usage is not restricted to natural languages, the formalism itself has no constraints on the elementary trees in an LTAG grammar other than the basic requirements that each elementary tree must be anchored by a lexical item and an auxiliary tree should have exactly one foot node which has the same category as the root node. In this dissertation, we are interested only in grammars for natural languages. To ensure that the target grammars (i.e., the grammars built by LexOrg or LexTract) are linguistically plausible,
we define three prototypes such that every elementary tree in the target grammars should fall into one of the prototypes.\footnote{Another possible name for a prototype is \emph{template}. We do not use this name because the term \emph{template} in the LTAG formalism is used to refer to an unlexicalized elementary tree.}

Before we define prototypes of elementary trees, let us first determine what kind of information should be included in elementary trees. In addition to the lexical item that anchors an elementary tree, there are four types of information that are important and should be included. In this section, we look at each type in detail and discuss how it is represented in LTAG grammars and linguistic theories such as X-bar theory and GB theory.

\subsection{Head and its projections}

An important notion in many contemporary linguistic theories such as X-bar theory and GB theory is the notion of \emph{head}. A head determines the main properties of the phrase that it belongs to. A head may project to various levels, and the head and its projections form a projection chain. For instance, in X-bar theory (see Figure 3.1(a)), a head X projects to \overline{X}, and the \overline{X} projects to XP. The X in this paradigm can be any part of speech such as a verb, where the XP is a phrase such as a verb phrase. GB theory divides heads into two types: lexical heads and functional heads. In Figure 3.1(b), V (for verb) is a lexical head, whereas C (for complementizer) and I (for inflection) are functional heads. The projections of lexical and functional heads are called \emph{lexical} and \emph{functional} projections, respectively.

An LTAG grammar does not have to strictly follow a linguistic theory. In practice, to make the elementary trees simple and theory neutral, LTAG grammar developers often choose to omit certain projections, to treat function projections and lexical projections differently, and not to represent certain internal movements. Figure 3.2 shows four templates in the XTAG grammar. Among them, template \#2 can be seen as a simplified version of the structure in Figure 3.1(b): the template does not have the \overline{V}, \overline{I}, and \overline{C} levels; it uses the same label S for IP and CP nodes; it does not include the complementizer C and the $INFL$ nodes; it does not show the movement of the subject from the $[\text{Spec}, \text{VP}]$ position to the $[\text{Spec}, \text{IP}]$ position.
3.1.2 Arguments of a head

A head may have one or more arguments. For instance, a transitive verb has two arguments: a subject and an object. In both X-bar theory and GB theory, the treatment of the subject is different from the one for the object. The subject appears in a specifier position; that is, its parent is a VP and its sister is a \(V \). In GB theory, a subject is generated in the [Spec, VP] position, then moved to the [Spec, IP] position. The object appears in a complement position; that is, its parent is a \(V \), and its sister is a \(V \). A subject is also called an external argument of a verb, whereas an object is an internal argument. In the XTAG grammar, the subject is a left sister of the VP and the object is a right sister of the head \(V \), as shown in Figure 3.2.
3.1.3 Modifiers of a head

A head or its projections may be modified by other phrases. In X-bar theory, modifiers always modify at the \bar{X} level, as shown in the second rule in Figure 3.1(a). GB theory does not specify the positions of modifiers in its basic structure. In an LTAG grammar, a modifier often appears in an auxiliary tree, in which the root node and the foot node have the label of the modifier, and the modifier is further expanded and its head is the anchor of the whole tree. For instance, in template #4 in Figure 3.2, an S clause modifies a VP, the S is expanded and its head V is the anchor of the whole tree.

3.1.4 Syntactic variations

Linguistic theories often differ in the way they represent and account for syntactic variations, which include syntactic movement such as wh-movement and other phenomena such as imperative and argument drop. Templates #2 and #3 in Figure 3.2 show how wh-movement and imperative are handled in the XTAG grammar.

3.2 The prototypes of the target grammars

We just discussed four types of information that are important in linguistic theories. Not every elementary tree should have all four types. We define three forms of elementary tree according to the relations between the anchor of the elementary tree and other nodes in the tree, as shown in Figure 3.3:

- **Spine-etrees** for predicate-argument relations: A spine- etree is formed by a head X^0, its projections $X^1, ..., X^m$, and its arguments. We call the projection chain $\{X^0, X^1, ..., X^m\}$ the spine of the elementary tree.\(^2\) The head X^0 is the anchor of the tree. A spine- etree may also include information about syntactic variations.

- **Mod- etrees** for modification relations: The root of a mod- etree has two children: one has the same label (W^0) as the root, the other node X^m is a modifier of W^0. The

\(^2\)Some LTAG papers use the term spine to refer to the path between the root node and the foot node in an auxiliary tree, and use the term trunk to refer to the path between the root node and the anchor node of an elementary tree. Both terms are different from our definition of spine.
node X^m is further expanded into a spine-etree whose head X^0 is the anchor of the whole mod-etree.

- **Conj-etrees** for coordination relations: In a conj-etree, the children of the root are two conjoined constituents and one conjunction.\(^3\) One conjoined constituent is expanded into a spine-etree whose head is the anchor of the whole tree. Structurally, a conj-etree is the same as a mod-etree except that the root has one extra conjunction child.

The similarity between the forms in Figure 3.3 and rules in X-bar theory is obvious: A spine-etree is a tree that combines the first and the third types of rules in X-bar theory (see Figure 3.1(a)). Similarly, a mod-etree incorporates all three types of rules. A spine-etree is also very similar to the basic structure in GB-theory, as in Figure 3.1(b). Some explanations about the prototypes are in order.

- A node X^i on a spine may have zero, one, or more arguments; therefore, each prototype is not necessarily binary. If a node has more than one child, the order between its children is not specified in the prototypes.

\(^3\)It is possible that two conjoined constituents are connected by two conjunctions (e.g., the conjunction pair *both ... and ...* in English). To handle this case, the root of the corresponding conj-etree has four children: two X^m's and two CCs. Both LexOrg and LexTract can produce such trees. For the sake of simplicity, we omit this detail from all the discussions in this dissertation.
Figure 3.4: A spine-etree in which an argument is further expanded

- By default, the lower W^q node in a mod-etree and one of the lower X^m nodes in a conj-etree are foot nodes; the Y^k, Z^p, and CC are substitution nodes. The prototypes allow this default to be overridden. For example, to handle idiomatic expressions (see Section 2.1.4), an argument in a spine-etree may be expanded, as shown in Figure 3.4.

- In the LTAG formalism elementary trees are divided into two types: initial trees and auxiliary trees. In this section, we define three forms of elementary trees. These two classifications are based on different criteria. The traditional classification is based on the existence of a foot node in the tree and the operation by which the tree is joined to another tree: an initial tree does not have a foot node and it is substituted into a leaf node in another tree; an auxiliary tree has a foot node and it is adjoined to a leaf or an internal node in another tree. Our classification is based on the relation between the anchor of the tree and other nodes in the tree. In general, spine-etrees are initial trees; mod-etrees and conj-etrees are auxiliary trees. There are exceptions to this generalization. One exception is the predicative auxiliary tree for verbs such as think. As shown in Figure 3.5, the elementary tree for think is an auxiliary tree because the leaf S node is a foot node. It is also a spine-etree because it shows the predicate-argument relation of the verb.\(^4\)

- The notions of head and anchor do not always coincide. For example, the anchor of

\(^4\)The internal argument of think is marked as a foot node in order to handle long-distance movement. For more discussion on predicative auxiliary trees, see Section 5.8.4.
a spine-etree is the head of the whole phrase, whereas the anchor of a mod-etree is
the head of the modifier phrase, but it is not the head of the whole phrase.

Now that we have defined the prototypes, we require each elementary tree produced
by LexOrg or LexTract to fall into one of three prototypes. For a little abuse of notation,
we also use the terms spine-etree, mod-etree, and conj-etree to refer to the corresponding
templates.

3.3 \(G_{Table} \): a grammar generated from three tables

The prototypes that we defined in the previous section are language independent. To build
a grammar for a particular language, we need to instantiate the prototypes. For instance,
we have to replace labels such as \(X^i \) with the real labels for that language, determine the
order among sisters, and decide whether a node in the tree should be further expanded. In
this section, we give a simple algorithm that builds grammars from three language-specific
tables.

Recall that up to four types of information can appear in an elementary tree: the head
and its projections, the arguments of the head, the modifiers of the head, and syntactic
variations. At first sight, it seems that the following three tables are sufficient to express
the first three types of information:

- A head projection table is a set of \((x,y)\) pairs, where \(y\) projects to \(x\).

- An argument table is a set of tuples of the form \((head_tag, left_arg_num, right_arg_num, y_1/y_2/.../y_n)\), where \(head_tag\) is the category of a head, \(\{y_i\}\) is the set of possible
categories of the arguments of the head, \texttt{left$_{arg_num}$} and \texttt{right$_{arg_num}$} specify the maximal numbers of arguments that a head can have at both sides. For example, the entry \((P, 0, 1, NP/S)\) says that a preposition cannot take left arguments, and it has at most one right argument which is either an \textit{NP} or an \textit{S}.

- A modification table specifies the types of modifiers a constituent can take. The entry of the table is of the form \((\text{mod}_{tag}, x_1/.../x_n, y_1/.../y_m)\), which means a constituent whose category is \textit{mod}_{tag} can be modified by \(x_i\) from the left and by \(y_i\) from the right. For instance, the entry \((VP, ADVP, PP/S)\) says that an \textit{ADVP} can modify a \textit{VP} from the left, and a \textit{PP} or \textit{S} can modify a \textit{VP} from the right.

The information for syntactic variations cannot be easily expressed in a table. In this section, we assume that the only syntactic variation in a language is that arguments in a spine-etree can dominate empty categories. For instance, in each of the last three templates in Figure 3.2, the subject \textit{NP} dominates an empty category. Given a finite set \textit{TagSet} of POS tags and three tables as input, a simple algorithm such as the one in Table 3.1 can produce all the templates that abide by our definitions of prototypes. For instance, to build the spine-etrees of depth \(n\), the algorithm first finds all possible spines of length \(n\) using the head projection table, then it adds arguments to the spines using the argument table, next it adds syntactic variation information to the tree.\(^5\)

Figure 3.6(b) shows the templates produced by the algorithm given the input in Figure 3.6(a). Let \(G(n)\) denote the set of templates of depth \(n\) that satisfies the definition of the prototypes. The dashed line between two templates indicates that the algorithm builds one template by adding one more level to the other template in step (D). In this example, \(G(0)\) has three singleton templates, each is anchored by a POS tag.\(^6\) \(G(1)\) has two spine-etrees and three conj-etrees. It does not have mod-etrees because, according to \textit{ModTb}, none of the root nodes in \(G(0)\) can be a modifier. \(G(2)\) includes two mod-etrees because, according to \textit{ModTb}, an \textit{NP} — which is the root of \#5 in \(G(1)\) — can modify a \textit{VP} from the right, and modify an \textit{S} from the left. \(G(3)\) does not have any spine-etree, because \textit{S} cannot be

\(^5\)To simplify the algorithm, we define the depth of a template to be the distance between its root node and its anchor node.

\(^6\)A singleton tree is a spine-etree, which does not have any projection and argument.
Input: a finite set $TagSet$ of POS tags,
 the head projection table $HeadTb$, the argument table $ArgTb$,
 the modification table $ModTb$, the depth n ($n \geq 0$).
Output: the set of templates of depth n that satisfy the definition of the prototypes.
Algorithm: Template BuildTempIWDepthN$(TagSet, HeadTb, ArgTb, ModTb, n)$
(A) $ESet = \{\}$;
(B) if ($n == 0$)
 then for (each POS tag x in $TagSet$)
 build a singleton template E_x, which has only one node with label x;
 (The node is the anchor of E_x)
 $ESet = ESet \cup \{E_x\}$;
 return $ESet$;
(C) $TmpESet = BuildTempIWDepthN(TagSet, HeadTb, ArgTb, ModTb, n - 1)$;
(D) for (each spine-tree E in $TmpESet$)
 build a set $ESet_1$ of spine-trees, each template E_1 in $ESet_1$ satisfies
 the following:
 (1a) The root R of E_1 has a child hr s.t. (R, hr) is an entry in $HeadTb$.
 (1b) Let $(hr, left_{arg_num}, right_{arg_num}, y_1/.../y_n)$ be the entry for hr
 in $ArgTb$, hr has up to $left_{arg_num}$ left sisters and up to $right_{arg_num}$
 right sisters, and the labels of the sisters are in $\{y_i\}$.
 (1c) for (each sister Arg of hc)
 Arg is a substitution node, a foot node,
 or an internal node that dominates an empty category;
 (1d) The subtree rooted at hc is identical to E.
 build a set $ESet_2$ of mod-trees, each template E_2 in $ESet_2$ satisfies
 the following:
 (2a) The root R of E_2 has two children: hc and mod.
 (2b) hc has the same label as R and it is a foot node;
 (2c) mod is a possible modifier of hc according to $ModTb$.
 (2d) The subtree rooted at mod is identical to E.
 build a set $ESet_3$ of conj-trees, each template E_3 in $ESet_3$ satisfies
 the following:
 (3a) The root R of E_3 has three children: hc, mod, and $conj$;
 (3b) hc and mod have the same label as R and it is a foot node;
 (3c) $conj$ is a substitution node;
 (3d) The subtree rooted at mod is identical to E.

$$ESet = ESet \cup ESet_1 \cup ESet_2 \cup ESet_3$$
(E) return $ESet$;

Table 3.1: An algorithm that builds templates using three tables

34
projected further according to HeadTb. Finally, $G(n)$ ($n > 3$) is empty because $G(3)$ does not include any spine-ette. Now that we have an algorithm that calculates $G(n)$ for any integer n, we define G_{Table} to be $\bigcup_{n \in N} G(n)$. G_{Table} is the set of all possible templates that satisfy the prototypes according to the three language-specific tables.

3.4 The problems with G_{Table}

We have just shown that we can build a grammar G_{Table} using three tables if we make a certain assumption about syntactic variations (e.g., we assume that the only syntactic variation in a language is that the arguments in a spine-ette can dominate empty categories). Given a natural language L, if the three tables for L are complete and error-free, is G_{Table} a good grammar for L? In other words, if G_L is the ideal LTAG grammar for the language L, is G_{Table} a good approximation of G_L? The answer is negative because G_{Table} overgenerates; that is, many templates in G_{Table} are not in G_L. In this section, we discuss the sources of this overgeneration.

In Table 3.1, we wrote the algorithm as a recursive function. Conceptually, the algorithm builds G_{Table} in four steps: first, it produces all possible spines according to the head projection table; second, it adds arguments to the templates; third, for mod-ettes and con-ettes, the algorithm adds the top layer (i.e., a new root node and its children nodes); fourth, it adds structures for syntactic variations. Each step may produce structures that are not acceptable in language L.

- In the first step, the algorithm builds spines using a head projection table. When people build LTAG grammars, they may use a label for more than one projection of a head. For instance, both IP and CP nodes in GB theory have the label S in the XTAG grammar. As a result, a label may appear on a spine more than once. For instance, the label S appears twice on the spine for the template #2 in Figure 3.2. In order to generate such template, the head projection table has to include entries such as (S, S). Because of such an entry, the algorithm will produce spines with an arbitrarily large number of S nodes; that is, the algorithm is not sophisticated enough to know that the S label can appear once or twice on a spine, but not more
Figure 3.6: An example that shows the input and the output of the algorithm in Table 3.1
Figure 3.7: Among four of the templates in G_{Table} for ditransitive verbs, the last two are implausible.

than twice. As a result, the spines produced by the algorithm can be arbitrary long and G_{Table} is an infinite set. Clearly, most of the spines and the templates with these spines are implausible.

- In the second step, the algorithm adds zero or more arguments to the templates. Let the argument table entry for a head hc be $(hc, left_{max_num}, right_{max_num}, y_1/y_2/\ldots/y_n)$, the algorithm tries every argument sequence that is consistent with the entry.\(^7\) The number of such sequences is $(\sum_{i=0}^{lm} n^i) \times (\sum_{j=0}^{rm} n^j)$, where lm is $left_{max_num}$ and rm is $right_{max_num}$. Not every sequence is plausible for language L. For example, assuming that the argument table entry for English verbs is $(V, 1, 2, NP/S)$, the algorithm will try all twenty-one argument sequences, but only ten of them are actually allowed in English. The templates in Figure 3.7 show four of the twenty-one argument sequences. They are $(NP; NP, NP)$, $(NP; NP, S)$, $(NP; S, NP)$, and $(NP; S, S)$. Only the first two are allowed in English.

- In the third step, the algorithm adds a top layer for a mod-ette or a conj-ette. It is possible, although not common, that the modifiee may impose constraints on the internal structure of the modifier. For example, when an S modifies an NP, as in a relative clause, exactly one constituent within the S must undergo wh-movement (see templates #1 and #2 in Figure 3.8). Such constraints cannot be expressed in the modification table. As a result, G_{Table} includes templates in which the constraints are not satisfied, such as #3 and #4 in Figure 3.8.

\(^7\) An argument sequence is consistent with the entry if the number of left arguments in the sequence is no more than $left_{max_num}$, the number of right arguments is no more than $right_{max_num}$, and each argument has an label in $\{y_1, y_2, \ldots, y_n\}$.

37
In the fourth step, the algorithm adds structures for syntactic variations. The syntactic variations allowed in natural languages are much more than what we assumed in this section. To account for them, we have to find an alternative to express the variations and change the algorithm accordingly.

In addition to the over-generation problem, there are two more challenges of using G_{Table} for natural language processing. First, the grammar is not lexicalized. We can lexicalize each template in G_{Table} with every word with the same Part-of-speech tag as the anchor, but this will worsen the over-generation problem. For instance, only a small subset of verbs — namely, ditransitive verbs — can anchor template #1 in Figure 3.7. Another challenge is that there are no weights associated with the templates in G_{Table}. To use the grammar for parsing, other source of information (such as heuristic rules) has to be found to help us select the most likely parse trees. All these problems show that the three tables (i.e., the head project table, the argument table, and the modification table) do not contain sufficient information to generate a good grammar.

3.5 Two approaches

In the previous two sections, we gave a simple algorithm that takes three language-specific tables as input and produces a grammar G_{Table} as output, as illustrated in Figure 3.9. We also showed that G_{Table} overgenerates because the tables do not contain sufficient information. In this section, we introduce two approaches that take advantage of additional information to generate better grammars.
3.5.1 *LexOrg*: building grammars from descriptions

The reason why G_{Table} overgenerates is that the tables themselves do not contain sufficient information. For instance, the modification table only lists the types of modifiers that a constituent can take; it does not specify the constraints that a modifier may impose on the internal structures of a modifier. As a result, G_{Table} includes implausible templates such as #3 and #4 in Figure 3.8. Intuitively, we can build a system that takes these constraints as additional inputs and produces a more constrained grammar. Our first system, *LexOrg*, is such a system.

Figure 3.10 shows the input and output of *LexOrg*. The main inputs to LexTract are tree descriptions. Tree descriptions can easily express the constraints that are missing from the language-specific tables. For instance, Figure 3.11 shows the description for a relative clause. The top level specifies that a clause S can modify an NP, and the rest of the description says that a constituent of the clause must undergo wh-movement. The second type of input to LexTract is a set of subcategorization frames. They are used to select tree descriptions for a tree family. The third type of input is a set of lexical rules. They express the relations between subcategorization frames. The output of the system...
is a grammar G_{LexOrg}, which is a subset of G_{Table} and should not include implausible templates.\footnote{It goes without saying that the quality of G_{LexOrg} depends on the quality of the input to LexOrg.} In chapter 4, we shall describe this system in detail.

3.5.2 LexTract: extracting grammars from Treebanks

In LexOrg, the overgeneration problem is solved by adding more information to the input. An alternative is to keep the input intact but add a new module which chooses a subset of G_{Table}. Our second system, named LexTract, uses this alternative.

As shown in Figure 3.12, the inputs to LexTract are three language-specific tables and a Treebank. Conceptually, LexTract first uses the tables to generate G_{Table}, then uses the Treebank to select a subset G^*_Table of G_{Table} such that each template in the subset is used at least once to produce correct derived trees for the grammatical sentences in the Treebank. It is obvious that G^*_Table is a subset of G_L. If a Treebank included all the grammatical
sentences for a language \(L \), \(G^*_{Table} \) would be identical to \(G_L \). In reality, a Treebank is finite and therefore cannot include all the grammatical sentences. Nevertheless, if a Treebank is a good representative of a language itself, \(G^*_{Table} \) is a good approximation of \(G_L \). The relation between \(G_{Table}, G_L \) and \(G^*_{Table} \) are shown in Figure 3.13. The better a Treebank is, the closer \(G^*_{Table} \) is to \(G_L \). In Chapter 5, we describe LexTract in detail.

3.6 Summary

In this chapter, we first discuss four types of information that should be included in elementary trees: the head and its projections, the arguments of the head, the modifiers of the head, and syntactic variations. Then we define three forms of elementary trees in our target grammar: spine-etrees, mod-etrees, and conj-etrees. Next we describe a simple algorithm that takes three language-specific tables as input and produces a grammar \(G_{Table} \) as output. The grammar overgenerates because the tables do not contain sufficient information. Finally, we give an overview of two systems that address this overgeneration problem: the first system (LexOrg) overcomes the problem by requiring additional information from the input; the second system (LexTract) uses a Treebank as a filter to choose a subset of \(G_{Table} \). The details of the systems are covered in the next two chapters.
Chapter 4

LexOrg: a system that builds LTAGs from descriptions

Elementary trees in an LTAG grammar often share some common structures. The reuse of the common structures creates redundancy. This redundancy problem was addressed in several previous works, including (Vijay-Shanker and Schabes, 1992), (Becker, 1994), (Evans et al., 1995), and (Candito, 1996). In (Vijay-Shanker and Schabes, 1992), Vijay-Shanker and Schabes presented a scheme for efficiently representing an LTAG grammar using descriptions (a.k.a. tree descriptions or descriptions of trees). We extended the concept of descriptions and built a system, called LexOrg, that generates templates from a set of descriptions.1

The chapter is organized as follows: In Section 4.1, we describe the problems caused by the reuse of structures among templates. In Section 4.2, we introduce the overall approach of LexOrg. In Section 4.3, we define the notions of descriptions and trees in a simplified first-order logic. In Section 4.4, we introduce four types of descriptions. In Sections 4.5 – 4.7, we discuss three components of LexOrg. In Section 4.8, we report our experiments on

1LexOrg produces elementary trees exactly the same way as it produces templates. In this chapter, very often we use the term trees to refer to structures in a simplified first-order logic (see Table 4.4). To prevent the potential confusion between trees as structures and trees as elementary trees, we shall discuss the generation of templates, rather than the generation of elementary trees.

2Our previous work on LexOrg can be found in (Xia et al., 1998) and (Xia et al., 1999).
using LexOrg to generate grammars for English and Chinese. In Section 4.9, we discuss how the users of LexOrg can create the input to LexOrg. In Section 4.10, we compare LexOrg with related work. In Section 4.11, we summarize the whole chapter.

4.1 Structure sharing among templates

The templates in an LTAG grammar often share some common structures. Figure 4.1 shows seven templates for ergative verbs such as break. The top four templates show the syntactic environments for ergative verbs when they act as transitive verbs, such as break in He broke two windows. #1 is for a declarative sentence, #2 and #3 are for wh-questions, and #4 is for a purpose clause.3 There are two templates for wh-questions because the moved constituent can be either the subject (as in #2) or the object (as in #3). The bottom three templates show the syntactic environments for ergative verbs when they act as intransitive verbs, such as break in The window broke.

Among the seven templates in Figure 4.1, #1, #2, #3, and #4 all have the structure in Figure 4.2(a), templates #2, #3, and #6 have the structure in Figure 4.2(b), templates #4 and #7 have the structure in Figure 4.2(c), and so on. The dashed line in Figure 4.2(b)

3Template #4 is anchored by a verb such as please in the sentence John bought a book to please Mary, where the subordinating clause to please Mary modifies the verb phrase bought a book in the matrix clause.
Figure 4.2: Structures shared by the templates in Figure 4.1

between the lower S and the node NP indicates that the S node dominates the NP node, but it is not necessarily the parent of the NP.

As the number of templates increases, building and maintaining templates by hand presents two major problems. First, the reuse of tree structures in many templates creates redundancy. To make certain changes in the grammar, all the related templates have to be manually checked. The process is inefficient and cannot guarantee consistency (Vijay-Shanker and Schabes, 1992). For instance, if the analysis for wh-movement is changed, then templates #2, #3, and #6 in Figure 4.1 have to be manually changed as well. Second, the underlying linguistic information is not expressed explicitly. For instance, the analysis of wh-movement is expressed implicitly in three templates in Figure 4.1. As a result, from the grammar itself (i.e., hundreds of templates plus the lexicon), it is hard to grasp the characteristics of a particular language, to compare languages, and to build a grammar for a new language given existing grammars for other languages.

4.2 The overall approach of LexOrg

At first sight, it seems that the problems described in Section 4.1 are caused by the structures shared among templates. However, a closer look reveals that the problems exist only because the templates are manually built. If there is a tool that combines these structures to generate templates automatically (as illustrated in Figure 4.3), then the task of grammar developers changes from building templates to building structures. This change provides an elegant solution to the problems. First, because the number of
these structures is much less than that of the templates, and the structures are smaller and simpler than templates, the grammar development time will be reduced. If grammar developers want to change the analysis of a certain phenomenon (e.g., wh-movement), they need to modify only the structure that represents the phenomenon (e.g., the structure in Figure 4.3(b) for wh-movement). LexOrg will propagate the modification in the structure to all the templates that subsume the structure. Therefore, the templates are consistent. Second, the underlying linguistic information (such as wh-movement) is expressed explicitly as a structure, so it is easy to grasp the main characteristics of a language, to compare languages, and so on.

Based on this intuition, we built a system, LexOrg, which combines tree structures to generate templates. Following (Vijay-Shanker and Schabes, 1992), we represent the shared structures as descriptions. The inputs to LexOrg are a set of subcategorization frames, a finite set of lexical rules, and a finite set of descriptions. As shown in Figure 4.4, LexOrg has three components: a Frame Generator, a Description Selector, and a Tree Generator. For each subcategorization frame \(fr \) that is a member of the input subcategorization frames, the Frame Generator applies the set of input lexical rules to it and builds a set of subcategorization frames that are related to \(fr \). For each subcategorization frame produced
by the Frame Generator, the Description Selector chooses a subset of the input description set. For each subset of descriptions, the Tree Generator combines the descriptions in the subset to produce a set of templates. Therefore, the outputs of LexOrg are a set of templates for \(fr \) and all the subcategorization frames that are derived from \(fr \) by applying lexical rules. In the following sections, we first define the notions of descriptions and trees, then discuss each component of LexOrg in detail.\(^4\)

4.3 The definition of a description

Vijay-Shanker and Schabes (1992) presented a scheme for efficiently representing an LTAG grammar using descriptions. Rogers and Vijay-Shanker (1994) later gave a formal definition of description. We extend their definition to include feature structures. In this section, we first give a brief introduction to these two pieces of work, then introduce our extended definition of description that is used in LexOrg.

4.3.1 A compact representation of LTAG grammars

Vijay-Shanker and Schabes (1992) presented a scheme for efficiently representing an LTAG grammar using descriptions. The scheme adopts two mechanisms. The first mechanism is the use of hierarchy for lexical entries, a fragment of which is shown in Figure 4.5. The value of an attribute of a lexical entry in the lexicon is either obtained by inheritance or by local specification. A class in a hierarchy (such as \textit{DITRANS-I}) may have more than one superclass, and the local specification can overwrite inherited attributes. Figure 4.6 shows the lexicon entries for six classes of verbs; namely, \textit{VERB}, \textit{TRANSITIVE}, \textit{IOBJ}, \textit{NP-IOBJ}, \textit{PP-IOBJ}, and \textit{DITRANSI}.\(^5\)

The second mechanism is the use of lexical and syntactic rules to capture inflectional

\(^4\)To make it easier for readers to understand the system, we describe the three components of LexOrg in reverse order; that is, we cover the Tree Generator first, then the Description Selector, and finally the Frame Generator.

\(^5\)A class is an abstract data type. The notion of \textit{class} in this context is more similar to the notion of \textit{class} in a program language such as C++ than to that of \textit{verb class} in (Levin, 1993).
Figure 4.5: The fragment of the lexicon given in (Vijay-shanker & Schabes, 1992)

Figure 4.6: The definition of six verb classes given in (Vijay-shanker & Schabes, 1992)
and derivational relationships among lexical entries. Figure 4.7 shows the rules for wh-question and passive. The rules may make reference to the class hierarchy. For instance, the passive rule uses the CHANGE ARITY relation, where $C_2 = CHANGE-ARITY(C_1)$ means that C_2 is the immediate superclass of C_1 distinct from TRANSITIVE.

Both mechanisms make use of descriptions. In a description, a dashed line from node a to b means that a dominates b; a solid line means that a is the parent of b. Descriptions differ from trees in that descriptions can leave things underspecified. This underspecification is desirable because we want descriptions to be general enough. For instance, in the description of the class IOBJ (see Figure 4.6(c)), the vp node dominates the np, but it is not necessarily the parent of np. Leaving the number of intermediate nodes between vp and np underspecified makes the relation between them hold in both of IOBJ’s subclasses: in NP-IOBJ, the vp is the parent of the np; in PP-IOBJ, it is the grandparent of the np. Similarly, in the description for wh-movement as shown in Figure 4.8(a), the node S_1 dominates NP_1. The description is general enough to cover both cases in Figure 4.8(b) and (c). In the former case, NP_1 is the subject of the sentence and a child of S_1; in the latter case, NP_1 is the object of the sentence and a grandchild of S_1.

Figure 4.7: Rules to handle wh-movement and passive
4.3.2 The previous definition of description

Rogers and Vijay-shanker (1994) gave the formal definitions of a description and a tree, as in Tables 4.1 and 4.2, respectively. According to these definitions, a *description* is a finite set of formulae based on a simplified first-order language L_K in which neither variables nor quantifiers occur. A *tree* is a structure which interprets the constants and predicates of L_K such that the interpretation of the predicates reflects the properties of the trees. A tree *satisfies* a description if the tree as a structure satisfies the description as a formula in first-order logic. For instance, the logic form of the description in Figure 4.8(a) is

$$(S \triangleleft NP) \land (S \triangleleft S_1) \land (NP \triangleleft S_1) \land (S_1 \triangleleft^+ NP_1) \land (NP_1 \triangleleft \varepsilon)$$

The two trees in Figure 4.8(b) and (c) satisfy this description.

Table 4.1: The definition of a *description* given in (Rogers & Vijay-shanker, 1994)

Definition: For \mathcal{K} a countable set of constant symbols, let L_K be the language built up from \mathcal{K} and the systems:

- $\triangleleft, \triangleleft^+, \prec$ — two place predicates, *parent*, *domination*, and *left-of*, respectively.
- \approx — equality predicate.
- \land, \lor, \neg — usual logical connectives.
- $(,), [,]$ — usual grouping symbols.

The only *terms* of the language are constants. *Atoms*, *literals* and *well-formed formulae* (wffs) are generated in the usual fashion. A *description* is just an arbitrary, finite set of formulae.
Definition: For any language L_K, a model for L_K is a tuple $(\mathcal{U}, \mathcal{I}, \mathcal{P}, \mathcal{D}, \mathcal{L})$, where
\(\mathcal{U} \) is a nonempty universe,
\(\mathcal{I} \) is a function from \(\mathcal{K} \) to \(\mathcal{U} \),
\(\mathcal{P}, \mathcal{D}, \mathcal{L} \) are binary relations over \(\mathcal{U} \) (interpreting \(\preceq, \preceq^*, \prec \), respectively).

A tree is a model satisfying the conditions:
(I) For some \(\mathcal{R} \in \mathcal{U} \) and all \(w, x, y, z \in \mathcal{U} \),
 /* T1 requires a tree to have a root */
 T1: \((\mathcal{R}, x) \in \mathcal{D}\)

 /* T2 — T4 require the domination relation to be reflexive,
 anti-symmetric, and transitive */
 T2: \((x, x) \in \mathcal{D}\)
 T3: \((x, y), (y, x) \in \mathcal{D} \Rightarrow x = y\)
 T4: \((x, y), (y, z) \in \mathcal{D} \Rightarrow (x, z) \in \mathcal{D}\)

 /* T5 — T7 relate the parent and domination relations */
 T5: \((x, y) \in \mathcal{P} \Rightarrow [(x, y) \in \mathcal{D} \text{ and } (y, x) \notin \mathcal{D}]\)
 T6: \([x, z) \in \mathcal{P} \text{ and } (x, y), (y, z) \in \mathcal{D}] \Rightarrow [(x = y \text{ or } (y = z)]\)
 T7: \((x, y) \in \mathcal{D} \Rightarrow (y, x) \in \mathcal{D} \text{ or }
 (\exists x', y')[x, y), (y', y) \in \mathcal{P} \text{ and } (x, y'), (x', y) \in \mathcal{D}\)

 /* T8 — T10 relate the domination and left-of relations */
 T8: \((x, y) \in \mathcal{D} \text{ or } (y, x) \in \mathcal{D} \text{ or } (x, y) \in \mathcal{L} \text{ or } (y, x) \in \mathcal{L}\)
 T9: \((x, y) \in \mathcal{L} \Rightarrow (x, y) \notin \mathcal{D}, (y, x) \notin \mathcal{D}, \text{ and } (y, x) \notin \mathcal{L}\)
 T10: \([x, y) \in \mathcal{L} \text{ and } (x, w), (y, z) \in \mathcal{D}] \Rightarrow (w, z) \in \mathcal{L}\)

 /* T11 requires the left-of relation to be transitive */
 T11: \((x, y), (y, z) \in \mathcal{L} \Rightarrow (x, z) \in \mathcal{L}\)

(II) For every \(x \in \mathcal{U} \), the sets
 \(B_x = \{ y \mid (y, x) \in \mathcal{D} \} \) and
 \(L_x = \{ y \mid (\exists z)[(z, y), (z, x) \in \mathcal{P} \text{ and } (y, x) \in \mathcal{L}]\} \)
 are finite.

Table 4.2: The definition of a tree given in (Rogers & Vijay-shanker, 1994)
4.3.3 The definition of descriptions in LexOrg

When we built LexOrg, we extended the previous definitions of descriptions and trees.

The new definition of description

The major extension that we made to the previous definition is that we now include feature
structures. This extension is necessary for three reasons. First, in the LTAG formalism, fea-
ture structures are associated with the nodes in a template to specify linguistic constraints
(see Section 2.1.5). They should be included in descriptions so that when descriptions are
combined by LexOrg, the features are carried over to the resulting templates. Second, in
addition to features appearing in templates, each node in a description has three special
features. The first one, cat, is the category of the node. The second feature, type, is the
type of the node. The feature has four possible values: an internal node, a foot node, an
anchor node, or a substitution node. The third feature subsc is the subscript of the node.
An LTAG grammar may use subscripts to distinguish the nodes in a template with the
same category. For instance, it may name the subject NP_0 and the object NP_1. The third
reason why we include features in descriptions is that LexOrg can use feature unification
to rule out incompatible combinations of descriptions (see Section 4.5). The new definition
of description is shown in Table 4.3. In the new definition, an atomic formula is either an
atomic formula in the original definition or is a feature equation, and a description is a wff
rather than a finite set of wffs.

Figure 4.9 shows two ways of representing the same description: the left one is in the
logical form; the right one is a graph, in which the features of nodes (including the cate-
gories of nodes) are enclosed in parentheses. The graphic representation is more intuitive
and easier to read, but not every description can be displayed as a graph because a de-
scription may use negation and disjunctive connectives. In the following sections, we shall
use the graphical representation when possible and use the logic representation in other
cases.
Definition: For \(\mathcal{K} \) a countable set of constant symbols, let \(L_{\mathcal{K}} \) be the language built up from \(\mathcal{K} \) and the systems:

\(\prec, \prec^*, \prec \rightarrow \) two place predicates, parent, domination, and left-of, respectively.
\(\approx \) — equality predicate.
\(\land, \lor, \neg \) — usual logical connectives.
\((,) \) — usual grouping symbols.
\(\mathcal{F} \) — a finite set of feature names.
\(\mathcal{V} \) — a finite set of feature values.
\(\text{cat, type, subst} \) — three features in \(\mathcal{F} \).

\(\text{cat} \) is the syntactic category (e.g., \(S, NP \)) of a node,
\(\text{type} \) is the type of a node (e.g., internal node, foot node, and anchor node).
\(\text{subst} \) is the subscript of the node.
\(\epsilon \) — the empty category, one of the values in \(\mathcal{V} \) for the feature \(\text{cat} \).
\(\text{internal, foot, anchor, and subst} \) — four values in \(\mathcal{V} \) for the feature \(\text{type} \).

The only terms of the language are constants.

An atomic formula is one of the following:

1. \(t_1 \sqcap t_2 \), where \(\sqcap \) is \(\prec, \prec^*, \text{ or } \prec \), and \(t_1 \) and \(t_2 \) are terms.
2. \(t . f = v \), where \(t \) is a term, \(f \in \mathcal{F} \), and \(v \in \mathcal{V} \).
3. \(t_1 . f_1 = t_2 . f_2 \), where \(t_1 \) and \(t_2 \) are terms, and \(f_1, f_2 \in \mathcal{F} \).

Well-formed formulae (wffs) are generated in the usual fashion.

A description is a wff.

Table 4.3: The new definition of description used in LexOrg

\[
\begin{align*}
(S_0 \prec NP_0) \land (S_0 \prec S_1) \\
\land (NP_0 \prec S_1) \land (S_1 \prec^* NP_1) \\
\land (NP_1 \prec \epsilon) \land (S_0.\text{label} = \epsilon \ S') \\
\land (NP_0.\text{label} = \epsilon NP') \land (S_1.\text{label} = \epsilon S') \\
\land (NP_1.\text{label} = \epsilon NP') \land (\text{Trace}.\text{label} = \epsilon \ 0) \\
\end{align*}
\]

(a) the logical representation

\[
\begin{array}{c}
\xrightarrow{S_0 \ ('S')} \\
\xrightarrow{\text{NP}_0 \ ('NP')} \\
\xrightarrow{S_1 \ ('S')} \\
\xrightarrow{\vdots} \\
\xrightarrow{\text{NP}_1 \ ('NP')} \\
\xrightarrow{\text{Trace} \ ('\epsilon')} \\
\end{array}
\]

(b) the graphical representation

Figure 4.9: Two representations of a description

52
Definition: For any language $L_\mathcal{K}$, a model for $L_\mathcal{K}$ is a tuple $(\mathcal{U}, \mathcal{I}, \mathcal{P}, \mathcal{D}, \mathcal{L})$, where
\begin{itemize}
 \item \mathcal{U} is a nonempty universe,
 \item \mathcal{I} is a function from \mathcal{K} to \mathcal{U},
 \item $\mathcal{P}, \mathcal{D}, \mathcal{L}$ are binary relations over \mathcal{U} (interpreting \prec, \prec^*, \prec, respectively).
\end{itemize}

A tree is a model satisfying the conditions (I), (II) in Table 4.2 and the following:

(III) For all $w, x, y, z \in \mathcal{U}$,

- L1 interprets the equation with respect to feature structures */
 \begin{equation}
 L1: x = y \Rightarrow (\forall f \in \mathcal{F})(x.f = y.f)
 \end{equation}

- L2 requires that each node has a category */
 L2: $x.cat$ is defined

- L3 says that an empty category cannot have siblings */
 L3: $[(x.cat = 'd') \land (z, x), (z, y) \in \mathcal{P}] \Rightarrow x = y$

- L4 — L6 interprets the meaning of the feature type */
 L4: $(x.type = internal)$ or $(x.type = foot)$ or $(x.type = anchor)$
 or $(x.type = subst)$
 L5: $(x.type = internal) \Rightarrow (\exists y)[(x, y) \in \mathcal{P}]$.
 L6: $[(x.type \neq internal) \land (x, y) \in \mathcal{D}] \Rightarrow x = y$.

- L7 requires that there is at most one foot node in a template */
 L7: $[(x.type = foot) \land (y.type = foot)] \Rightarrow x = y$.

Table 4.4: The new definition of tree used in LexOrg
The new definition of tree

Now that we have extended the definition of description, the definition of tree needs to be revised as well. The new definition is in Table 4.4. Under this new definition, each node in U is associated with a feature structure. For each feature in the feature structure, there are three possibilities for its value: (1) the feature value is not defined; (2) the feature value is equal to one of the constants in V; (3) the feature value is equal to the feature value of another node. A tree is a model if it satisfies all the conditions in the original definition plus the additional requirements L1 — L7. L1 says that, if two nodes are equal, all the features of the nodes should have the same values. L2 requires each node to be assigned a category. L3 says that an empty category cannot have any sibling. L4 — L6 give the interpretation of four types of nodes: a node in a tree is either an internal node or a leaf node; a leaf node is a foot or an anchor or a substitution node. L7 says that each tree has at most one foot node.

This definition of tree is closely related to the traditional definition of rooted, ordered tree. To avoid confusion, in this chapter, we use trees to refer to the former, and rooted, ordered trees to the latter. The definition of tree in LexOrg is more complicated than the traditional definition of rooted, ordered trees. First, each node in a tree is associated with a feature structure. Second, a tree has a component I, which is a function from K to U.

Given a tree $T = (U, I, P, D, L)$, we can draw a graphic tree \hat{T} as follows:

- For every $x \in U$, build a unique node \hat{x} in \hat{T}.
- The edge (\hat{x}, \hat{y}) is in \hat{T} if and only if (x, y) is a pair in P.
- The node \hat{x} appears to the left of \hat{y} in \hat{T} if and only if (x, y) is in L.

To represent the function I and features in \hat{T}, we write the node \hat{x} in the form $\{k_i\}(\{f_m = v_m\})$, where $\{k_i\}$ is a subset of K such that $I(k_i) = x$; that is, \hat{x} represents the set of symbols in K that map to x. For any k_j in $\{k_i\}$, if k_j, f_m is equal to v_m, we include $f_m = v_m$ in the parentheses. We often omit the curly brackets and all the features but cat

\footnote{If two nodes in K map to the same node in U, it means that these two nodes which appear in descriptions are merged into a single node in the templates that are derived from the descriptions.}
Figure 4.10: Two representations of a tree

from the form. For example, instead of writing “Obj,ExtSite(cat =’NP’, ..., f_m = v_m)’, we write “Obj,ExtSite(’NP’)’. Figure 4.10 shows two representations of the same tree. Unlike descriptions, each tree in the logic form can always be drawn as a tree in the graphical form. It is obvious that the graphical form is much easier to read than the logical one. Therefore, we shall use the graphical form in figures while using the logical representation when explaining algorithms.

Notice that this notion of tree is related to, but not the same as, the notion of template in the LTAG formalism. In Section 4.5, we shall show that it is trivial to build a unique template from each tree. Figure 4.11 shows a tree and the template built from it.

4.4 The types of descriptions

LexOrg takes a set of descriptions and generates templates. In the previous section, we defined descriptions as well-formed formulae in a simplified first-order language. In this section, we further define four types of descriptions. This classification is crucial for the
Description Selector to work properly, as will be discussed in Section 4.6.

For any simple template, there are numerous sets of descriptions that can generate the template. Figure 4.12 shows two sets of descriptions that generate the template in Figure 4.11(a). In the first set, each description gives information about a particular aspect of the target template: #1 for the head and its projections, #2 and #3 for the head and its arguments, and #4 for the wh-movement. This property does not hold for the second set. For instance, the information about wh-movement appears in two descriptions: the antecedent NewSite is in #5, and the gap ExtSite is in #8. Also, the Head is not present in #6. Intuitively, the set in (a) is more desirable than the set in (b), although both sets generate exactly the same template.

Recall that in Chapter 3, we mentioned that a template has up to four types of information: head and its projection, arguments, modifiers, and syntactic variations. We require the users of LexOrg to build descriptions such that each description provides exactly one type of information. Therefore, descriptions can be divided into four types accordingly. Then we can say that in Figure 4.12 the set in (a) is better than the one in (b) because the former, but not the latter, satisfies this requirement. Now let us discuss each type of description in detail.

4.4.1 Head and its projections

The first type of description gives the information about the head and its various projections. For instance, the description in Figure 4.13(a) says that a verb projects to a VP,
and the VP projects to an S. In this chapter,

4.4.2 Arguments of a head

The second type of description specifies the number, the types, and the positions of arguments that a head can take, and the constraints that a head imposes on its arguments. For instance, the description in Figure 4.13(b) says that the subject — a left argument of the head — is a sister of the HeadBar. The feature equation in the description ensures that the subject and the HeadBar must agree on numbers, persons, and so on. The description in Figure 4.13(c) says that a head can take a right argument, which appears as a sister of the head. Combining the descriptions for the first two types forms a description for the whole subcategorization frame, as in Figure 4.13(d); therefore, we use the term subcategorization descriptions to refer to descriptions in either the first or the second type.

4.4.3 Modifiers of a head

The third type of description specifies the type and the position of a modifier with respect to the modifiee, and any constraint on the modification relation. For instance, the description
in Figure 4.14 says that a clause can modify a verb phrase from the right, but the clause must be infinitival.

4.4.4 Syntactic variations

The last type of description provides information on syntactic variations (e.g., wh-movement and argument drop). The description in Figure 4.15 says that, in a wh-movement, a component is moved from a position $ExtSite$ under $HeadP$ to the position $NewSite$; $NewSite$ is the left sister of $HeadP$; both $NewSite$ and $HeadP$ are children of $FHeadP$; $FHeadP$ and $HeadP$ are Ss.

To summarize, we have discussed four types of descriptions. In Section 4.6, we shall show that a template is generated from a set of descriptions that includes one description of the first type, zero or more descriptions of the second type, zero or one description of the third type, and zero or one or more descriptions of the fourth type.

In the sentence “I came here to see you”, the purpose clause “to see you” modifies the VP “came here”. One may choose the analysis where the purpose clause modifies the whole main clause “I came here”, instead of just the VP “came here”. To account for this analysis, we only have to change the labels of $ModRoot$ and $ModFoot$ from VPs to Ss.
the third type, and zero or more descriptions of the last type.

4.5 The Tree Generator

The most complicated component of LexOrg is called Tree Generator (TreeGen). The function of the Tree Generator is to take a set of descriptions as input, and generate templates as output. This is done in three steps: first, TreeGen combines the input set of descriptions to get a new description; second, TreeGen builds a set of trees such that each tree in the set satisfies the new description and has the minimal number of nodes; third, TreeGen builds a template for each tree in the set. In Figure 4.16, the descriptions in (a) are the input to TreeGen. The new description is in (b). Notice that in (b) the position of ExtSite with respect to Subj and HeadBar is not specified. There are many trees that satisfy this description, but the two trees in (c) are the only ones with the minimal number of nodes. From these two trees, TreeGen builds two templates in (d). In this section, we explain each step in detail.

4.5.1 Step 1: Combine descriptions to form a new description

In this step, TreeGen combines a set of descriptions to form a new description. Recall that a description is a wff in a simplified first-order logic. Given a set of descriptions \(\{ \phi_i \mid 1 \leq i \leq n \} \), the new description \(\phi \), which combines \(\{ \phi_i \} \), is simply the conjunction of \(\phi_i \); that is, \(\phi = \phi_1 \land \phi_2 \ldots \land \phi_n \).
Figure 4.16: The function of the Tree Generator
4.5.2 Step 2: Generate a set of trees from the new description

In the second step, TreeGen generates a set of trees $\text{Mod}_{\text{min}}(\phi)$ from the new description ϕ. A tree T satisfies a description ϕ if and only if $T \models \phi$. Let $\text{Mod}(\phi)$ be the set of trees that satisfies ϕ. The tree set $\text{Mod}_{\text{min}}(\phi)$ is the subset of $\text{Mod}(\phi)$ such that each tree in $\text{Mod}_{\text{min}}(\phi)$ has the minimal number of nodes; that is,

$$\text{Mod}_{\text{min}}(\phi) = \{ T_i \in \text{Mod}(\phi) \mid \text{Num}(T_i) = \min_{T_j \in \text{Mod}(\phi)} \text{Num}(T_j) \} \quad (4.1)$$

where $\text{Num}(T_i)$ is the number of nodes in T_i.

According to our definition of tree, each node in a tree must have a category (see L2 in Table 4.4); therefore, each tree in $\text{Mod}(\phi)$ has at most $\text{Num}(\phi)$ nodes, where $\text{Num}(\phi)$ is the number of nodes occurring in ϕ. Let $\text{TS}(i)$ denotes the set of trees with exactly i nodes, the formula in (4.2) holds. Because $\text{TS}(i)$ is finite for any i, $\text{Mod}(\phi)$ is finite as well.

$$\text{Mod}(\phi) \subseteq \bigcup_{i \leq \text{Num}(\phi)} \text{TS}(i) \quad (4.2)$$

A naive algorithm

Based on formulae (4.1) and (4.2), we can write a naive algorithm for building $\text{Mod}_{\text{min}}(\phi)$. This algorithm (see Table 4.5) first generates a set TS that includes all the trees with at most $\text{Num}(\phi)$ nodes, then it chooses a subset $\text{Mod}(\phi)$ of TS such that each tree in the subset satisfies ϕ, finally it chooses a subset $\text{Mod}_{\text{min}}(\phi)$ of $\text{Mod}(\phi)$ according to the definition in (4.1). This approach is impractical because TS is too big.\footnote{As mentioned in Section 4.3, the notion of tree in LexOrg is much more complicated than the notion of rooted, order trees. We can build a tree of n nodes in three steps: first, we build a rooted, ordered tree T with n nodes; second, we build a surjective function \mathcal{I} from \mathcal{K} to \mathcal{U}, where \mathcal{U} has n nodes; third, for each node in \mathcal{U}, we set the values for its features.}

In the first step, the number of possible trees with n nodes is the $(n-1)^{th}$ Catalan Number. The n^{th} Catalan Number is the number of rooted, ordered binary trees with n vertices. It is also the number of rooted, ordered trees with $n + 1$ vertices. The equation (4.3) for the n^{th} Catalan Number b_n is well-known in the field of Graph Theory. A proof of this equation is mentioned in (Cormen et al., 1990, page 262).
Input: a description ϕ
Output: Mod_m (i.e., $\text{Mod}_{\text{min}}(\phi)$)
Notation: $\text{Num}(tr)$ is the number of nodes in a tree tr
Algorithm: void $\text{GenTrees}(\phi, \text{Mod}_m)$

/* count the number of nodes occurring in ϕ */
(A) $\text{MaxNodeNum} = \text{Num}(\phi)$;

/* calculate $TS(i)$ */
(B) $TS = \{\}$;
(C) for (i=1; i\leq \text{MaxNodeNum}; i++)
 (C1) TS_i is the set of trees with exactly i nodes;
 (C2) $TS = TS \cup TS_i$;

/* calculate $\text{Mod}(\phi)$ and a */
/* a is going to be $\min_{T_j \in \text{Mod}(\phi)} \text{Num}(T_j)$ */
(D) $a = \text{MaxNodeNum} + 1$;
(E) $\text{Mod} = \{\}$;
(F) for (each tr in TS)
 if (tr satisfies ϕ)
 then $\text{Mod} = \text{Mod} \cup \{tr\}$;
 if ($\text{Num}(tr) < a$)
 then $a = \text{Num}(tr)$;

/* calculate $\text{Mod}_{\text{min}}(\phi)$ */
(G) $\text{Mod}_m = \{\}$;
(H) for (each tr in Mod)
 if ($\text{Num}(tr) == a$)
 then $\text{Mod}_m = \text{Mod}_m \cup \{tr\}$;

Table 4.5: A naive algorithm for building $\text{Mod}_{\text{min}}(\phi)$
the majority of trees in TS are not in Mod(\(\phi\)), let alone in Mod_{min}(\(\phi\)); these trees are produced in Line (C1) and then thrown away in Lines (F) and (H). A revised version of the algorithm is shown in Table 4.6, but it still needs to calculate TS(i).

![Algorithm](image)

Table 4.6: A revised version of the naive algorithm for building Mod_{min}(\(\phi\))

A more efficient algorithm

The problem of the naive algorithm is that the algorithm calculates the set TS(i) without considering \(\phi\); as a result, most trees in TS(i) do not satisfy \(\phi\) and have to be thrown away in later steps.

\[
b_n = \frac{1}{n+1} \times \binom{2n}{n} = \frac{4^n}{\sqrt{\pi} \times n^{3/2}} \times (1+O(1/n)). \tag{4.3}
\]

In the second step, the number of possible surjective functions from \(K\) to \(\mathcal{U}\) is \(S(|K|, n) \times n!\), where \(S(m, n)\) is a Stirling number of the second kind; that is, \(S(m, n)\) is the number of ways that a set with \(m\) distinguishable elements can be partitioned into \(n\) pair-wise disjoint, non-empty subsets.

Therefore, even if we don’t consider feature structures, the number of trees with \(n\) nodes — the size of TS(n) — is \(S(|K|, n) \times n! \times b_{n-1}\), which is a huge number.

63
Input: a description ϕ
Output: Mod_m (i.e., $\text{Mod}_{\text{min}}(\phi)$)
Algorithm: void GenTreesEff(ϕ, Mod_m)

/* a description ϕ ⇒ a new description $\hat{\phi}$ */
(A) build a $\hat{\phi}$ which satisfies the following two conditions:
 (1) $\text{Mod}(\hat{\phi}) = \text{Mod}(\phi)$, and
 (2) $\hat{\phi}$ is in the disjunctive normal form and does not use negation connectives;
 that is, $\hat{\phi} = \hat{\phi}_1 \lor ... \lor \hat{\phi}_m$, where $\hat{\phi}_i = t_{i_1} \land t_{i_2} ... \land t_{i_n}$ and t_{i_j} is a term.

/* a description $\hat{\phi}$ ⇒ a set of trees TC */
(B) $TC = \{\}$;
(C) for (each $\hat{\phi}_i$)
 /* a description $\hat{\phi}_i$ ⇒ a graph G_i */
 (C1) draw a directed graph G_i. In G_i, there is a dashed edge (a solid edge, resp.)
 from the node x to y iff one of the terms in $\hat{\phi}_i$ is $x <^* y$ ($x <_y y$, resp.).
 (C2) store with the graph the left-of information that appears in $\hat{\phi}_i$.

/* a graph G_i ⇒ a tree set TC_i */
(C3) if (G_i has cycles)
 then if (the set of nodes on each cycle are compatible)
 then merge the nodes;
 else $TC_i = \{\}$; continue;
(C4) merge the nodes in G_i until it does not have any compatible set;
 (this step may produce more than one new graph)
(C5) for (each new G_i)
 build a set of trees TC_i such that each tree
 includes all the edges in G_i and
 satisfies the left-of information,
 $TC = TC \cup TC_i$;

/* a set of trees TC ⇒ a set of minimal trees Mod_m */
(D) $a = \text{min}_{tr \in TC} \text{Num}(tr)$;
(E) $\text{Mod}_m = \{ tr \mid tr \in TC \text{ and } \text{Num}(tr) = a \}$;

Table 4.7: A much more efficient algorithm for building $\text{Mod}_{\text{min}}(\phi)$
Figure 4.17: An example that illustrates how the new algorithm works
We propose an algorithm that is much more efficient. The main idea is as follows. First, we build a new description \(\hat{\phi} \) such that a tree satisfies \(\hat{\phi} \) if and only it satisfies \(\phi \), and \(\hat{\phi} \) is in disjunctive normal form and it does not use negative connectives. Second, for each branch \(\hat{\phi}_i \) in \(\hat{\phi} \), we build a graph \(G_i \). A graph is a model for \(L_K \) as defined in Table 4.4, but it is not necessarily a tree. Third, we turn each \(G_i \) into a tree. There may be more than one possible tree; as a result, we get a set of trees \(TC_i \). Last, we choose the subset of \(\bigcup TC_i \) with the minimal number of nodes.

The new algorithm is in Table 4.7. Figure 4.17 shows a description and the output after each major step. Some explanations about the algorithm are in order.

- Line (A): The algorithm builds \(\hat{\phi} \) from \(\phi \) in line (A) in order to create a graph for each component \(\hat{\phi}_i \) of \(\hat{\phi} \). \(\hat{\phi} \) is not necessarily equivalent to \(\phi \). In first-order logic, two formulae are equivalent if any model that satisfies one formula also satisfies the other formula and vice versa. The condition (1) in Table 4.7 requires that the sets of trees (not models) that satisfy \(\hat{\phi} \) and \(\phi \) are identical. \(\hat{\phi} \) is built in three steps. First, the algorithm builds a formula \(\phi' \) which is equivalent to \(\phi \) and is in the disjunctive normal form. In \(\phi' \), negation connectives negate only terms, rather than formulae. Second, if \(\phi' \) includes negations of terms, the algorithm builds a new description \(\phi'' \) by replacing negations of terms with disjunctions of terms without negations. For instance, it replaces \(\neg(a < b) \) with \((a <^* b) \lor (b < a) \). This replacement is possible because any tree — including the ones in \(Mod(\phi) \) — has to satisfy the conditions in Tables 4.2 and 4.4. The resulting formula \(\phi'' \) does not include any negative connective. Last, we build a formula \(\hat{\phi} \) in the disjunctive normal form which is equivalent to \(\phi'' \), and \(\hat{\phi} \) does not include negative connectives.

- Lines (C3) and (C4): the process in Line (C1) can be easily reversed to build a description \(\Phi(G) \) from a graph \(G \). We call a graph \(G \) consistent if there is at least one tree that satisfies \(\Phi(G) \). We call a set of nodes in a graph compatible if after merging them into a single node, the resulting graph is still consistent. When nodes are merged, the left-of information and dashed/solid edges in the graph have to be updated accordingly, as shown in Figure 4.17(c)–(d).
A node may appear in more than one compatible set. If a graph G has two compatible sets, it is possible that after merging the nodes in one set, the other set is no longer compatible in the new graph. Therefore, if a graph has more than one compatible set, merging these sets in different orders may result in different graphs. Hence, line (C4) may produce more than one graph. For instance, the graph in Figure 4.17(c) has two compatible sets: $\{B, G\}$ and $\{F, G\}$. Merging B with G results in #4, and merging F with G results in #5.

• Line (C5): all the trees produced in this step have the same number of nodes as the ones in G_i. Without the constraints imposed by the left-of information, building trees from a graph is quite straightforward. The algorithm first chooses a node R as the root, where R is not dominated by any other node in the graph. It then makes x one of R's children in the tree if R is x's parent in the graph. For each remaining node y, if y is not dominated by any node other than R and itself in the graph, the algorithm can either make or not make y one of R's children in the tree. Repeat this process until all the nodes in the graph are included in the tree. Because there may be more than one choice at each step, the algorithm builds a set of trees from the graph. Now with the constraints imposed by the left-of information, the algorithm is more complicated. For instance, in #4 of Figure 4.17, the node A dominates two nodes. Without the left-of information, these two nodes can be siblings or one dominates the other. But with the left-of information, they have to be siblings.

• Lines (D) and (E): TC produced in Line (C) is a subset of $\mathit{Mod}(\phi)$, and a superset of $\mathit{Mod}_{\min}(\phi)$. Therefore, the Mod_n produced in Line (E) is equal to $\mathit{Mod}_{\min}(\phi)$.

This new algorithm is much faster than the naive algorithm because the tree set TC produced by the new algorithm is much smaller than the TS set produced by the naive algorithm.

4.5.3 Step 3: Build templates from the trees

In this step, LexOrg builds a unique template from each tree produced by the previous step. As shown in Table 4.8, the process is very simple. Recall that a node in the tree has
the form $\{k_i\}\{\{f_m = v_n\}\}$. LexOrg replaces $\{k_i\}\{\{f_m = v_n\}\}$ with $l(\{f_m = v_n\})$, where l is the category of k_i. If the type of a leaf node is unspecified, LexOrg sets the type according to the defaults given in line (A2) in Table 4.8. Figure 4.11 (repeated as Figure 4.18) shows a tree and the template built from the tree.

4.6 The Description Selector

In this section, we introduce a second component of LexOrg named Description Selector, which takes as input a subcategorization frame Fr and a set of description $DescSet$, and outputs subsets of $DescSet$.

4.6.1 The function of the Description Selector

In the previous section, we showed that the Tree Generator builds elementary trees from a set of descriptions, as illustrated in Figure 4.16. A simplified version of the figure is repeated as Figure 4.19. The set of descriptions given to the Tree Generator is a subset of the descriptions provided by the users. The function of the Description Selector is to select the descriptions for the Tree Generator; that is, it takes as input a subcategorization frame and a finite set of descriptions, and produces sets of descriptions, which are then fed to the Tree Generator. An example is given in Figure 4.20. In this example, the inputs to the Description Selector are a set $DescSet$ of descriptions (i.e., $\{D_1, D_2, D_3, D_4, D_5\}$) and a subcategorization frame Fr; the output is a set with four members: SD_1, SD_2, SD_3, and SD_4. Each SD_i is a subset of $DescSet$. The Tree Generator takes each SD_i and
Input: a tree Tr
Output: a template $Temp$
Algorithm: void GenTemp(Tr, $Temp$)
(A) for (each node n in Tr)
 (A1) Let n be of the form $\{k_i\} (cat = a, type = b, subsc = c, f_1 = v_1, \ldots, f_n = v_n)$, create a new node n' of the form $a(f_1 = v_1, \ldots, f_n = v_n)$;
 (A2) if (n is a leaf node)
 if ($n.type$ is unspecified)
 then if (one of the symbols in $\{k_i\}$ is Head)
 then mark n' as an anchor node;
 else if (one of the symbols in $\{k_i\}$ is ModFoot)
 then mark n' as a foot node;
 else mark n' as a substitution node;
 else mark n' according to the value of $n.type$;
 (A3) if ($n.subsc$ is defined)
 then set the subscript of n' to be $n.subsc$;
(B) for (each edge from n_1 to n_2 in Tr)
 add an edge from n'_1 to n'_2 in $Temp$

Table 4.8: An algorithm that builds a template from a tree
generates a set of trees T_i. Each T_i has zero or more trees. For instance, T_2 has two trees, whereas T_4 is empty because the descriptions in SD_4 (i.e., D_4 and D_5) are incompatible. The input description sets are in fact divided into three subsets: one for subcategorization descriptions, one for modification relations, and the third one for syntactic variations. The Description Selector handles the three subsets differently, as we shall discuss shortly.

4.6.2 The definition of a subcategorization frame

A subcategorization frame specifies the categories of the predicate and arguments, the positions of arguments with respect to the predicate, and other information such as feature equations. A subcategorization frame is actually a special kind of subcategorization description. A frame such as (NP_i, V, NP_j) can be seen as the shorthand version of the description

$$(\text{leftarg} \prec \text{head}) \land (\text{head} \prec \text{rightarg}) \land (\text{leftarg.cat} = \text{} NP') \land (\text{head.cat} = \text{} V')$$

$$\land (\text{rightarg.cat} = \text{} NP') \land (\text{leftarg.subsc} = 0) \land (\text{rightarg.subsc} = 1)$$

A subcategorization frame is different from other descriptions in that it cannot refer to any node other than the head and its arguments. For instance, it cannot refer to the
Figure 4.20: The function of the Description Selector
VP which is the parent of the verb head. Another difference is that the categories of the nodes in a subcategorization frame must be specified.

4.6.3 The algorithm for the Description Selector

Now that we have described the function of the Description Selector, the next question is how does it work? In Section 4.4, we classify descriptions into four types: the ones for head projections, head-argument relations, syntactic variations, and modification relations. The first two types (e.g., D_1, D_2, and D_3 in Figure 4.20) are also called subcategorization descriptions since they specify structures for a particular subcategorization frame. Because the elementary trees in a tree family have the same subcategorization frame, the Description Selector should put in every SD_i all the subcategorization descriptions for that subcategorization frame. In addition to subcategorization information, an elementary tree may include information about zero or more syntactic variations, and zero or one modification relation. Therefore, each SD_i built by the Description Selector should include all the related subcategorization descriptions, zero or more syntactic variation descriptions, and zero or one modification description.

The algorithm for the Description Selector is in Table 4.9. Some explanations are in order.

- In Line (A), the algorithm chooses a subset of subcategorization descriptions by matching the “headers” of descriptions with the “headers” that are automatically generated from a subcategorization frame. To see how it works, just imagine that each description is a function with a header and a body. The header is made of a function name and a list of parameters in particular formats. The body is a wff as defined before. For instance, the headers of the descriptions in D_1 — D_3 in Figure 4.20 are $\text{head} _ \text{is} _ \text{V}$ (Head), $\text{head} _ \text{V} _ \text{has} _ \text{left} _ \text{arg} _ \text{NP}$ (Head, Subj), and $\text{head} _ \text{V} _ \text{has} _ \text{right} _ \text{arg} _ \text{NP}$ (Head, Obj), respectively. Given a subcategorization frame $(L_1, L_2, ..., L_n; X; R_1, R_2, ..., R_m)$, the algorithm generates a set of headers such as $\text{head} _ \text{is} _ \text{X}$ (Head), $\text{head} _ \text{X} _ \text{has} _ \text{a} _ \text{left} _ \text{arg} _ \text{L}_i$ (Head, $LArg_i$), and $\text{head} _ \text{X} _ \text{has} _ \text{a} _ \text{right} _ \text{arg} _ \text{R}_i$ (Head, $RArg_i$). Then it uses this set of headers to fetch the descriptions with the
Input: \(Fr \): a subcategorization frame,
\(\text{Subcat} \): a set of subcategorization descriptions,
\(\text{Synvar} \): a set of syntactic variation descriptions,
\(\text{Mod} \): a set of modification descriptions.

Output: \(SDs \): a set of description sets

Algorithm: void SelectDesc\((Fr, \text{Subcat}, Trans, \text{Mod}, SDs)\)

/* select subcategorization descriptions */
(A) select a subset \(\text{Subcat}_1 \) of \(\text{Subcat} \) according to \(Fr \);

/* filter out some of incompatible syntactic variation and modification descriptions */
(B) select a subset \(\text{Synvar}_1 \) of \(\text{Synvar} \) that seems to be compatible with \(\text{Subcat}_1 \);
(C) select a subset \(\text{Mod}_1 \) of \(\text{Mod} \) that seems to be compatible with \(\text{Subcat}_1 \);

/* build \(SDs \) */
(D) \(SDs = \{ \} \);
(E) for (each subset \(tmp_set \) of \(\text{Synvar}_1 \))
 \(TSet_1 = \{ Fr \} \cup \text{Subcat}_1 \cup tmp_set; \)
 \(SDs = SDs \cup TSet_1; \)
 for (each \(tmp_nem \) in \(\text{Mod}_1 \))
 \(TSet_2 = TSet_1 \cup \{ tmp_nem \}; \)
 \(SDs = SDs \cup TSet_2; \)

Table 4.9: The algorithm for the Description Selector
same function names and the same numbers of parameters. In our example, given the subcategorization frame \((NP, V, NP)\), the algorithm selects \(D_1 \rightarrow D_3\).

- In Line (B), the algorithm throws away syntactic variation descriptions that are obviously incompatible to the ones in \(Subcat\). For instance, if the \(HeadP\) in a description of \(Subcat\) has the label \(S\), the algorithm is going to throw away all the descriptions in which \(HeadP\) has labels other than \(S\). Line (C) works in a similar way. Notice that the incompatibility between the descriptions can be detected by the Tree Generator as well; therefore, Lines (B) and (C) are optional in the sense that the Tree Generator would produce the same result with or without these two lines. But these lines make LexOrg run much faster by reducing the number of description sets that the Tree Generator has to consider from \(2^{|Synvar|} \times (|Mod| + 1)\) to \(2^{|Synvar|} \times (|Mod_1| + 1)\).

- Recall that a subcategorization frame is a special kind of subcategorization description; therefore, it should be included in every SD, as in Line (E).

Back to the example in Figure 4.20, \(Subcat\) is \(\{D_1, D_2, D_3\}\), \(Synvar\) is \(\{D_4\}\), and \(Mod\) is \(\{D_3\}\). The set of description sets produced by the Description Selector has four members: \(SD_1 \rightarrow SD_4\). In this example, it happens that \(Subcat_1\) (\(Synvar_1\), \(Mod_1\), respectively) is the same as \(Subcat\) (\(Synvar\), \(Mod\), respectively). In a real grammar, the former is much smaller than the latter.

4.7 The Frame Generator

The third component of LexOrg is the Frame Generator. It takes a subcategorization frame and a set of lexical rules as input and produces as output a set of related subcategorization frames.
4.7.1 The function of the Frame Generator

In an LTAG grammar, each word anchors one or more elementary trees. Figure 4.1 (repeated as Figure 4.21) shows seven templates anchored by ergative verbs such as *break*. The templates belong to two tree families because the subcategorization frames for them are different, but there is a clear connection between these two subcategorization frames, and all the ergative verbs (such as *break*, *sink*, and *melt*) have both frames. Levin (1993) listed several dozens of alternations and classified English verbs according to the alternations that are allowed for the verbs. In LexOrg, we use lexical rules to link related subcategorization frames. Figure 4.22 shows the lexical rule that links the two subcategorization frames in the causative/inchoative alternation. The function of the Frame Generator is to apply lexical rules to a frame and generate all the related frames.\footnote{Just like a function call, the names of parameters appearing in a function definition do not have to be the same as the ones in a function call.}
4.7.2 The definition of a lexical rule

The term *lexical rule* is heavily overloaded. For instance, the lexical rules in (Evans et al., 1995) can manipulate tree structures. They are used to account for wh-movement, topicalization, and so on. In LexOrg, lexical rules can only manipulate subcategorization frames. A lexical rule is of the form \(fr_1 \Rightarrow fr_2 \), where \(fr_1 \) and \(fr_2 \) are just like subcategorization frames except that the categories of the nodes in \(fr_1 \) and \(fr_2 \) do not have to be specified.

A lexical rule \(fr_1 \Rightarrow fr_2 \) is said to be *applicable* to a frame \(fr \) if \(fr \) and \(fr_1 \) are compatible; that is, \(fr \) and \(fr_1 \) have the same number of arguments and the features of the corresponding nodes can be unified. Applying this rule to \(fr \) yields a new frame which combines the information in \(fr \) and \(fr_2 \). For instance, the lexical rule \((Subj, V, S) \Rightarrow (Subj, V, NP)\) says that if a verb can take an S object, it can also take an NP object. Applying this rule to the frame \((NP_0 V S_1)\) generates a new frame \((NP_0 V NP)\). In this new frame, the category of the subject comes from the input frame, where the category of the object comes from the right frame of the lexical rule. Because the category of the *Subj* in the lexical rule is not specified, the lexical rule is also applicable to the frame \((S_0 V S_1)\).

In addition to categories, the nodes in a lexical rule may include other features. For instance, a lexical rule for passivization would look exactly like the one in Figure 4.22 except that the feature *voice* has the value *active* for the verb in the left frame, and has the value *passive* for the same verb in the right frame. This feature will prevent the rule from being applied to a verb that is already in the passive voice, such as *given* in *John is given a book*.

4.7.3 The algorithm for the Frame Generator

The Frame Generator takes a subcategorization frame \(Fr \) and a set of lexical rules \(Rules \) as input and produces as output a set of related frames. Initially, \(Fr \) is the only member of \(FrSet \). Then the Frame Generator applies each rule in \(Rules \) to each frame in \(FrSet \), and adds the resulting frames to \(FrSet \). It repeats this step until no more new frames are added to \(FrSet \).

In this process, the Frame Generator may apply a rule \(r_1 \) to a frame \(f_1 \) and generate a
frame \(f_2 \), and then apply \(r_2 \) to \(f_2 \) and generate \(f_3 \), and so on. When that happens, we say that a sequence \([r_1, r_2, ..., r_n]\) of lexical rules is applied to the frame \(f_1 \). The order of the lexical rules in the sequence is important. For example, a passivization rule is applicable after the dative shift rule is applied to the subcategorization frame for ditransitive verbs, but the dative shift rule is not applicable after a passivization rule is applied to the same frame. Also, the set of possible sequences of lexical rules is finite because the set of distinct lexical rules is finite and in general each lexical rule appears in a sequence at most once.\(^{10}\) Therefore, this three-step process will eventually terminate.

Lexical rules and syntactic variation descriptions are very different in several aspects. First, a lexical rule is a function that takes a subcategorization frame as input, and produces another frame as output; a syntactic variation description is a \(\text{wff} \) in a simplified first-order logic. Second, lexical rules are more idiosyncratic than syntactic variations. For instance, the lexical rule in Figure 4.22 is only applicable to ergative verbs, rather than all the transitive verbs. In contrast, the description for wh-movement applies to all the verbs. Third, when lexical rules are applied to a subcategorization frame in a series, the order of the lexical rules matters. In contrast, if a set of descriptions includes more than one syntactic variation description (e.g., the descriptions for topicalization and argument drop in Chinese), the order between the descriptions does not matter. Last, lexical rules can be non-additive, allowing arguments to be removed; descriptions are strictly additive, meaning a description can only add information, not remove information.

4.8 The experiments

In previous sections, we have described three components of LexOrg, which can be summarized as follows:

- The goal of LexOrg is to provide an efficient way to generate templates for a language.

As shown in Figure 4.4 (repeated here as Figure 4.23), the inputs to LexOrg are a

\(^{10}\)An arguable exception to this claim is the double causative construction in languages such as Hungarian (Shibatani, 1976). But in this construction it is not clear whether the second causativization is done in morphology or in syntax. Even if it is done at the morphological level, the two causativizations are not exactly the same and they will be represented as two different lexical rules in LexOrg.
subcategorization frame of a word, a finite set of lexical rules, and a finite set of descriptions; the output is a set of templates that the word can anchor.

- LexOrg has three components: the Frame Generator takes a subcategorization frame and a set of lexical rules as input and produces a set $FrSet$ that includes all the related subcategorization frames; for each frame in $FrSet$, the Description Selector chooses sets of descriptions; for each set of descriptions chosen by the Description Selector, the Tree Generator creates a set of templates that satisfy the descriptions.

We have implemented the system in C. We also built subcategorization frames, lexical rules, and descriptions for English verbs. When they are fed to our system, the system produced a grammar with 638 templates. We compared this grammar with the XTAG grammar and found that the grammar produced by LexOrg covered more than 90% of the templates for verbs in the XTAG grammar. By comparing these two grammars, we found gaps in the XTAG grammar that seemed unmotivated and needed to be investigated. The types of gaps included missing subcategorization frames that were created by LexOrg’s Frame Generator and which would correspond to an entire tree family, a missing tree which would represent a particular type of syntactic variation for a subcategorization frame, or missing features. In addition, we used LexOrg to build a smaller grammar for Chinese.

Table 4.10 lists some of subcategorization frames, lexical rules, and descriptions for English and Chinese. It highlights the similarities and differences between these two languages. For example, both languages have the subcategorization frame (NP, V, NP), but only English has the frame $(NP, V@, NP, NP, S)$ for verbs such as *bet* in *I bet you five dollars that Mary will not come tomorrow.*
<table>
<thead>
<tr>
<th>subcategorization frames</th>
<th>English</th>
<th>Chinese</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP, V, NP</td>
<td>(NP, V, NP)</td>
<td>(NP, V, NP)</td>
</tr>
<tr>
<td>NP, V, NP, NP, S</td>
<td>(V)</td>
<td></td>
</tr>
<tr>
<td>lexical rules</td>
<td>passive</td>
<td>short bei-const</td>
</tr>
<tr>
<td></td>
<td>dative-shift</td>
<td>V-de construction</td>
</tr>
<tr>
<td>subcategorization</td>
<td>head is V</td>
<td>head is V</td>
</tr>
<tr>
<td>descriptions</td>
<td>V has 3 right arg</td>
<td>V has 2 right arg</td>
</tr>
<tr>
<td>syntactic variation</td>
<td>wh-question</td>
<td>topicalization</td>
</tr>
<tr>
<td>descriptions</td>
<td>imperative</td>
<td>argument drop</td>
</tr>
<tr>
<td>modification descriptions</td>
<td>S modify VP from right</td>
<td>S modify VP from right</td>
</tr>
<tr>
<td></td>
<td>S modify NP from right</td>
<td>S modify NP from left</td>
</tr>
</tbody>
</table>

Table 4.10: Some examples of subcategorization frames, lexical rules, and descriptions for English and Chinese

4.9 Creating language-specific information

LexOrg generates templates from subcategorization frames, lexical rules, and descriptions. It presumes that users of LexOrg provide this information to the system. A natural question arises: how does a user create such information? We address this question in this section.

4.9.1 Subcategorization frames and lexical rules

Only a limited number of categories (such as verbs and prepositions) take arguments and therefore have nontrivial subcategorization frames and lexical rules. By nontrivial, we mean subcategorization frames with at least one argument. Among these categories, verbs are the most complicated ones. To create subcategorization frames and lexical rules for verbs, the user of LexOrg can refer to the literature on verb classes such as (Levin, 1993). In this book, Levin discussed verb classes and alternations for verbs. Many alternations in her book are represented as lexical rules in LexOrg. In the next chapter, we shall discuss another system (LexTract) which can extract subcategorization frames from bracketed corpora.
4.9.2 Descriptions

In addition to subcategorization frames and lexical rules, the users of LexOrg need to build descriptions. They can choose one or more of the following three approaches to build descriptions.

From templates

In the first approach, users start with some templates that they want LexOrg to build and see how they can decompose the templates into sets of descriptions. For instance, given a template in Figure 4.24(a), we know that it is for a predicate-argument relation, and therefore the set of descriptions should include zero modification descriptions, a head projection description, several head-argument descriptions, and one or more syntactic variation descriptions. One thing that is not clear from the template alone is whether the root S node in the template is a lexical projection or a functional projection of the anchor V. If it is a lexical projection, the verb has three NP arguments: two appear before the verb, and one appears after the verb and it is dropped (recall that arguments can be dropped in Chinese and Korean). In this case, the description set in Figure 4.24(b) should be used. In this set, #1 is for the head and its projection, #2, #3, and #4 are for arguments of the head, #5 is for a syntactic variation such as argument-drop. If the root S node is a functional projection, the verb has two NP arguments: one appears before the verb, and the other is generated after the verb but it is later moved to the sentence-initial position (e.g., it may undergo wh-movement). In this case, the description set in Figure 4.25 should be used, where #1 is for the head and its projection, #2 and #3 are for arguments, and #4 is for a syntactic variation such as wh-movement. Although the template alone does not provide sufficient information to make the decomposition unique, with the knowledge about a language (e.g., the verb’s projection levels and the existence of overt wh-movement and argument-drop in the language), the users should be able to choose the correct description set.

In Section 4.4, we classified descriptions according to four types of information (i.e., head and its projections, arguments of a head, modifiers of a head, and syntactic variations) expressed in the descriptions. This classification greatly reduces the number of possible
(a) a template

(b) a set of descriptions

Figure 4.24: A template and a set of descriptions that can generate it

Figure 4.25: A more desirable description set if the template is for English
ways that a template can be decomposed. Without the classification, there are an infinite number of description sets for a template. To see this, just recall that a node in the template may correspond to many symbols in the descriptions and a piece of information (e.g., a pair in the dominance relation, the category of a symbol, and the value of a feature) can appear in more than one description in a description set. Even if we require that every description set should satisfy the following:

- a node in the template corresponds to exactly one symbol appearing in the description set.
- a piece of information appears in exactly one description in the set.
- each description is a conjunction of terms.

The number of the description sets for a template is still a huge number.\footnote{The number is the n^{th} Bell number, where n is the number of pieces of information in the template, and the n^{th} Bell number is the number of ways that a set with n distinguishable elements can be partitioned into disjoint, non-empty subsets.} With the classification, a template can be decomposed only in certain ways. For instance, the root node and the foot node of a modification template should belong to a modification description, the head and its projections should belong to the head projection description, and so on.

From language-specific tables

Another way of building descriptions is to use three language-specific tables: the head projection table, the argument table, and the modification table. Figure 4.26 shows entries from the tables and the corresponding descriptions. For instance, for each entry $(mod_tag \ x_1/\ldots/x_n \ y_1/\ldots/y_m)$ in the modification table, we build $m + n$ modification descriptions. In each description, the root $ModRoot$ has the category mod_tag and it has two children: one is a node $ModFoot$ with the same category, and the other child is labeled as x_i (for the left modifier) or y_i (for the right modifier). As discussed in Chapter 3, the grammar built from the tables alone tends to over-generate. Therefore, the users of LexOrg should
Figure 4.26: Descriptions built from language-specific tables

refine these descriptions. For instance, the users may want to add the constraint to #6 in Figure 4.26 that requires a node under X(‘S’) to undergo wh-movement.

From definitions

The three language-specific tables do not provide information about syntactic variations. To build a syntactic variation description, the users start with the definition of the corresponding phenomenon. For example, *wh-movement* can be roughly defined as *a constituent in a clause is moved from its base position to a new position*. Next, the users should refine the definition as much as possible. For instance, they should specify that the new position is to the left of the base position, the category of the parent of the new position is S, and so on. After refining the definition, the users should be able to get the description in Figure 4.15 (repeated as Figure 4.27).

4.10 Comparison with other work

It has been long observed that the templates in an LTAG grammar are related to each other and they should be organized in a compact way so that they can be built and maintained efficiently. In addition to LexOrg, there have been three approaches that address this issue.
In this section, we compare LexOrg with them.

The systems differ in how they handle the following two relations. The first relation is among the templates in a tree family. The templates have the same subcategorization frame, and therefore share tree structures that describe the subcategorization frame. The second relation is between tree families. Each tree family can be represented as a class in a hierarchy, such as the one in Figure 4.5 (repeated here as Figure 4.28).

One major difference between LexOrg and any of the other approaches is that, in all other approaches, grammar developers manually create a hierarchy such as the one in Figure 4.28. A class in the hierarchy inherits attributes from its superclasses. Although the hierarchy seems intuitive, building it is by no means a trivial task. Grammar developers have to answer questions such as should the hierarchy be a tree or a network? If it is a network, how should the conflicts between multiple superclasses be resolved? Can a subclass overwrite attributes that are inherited from its superclasses? If some verb classes share certain structures, is it necessary to create an abstract superclass for them — such as the node VERB in Figure 4.28? What information should be included in the definition of what class? Answers to these questions may vary, resulting in different hierarchies. Figure 4.29 shows another possible hierarchy for English verbs. In this hierarchy, abstract verb classes (e.g., VERB and IOBJ) are removed, nodes TRANSITIVE, SIMPLE-TRANS, and NP-IOBJ are merged, and INTRANSITIVE becomes the root of the hierarchy.

In LexOrg, no such hand-crafted hierarchies are needed. Two tree families are related if there is overlap between the two subcategorization description sets chosen by LexOrg.
Figure 4.28: The lexical hierarchy given in (Vijay-Shanker & Schabes, 1992)

Figure 4.29: A different hierarchy for English verb classes
In fact, LexOrg can be easily extended to create a hierarchy automatically given subcategorization frames and subcategorization descriptions. In this extension, LexOrg builds a link between two families if and only if the subcategorization description set selected by LexOrg for one family is a superset of the set selected for the other family. In other words, LexOrg does not need its users to manually build a hierarchy; furthermore, LexOrg can build a hierarchy for the users if they need it.

In this section, we take a close look at the other three systems.

4.10.1 Becker’s HyTAG

In Becker’s HyTAG system, two mechanisms are used. The first one is an inheritance network, which is similar to the lexicon hierarchy in Figure 4.28. As we just mentioned, LexOrg does not need such an hierarchy. We shall focus on the second mechanism of HyTAG: metarules.

Introduction to metarules in HyTAG

A metarule in general consists of an input pattern and an output pattern. When the input pattern matches an elementary structure in a grammar, the application of the metarule to the structure creates a new elementary structure. Metarules have been used in a number of formalisms (such as HPSG) to capture generalizations among elementary structures. Becker (1994) proposed to use metarules for I TAGs.

In this proposal, the input-pattern and the output-pattern of a metarule are elementary trees with the exception that any node may be a meta-variable. A meta-variables describes part of a template that is not affected if the metarule is applied. If a template matches the input-pattern, the application of the metarule creates a new template which could be added to the grammar. In Figure 4.30, (a) shows a metarule that links a declarative template and a wh-movement template, where \(\chi \) is a meta-variable. Applying this metarule to the template \#1 in (b) results in the template \#2, as the meta-variable \(\chi \) matches the whole VP in \#1. Similarly, applying the metarule to the template \#3 in (c) results in the template \#4. Some explanations are in order.

- A metarule can erase structures from the input template. This happens when some
(a) a metarule

(b) two templates for intransitive verbs

(c) two templates for transitive verbs

Figure 4.30: Applying metarules to templates
Figure 4.31: The result of applying a metarule to a template may not be unique

meta-variables in the input pattern do not appear in the output pattern. Such erasing metarules are needed for rules like the passive metarule, which deletes the subject \(NP \) in the input template.

- The input and output patterns of a metarule can specify dominance relations between nodes. For instance, the input pattern of the metarule in Figure 4.31(a) shows that the \(S \) node dominates the \(NP \) node. However, patterns in metarules are not as expressive as descriptions in LexOrg because the patterns cannot express negations or disjunctions, nor can they leave precedence relations unspecified.

- The application of a metarule to a template may yield more than one template. In Figure 4.31, when the metarule in (a) is applied to the template in (b), the metavariable \(\chi \) matches either the \(S \) node or the \(VP \) node, resulting in the two templates in (c).

- Metarules can apply to a template in a series. Without any constraint, a metarule sequence can be infinitely long, and the application process may never terminate. To prevent this situation from happening, some restrictions are needed. One such
restriction is called the finite closure constraint, which requires a metarule to appear in a sequence at most once. Becker proposed a different restriction which requires that the output trees of metarules must be smaller than a given limit M of a grammar. However, he did not define what he meant by smaller, nor did he elaborate on where the M comes from. Furthermore, having a limit on the size of output trees can guarantee that the application process will terminate, but it may not guarantee that all the output trees smaller than the limit are linguistically sound.

In HyTAG, an LTAG grammar G is represented as a tuple (G', MV, MR, M), where G' is a finite set of elementary trees, MV is a finite set of metavariables, MR is a set of metarules, and M is the boundary on the size of the output of metarules. An elementary tree tr is in G if and only if it is smaller than M and can be derived from a tree tr' in G' by applying zero or more metarules in MR to tr'.

Comparison between HyTAG and LexOrg

A major difference between HyTAG and LexOrg is that HyTAG uses metarules to describe both lexical and syntactic rules, whereas LexOrg uses two mechanisms: lexical rules and descriptions. Table 4.11 shows the similarities and the differences between metarules, lexical rules, and descriptions.

<table>
<thead>
<tr>
<th></th>
<th>metarules</th>
<th>lexical rules</th>
<th>descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>format</td>
<td>a rule</td>
<td>a rule</td>
<td>$\forall \Psi$</td>
</tr>
<tr>
<td>expressivity</td>
<td>rich</td>
<td>limited</td>
<td>richer</td>
</tr>
<tr>
<td>function</td>
<td>to link related templates</td>
<td>to link related subcat frames</td>
<td>to provide information about templates</td>
</tr>
<tr>
<td>can erase info</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>ordering matters</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Table 4.11: The similarities and the differences between metarules, lexical rules, and descriptions

Aside from the linguistic debate that argues for different treatments of lexical and syntactic rules, using different mechanisms for lexical and syntactic rules has advantages in practice. First, because LexOrg distinguishes lexical rules from syntactic rules, the number of lexical rules in LexOrg is fewer than that of the metarules in HyTAG. Also, lexical rules
are much simpler than metarules because there are no metavariables in lexical rules. As a result, it is easier to ensure the termination of the application process when the rules are lexical rules rather than metarules. Second, lexical rules are more idiosyncratic than syntactic rules. For instance, the causative/inchoative alternation only applies to ergative verbs, rather than to all the transitive verbs, whereas any verb with an NP argument anchors an elementary tree in which the NP argument undergoes wh-movement. To represent such idiosyncrasy, Becker proposed that the grammar developers “state for each entry in the (syntactic) lexicon and for each tree family in this entry, which metarules are applicable for this entry in this tree family”. If LexOrg adopted this approach, the grammar developers (i.e., the users of LexOrg) would specify only the lexical rules that are applicable, and not the syntactic rules. Syntactic rules are represented by syntactic variation descriptions, whose applicability is checked by the Tree Generator automatically and therefore does not need to be specified by grammar developers.

Another difference between HyTAG and LexOrg is the way templates are related. For the templates in the same tree family, the users of HyTAG first build one template as the basic tree, and then create metarules that link the basic tree and other trees in the family. When creating a metarule \(m \), the users should consider all the templates \(t_1 \) to which \(m \) is applied and all the templates \(t_2 \) that are to be generated from \(t_1 \) when \(m \) is applied. The users have to specify in the input pattern all the information that is in \(t_1 \) but not in \(t_2 \), and specify in the output pattern all the information that is in \(t_2 \) but not in \(t_1 \). For example, the users may choose the tree for declarative sentences as the basic tree, and then build metarules to derive the trees for imperative, wh-movement, and so on. If there is information that is in the declarative tree but not in other trees, the users have to repeat this information in all the input patterns of the metarules that are applied to the declarative tree. In contrast, the users of LexOrg provide a subcategorization frame and a set of descriptions. For each tree in the tree family, the Description Selector of LexOrg chooses the same set of subcategorization descriptions (according to the subcategorization frame) but a different set of syntactic variation and modification descriptions. The trees are related by the descriptions that they share, rather than by some rules that link them explicitly. Figure 4.32 illustrates these two different approaches. In this figure, \(m_i \) are
Figure 4.32: The ways that templates in a tree family are related in two systems

metarules, \(t_i \) are templates, and \(d_i \) are descriptions. The inputs to HyTAG are \(t_1 \) and \(\{m_i\} \), and the inputs to LexOrg are \(\{d_i\} \) and a subcategorization frame. LexTract generates all the templates, whereas HyTAG generates all but \(t_1 \).

For templates in two related tree families, HyTAG uses a metarule to link the basic trees in the tree families. Once again, the input and output patterns have to specify what information is in one tree but not in the other. Figure 4.33(a) shows a metarule that links the transitive tree and the ergative tree. In the transitive tree, the surface subject is \(NP_0 \) and the subject-verb agreement is between \(NP_0 \) and \(VP \), whereas in the ergative tree the surface subject is \(NP_1 \) and the subject-verb agreement is between \(NP_1 \) and \(VP \). To get it right, the metarule has to specify the agreement features in both sides of the metarule, although the agreement is always between the surface subject and the VP and it has nothing to do with the causative/inchoative alternation. In contrast, to relate templates in two tree families, LexOrg uses a lexical rule to link two subcategorization frames of the tree families, which is much simpler than a metarule. In this example, the lexical rule (see Figure 4.33(b)) does not include subject-verb agreement features because for both subcategorization frames LexOrg will select a description \textit{head}_V_has_left_NP_arg, in which the agreement feature is specified.
4.10.2 The DATR system

Evans, Gazdar and Weir (1995) discussed a method for organizing the trees in a TAG hierarchically, using an existing lexical knowledge representation language called DATR (Evans and Gazdar, 1989). We shall refer to their system as the DATR system.

Introduction to the DATR system

In this system, an elementary tree is described from its lexical anchor upwards as a feature structure using three tree relations: the left, right, and parent relations. Figure 4.34 shows an elementary tree and its representation in DATR. In the DATR representation, the first equation says that the category of the anchor is v, the second one says that the category of the anchor’s parent is vp, and so on.

Like HyTAG, the DATR system uses an inheritance hierarchy to relate verb classes. Figure 4.35 shows the lexical hierarchy and the definitions of two classes given in (Evans et al., 1995). For instance, the $VERB+NP$ class inherits the structure from the $VERB$
class and adds a right *NP* complement as the sister of the anchor.

The system uses lexical rules to capture the relationships between elementary trees. A lexical rule defines a derived output tree structure in terms of an input tree structure. Because lexical rules in this system relate elementary trees rather than subcategorization frames, they are more similar to metarules in HyTAG than to lexical rules in LexOrg. Figure 4.36(a) shows the partial definitions of the lexical rules for topicalization and wh-questions. The first two lines attach an additional *S* and an *NP* above the original *S* to create a topicalized structure. The last line marks the new *NP* as *wh*, rather than as *normal*. In the complete definitions of these rules, the new *NP* is syntactically cross-referenced to a specific NP marked as null in the input tree.

In addition to topicalization and wh-movement, lexical rules are also used for passive, dative-shift, subject-auxiliary inversion, and relative clauses.\(^\text{12}\) The lexical rule for passive

\(^{12}\)In LexOrg, passive and dative-shift are handled by lexical rules. A parse tree for a subject-auxiliary inversion sentence is created by adjoining an auxiliary tree that is anchored by an auxiliary verb to an elementary tree that is anchored by the main verb. LexOrg uses descriptions to express the information in
(a) lexical rules for topicalization and wh-movement

(b) lexical rule for passive

Figure 4.36: The lexical rules for topicalization, wh-movement, and passive in the DATR system

is shown in Figure 4.36(b). Instead of stating that the first object of the input tree is the subject of the output tree, the lexical rule simply discards the object. As a result, the relation between that object in an active sentence and the subject in the corresponding passivized sentence is lost.

Comparison between the DATR system and LexOrg

Almost all of our previous discussion about the differences between HyTAG and LexOrg is true for the differences between the DATR system and LexOrg. Just like HyTAG, the DATR system uses a lexical hierarchy; it uses lexical rules to handle both lexical alternations (such as the causative/inchoative alternation) and syntactic rules (such as wh-movement); the elementary trees are related by lexical rules. In contrast, LexOrg does not use lexical hierarchies; it uses lexical rules for lexical alternations and descriptions for syntactic rules; the elementary trees are related implicitly by the descriptions that they share.

While descriptions in LexOrg can easily express dominance relations, the dominance
relation in DATR can only be specified by spelling out explicitly all of the different possible path lengths for every possible dominance relationship. For instance, in a wh-movement, the moved NP is dominated by the S in the input tree. The NP can be the subject, the object of the verb, or the object of a PP where the PP is an object of the verb. In the DATR system, three lexical rules are needed to specify these three possibilities. In contrast, since descriptions used by LexOrg are more expressive, only one description is needed to cover all three cases.

4.10.3 Candito’s system

Like LexOrg, Candito’s system (Candito, 1996) is built upon the basic ideas expressed in (Vijay-Shanker and Schabes, 1992) for the use of descriptions to encode tree structures shared by several elementary trees.

Introduction to Candito’s system

Candito’s system uses a hand-written hierarchy which has three dimensions. In the first dimension, canonical subcategorization frames are put into a hierarchy similar to the ones in HyTAG and the DATR system. The second dimension includes all possible redistributions of syntactic functions. The association of a canonical subcategorization frame and a compatible redistribution gives an actual subcategorization. The third dimension lists syntactic realizations of the functions. It expresses the way that the different syntactic functions are positioned at the phrase-structure level. The definitions of classes in these dimensions include descriptions and meta-equations.

A terminal class is formed in two steps. First, it inherits a canonical subcategorization from dimension 1 and a compatible redistribution from dimension 2. This pair of super-classes defines an actual subcategorization. Second, the terminal class inherits exactly one type of realization for each function of the actual subcategorization from dimension 3. A terminal class is actually a description. Elementary trees are the minimal trees that satisfy the description. For instance, a terminal class inherits the ditransitive frame (NP_0, V, NP_1, NP_2) from dimension 1 and the passive redistribution from dimension 2;
this yields the actual subcategorization frame \((NP_1, V, NP_2)\). It then inherits subject-in-
wh-question and object-in-canonical-position realizations from dimension 3. The resulting
elementary tree is anchored by a passivized ditransitive verb whose surface subject (i.e.,
the indirect object in the active voice) undergoes wh-movement, such as given in *who was
given a book?*

A terminal class inherits one class from dimension 1, one from dimension 2, and one or
more from dimension 3. These superclasses may be incompatible. For instance, in English,
only one argument of a verb can undergo wh-movement; therefore, the classes subj-in-wh-
question and obj-in-wh-question from dimension 3 are incompatible. To ensure that all the
superclasses of a terminal class are compatible, the system provides several ways for its
users to express compatibility constraints.\(^{13}\) The users can mark a class \(C\) in the hierarchy
as a disjunctive node, meaning that a terminal class cannot inherit more than one subclass
of \(C\). The user can also specify positive or negative inheritance constraints. A positive
constraint \((A, B)\) requires that any class that inherits from \(A\) must also inherit from \(B\). A
negative constraint \((A, B)\) requires that any class that inherits from \(A\) cannot inherit from
\(B\). Another type of constraint is called constrained crossing. A constrained crossing is a
tuple \((A, B, C)\), meaning whenever a class inherits from \(A\) and \(B\), it has to inherit from
\(C\).

Comparison between Candito’s system and LexOrg

There are many similarities between these two systems as both use descriptions to en-
code tree structures shared by several elementary trees. In both approaches, there is a
separation of lexical rules and syntactic rules. There is a parallel between her subcate-
gorization dimension and our subcategorization descriptions, between her redistribution
dimension and our lexical rules, and between her realization dimension and our syntactic
variation/modification descriptions. However, there are several major differences between
these two systems.

\(^{13}\)The content of this paragraph comes from the handout of the talk that Candito gave at the University
of Pennsylvania in March 1997.
LexOrg does not. We have mentioned that LexOrg can automatically generate a lexical hierarchy — which is similar to Candito’s dimension 1 — when given a set of subcategorization frames. As for dimension 2, Candito’s system requires that each terminal class should select exactly one class from this dimension. This means that if two lexical rules can be applied in a series (such as passive and causative) to a subcategorization frame, a node that represents that sequence must be manually created and added to her dimension 2. In other words, her dimension 2 should have a node for every lexical-rule sequence that is applicable to some subcategorization frame. LexOrg does not need users to build this dimension manually because LexOrg (the Frame Generator, to be more precise) automatically tries all the lexical-rule sequences when given a subcategorization frame.

The two systems also differ in the way that syntactic variations are represented. In Candito’s third dimension, each terminal node specifies the way a specific function is realized. Therefore, each argument/function in a subcategorization frame requires a terminal node for each possible syntactic realization. For example, the subject of a ditransitive verb has a different terminal node for the canonical position, for wh-extraction, and so on. So do the direct object and indirect object. To generate templates for wh-questions of ditransitive verbs, Candito’s system needs to build three terminal classes, as shown in Figure 4.37(a). In contrast, LexOrg does not need descriptions for various positions that each argument/function can be in. It only needs one description for wh-movement. To generate the template for wh-questions, LexOrg only needs one wh-movement description from this dimension. Combining this description with the set of subcategorization descriptions will yield all the templates for wh-questions, as in Figure 4.37(b).

Another difference between the two systems is that Candito’s system requires its users to specify constraints on the selection of superclasses. For instance, the user has to build a class for wh-movement and a subclass for each position from which a constituent is moved (e.g., subj-in-wh-position, indobj-in-wh-question, and dobj-in-wh-question). The users then have to mark the extraction class as a disjunctive node, so that the system will not choose more than one of its children for a terminal class. In LexOrg, only one description for wh-movement is needed, which covers all possible cases of wh-movement. The description appears in a description set at most once. As a result, there is no need to write constraints

97
to rule out illegal combinations such as the ones with both *subj-in-wh-position* and *indobj-in-wh-question*.

In summary, LexOrg has several advantages over other systems. First, unlike all three other systems, not only does LexOrg not require its users to build any lexical hierarchy, but it can actually produce a hierarchy automatically by checking the descriptions selected by subcategorization frames. Second, unlike HyTAG and the DATR system, LexOrg distinguishes lexical rules from syntactic rules and uses two different mechanisms to represent these rules. Making such distinction has advantages both in theory and in practice. Third, unlike Candito’s system, LexOrg does not require users to provide various kinds of constraints to ensure that a terminal class inherits the correct combinations of superclasses from three dimensions. Fourth, unlike the DATR system and the Candito’s system, LexOrg needs only one description to specify the information for wh-movement.

4.11 Summary

In summary, we have presented a system, LexOrg, that takes three types of information (i.e., subcategorization frames, lexical rules, and descriptions) as input and produces LTAG grammars as output. Descriptions are further divided into four types according to the information that they provide. The abstract level of representation for the grammar both
necessitates and facilitates an examination of the linguistic analyses. This can be very useful for gaining an overview of the theory that is being implemented and exposing gaps that remain unmotivated and need to be investigated. We have used LexOrg to build grammars for English and Chinese. We also showed that LexOrg has several advantages over other systems.
Chapter 5

LexTract: a system that extracts LTAGs from Treebanks

In Chapter 3, we gave an algorithm that generates a grammar, G_{Table}, from three tables — the head projection table, the argument table, and the modification table. The grammar overgenerates because the tables do not provide sufficient information about a language. In Chapter 4, we presented a system, LexOrg, that solves this problem by requesting more informative input (such as descriptions) from its users. Creating such input requires linguistic expertise. Furthermore, there is no frequency information associated with the grammars produced by LexOrg. To use the grammars for parsing, other sources of information (such as heuristic rules) have to be found to help us select the most likely parse trees.

To address these problems, we built another system, called LexTract. LexTract takes a Treebank and three tables as input and produces as output LTAG grammars, derivation trees and other types of information, as shown in Figure 5.1. The system has been used in a number of applications. In this chapter, we describe core components of the system, and leave the discussion of its applications to the next chapter.

This chapter is organized as follows. In Section 5.1, we give a brief introduction to the English Penn Treebank, which is widely used in the NLP field. In Section 5.2, we describe the overall approach of LexTract. In Section 5.3, we discuss three input tables to
LexTract. In Section 5.4, we give an algorithm that extracts grammars from Treebanks. In Section 5.5, we describe a method for building derivation trees for the sentences in the Treebank. In Section 5.6, we demonstrate the process for building the multi-component (MC) sets from derivation trees. In Section 5.7, we show that context-free grammars and subcategorization information can be easily obtained from extracted LTAGs. In Section 5.8, we explain our treatment for several special cases. In Section 5.9, we compare LexTract with other grammar extraction methods.

5.1 Overview of the English Penn Treebank

The English Penn Treebank (PTB) is widely used in the NLP community for training and testing statistical tools such as POS taggers and parsers. It is also the first Treebank on which LexTract was used. Therefore, we shall use examples from the PTB throughout this chapter to demonstrate how LexTract works. The PTB was developed at the University of Pennsylvania in the early 1990s. It includes about one million words of text from the Wall Street Journal annotated in Treebank II style (Marcus et al., 1994). Its tagset has 72 syntactic labels (36 POS tags, 26 syntactic category tags, 10 tags for empty categories\(^1\)) and 20 function tags. Each bracketed item is labeled with one syntactic category, zero or more function tags, and zero or more reference indices. For details, please refer to (Santorini, 1990) and (Bies et al., 1995). The meanings of the tags that appear in this chapter are listed in Table 5.1. Figure 5.2 is a simple example that shall be used throughout.

\(^1\)The PTB uses -NONE- for all empty categories, but it also uses 10 more specific tags to mark different types of empty categories. For example, a trace is marked as (-NONE- T^*-1), where -1 can be replaced by any reference index.
this chapter.

<table>
<thead>
<tr>
<th>POS tags</th>
<th>syntactic tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC conjunction</td>
<td>NP noun phrase</td>
</tr>
<tr>
<td>DT determiner</td>
<td>PP preposition phrase</td>
</tr>
<tr>
<td>IN preposition or subordinating conjunction</td>
<td>VP verb phrase</td>
</tr>
<tr>
<td>NN noun, singular or mass</td>
<td>S simple declarative clause</td>
</tr>
<tr>
<td>NNP proper noun, singular</td>
<td>SBAR embedded clause</td>
</tr>
<tr>
<td>NNS noun, plural</td>
<td>WHNP wh-noun phrase</td>
</tr>
<tr>
<td>PRP pronoun</td>
<td></td>
</tr>
<tr>
<td>RB adverb</td>
<td></td>
</tr>
<tr>
<td>VBD verb, past tense</td>
<td></td>
</tr>
<tr>
<td>WP wh-pronoun</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>function tags</th>
<th>Types of empty categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLR closely related</td>
<td>T trace for A′-movement</td>
</tr>
<tr>
<td>LOC locative</td>
<td>ICH interpret constituent here</td>
</tr>
<tr>
<td>PRD predicate</td>
<td>EXP “trace” in Å-extraposition</td>
</tr>
<tr>
<td>SBJ surface subject</td>
<td>0 zero complementizer</td>
</tr>
<tr>
<td>TMP temporal</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1: Treebank tags that appear in this chapter

5.2 Overall approach of LexTract

Conceptually, LexTract works as follows: it first generates \(G_{Table} \) using the algorithm in Table 3.1, then chooses a subset \(G_{Table}^* \) of \(G_{Table} \) such that each template in the subset is useful for a Treebank. A template is useful for a Treebank if it is used at least once to produce correct derived trees for some grammatical sentences in the Treebank. This process is illustrated in Figure 3.12, repeated as Figure 5.3.

How do we decide whether a template \(t \) in \(G_{Table} \) is useful for a Treebank? By definition, we need to (1) find all the grammatical sentences in a Treebank, (2) find the correct derived trees for these grammatical sentences, and (3) check whether template \(t \) is used in one of these derived trees. Because a Treebank is a collection of naturally occurring sentences, we can assume that all the sentences in a Treebank are grammatical; therefore, we can skip the first step.

Next we need to find the correct derived trees for the sentences. The phrase structures
The algorithm in Table 3.1

Figure 5.2: The Treebank annotation for the sentence *Supply troubles were on the minds of Treasury investors yesterday, who worried about the flood.*

Figure 5.3: The conceptual approach of LexTract
in a Treebank are not always identical to the correct parse trees because of two reasons. First, Treebank were built by humans; therefore, annotation errors in a Treebank are inevitable. Second, the phrase structures in a Treebank are not based on the LTAG formalism; therefore, they may have different formats from the derived trees. For instance, LTAG grammars distinguish heads, argument, and adjuncts. Recall that in Section 3.2, we defined three prototypes of elementary trees: spine-trees, mod-trees, and conj-trees. Heads, arguments, and adjuncts occur at different positions in these prototypes. The arguments and adjuncts are never siblings in an LTAG derived tree. In a Treebank, quite often the arguments and adjuncts are siblings, and the head/argument/adjunct distinction is not explicitly marked. Therefore, we have to convert the phrase structures in a Treebank into derived trees.

Once we build derived trees, the next step is to determine what elementary trees are used to form the derived tree. A derived tree can be generated by more than one set of elementary trees. Figure 5.5(b)–(c) show two sets of elementary trees. Both sets can generate the derived tree in (a), but the corresponding derivations are different, as shown in (d) and (e). Nevertheless, we shall show that, if we know the type (i.e., head/argument/adjunct) of each node in a derived tree, there is only one set of elementary trees that can form the derived tree. For instance, in Figure 5.5(a), if verb can is marked as the head of VP₁, the derived tree in (a) can only come from the set in (b); if verb speak is marked as the head of VP₁, the derived tree can only come from the set in (c). In fact, we can simply decompose the derived tree into a set of elementary trees.

In summary, LexTract builds an LTAG grammar in two stages: first, it converts the phrase structures in a Treebank into derived trees; second, it decomposes the derived trees into a set of elementary trees. The second stage is the reverse process of LTAG parsing. The real implementation of LexTract is shown in Figure 5.4. You may notice that the three input tables in Figures 5.3 and 5.4 are different. We shall explain this in the next section.

For the sake of clarity, from now on, we shall call the original phrase structures in a Treebank *trees*, and the elementary trees in LTAG grammars *etrees*.
Figure 5.4: The real implementation of LexTract

Figure 5.5: Two LTAG grammars that generate the same \textit{ttree}
5.3 Three input tables to LexTract

In the English Penn Treebank (PTB), the phrase structures are partially flat because heads, arguments and adjuncts are not explicitly marked, and arguments and adjuncts can be siblings. In contrast, heads, arguments and adjuncts are treated differently in the target grammars (i.e., the LTAG grammars that LexTract generates): heads are anchors of spine-ettees, arguments are sisters of nodes on the spines, and adjuncts are sisters of the foot nodes in mod-ettees.

To build a derived tree from a tree, LexTract first determines the type of each node in the tree. People often do not agree on the types of certain nodes. For example, in Figure 5.5, some users may prefer to treat speak as the head of VP, while others rather have the word can as the head. To take the users’ preferences into account and also to make LexTract language independent so that it can run on Treebanks for other languages, we do not include language-specific information or decisions on the head/argument/adjunct distinction in the source code of LexTract. Instead, we require the users of LexTract to provide three tables as input to LexTract. They are the head percolation table, the argument table, and the tagset table.

5.3.1 Head percolation table

Head is an important notion in the target grammar, but it is not marked in the PTB. To help LexTract to identify heads, the user needs to make a head percolation table. The head percolation table was introduced in a statistical parser called SPATTER (Magerman, 1995), and later used in Collins’ parsers (Collins, 1997) among others. It is called a head percolation table because, in order for those parsers to extract lexicalized context-free rules from a Treebank, the lexical items are percolated like features from the heads to their various projections, as marked by the dashed lines in Figure 5.6(a).

Given a node X and its head Y in a tree, each node on the path from X to Y is called the head-child of its parent. For example, in Figure 5.6(a), the VBP node is the head-child of the VP node, the VP is the head-child of the S node, and the NNP is the head-child of the NP. LexTract uses the head percolation table to select the head-child
Figure 5.6: The percolation of lexical items from heads to higher projections

of a node. The entry in the table is of the form \((x \ direct \ y_1/y_2/.../y_n)\), where \(x\) and \(y_i\) are syntactic category tags, \(direct\) is either \(LEFT\) or \(RIGHT\). \(\{y_i\}\) is the set of possible tags of \(x\)'s head-child. For instance, the entry for \(VP\) in the PTB can be \((VP \ left \ VP/VB/VBN/VBP/VBG/VBD)\). The algorithm for selecting the head-child is in Table 5.2 of Section 5.4. The head percolation table is essentially the same as the head projection table except that it has an extra field \(direct\).

5.3.2 Argument table

The argument/adjunct distinction is not explicitly marked in the PTB. LexTract marks each sibling of a head-child as either an argument or an adjunct according to the tag of the sibling, the tag of the head-child, and the position of the sibling with respect to the head-child. An argument table informs LexTract about the types of arguments that a head-child can take. As defined in Section 3.3, the entry in an argument table is of the form \((\ head_{\ tag}, \ left_{\ arg_num}, \ right_{\ arg_num}, \ y_1/y_2/.../y_n)\). \(head_{\ tag}\) is the syntactic tag of the head-child, \(\{y_i\}\) is the set of possible tags for the head-child’s arguments, \(left_{\ arg_num}\) (\(right_{\ arg_num}\), respectively,) is the maximal number of arguments to the left (right, respectively) of the head-child. For example, the entry \((IN, 0, 1, NP/S/SBAR)\) says that a preposition \((IN)\) can take at most one argument whose label is \(NP, S,\) or \(S BAR,\) and the argument appears after the preposition. The algorithm for distinguishing arguments from adjuncts is shown in Table 5.3 of Section 5.4.
5.3.3 Tagset table

The tagset table provides types and attributes of the tags in the Treebank’s tagset, which are used in many modules of LexTract. The most important attributes are as follows:

1. the type of each tag in the tagset; namely, POS tag, syntactic tag, function tag, empty category tag

2. the tag(s) for conjunctions (e.g., CC in the PTB)

3. the empty categories that mark “syntactic movement” (e.g., $T*$ for a trace)

4. the function tags that always mark arguments (e.g., SBJ for a subject)

5. the function tags that always mark adjuncts (e.g., TMP for a temporal phrase)

6. the function tags that always mark heads (e.g., PRD for a predicate)

The last three attributes helps LexTract to make the head/argument/adjunct distinction. Recall that the algorithm in Table 3.1 which generates G_{Table} requires the head projection table, argument table, and modification table. LexTract requires the head percolation table, which has more information than the head projection table. LexTract requires the argument table but not the modification table because it assumes that any category can modify any category. LexTract uses the tagset table to determine how the function tags should be treated. Therefore, the three input tables to LexTract provide more information than the three input tables to the algorithm that generates G_{Table}. For more details on all five types of tables, see Appendix A.

5.4 Extracting LTAG grammars from Treebanks

As discussed in Section 5.2, LexTract builds grammars in two stages: first, LexTract converts a *tree* into a derived tree; second, it decomposes the derived tree into a set of *trees*. In this section, we describe each stage in detail.
5.4.1 Stage 1: Converting \textit{ttrees} into derived trees

In this stage, LexTract first determines the type of each node in a \textit{ttree}, then builds a derived tree by adding intermediate nodes so that, at each level of the new tree, exactly one of the following holds:

\textbf{(head-argument relation)} there are one or more nodes: one is the head, the rest are its arguments;

\textbf{(modification relation)} there are exactly two nodes: one node is modified by the other;

\textbf{(coordination relation)} there are three nodes: two nodes are coordinated by a conjunction.

To choose the head-child of a node N, the algorithm in Table 5.2 first checks the function tags of N’s children and then uses the syntactic labels of N’s children and the entry for N in the head percolation table. To mark each sibling \textit{sist} as either an argument or an adjunct of the head-child \textit{hc}, the algorithm in Table 5.3 first checks the function tags of \textit{sist}, and then uses the syntactic labels of \textit{sist} and the entry for \textit{hc} in the argument table. Once each child of a node is marked as a head, an argument, or an adjunct, LexTract simply inserts extra nodes in certain places of the \textit{ttree}, as shown in Table 5.4. Given the example in Figure 5.2, repeated as Figure 5.7(a), the derived tree created by LexTract is in Figure 5.7(b), where the nodes inserted by the algorithm are circled.\footnote{The bracketing process may eliminate the potential ambiguity that exists in the original \textit{ttrees}. For example, if in the original \textit{ttree} a head has a left modifier and a right modifier who are siblings, LexTract always puts the left modifier lower than the right modifier in the derived tree. Nevertheless, this practice will not affect the extracted \textit{etrees}.}

5.4.2 Stage 2: Building \textit{etrees}

In this stage, LexTract decomposes the derived tree into a set of \textit{etrees}, that is, LexTract removes recursive structures (which will become mod-\textit{etrees} or conj-\textit{etrees}) from the derived tree, and builds spine-\textit{etrees} for the remaining non-recursive structures. To be more specific, starting from the root of a derived tree, LexTract first finds the unique path from the root to its head. It then checks each node \textit{hc} on the path. If a sibling \textit{s} of \textit{hc} in the \textit{ttree}
Input: a node N, the tagset table $TagsetTb$, the head percolation table $HeadTb$
Output: head-child hc of N
Definition: syn-tag(N) is the syntactic category of the node N
Algorithm: ttree_node* FindHeadChild(N, $TagsetTb$, $HeadTb$)

/* choose the head by the function tag */
(A) if (one child of N has a function tag that always marks a head)
 then choose that child as the head-child hc; return hc;

/* choose the head by the head percolation table */
(B) $x = \text{syn-tag}($$N$$);
(C) Find the entry $(x \ dir \ y_1/y_2/.../y_n)$ in $HeadTb$;
(D) for (each child ch of N, starting from the leftmost child
 or rightmost child according to dir)
 if ($\text{syn-tag}(ch) \in \{y_1, y_2, ..., y_n\}$)
 then $hc = ch$; return hc;

/* choose the head-child by default */
(E) if ($dir == \text{LEFT}$)
 then $hc = \text{leftmost-child}(N)$
 else $hc = \text{rightmost-child}(N)$
 return hc;

Table 5.2: Algorithm for finding head-child of a node

```
(S (NP-SBJ (NN supply) (NNS troubles))
  (VP (VBD were)
    (PP-LOC-PRD (IN on)
      (NP (NP (DT the) (NNS minds))
        (PP (IN of)
          (NP (NP (NNP Treasury) (NNS investors))
            (SBAR (-NONE- *ICH*-2) ))))))
  (NP-TMP (RB yesterday))
    (..)
  (SBAR-2 (WHNP-1 (WP who))
    (S (NP-SBJ (-NONE- *T*-1))
      (VP (VBD worried)
        (PP-CLR (IN about)
          (NP (DT the) (NN flood) ))))))
  (..))
```  

(a) an original $ttree$

```
(S (NP-SBJ (NN supply) (NNS troubles))
  (VP (VBD were)
    (PP-LOC-PRD (IN on)
      (NP (NP (DT the) (NNS minds))
        (PP (IN of)
          (NP (NP (NNP Treasury) (NNS investors))
            (SBAR (-NONE- *ICH*-2) ))))))
  (NP-TMP (RB yesterday))
    (..)
  (SBAR-2 (WHNP-1 (WP who))
    (S (NP-SBJ (-NONE- *T*-1))
      (VP (VBD worried)
        (PP-CLR (IN about)
          (NP (DT the) (NN flood) ))))))
  (..))
```  

(b) fully bracketed $ttree$

Figure 5.7: A $ttree$ and the derived tree
Input: a head-child \(hc \), a sister \(sist \) of \(hc \), the position \(pos \) of \(sist \) with respect to \(hc \), the tagset table \(Tagset Tb \), the argument table \(Arg Tb \)

Output: mark \(sist \) as either an argument or an adjunct of \(hc \)

Algorithm: void MarkSisterOfHead(\(sist \), \(hc \), \(pos \), \(Tagset Tb \), \(Arg Tb \))

/* mark \(sist \) according to its function tags */
(A) if (\(sist \) has a function tag that always marks argument)
 then mark \(sist \) as an argument; return;
(B) if (\(sist \) has a function tag that always marks adjunct)
 then mark \(sist \) as an adjunct; return;

/* mark \(sist \) according to the argument table */
(C) \(head _ tag = \) syn-tag(\(hc \));
(D) Find the entry \((head _ tag, left _ arg _ num, right _ arg _ num, y_1/y_2/.../y_n)\) in \(Arg Tb \)
(E) if (((\(pos = LEFT \)) and (\(left _ arg _ num = 0 \))) or
 ((\(pos = RIGHT \)) and (\(right _ arg _ num = 0 \)))
 then /* \(hc \) does not have left (right, resp.) arguments */
 mark \(sist \) as an adjunct;
 return;

(F) if (the tag of \(sist \) matches any \(y_i \))
 then mark \(sist \) as an argument; return;

/* mark \(sist \) using the default */
(G) mark \(sist \) as an adjunct.

Table 5.3: Algorithm that marks a node as either an argument or an adjunct
Input: a tree T from a Treebank, the tagset table $TagsetTb$, the head percolation table $HeadTb$, the argument table $ArgTb$
Output: T becomes a derived tree
Algorithm: void BuildDerivedTree(T, $TagsetTb$, $HeadTb$, $ArgTb$)

/* TargetList is a list of nodes below which the subtrees need to be checked */
(A) TargetList = \{Root\}, Root is the root of T;
(B) while (TargetList is not empty)
 Let R be the first node in TargetList;
 TargetList = TargetList - \{R\};
 if (R is a leaf node)
 then continue;
 $hc = \text{FindHeadChild}(R, TagsetTb, HeadTb); /* see Table 5.2 */
 if (one of R's children is a conjunction)
 then {
 /* R's children are a list of coordinated nodes */
 use conjunction(s) to partition non-conjunction children into m groups;
 for (each group gr) {
 if (gr has more than one node)
 then insert a node R_1 with the label $\text{syn-tag}(R)$ as the new root
 of the nodes in the group;
 TargetList = TargetList $\cup \{R_1\}$
 else TargetList = TargetList $\cup \{ch\}$, where ch is the only child in gr
 }
 if ($m > 2$)
 then insert $m - 2$ new nodes with the label $\text{syn-tag}(R)$ so that each level
 has exactly two groups plus one conjunction
 }
 else {
 /* R's children consist of a head, 0 or more arguments, 0 or more adjuncts */
 add each child of R to TargetList;
 mark each child other than hc as an argument or an adjunct (see Table 5.3)
 put adjacent arguments into groups according to the argument table;
 if (at least one child is marked as an adjunct)
 then insert new nodes \{$R_i\}$ between R and hc so that at each level
 between R and hc exactly one of the following holds:
 - there are exactly one new node R_k and one adjunct, where R_k has the same syntactic tag as its parent, or
 - there are a node (hc or a new node R_i) with the label $\text{syn-tag}(hc)$
 and zero or a group of arguments of hc
 }

Table 5.4: Algorithm for building a derived tree
112
is marked as an adjunct, the algorithm factors out from the *tree* the recursive structure
that includes *hc*, *s*, and *hc*’s parent. The recursive structure becomes a mod- etree (or a
conj- etree if *hc* has another sibling that is a conjunction), in which *hc*’s parent is the root
node, *hc* is the foot node, and *s* is a sister of the foot node. Next, LexTract creates a
spine- etree with the remaining nodes on the path and their siblings. It repeats the process
for the subtrees whose roots are not on the path.

In this stage, each node *X* in the derived tree is split into two parts: the top part *X.t*
and the bottom part *X.b*. The reason for the splitting is as follows. When a pair of *etrees*
are combined during parsing, the root of one *etree* is merged with a node in the other *etree*.
Extracting *etrees* from a derived tree is a reverse process of parsing. Therefore, during the
extraction process, the nodes in the derived tree are split into the top and bottom parts.

To see how the algorithm works, let us look at an example. Figure 5.8 shows the same
derived tree as the one in Figure 5.7(b) except that some nodes are numbered and split
into the top and bottom parts. For the sake of simplicity, we show the top and the bottom
parts of a node only when the two parts will end up in different *etrees*. In this figure, the
path from the root *S* to the head *IN* is *S* → *VP* → *VP* → *VP* → *PP* → *IN*.
Along the path the *SBAR* is a modifier of *VP*; therefore, *VP* → *VP* and the spine- etree
rooted at *SBAR* are factored out and form a mod- etree #13. Mod- etrees #11 and #3 are
built in similar way. For the remaining nodes on the path, *VP* → *VP* and *VP* → *VP*
are merged and the spine- etree #4 is created. Repeating this process for other nodes will generate
more trees such as trees #1 and #2. Notice that the tree #4 is broken into two parts by
intervening mod- etrees. The whole derived tree yields fifteen *etrees*, as shown in Figure
5.9.

The algorithm for building *etrees* is in Table 5.5. For the sake of simplicity, the algo-

3We follow the XTAG grammar in choosing the preposition as the head of a small clause. If users
of LexTract prefer to have the verb *were* as the head of the clause, they can simply change the tables
mentioned in Section 5.3. To be more specific, they just need to change the entry for the function tag
-PRD in the tagset table so that the tag no longer marks the head of a phrase.

113
Figure 5.8: The etree set is a decomposition of the derived tree.

in one etree or two nodes in two distinct etrees. The lines labeled (EC1) and (EC2) in Table 5.5 are used to handle empty categories, and their usage shall be explained in Section 5.8.2.

Annotation errors in ttrees will result in linguistically implausible etrees. For example, in the sentence in Figure 5.7(a), the word yesterday is incorrectly tagged as RB (adverb). As a result, one of the etrees, #11 in Figure 5.9, is created. The etree is linguistically implausible because an adverb should not be the head of an NP (noun phrase). In Section 6.1.3, we shall propose two methods for filtering out implausible etrees.

5.4.3 Uniqueness of decomposition

So far, we have discussed the extraction algorithm used by LexTract. The algorithm takes three tables with language-specific information and a ttree T, and creates (1) a derived tree T*, and (2) a set Eset of etrees. One advantageous property of ESet is that it is the only tree set that satisfies all the following conditions:

(C1) Decomposition: The tree set is a decomposition of T*; that is, T* can be generated by combining the trees in the set via the substitution and adjoining operations.
Input: a derived tree T, tagset table $TagsetTb$, head percolation table $HeadTb$
argument table $ArgTb$
Output: a set of etrees EtreeSet
Notations: Given a node x in T, $x.top$ and $x.bot$ are the top and bottom part of x.
$f(x.top)$ ($f(x.bat)$, resp.) is the etree node copied from $x.top$ ($x.bat$, resp.).
Algorithm: etree-list BuildEtrees(T, $TagsetTb$, $HeadTb$, $ArgTb$)
(A) EtreeSet = $\{\}$; R = Root(T);
(B) hc = FindHeadChild(R, $TagsetTb$, $HeadTb$);
 if (the head-child does not dominate any lexical word)
 then /* This will ensure that no spine etree is anchored by empty categories */
 choose its sibling to be hc; --- (EC1)
(C) Based on the relation between hc and its sisters, go to one of the following:
 (C1) predicate-argument relation (see Figure 3.3(a)):
 /* build a spine-etree T_s, which is formed by a predicate and its arguments */
 find a head-path p from R to a leaf node A in the T.
 for (each non-link node x on p) {
 /* a non-link node is a node whose head-child and other children
 form a head-argument relation */
 copy $x.bot$ to T_s;
 for (each child y_i of x)
 copy each $y_i.top$ to T_s, as $f(x.bot)$'s child.
 if (y_i does not dominate any lexical words)
 then copy the whole subtree rooted at y_i to T_s --- (EC2)
 }
 mark $f(A.top)$ as the anchor of T_s.
 EtreeSet = EtreeSet $\cup \{T_s\}$;
 (C2) modification relation (see Figure 3.3(b)):
 /* build a mod-etree T_m, which is formed by a modifier-modifiee pair and a spine-etree */
 At this stage, hc should have only one sister, call it mod.
 Find a head-path p from mod to leaf node A in the derived tree;
 Build an etree T_s from the path p as stated in (C1);
 Copy $R.bot$, $hc.top$, $mod.top$ to T_m;
 Create a mod-etree T_m in which $f(R.bot)$ is the root and has two children:
 $f(hc.top)$ and $f(mod.top)$. $f(hc.top)$ is the foot node;
 Make T_s a subtree of T_m whose root is $f(mod.top)$;
 EtreeSet = EtreeSet $\cup \{T_m\}$;
 (C3) coordination relation (see Figure 3.3(c)):
 /* build a conj-etree T_c. T_c is the same as T_m except that */
 * the root of T_c has one extra conjunction child
 * At this stage, hc should have two sisters. One is a conjunction.
 Call the conjunction $conj$ and the other sister mod.
 Build an etree the same as in (C2) except $f(R.bot)$ will have three children:
 $f(hc.top)$, $f(mod.top)$ and $f(conj.top)$.
 EtreeSet = EtreeSet $\cup \{T_c\}$
 (D) Repeat step (B)-(C) for each child ch of R if $ch.bot$ has not been copied to any etree;
 (E) return EtreeSet;

Table 5.5: Algorithm for building etrees from a derived tree

115
(C2) **LTAG formalism:** Each tree in the set is an elementary tree according to the LTAG formalism. For instance, each tree is lexicalized and in an auxiliary tree the foot node and the root node have the same label.

(C3) **Target grammar:** Each tree in the set falls into one of the three types as specified in Section 3.2.

(C4) **Language-specific information:** The head/argument/adjunct distinction in the trees is made according to the language-specific information provided by the user.

This uniqueness of the tree set may be quite surprising at first sight, considering that the number of possible decompositions of T^* is $\Omega(2^n)$, where n is the number of nodes in T^*.

Instead of giving a proof of the uniqueness, we use an example to illustrate how the conditions (C1)–(C4) rule out all the decompositions except the one produced by LexTract. In Figure 5.10, the derived tree T^* has 5 nodes (i.e., $S, NP, N, VP,$ and V). There are 32 distinct decompositions for T^*, 6 of which are shown in the same figure. Out

4Recall that the process of building etrees has two steps. First, LexTract treats each node as a pair of the top and bottom parts. The derived tree is cut into pieces along the boundaries of the top and bottom parts of some nodes. In any partition, the top and the bottom parts of each node belong to either two distinct pieces or one piece; as a result, there are 2^n distinct partitions for the derived tree. In the second step, two non-adjacent pieces in a partition can be glued together to form a bigger piece under certain conditions. Therefore, each partition will result in one or more decompositions of the derived tree. In total, there are at least 2^n decompositions for any derived tree with n nodes.
of these 32 decompositions, only five (i.e., $E_2 - E_6$) are fully lexicalized — that is, each
tree in these tree sets is anchored by a lexical item. The rest, including E_1, are not fully
lexicalized, and are therefore ruled out by the condition $(C2)$. For the remaining five etree
sets, $E_2 - E_4$ are ruled out by the condition $(C3)$, because each of these tree sets has one
tree that violates the constraint that in a spine-etree an argument of the anchor should
be a substitution node, rather than an internal node.5 For the remaining two, E_5 is ruled
out by $(C4)$ because, according to the head percolation table provided by the user, the
head-child of the S node should be the VP node, rather than the NP node. Therefore,E_6, the tree set that is produced by LexTract, is the only etree set for T^* that satisfies
$(C1)$—$(C4)$.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{tree_sets.png}
\caption{Several tree sets for a derived tree}
\end{figure}

5The prototypes actually allow the arguments of an anchor to be an internal node, but that happens
only when we know that the source Treebank has a way to mark non-compositional phrases such as idioms.
The PTB Treebank does not mark these phrases; therefore, all the etrees extracted from the PTB have
single anchors, and the arguments of the anchor are substitution nodes.
5.4.4 Relations between nodes in $ttrees$ and $etrees$

When LexTract builds $etrees$ from a derived tree, the set of the $etrees$ is a decomposition of the derived tree. In other words, if each node t in a derived tree is split into a (top, bot) pair, then there is a function that maps each $t.top$ (or $t.bot$) to a unique node in the extracted $etrees$. In fact, a stronger claim can be made as follows:

Let $Eset$ be the set of $etrees$ extracted from a derived tree T, let R be the root of T,
Assuming that
(a) each node t in T is split into $(t.top, t.bot)$, and
(b) each node e in $Eset$ is split into a pair $(e.top, e.bot)$ except that
the foot and substitution nodes have only the top part and
the root nodes have only the bottom part
then there is a bidirectional function f from $(t.top, t.bot) - \{R.top\}$ to $(e.top, e.bot)$(for each node x in $(t.top, t.bot) - \{R.top\}$, $f(x)$ is the node in $ESet$ that was copied from x when $ESet$ was built by the algorithm in Table 5.5).

Table 5.6: The bidirectional function between nodes in $ttrees$ and $etrees$

Figure 5.11 shows a derived tree T and the set of $etrees$ $Eset$ extracted from T. The nodes in T and $Eset$ are split into top and bottom parts as specified in Table 5.6. It is obvious that each top and bottom part of the nodes in the derived tree corresponds to a unique top or bottom part of the nodes in the $etrees$ and vice versa.

This bidirectional mapping between the nodes in the derived tree and $etrees$ makes LexTract a useful tool for Treebank annotation and error detection, which we shall explore in the next chapter.

5.5 Creating derivation trees

For the purpose of grammar development, a set of $etrees$ may be sufficient. However, to train a statistical LTAG parser, derivation trees, which store the history of how $etrees$ are

6For the sake of simplicity and without loss of generality, we assume that all the $etrees$ extracted from a derived tree are distinct.
Figure 5.11: An example of the bidirectional function between nodes in \textit{ttrees} and \textit{etrees} combined to form derived trees, are required. Recall that, unlike in CFG, the derived trees and derivation trees in the LTAG formalism are not identical. In this section, we give an algorithm for building derivation trees.

First of all, there are two slightly different definitions of derivation trees in the LTAG literature. The first one adopts the no-multi-adjunction constraint, and the second does not (Schabes and Shieber, 1992). The no-multi-adjunction constraint says that, when \textit{etrees} are combined, at most one adjunction is allowed at any node in any \textit{etree}. As a result, if a phrase \textit{XP} in an \textit{etree} \textit{E}_h has several adjuncts (each adjunct belongs to a mod-\textit{etree}), according to the first definition, the mod-\textit{etrees} will form a chain, with one mod-\textit{etree} adjoining to \textit{E}_h and the rest adjoining to one another; whereas according to the second definition, all the mod-\textit{etrees} will adjoin to \textit{E}_h. The two derivation trees for the example in Figure 5.7 are in Figure 5.12. Notice that mod-\textit{etrees} \#3, \#11, and \#13 all modify \#4; they form a chain as circled in Figure 5.12(a), whereas they are siblings in Figure 5.12(b). In the following discussion, we assume that the first definition is used.\(^7\)

As mentioned in Section 5.4, given a derived tree \textit{T} and a set \textit{ESet} of \textit{etrees} which are extracted from \textit{T}, \textit{ESet} can be seen as a decomposition of \textit{T}. In other words, \textit{T} would be one of the derived trees for the sentence if the sentence were parsed with the \textit{etrees} in \textit{ESet}.

\(^7\) Our algorithm in Table 5.7 can be easily modified to work for the second definition.
However, given T and $ESet$, there may be more than one derivation tree that generates T by combining etrees in $ESet$. This is because, when a phrase has several adjuncts, the corresponding etrees will form a chain in the derivation tree and the order of these etrees on the chain is not fixed. For instance, switching the order of tree #3, #11 and #13 in Figure 5.12(a) will yield six different derivation trees. All six trees would generate the same derived tree. Nevertheless, if we add the no-adjunction (NA) constraint to the foot nodes of all the auxiliary trees, as is the case in the XTAG grammar, the derivation tree would become unique. Alternatively, if we add the NA constraint to the root nodes of all the auxiliary trees, the derivation tree would be unique as well.

To summarize, given a derived tree T and a set $ESet$ of etrees which are extracted from T, there is a unique derivation tree that generates T by combining the etrees in $ESet$ under the following two assumptions: (1) at most one adjunction is allowed at any node, and (2) no adjunctions are allowed at the foot node of any auxiliary tree in $ESet$. The derivation tree is built in two steps. First, for each etree e in $ESet$, find the etree \hat{e} which e substitutes/adopts into. \hat{e} will be the parent of e in the derivation tree. We call \hat{e} the d-parent of e, d stands for derivation trees. Second, build a derivation tree from those (e, \hat{e}) pairs. The algorithm is given in Table 5.7.

For instance, in Figure 5.8 (repeated as Figure 5.13), the algorithm first decides that #1 adjoins to #2 at $NP_2.b$, and #2 substitutes into #4 at $NP_1.t$, and so on. Then it builds the derivation tree in Figure 5.12(a).
Input: a derived tree T,
an etree set $ESet$ which is extracted from T,
a function f that maps the nodes in T to nodes of $etrees$ in $ESet$

Output: a derivation tree D

Definitions:
Two nodes Y_1 and Y_2 in two $etrees$ are called $buddies$ with respect to T iff there exists a node X in T such that $f(X\.top) = Y_1$ and $f(X\.bot) = Y_2$.
(i.e., they are copied from the top and the bottom part of the same node in T)

An etree e_1 is called t-$parent$ of another etree e_2 in T if the buddy of the root of e_2 is in e_1 (i.e., e_1 is on top of e_2 in T when $ESet$ is seen as a decomposition of T).

e_x is called a t-$ancestor$ of e_y in T if there is a sequence $(e_0 = e_x, e_1, \ldots, e_n = e_y)$ of $etrees$ where e_i ($0 \leq i < n$) is t-$parent$ of e_{i+1}.

Algorithm: deriv-tree* BuildDerivTree(T, $ESet$, f)

/* step 1: find the d-$parent$ for each etree */
(A) for (each etree e in $ESet$) {
 /* find the d-$parent$ \hat{e} of e, i.e., the etree that e substitutes/adopts to */
 if (e is an initial tree)
 then {
 /* e substitutes to \hat{e}, which is immediately above e in T if we ignore
 * all the mod-ettes and conj-ettes between them */
 \hat{e} is the closest t-$ancestor$ of e in T that is either an initial tree or
 an auxiliary tree whose foot node does not dominate the root of e in T.
 }
 else {
 /* e adjoins to \hat{e}, which is immediately below e */
 Let fn be the foot node of e, and its buddy in T is bud;
 \hat{e} is the etree whose root is bud;
 }
}

/* step 2: build the derivation tree D */
(B) Find $e^R \in ESet$ such that e^R has no d-$parent$, make e^R the root of D.
(C) Find all the d-children of e^R, make them children of e^R in D.
(D) Repeat (C) for each child of e^R until D includes all the $etrees$ in $ESet$;
(E) return D;

Table 5.7: Algorithm for building derivation trees
5.6 Building multi-component tree sets

So far, we have described algorithms for extracting LTAGs from Treebanks and building derivation trees for each etree. There is one type of information that is present in the Treebank but is missing from the extracted LTAGs: namely, coindexation. In the Treebank, reference indices are used either to mark various kinds of movement (such as wh-movement) or to indicate where a constituent should be interpreted. For instance, in Figure 5.2 (repeated as Figure 5.14(a)), the reference index -1 marks the wh-movement of who and the reference index -2 indicates that the relative clause who worried about the flood should be interpreted as a modifier of the NP Treasury investors. The reference indices in etrees are very useful for sentence interpretation. Therefore, we want to keep them in etrees, so that when etrees are combined the reference indices will be passed to the derived trees.

A pair of co-indexed nodes (i.e., nodes with identical reference indices) in a derived tree do not always map to nodes in the same etree. An important issue in the LTAG formalism is whether syntactic movement satisfies certain locality constraints. One hypothesis claims that the Tree-local MCTAG is powerful enough to handle all kinds of syntactic movement; that is, the two etrees, one for the filler and the other for the gap, should always
Figure 5.14: Etrees for co-indexed constituents

substitute/adjoin to a single etree. This hypothesis, which we shall call the Tree-locality Hypothesis from now on, has been investigated extensively in the literature (Weir, 1988; Kulick, 1998; Heycock, 1987; Becker et al., 1992; Bleam, 1994; Joshi and Vijay-Shanker, 1999; Kallmeyer and Joshi, 1999). Treebanks provide naturally occurring data for testing this hypothesis. The strategy that we employ to test this hypothesis has three stages: first, we use LexTract to find all the examples that seem to violate the hypothesis; second, we classify the examples according to the underlying constructions (such as extrapositions); third, we determine whether each construction would become tree-local if an alternative analysis for the construction is adopted. In this section, we give an algorithm that finds all the examples that seem to be “non-tree-local”. In Section 6.7, we shall discuss the second and third stages and report the experimental results when we test this hypothesis on the PTB.

The algorithm for finding non-tree-local examples is in Table 5.8. For each pair \((X_1, X_2)\) of co-indexed nodes in a derived tree \(T\), assuming the top parts of the two nodes map to some nodes in two etrees \(e_1\) and \(e_2\), respectively, the algorithm checks whether \(e_1\) and \(e_2\) substitute/adjoin to a single etree. It also produces a multi-component (MC) set, which includes \(e_1\), \(e_2\), and every etree that is on the path from \(e_1\) to \(e_2\) in the derivation tree.
Figure 5.15 shows three scenarios of a derivation tree. In (a), e_1 and e_2 are identical; that is, the co-indexed nodes appear in the same etree. In (b), e_1 and e_2 substitute/adjoin to the same etree e_a. In (c), e_1 and e_2 do not substitute/adjoin to the same etree. The relation between X_1 and X_2 is tree-local in (a) and (b), but it is not tree-local in (c).

(a) within one tree
(b) tree-local
(c) not tree-local

Figure 5.15: The coindexation between two nodes may or may not be tree-local

In Figure 5.14(a), the WHNP-1 and $^\ast T^\ast$-1 map to nodes in the same etree in (c), so the movement from $^\ast T^\ast$-1 to WHNP-1 can be handled by the Tree-local MCTAG. In contrast, as shown in Figures 5.16 and 5.17, the etrees for $^\ast ICH^\ast$-2 and $SBAR^\ast$-2 (i.e., #10 and #13) do not adjoin to a single etree; therefore, the "movement" from $^\ast ICH^\ast$-2 to $SBAR^\ast$-2 cannot be handled by the Tree-local MCTAG according to the current annotation in the ttree.8

8In (Xia andBLEAM, 2000), we argue that this type of example (called NP-extraposition) is not syntactic movement; therefore, it is not a counter-example to the Tree-locality Hypothesis.

Figure 5.16: The LTAG derivation tree for the sentence when multi-adjunction is allowed
Input: a derived tree T, the etree set $Eset$ which is extracted from T,
a derivation tree D for T, the mapping f from nodes in T to nodes in $Eset$,
and two co-indexed nodes X_1 and X_2 in T
Output: MCSet: the set of etrees that connects X_1 and X_2 in D
is_local: 1 if the coindexation is tree-local;
0 otherwise
Algorithm: void TestTreeLocality(T, $Eset$, D, f, X_1, X_2, $MCSet$, is_local)

(A) Let e_1 be the etree that $f(X_1.top)$ belong to;
(B) Let e_2 be the etree that $f(X_2.top)$ belong to;
(C) if ($e_1 == e_2$)
then /* $f(X_1.top)$ and $f(X_2.top)$ are in the same etree, see Figure 5.15(a) */
MSet = { e_1 }; is_local = 1; return;

(D) Find the closest common ancestor e_a of e_1 and e_2 in D;
(e_a might be identical to e_1 or e_2)
(E) Find the path $p_{1 \rightarrow a}$ from e_1 to e_a and the path $p_{2 \rightarrow a}$ from e_2 to e_a in D;
(F) For each pair (e, e') on each path
if (e and e' modify the same etree)
then mark e;
(G) Put all the unmarked etrees and e_1, e_2 and e_a into $MCSet$;
if (neither $p_{1 \rightarrow a}$ nor $p_{2 \rightarrow a}$ has unmarked etrees other than e_1, e_2 and e_a)
then /* e_1 and e_2 join to the same etree e_a, see Figure 5.15(b) */
is_local = 1; return;
else /* e_1 and e_2 do not join to the same etree, see Figure 5.15(c) */
is_local = 0; return;

Table 5.8: Algorithm for building MC sets and testing whether the coindexation between a pair of nodes is tree-local

125
Figure 5.17: The etrees that connect the ones for *ICH*-2 and SBAR-2 in the derivation tree.

5.7 Building context-free rules and sub-templates

LexTract is designed to extract LTAGs, but simply reading context-free rules off the templates in an extracted LTAG will yield a CFG. For example, the template in Figure 5.18(a) will yield two context-free rules in 5.18(b).

(a) a template

(1) S → NP VP
(2) VP → VBD NP

(b) CFG rules derived from (a)

Figure 5.18: The context-free rules derived from a template

We can also obtain subcategorization information from a template by decomposing the template into a set of sub-templates as follows: a spine-etree template is decomposed into a subcategorization chain and a subcategorization frame; a mod-etree template is
templates:

```
sub-templates:
```

(a) spine-etree template

```
subcat chain: S -> VP -> V
subcat frame: (NP, V@, NP)
with root S
```

(b) mod-etree template

```
subcat chain: PP -> P
subcat frame: (P@, NP)
with root PP
mod-pair: (VP*, PP)
```

(c) conj-etree template

```
subcat chain: NP -> N
subcat frame: (N@)
with root NP
conj-tuple: (NP*, CC, NP)
```

Figure 5.19: The decomposition of etree templates (In sub-templates, @ marks the anchor in a subcategorization frame, * marks the modifiee in a modifier-modifiee pair)

decomposed into a subcategorization chain, a subcategorization frame, and a modifier-modifiee pair; a conj-etree template is decomposed into a subcategorization chain, a subcategorization frame, and a coordination tuple. Figure 5.19 shows some examples of this decomposition.

A subcategorization chain is a subsequence of the spine in a spine-etree where each node on the chain is a parent of some argument(s) in the subcategorization frame. The notion of subcategorization chain allows us to capture the similarities between the templates that use slightly different annotation schemes. For example, suppose the two spine-etrees in Figure 5.20(a) and (c) come from two different Treebanks. Both are used to represent a wh-clause anchored by a transitive verb. (a) is similar to the structure used in GB-theory, whereas (c) is the one used in the English Penn Treebank. Although the two spine-etrees are not identical as their spines are very different, they share the same subcategorization frame and the same subcategorization chain (except that the node IP in the first subcategorization chain is called S in the second chain). Sub-templates are useful for grammar comparison
Figure 5.20: Spines, subcategorization chains, and subcategorization frames

and language comparison (See Sections 6.2 and 6.3).

5.8 Some special cases

In this section, we discuss four cases that require special consideration from LexTract.

5.8.1 Coordination

In this chapter, we define a conj-ettee as an etree with the conjunction represented as a substitution node, one XP as the foot node and the other XP expanded (e.g., β_1 in Figure 5.21). An alternative is to treat the conjunction as the anchor, one XP as the foot, and the other XP as a substitution node (e.g., β_2 in Figure 5.21). Figure 5.21 shows how these two approaches handle a VP coordination in the sentence John bought a book and has read it four times. In the first approach, the second verb read anchors the conj-ettee β_1, and the singleton etree α_1 substitutes into the CC node in β_1. In the second approach, the conj-ettee β_2 is anchored by the conjunction, and the etree α_2 substitutes into the VP node in β_2. In either approach, the conj-ettee adjoins to the etree α_3.

Currently, we choose the first approach for two reasons. First, it can easily capture the
dependency between the two verbs bought and read, as shown in the derivation tree γ_1;

Second, ideally an etree should encapsulate all the arguments of the anchor. Both β_1 and α_2 are missing the subjects of the verb read. The difference is that in the first approach the etree with the missing subject is confined to be a conj-etree, whereas in the second approach it is an independent spine-etree.

5.8.2 Empty categories

There are two places where empty categories (ECs), such as $^*T^*$ for A'-movement, require special treatment. First, when the coindexation between an EC and its antecedent is due to syntactic movement, the etrees for the two nodes should belong to an MC tree set. Second, the etrees anchored by ECs should be avoided because the existence of such etrees will slow down LTAG parsers. We have addressed the first issue in Section 5.6, in this section, we shall concentrate on the second issue.

To parse a sentence, an LTAG parser first selects all the etrees anchored by the words in a sentence, and then generates parses by combining these etrees. ECs are not part of the input sentence. If we allow them to anchor etrees, the parser has to “predict” where
ECs “appear” in the sentence and then select the etrees anchored by these ECs. This will complicate the parsing algorithm and slow down the parser. There is one exception: if an etree anchored by an EC belongs to an MC set in which at least one of the etrees is anchored by a non-EC word, the parsing efficiency will be not affected, because the MC set will not be selected unless the non-EC word appears in the input sentence.

The algorithm for building etrees (see Table 5.5) handles ECs properly with the two lines that are marked by (EC1) and (EC2), respectively. Let XP be the parent of an EC in a derived tree and XP.top is mapped to a node Y in an etree e. There are three possible positions for Y in e:

- Y is a node on the spine of e. A common example is ellipsis, where a verb or a verb phrase is omitted, as in Figure 5.22(a). Without (EC1), the algorithm in Table 5.5 would build α₁ and β. With (EC1), the algorithm requires the head-child to dominate at least one lexical word. Therefore, the algorithm will choose ADVP, rather than VP₃, as the head-child of VP₂. As a result, the algorithm will build α₂, rather than α₁ and β. Notice that α₂ could be generated by adjoining β to the VP node in α₁.⁹

- Y is a sister of a node on the spine of e. A common example is wh-movement of an argument. LexTract will copy the whole subtree rooted at XP.bot to e, as shown in line (EC2) in Table 5.5. For instance, the subtree rooted at the NP subject of the derived tree in Figure 5.23(a) is copied to α₃ in 5.23(c).

- Y is an adjunct and maps to a sister of the foot node in a mod-etree or a conj-etree. An example for this case is wh-movement of an adjunct. LexTract will group the etrees for the gap and the filler into an MC set. Because one or more etrees in the MC set are anchored by lexical items, the parsing efficiency will not be affected. Nothing special is required for this case. In Figure 5.24, the PP is a modifier of the VP and it is moved to the beginning of the sentence. The etrees for the filler and the gap form

⁹This fact implies that another way to handle ECs in this position is as follows: remove (EC1) from the algorithm, but add a step at the end of algorithm in which each etree that is anchored by an EC is merged with its “neighboring” etree to form a new etree.
an MC set, and both *trees adjoin to α_1.

5.8.3 Punctuation Marks

Punctuation marks help humans to comprehend sentences. They can help NLP tools as well if used appropriately. In the XTAG grammar, there are 47 templates that contain punctuation marks. Doran (1998) discussed all of the templates in detail. She divided punctuation marks into three classes: balanced, structural, and terminal. The balanced punctuation marks are quotes and parentheses; structural marks are commas, dashes, semi-colons and colons; and terminals are periods, exclamation points and question marks. Figure 5.25 shows four *trees with punctuation marks: β_1 is an etree for non-peripheral NP appositive, β_2 is for a sentence such as “John will come, I think”, β_3 and β_4 are for balanced and terminal punctuation marks, respectively.\(^\text{10}\)

This approach is appealing when the grammar is built by hand. However, automatically extracting those *trees from Treebanks is not trivial. For example, in Figure 5.25, the comma anchors β_1, but it is a substitution node in β_2. Given a sentence with a comma, it is not clear how an extraction tool can decide whether the comma should anchor an

\(^{\text{10}}\)\(\beta_1\) and β_2 in Figure 5.25 come from (Doran, 2000).
Figure 5.23: Handling a sentence with wh-movement from an argument position

Figure 5.24: Handling a sentence with wh-movement from an adjunct position

eetree as in \(\beta_1 \), and it should be a substitution node as in \(\beta_2 \). Another problem is that the usage of punctuation marks in naturally occurring data is very complicated. For instance, balanced punctuation marks such as quotation marks are supposed to appear in pairs and enclose a constituent in a ttree, but they are often not annotated that way in a Treebank for various reasons. For example, the sentence *He said, “S1. S2. S3.”* (\(S_i \)'s are clauses) is broken into three ttrees in the PTB, according to the positions of three periods. The left quotation mark belongs to the first ttree and the right quotation mark belongs to the third ttree. Another example is in Figure 5.26, where the left quotation mark is a child of
the VP node, while the right quotation mark is forced to attach higher because the period is a child of the S node and it appears before the right quotation mark.

```
((S (NP-SBJ (PRP he))
  (VP (VBD said)
    (, ,)
    (‘‘ ‘‘)
    (S (NP-SBJ (NNP John))
      (VP (VBZ likes)
        (NP (PRP her))))))

Figure 5.26: A sentence with quotation marks
```

Due to these problems, our current system does not include punctuation marks in the extracted grammars. This does not mean that the NLP tools that use our extracted grammars cannot take advantage of punctuation marks in the data. For example, an NLP tool can still include punctuation marks in its language model. Doran (2000) showed that including punctuation marks in the training and testing data for Supertagging achieved an error reduction of 10.9% on non-punctuation tokens.\(^{11}\) In the data she used, the etrees (including the ones for punctuation marks) came from the XTAG grammar. Based on this experiment, she claimed that having etrees for punctuation marks in an LTAG would improve the performance of Supertagging. We have re-trained the same Supertagger but with the data extracted by LexTract. For punctuation marks, we use dummy etrees named after punctuation marks (e.g., an etree for comma will be named αcomma, and the one for semi-colons αsemicolon). Interestingly, when we conduct the same experiment but with our data, the Supertagging performance for non-punctuation tokens shows a similar rate of improvement. From the results of both experiments, we conclude that punctuation marks

\(^{11}\) More discussion on Supertagging can be found in Section 6.4.
are definitely useful for NLP tools such as a Supertagger, but there is more than one way to take them into account: for example, they can be included in the etrees of an LTAG, or they can be part of a language model, or both. Which approach works the best depends on the application and the particular models used by the NLP tools.

5.8.4 Predicative auxiliary trees

Predicative auxiliary trees, such as the one in Figure 5.27(c) for the verb believe, represent the head-argument relation, and therefore are spine-etrees. Nevertheless, the structures of the trees are recursive in that the root and one leaf node have the same label. Following (Kroch and Joshi, 1985; Kroch, 1989), the XTAG grammar treats this type of tree as an auxiliary tree to account for long-distance movement such as the sentence what does Mary think Mike believes John likes (see Section 2.3).

Figure 5.27: An example in which the etree for believed should be a predicative auxiliary tree: the person who Mary believed bought the book

Several things are worth noting:

- When there is no long-distance movement, it does not make much difference whether such an etree is treated as an auxiliary tree or not. For instance, to parse the sentence Mary believed John would come, either G_1 or G_2 in Figure 5.28 will work although the order between come and believed is flipped in the derivation trees. For more discussion on this topic, see (Joshi and Vijay-Shanker, 1999).

- The shape of the etree alone cannot determine whether it should be an initial tree or an auxiliary tree. For instance, the etree in Figure 5.29 comes from the XTAG grammar and it is used to handle gerund phrases such as Mary having a child in the sentence Nobody heard of Mary having a child. The root of the etree is an NP because
the gerund phrase has the same distribution as other NPs. The etree is treated as an initial tree, although the object of the anchor has the same syntactic tag as the root.

Figure 5.29: The etree for gerund in the XTAG grammar

- In some cases, the positions of ECs in the ttrees would determine whether an etree should be a predicative auxiliary tree. For example, the ttree for the noun phrase “the person who Mary believed bought the book” in Figure 5.27(a) looks identical to the ttree for the noun phrase “the person who believed Mary bought the book” in Figure 5.30(a) except that the positions for Mary and *T* are swapped. But the itrees needed to parse the two sentences are very different, as in (b) and (c) of Figure
5.27 and Figure 5.30. Only the *tree in Figure 5.27(a) requires the etree for the word believed to be a predicative auxiliary tree.\footnote{The etree in Figure 5.30(b) is an auxiliary tree, but it is not a predicative auxiliary tree.}

\[
\text{(a)} \quad \text{(b)} \quad \text{(c)}
\]

Figure 5.30: An example in which the etree for believed should not be a predicative auxiliary tree: the person who believed Mary bought the book

To conclude, it is not true that every spine-ette whose root and a leaf node have the same syntactic tag should be treated as a predicative auxiliary tree. We shall leave the task of detecting predicative auxiliary trees for future study.

5.9 Comparison with other work

In this section, we compare LexTract with other extraction algorithms for CFGs and LTAGs proposed in the literature.

5.9.1 CFG extraction algorithms

Many systems that use Treebank context-free grammars simply read context-free rules off the phrase structures in Treebanks. Because the phrase structures in the source Treebanks are partially flat, the resulting grammars are very large. One of the most recent works that address this problem is (Krotov et al., 1998), which gave an algorithm that reduces the size of the derived grammar by eliminating redundant rules. A rule is redundant if it can be “parsed” (in the familiar sense of context-free parsing) using other rules of the grammar. The algorithm checks each rule in the grammar in turn and removes the redundant rules from the grammar.\footnote{For example, given a grammar that has the following rules: (1) $VP \rightarrow VB \ NP \ PP$, (2) $VP \rightarrow VB \ NP$, and (3) $NP \rightarrow \ NP \ PP$, the algorithm would remove rule (1) because rule (1) can be parsed by rules (2)}

13The rules that remain when all rules have been checked constitute
the compacted grammar. The compact grammar for the PTB has 1122 context-free rules, and the recall and precision of a CFG parser with the compact grammar are 30.93% and 19.18% respectively, in contrast to 70.78% and 77.66% of the same parser with the full grammar, which has 15,421 context-free rules.

Krotov’s method differs dramatically from LexTract in several ways. First, it does not use the notion of head and it does not distinguish adjuncts and arguments. Second, the compacting process may result in different grammars depending on the order in which the rules in the full grammar are checked. To maintain the order-independence, their algorithm removed all unary and epsilon rules by collapsing them with the sister nodes. Because of frequent occurrences of empty categories and unary rules in the Treebank, we suspect that this practice will make the resulting grammars less intuitive and it might also contribute to the low parsing accuracy when the compact grammar was used. Third, the growth of their grammar is non-monotonic in that, as the corpus grows, the size of the grammar may actually decrease because the new rules in the grammar may cause the existing rules to become redundant and get eliminated. Although the size of the compact grammar might approach a limit eventually in their experiment, it is not clear how stable the grammar really is, considering the existence of annotation errors in the Treebank. For example, it is possible that a few bad rules (e.g. \(\{ X \Rightarrow X ZP \} \), where \(ZP \) can be any syntactic label) can ruin the whole grammar because they make many good rules become redundant and get eliminated. They mentioned in their paper that they developed a linguistic compaction algorithm that could retain redundant but linguistically valid rules, and they gave the sizes of two grammars built by this new algorithm. Unfortunately, the description is too sketchy for us to determine exactly how that algorithm works.

In contrast, LexTract uses the notion of head and it distinguishes arguments from adjuncts. The CFG produced by LexTract is order-independent, and it allows unary rules and epsilon rules. In addition, the growth of the grammar is monotonic, and the existence of bad rules would not affect the good rules. As for the number of context-free rules, the CFG built by LexTract from the PTB has 1524 rules (see Section 6.1), whereas in Krotov’s approach, the compact grammar has 1122 rules and the two linguistically and (3).
compact grammars have 4820 and 6417 rules, respectively.14

5.9.2 LTAG extraction algorithms

In addition to LexTract, there are two systems that extract LTAGs from Treebanks.

Neumann's lexicalized tree grammars

Neumann (1998) describes an extraction algorithm and tests it on the PTB and a German
Treebank called Negra (Skut et al., 1997). There are several similarities between his
approach and LexTract. First, both approaches adopt notions of head and use a head
percolation table to identify the head-child at each level. Second, both decompose the
trees from the top downwards such that the subtrees rooted by non-head children are cut
off and the cutting point is marked for substitution. The main difference between the two
is that Neumann’s system does not distinguish arguments from adjuncts, and therefore it
does not factor out the majority of recursive structures with adjuncts. As a result, only
7.97% of the templates in his grammar are auxiliary trees, and the size of his grammar
is much larger than ours: his system extracts 11,979 templates from three sections of
the PTB (i.e., Sections 02-04), whereas LexTract extracts 6926 templates from the whole
corpus (i.e., Sections 00-24). It is also not clear from his paper how he treats conjunctions,
empty categories and coindexation; therefore, we cannot compare these two approaches on
these issues.

Chen & Vijay-shanker’s approach

Chen & Vijay-shanker’s method (2000) is similar to LexTract in that both use a head
percolation table to find the head and both distinguish arguments from adjuncts. Never-
theless, there are several differences.

The two systems differ in their overall architectures. When we designed LexTract, we
explicitly defined three prototypes of elementary trees in the target grammars. The pro-
totypes are language independent and every etree built by LexTract falls into one of three

14Unfortunately, we don’t have access to the CFG parser they used; therefore, we cannot compare our
grammar with their grammars with respect to the precision and recall rates of the parser.
prototypes. Given a Treebank and three tables containing language-specific information, for each phrase structure (ttree) in the Treebank, LexTract first explicitly creates a derived tree. It then decomposes the derived tree into a set of etrees. The bidirectional mapping between the nodes in this derived tree and the etrees makes LexTract a useful tool for Treebank annotation and error detection (see Section 6.6). LexTract also explicitly builds a derivation tree and an MC set. Chen & Vijay-shanker’s system does not explicitly define the prototypes of elementary trees. It does not create a derived tree; therefore, there are no one-to-one mappings between the nodes in a ttree and the nodes in the extracted etrees. The system does not build derivation trees and MC sets, either.

The two systems also differ in their algorithms for making argument/adjunct distinctions. Chen & Vijay-shanker’s system uses a two-step procedure to determine whether a node sist is an argument of the head hc. The first step considers the syntactic tags and function tags of sist and its parent. Exactly this information is used as an index into a manually constructed table. An example of an entry in this table is “if the current node is PP-DIR and the parent node is VP, then assign adjunct to the current node”. If the index is not found in the table, then the second step of the following procedure is invoked:

- Nonterminal PRN is an adjunct.
- Nonterminal with semantic tags NOM, DTV, LGS, PRD, PUT, SBJ are complements.
- Nonterminals with semantic tags ADV, VOC, LOC, PRP are adjuncts.
- If none of the other conditions apply, the nonterminal is an adjunct.

In LexTract, the argument/adjunct distinction is made in two steps as well. In the first step, LexTract checks the function tags of sist, which corresponds to the second step in Chen and Vijay-shanker’s system. The difference is that, rather than using a fixed procedure, LexTract allows its users to specify in the tagset table their treatments for the function tags. For instance, if the users include the entry (PRD HEAD) in the tagset table, LexTract will treat every phrase with the -PRD (predicate) tag as a head-child. If the users replace the entry with (PRD ARGUMENT), LexTract will then treat these
phrases as arguments. If \textit{sist} does not have a function tag with which LexTract can decide the type of the phrase in the first step, LexTract invokes a second step, which determines the type of \textit{sist} according to the entry for the head sibling \textit{hc} in the argument table. Recall that the argument table specifies not only the possible tags of \textit{hc}'s arguments, but also the maximal numbers of arguments to the left or the right of \textit{hc}. In contrast, the first step of Chen & Vijay-shanker's system considers the tags of \textit{sist} and \textit{sist}'s parent. We believe that the tag of \textit{hc} is a better indicator of the type of \textit{sist} than is the tag of \textit{sist}'s parent, and the argument table is more informative than the manually constructed table in their system.

These two systems also differ in their treatments for coordinations, punctuation marks, and so forth. Another way to compare these systems is to evaluate the performances of a common NLP tool that is trained by the data produced by the systems. One of such tools is Srinivas's Supertagger. In Section 6.4, we shall report the performances of the Supertagger with the data produced by these two systems.

5.10 Summary

In this chapter, we have outlined a system named LexTract, which takes a Treebank and language-specific information and produces grammars (LTAGs and CFGs), derivation trees, and MC sets. LexTract has several advantageous properties. First, it takes very little human effort to build three tables (i.e., the tagset table, the head percolation table, and the argument table). Once the tables are ready, LexTract can extract grammars from Treebank in little time. Because LexTract does not include any language-independent code, it can be applied to various Treebanks for different languages.15 Second, LexTract builds a unique derivation tree for each sentence in the Treebank, which can be used to train statistical LTAG parsers directly. Third, LexTract allows its users to have some control over the kind of Treebank grammar to be extracted. For example, by changing the entries in the head percolation table, the argument table, and the tagset table, users can get different Treebank grammars and then choose the ones that best fit their goals.

15In the next chapter, we shall apply LexTract to Treebanks for English, Chinese, and Korean.
Fourth, the grammar produced by LexTract is guaranteed to cover the source Treebank.

In the next chapter, we shall discuss several applications of LexTract.
Chapter 6

Applications of LexTract

In the previous chapter, we introduced a grammar extraction tool LexTract, which takes Treebanks as input and produces grammars and derivation trees. In this chapter, we discuss some applications of LexTract and report experimental results. These applications roughly fall into four types:

- The Treebank grammars built by LexTract are useful for grammar development and comparison (see Sections 6.1 – 6.3).

- The lexicon and derivation trees derived from Treebanks can be used to train statistical tools such as Supertaggers and parsers (see Sections 6.4 – 6.5).

- The bidirectional mappings between \textit{tree} nodes and \textit{etree} nodes makes LexTract a useful tool for Treebank annotation (see Section 6.6).

- LexTract can retrieve the data from Treebanks to test theoretical linguistic hypotheses (see Section 6.7).

We have conducted experiments on all of these applications except for parsing, which was done by Anoop Sarkar at the University of Pennsylvania.

6.1 Treebank grammars as stand-alone grammars

The Treebank grammars extracted by LexTract can be used as stand-alone grammars for languages that do not have wide-coverage grammars.
6.1.1 Two Treebank grammars for English

We ran LexTract on the English Penn Treebank (PTB) and extracted two Treebank grammars. The first one, G_1, uses PTB's tagset. The second Treebank grammar, G_2, uses a reduced tagset, where some tags in the PTB tagset are merged into a single tag, as shown in Table 6.1. The reduced tagset is basically the same as the one used in the XTAG grammar (XTAG-Group, 1998). We built G_2 with this reduced tagset for two reasons. First, we use G_2 to estimate the coverage of the XTAG grammar (see Section 6.2). Second, G_2 is much smaller than G_1 and presumably the sparse data problem is less severe when G_2 is used. For some applications such as Supertagging and testing the Tree locality Hypothesis, our experiments show that G_2 is preferred over G_1.

<table>
<thead>
<tr>
<th></th>
<th>tags in the PTB and G_1</th>
<th>tags in XTAG and G_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjectives</td>
<td>JJ/JJR/JJS</td>
<td>A</td>
</tr>
<tr>
<td>adverbs</td>
<td>RB/RBR/RBS/WRB</td>
<td>Ad</td>
</tr>
<tr>
<td>determiners</td>
<td>DT/PDT/WDT/PRP$/WP$</td>
<td>D</td>
</tr>
<tr>
<td>nouns</td>
<td>CD/NN/NNS/NNP/NNPS/PRP/WP/EX/$/$ #</td>
<td>N</td>
</tr>
<tr>
<td>verbs</td>
<td>MD/VB/VBP/VBZ/VBN/VBD/VBG/TO</td>
<td>V</td>
</tr>
<tr>
<td>clauses</td>
<td>S/SQ/SBAR/SBARQ/SINV</td>
<td>S</td>
</tr>
<tr>
<td>noun phrases</td>
<td>NAC/NP/NX/QP/WHNP</td>
<td>NP</td>
</tr>
<tr>
<td>adjective phrases</td>
<td>ADJP/WHADJP</td>
<td>AP</td>
</tr>
<tr>
<td>adverbial phrases</td>
<td>ADVP/WHADVVP</td>
<td>AdvP</td>
</tr>
<tr>
<td>preposition phrases</td>
<td>PP/WHPP</td>
<td>PP</td>
</tr>
</tbody>
</table>

Table 6.1: The tags in the PTB that are merged to a single tag in the XTAG grammar and in G_2

The sizes of the two grammars are in Table 6.2. LexTract is designed to extract LTAGs, but, as discussed in Section 5.7, simply reading context-free rules off the templates in an extracted LTAG yields a context-free grammar. The last column of the table shows the number of context-free rules.

<table>
<thead>
<tr>
<th></th>
<th>template types</th>
<th>$etree$ tokens</th>
<th>$etree$ types</th>
<th>word types</th>
<th>$etree$ types per word type</th>
<th>context-free rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTAG G_1</td>
<td>6926</td>
<td>1,173,756</td>
<td>131,397</td>
<td>49,206</td>
<td>2.67</td>
<td>1524</td>
</tr>
<tr>
<td>LTAG G_2</td>
<td>2920</td>
<td>1,173,756</td>
<td>117,356</td>
<td>49,206</td>
<td>2.38</td>
<td>675</td>
</tr>
</tbody>
</table>

Table 6.2: Two LTAG grammars extracted from the PTB
6.1.2 Coverage of a Treebank grammar

Given a grammar, the first question that comes to mind is how complete is the grammar? To answer the question, we plot the number of templates as a function of the percentage of the corpus used to generate the templates, as in Figure 6.1. To reduce the effect of the original ordering of the *ttrees* in the Treebank, we randomly shuffle the *ttrees* in the Treebank before running LexTract. We repeat the process ten times, and calculate the minimal, maximal, and average numbers of the templates generated by a certain percentage of the corpus. The figure shows that the curves for the minimal, maximal, and average template numbers are almost identical. Furthermore, in all three curves the numbers of templates does not converge as the size of the Treebank grows, implying that there are many new templates in unseen data.

![Figure 6.1: The growth of templates in G₁](image)

Figure 6.1 shows that a few templates in G₁ occur very often while others occur rarely in the corpus. For example, out of 6926 templates in G₁, 96 templates each occur more than a thousand times, and they account for 86.91% of the template tokens in the PTB. In contrast, 3276 templates occur only once, and they account for 0.27% of the template tokens in the PTB. This phenomenon reminds us of Zipf's law for word frequency, which says that in a large corpus the rank of a word multiplies by its frequency is a constant (Zipf, 1949).

\[\text{The rank of a word is the position of the word in the word list when the list is sorted in the decreasing order according to the words' frequencies in the corpus.} \]
Figure 6.2: Frequency of etree templates versus rank (both on log scales)

doubly logarithmic axes, the curve is close to a straight line with slope -1. To achieve a closer fit to the empirical distribution of words, Mandelbrot (1954) derives the following more general relationship between the rank and frequency:

\[f_{\text{req}} = P(rank + \rho)^{-B} \]

where \(P \), \(B \) and \(\rho \) are parameters of a text, that collectively measure the richness of the text's use of words (Manning and Schütze, 1999). Interestingly, the curve in Figure 6.2 shows that the relationship between the rank and frequency of templates satisfies Mandelbrot's equation.

We just mentioned that the numbers of templates do not converge as the size of the Treebank grows. Nevertheless, if we consider only the core grammar, which consists of templates that occur more than \(n \) times, the number of templates in the core grammar does converge when \(n \) is large enough. Figure 6.3 shows the growth of the core grammar when \(n \) is set to be four. It follows that, once a Treebank reaches a certain size, the new templates extracted from additional data tend to have a very low frequency in the Treebank. For example, although on average the second half of the PTB produces 1985 new templates (i.e., the ones that do not appear in the first half of the PTB), only ten of these new templates are in the core grammar (i.e., they occur more than four times).

The core grammar does not include low frequency templates. Are these low frequency templates linguistically plausible? To answer the question, we randomly selected 100 templates from the 3276 templates in \(G_1 \) which occur only once in the corpus. After
Figure 6.3: The growth of templates in the core of G_1

manually examining them, we found that 41 templates resulted from annotation errors, two from missing entries in the language-specific tables that we made for the PTB, and the remaining 57 were linguistically plausible. This experiment shows that, although the PTB is pretty large, it is unlikely that G_1 includes all the plausible templates for English. On the other hand, 5276 $ttrees$ (about 10.7% of the corpus) can produce all the 6926 templates in G_1 and 1428 $ttrees$ (about 2.9% of the corpus) can produce all the 1967 templates in the core grammar with the threshold set to four. Therefore, the question is: if we are going to build a Treebank of a certain size from scratch, how can we choose the raw data to maximize the number of plausible templates in the resulting Treebank grammar? If we randomly select 5276 $ttrees$ from the PTB, the resulting Treebank grammar has only 2360 templates (about one third the size of G_1). Similarly, randomly selected 1428 $ttrees$ yield 1263 templates, 1043 of which are in the core grammar (about half the size of the core

2Chiang (2000) did similar experiments for the tree insertion grammar that he extracted from the PTB. His grammar has 3626 templates, of which 1587 occur once. He found that out of 100 randomly selected once-seen templates, 34 results from annotation errors, 50 from deficiencies in the heuristics used by his extraction algorithm, four from performance errors, and only twelve appeared to be genuine. It is hard to compare the results of these two experiments because the Treebank grammars and the extraction algorithms in the experiments are different, as mentioned in Section 5.9.2

3Finding the minimal number of $ttrees$ that generate all the templates in a grammar is a set-covering problem, which is NP-complete. Instead of computing the minimal number, we just count the $ttrees$ that produce the first occurrence of those templates as the extraction process goes, and the counts for G_1 and the core grammar are 5276 and 1428, respectively.
grammar). These results show that random sampling does not work well. We leave this question for future study.

To summarize, we have shown that, although the size of a Treebank grammar does not converge as the Treebank grows, the core of the grammar does remain roughly the same once the Treebank reaches a certain size. In addition, the frequency and rank of templates in the Treebank grammar seems to satisfy a more general version of Zipf’s law, and about half of the randomly selected 100 once-seen templates are linguistically plausible.

So far, the discussion has been based on templates, rather than on etrees. For parsing purposes, a more important question is: how often do the unseen etrees occur in new data? Recall that an etree is equivalent to a (word, template) pair. If an etree is unseen, the word can be unseen (uw) or seen(sw), and the template can be unseen (ut) or seen (st). Therefore there are four kinds of unseen pairs, where (sw, st) means both words and templates have appeared in the training data, but not the pair. Table 6.3 shows that in G_1 only 7.85% of the pairs in Section 23 of the PTB are not seen in Sections 2 to 21. Of all the unseen (word, template) pairs in G_1, only 4.20% (0.31%+0.02% divided by 7.85%) are caused by the unseen templates, and the remaining 95.80% are caused by unseen words or unseen combinations. This implies that the presence of unseen templates is unlikely to have a significant impact on Supertagging or parsing. Notice that the percentage of (sw, st) is much higher than (sw, ut) plus (uw, ut), indicating that some type of smoothing over sets of templates (e.g., the notion of tree families in the XTAG grammar) is important for improving the parsing accuracy. In the table, we also list the percentage of unseen (word, POS tag) pairs in same data for comparison.

<table>
<thead>
<tr>
<th># of tags</th>
<th>(sw, st)</th>
<th>(uw, st)</th>
<th>(sw, ut)</th>
<th>(uw, ut)</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS tags</td>
<td>48</td>
<td>0.44%</td>
<td>2.47%</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LTAG G_1</td>
<td>6926</td>
<td>5.09%</td>
<td>2.43%</td>
<td>0.31%</td>
<td>0.02%</td>
</tr>
<tr>
<td>LTAG G_2</td>
<td>2920</td>
<td>4.20%</td>
<td>2.45%</td>
<td>0.10%</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

Table 6.3: The types of unknown (word, template) pairs in Section 23 of the PTB

\(^4\)We chose those sections because most state-of-the-art parsers are trained and tested on those sections.
6.1.3 Quality of a Treebank grammar

An ideal grammar should not only have good coverage on new data, but also have high quality. A Treebank grammar is extracted from a Treebank; as a result, annotation errors in the Treebank will result in linguistically implausible templates in the grammar.

A simple way of removing most implausible templates is to use a threshold to throw away all the infrequent templates. Table 6.4 lists the numbers of the templates in G_1 and G_2 that occur more than the threshold values. One problem with this method is that it throws away infrequent but plausible templates. For example, we mentioned in Section 6.1.2 that out of 100 randomly selected once-seen templates in G_1, 57 are plausible. This method would throw away all these plausible templates. Another problem with this approach is that it keeps frequent but implausible templates. For instance, in the phrase structure shown in Figure 6.4(a), the adverb *about* is mis-tagged as a preposition (*IN*). As a result, the template in Figure 6.4(b) was created by LexTract. The threshold-based method cannot filter it out because the template occurs 1832 times in the PTB. Many of those frequent but implausible templates are caused by part-of-speech errors in the PTB.\(^5\)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>9</th>
<th>19</th>
<th>29</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1</td>
<td>6926</td>
<td>3650</td>
<td>2693</td>
<td>2257</td>
<td>1967</td>
<td>1771</td>
<td>1395</td>
<td>955</td>
<td>812</td>
<td>710</td>
</tr>
<tr>
<td>G_2</td>
<td>2920</td>
<td>1684</td>
<td>1312</td>
<td>1114</td>
<td>981</td>
<td>895</td>
<td>696</td>
<td>477</td>
<td>405</td>
<td>350</td>
</tr>
</tbody>
</table>

Table 6.4: The numbers of templates in G_1 and G_2 with the threshold set to various values

\(^5\)We suspect that the main reason that those POS errors remain in the PTB is that when the Treebank was bracketed by annotators, POS tagging annotation was already completed but the POS tags were not shown to annotators; therefore, the annotators were unaware that the syntactic tag that they added to a phrase and the existing POS tags within the phrase might be incompatible.
we first decompose a template into a set of sub-templates (see Section 5.7), then mark the template as plausible if and only if every sub-template is plausible. The plausibility of the subcategorization chain, the subcategorization frame, and the modifier-modifiee pair are checked against the entries in the head percolation table, the argument table, and the modification table, respectively.

This filter works well when these three tables (the head percolation table, the argument table and the modification table) are correct and complete (i.e., there are no missing entries in the tables). In that case, the templates that are marked as implausible by the filter are definitely implausible, but not vice versa. That is, it is possible, even though unlikely, that a template made up of plausible sub-templates is not plausible. Our filter marks the template in Figure 6.4(b) as implausible because a preposition (IN) cannot modify a quantifier phrase (QP) according to the modification table.

So far, we have discussed two filters: one is based on the frequency of the templates, and the other checks the sub-structures of the templates. Each filter has its strengths and weaknesses. The choice of them should be based on the size of the Treebank, the common types of annotation errors in the Treebank, and other factors.

6.2 Treebank grammars combined with other grammars

If a language already has a wide-coverage hand-crafted grammar such as the XTAG grammar, is a Treebank grammar still useful? Definitely. A Treebank grammar can help a hand-crafted grammar in two ways:

- To evaluate and improve the coverage of a hand-crafted grammar on a large Treebank
- To provide statistical information to the hand-crafted grammar

In this section, we shall concentrate on the former and leave the latter for future work. Previous evaluations (Doran et al., 2000; Srinivas et al., 1998) of hand-crafted grammars use raw data (i.e., a set of sentences without syntactic bracketing). The data are first parsed by an LTAG parser and the coverage of the grammar is measured as the percentage
of sentences in the data that can be parsed.\footnote{There should be two measures for the coverage. The first one is the percentage of sentences for which the \emph{correct} parses are generated; the second one is the percentage of sentences for which at least one parse is generated.} For more discussion on this approach, see (Prasad and Sarkar, 2000).

We propose a new evaluation method that takes advantage of Treebanks and LexTract. In this method, the coverage of a hand-crafted grammar is measured by the overlap of the hand-crafted grammar and the Treebank grammar.

\subsection{Methodology}

The central idea of our method is as follows: given a Treebank T and a grammar G_h and letting G_t be the set of templates extracted from T by LexTract, the coverage of G_h on T can be measured as the percentage of template tokens in T that are covered by the \emph{intersection} of G_t and G_h. One complication is that the Treebank and G_h may choose different analyses for certain syntactic constructions; that is, although some constructions are covered by both grammars, the corresponding templates in these grammars would look very different. To account for this, our method has four stages:

1. Extract a Treebank grammar from T. Let G_t be the set of templates in the Treebank grammar.

2. Put into G_t' all the templates in G_t that match some templates in G_h.

3. Check each template in $G_t - G_t'$ and decide whether the construction represented by the template is handled differently in G_h. If so, put the template in G_t''. The coverage of G_h on T is measured as \(\text{count}(G_t' \cup G_t'') / \text{count}(G_t) \). The templates in $G_t - G_t' - G_t''$ are the ones that are truly missing from G_h.

4. To improve the coverage of G_h, check templates in $G_t - G_t' - G_t''$ and consider adding the plausible ones to G_h.

In this experiment, we are focusing on general syntactic structures in two grammars, rather than the completeness of lexicons. Therefore, for grammar coverage we use \textit{templates}, instead of \textit{trees}. The method can be easily extended to compare \textit{trees}. Each stage
of the method is described in detail as follows.

6.2.2 Stage 1: Extracting templates from Treebanks

We choose \(G_2 \) as our Treebank grammar (see Table 6.2 in Section 6.1) and the XTAG grammar as the hand-crafted grammar. The former has 2920 templates, and the latter has 1004 templates.

6.2.3 Stage 2: Matching templates in the two grammars

To calculate the coverage of the XTAG grammar, we need to find out how many templates in \(G_2 \) match some template in the XTAG grammar. We define two types of matching: \(t \)-match and \(s \)-match.

\(t \)-match

An obvious distinction between the two grammars is that feature structures and subscripts\(^7\) are present only in the XTAG grammar, whereas frequency information is available only in \(G_2 \). We say that two templates \(t \)-match (\(t \) for template) if they are identical barring the types of information present only in one grammar. In Figure 6.5, the XTAG trees in (a) and (b) \(t \)-match the \(G_2 \) tree in (c).

![Figure 6.5: The templates for pure intransitive verbs and ergative verbs in XTAG \(t \)-match the template for all intransitive verbs in \(G_2 \)](image)

\(^7\)In the XTAG grammar, the subscripts on the nodes mark the same semantic arguments in related subcategorization frames. For example, an ergative verb \textit{break} can be either transitive (e.g., \textit{Mike broke the window.}) or intransitive (e.g., \textit{The window broke.}). The object of the transitive frame and the subject of the intransitive frame are both labeled as \(NP_1 \), whereas the subject of the transitive frame is labeled \(NP_0 \).
XTAG also differs from G_2 in that XTAG uses multi-anchor trees to handle idioms (Figure 6.6(a)), light verbs (Figure 6.6(b)) and so on. In each of these cases, the multiple anchors form the predicate. By having multiple anchors, each tree can be associated with semantic representations directly (as shown in Figure 6.6), which is an advantage of the LTAG formalism. These trees are the spine-ctrees where some arguments of the main anchor are expanded. G_2 does not have multi-anchor trees because semantics is not marked in the Treebank and consequently LexTract cannot distinguish idiomatic meanings from literal meanings. Since expanded subtrees are present only in the XTAG grammar, we disregard them when comparing templates.

\[\begin{align*}
\text{(a) idioms in XTAG} & \quad \text{sem: dir(NP)} \\
\text{(b) light verbs in XTAG} & \quad \text{sem: walk(NP)} \\
\text{(c) transitive verbs in } G_2 & \quad \text{sem: kick(NP, NP)}
\end{align*}\]

Figure 6.6: Templates in XTAG with expanded subtrees t-match the one in G_2 when the expanded subtrees are disregarded

s-match

t-match requires two trees to have exactly the same structure barring expanded subtrees; therefore, it does not tolerate minor annotation differences between the two grammars. For instance, in XTAG, a relative pronoun such as which and the complementizer that occupy distinct positions in the template for relative clauses, whereas the Penn Treebank treats both as pronouns and therefore they occupy the same position in G_2, as shown in Figure 6.7. Because the circled substructures occur in every template for relative clauses and wh-movement, none of these templates would t-match their counterparts in the other grammar. Nevertheless, the two trees share the set of sub-templates; namely, the same subcategorization chain $S \rightarrow VP \rightarrow V$, the same subcategorization frame (NP, V, NP).

8For details on multi-anchor trees, see Section 2.1.4.
and the same modification pair \((NP, S)\). To capture this kind of similarity, we define the notion of \(s\)-match \((s\) for sub-template\). Two templates are said to \(s\)-match if they are decomposed into the same set of sub-templates. According to this definition, the two templates in Figure 6.7 \(s\)-match.

![Diagram](image)

(a) in XTAG
(b) in \(G_2\)

Figure 6.7: An example of \(s\)-match

Matching results

So far, we have defined two types of matching. Notice that neither type of matching is one-to-one. Table 6.5 lists the numbers of matched templates in two grammars. The last row lists the percentage of the template tokens in the PTB that are covered by the templates in \(G_2\) that match some templates in XTAG. For instance, the second column says 162 templates in XTAG \(t\)-match 54 templates in \(G_2\), and these 54 templates account for 54.6\% of the template tokens in the PTB.

<table>
<thead>
<tr>
<th></th>
<th>(t)-match</th>
<th>(s)-match</th>
<th>matched subtotal</th>
<th>unmatched subtotal</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTAG</td>
<td>162</td>
<td>314</td>
<td>476</td>
<td>528</td>
<td>1004</td>
</tr>
<tr>
<td>(G_2)</td>
<td>54</td>
<td>133</td>
<td>187</td>
<td>2733</td>
<td>2920</td>
</tr>
<tr>
<td>coverage</td>
<td>54.6%</td>
<td>5.3%</td>
<td>59.9%</td>
<td>40.1%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 6.5: Matched templates and their coverage

Another difference between the XTAG and the Treebank annotation is that an adjective modifies a noun directly in the former, whereas in the latter an adjective projects to an adjective phrase (AP) which in turn modifies an NP, as shown in Figure 6.8. Similarly, in XTAG an adverb modifies a VP directly, whereas in the Treebank an adverb sometimes projects to an ADVP first. If we disregard these annotation differences, the percentage
of matched template tokens increases from 59.9\% to 82.1\%, as shown in Table 6.6. The magnitude of the increase is due to the high frequency of templates with nouns, adjectives and adverbs.

(a) in XTAG

\[
\begin{array}{c}
N \\
A@ \quad N^* \\
\end{array}
\]

(b) in G₂

\[
\begin{array}{c}
NP \\
AP \quad NP^* \\
A@ \\
\end{array}
\]

Figure 6.8: Templates for adjectives modifying nouns

<table>
<thead>
<tr>
<th></th>
<th>t-match</th>
<th>s-match</th>
<th>matched subtotal</th>
<th>unmatched subtotal</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTAG</td>
<td>173</td>
<td>324</td>
<td>497</td>
<td>307</td>
<td>1004</td>
</tr>
<tr>
<td>G₂</td>
<td>81</td>
<td>134</td>
<td>215</td>
<td>2705</td>
<td>2920</td>
</tr>
<tr>
<td>coverage</td>
<td>78.6%</td>
<td>3.5%</td>
<td>82.1%</td>
<td>17.9%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 6.6: Matched templates when certain annotation differences are disregarded

6.2.4 Stage 3: Classifying unmatched templates

The previous section shows that 17.9\% of the template tokens do not match any template in the XTAG grammar. There are several reasons for the mismatches:

T1: incorrect templates in G₂ These templates result from Treebank annotation errors, and therefore they are not in XTAG.

T2: coordination in XTAG the templates for coordination in XTAG are generated on-the-fly while parsing (Sarkar and Joshi, 1996), and are not part of the 1004 templates. Therefore, the conj-templates in G₂, which account for 3.4\% of the template tokens in the PTB, do not match any templates in the XTAG grammar.

T3: alternative analyses XTAG and G₂ sometimes choose different analyses for the same phenomena. As a result, the templates used to handle these phenomena do not match each other by our definition.
T4: constructions not covered by XTAG Some constructions, such as the unlike coordination phrase (UCP), parenthetical (PRN), and ellipsis, are not currently covered by the XTAG grammar.

For the first three types, the XTAG grammar can handle the corresponding constructions although the templates used in two grammars look different and do not match according to our definition. To find out what constructions are not covered by XTAG, we manually classified the 289 most frequent unmatched templates in G_2 according to the reason that they are absent from XTAG. These 289 templates account for 93.9% of all the unmatched template tokens in the Treebank. The results are shown in Table 6.7, where the percentage is with respect to all the tokens in the Treebank. From the table, it is clear that most unmatched template tokens are due to (T3); that is, alternative analyses adopted in the two grammars. Combining the results in Table 6.6 and 6.7, we conclude that 97.2% of template tokens in the Treebank are covered by XTAG, while another 1.7% are not covered. The remaining 1.1% of template tokens are covered by the 2416 unmatched templates in G_2, which we have not checked manually. Therefore, it is not clear how many of this remaining 1.1% template tokens are covered by XTAG.

<table>
<thead>
<tr>
<th></th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td># of template types</td>
<td>51</td>
<td>52</td>
<td>93</td>
<td>93</td>
<td>289</td>
</tr>
<tr>
<td>% of template tokens</td>
<td>1.1%</td>
<td>3.4%</td>
<td>10.6%</td>
<td>1.7%</td>
<td>16.8%</td>
</tr>
</tbody>
</table>

Table 6.7: Classification of 289 unmatched templates

6.2.5 Stage 4: Combining two grammars

Given the XTAG grammar and the Treebank grammar, simply taking the union of two template sets will yield an inconsistent grammar. One way of improving the coverage of the XTAG grammar is to analyze the constructions in T_1, build new trees for them (or use the corresponding trees in the Treebank grammar), and add these trees to the XTAG grammar.

9The number 97.2% is the sum of two numbers: the first one is the percentage of matched template tokens (82.1% from Table 6.6). The second number is the percentage of template tokens in T_1—T_3 (16.8%--1.7% = 15.1% from Table 6.7).
Another possibility is to use LexOrg to generate a new grammar. This process has several steps. First, LexTract decomposes templates in both grammars into a set of sub-templates such as subcategorization chains, subcategorization frames, and modification pairs. Second, we use LexTract’s filter to automatically rule out all the implausible sub-templates in XTAG and G_2. Third, we manually check the remaining sub-templates. If two grammars adopt different treatments for a certain construction, choose one treatment and its corresponding sub-templates. Last, we use LexOrg to generate a new grammar from these sub-templates. The new grammar will be consistent and have a good coverage of the Treebank. We plan to explore this possibility in the future.

To summarize this section, we have presented a method for evaluating the coverage of a hand-crafted grammar — the XTAG grammar — on a Treebank. First, we used LexTract to automatically extract a Treebank grammar. Second, we matched the templates in the two grammars. Third, we manually classified unmatched templates in the Treebank grammar to decide how many of them were due to missing constructions in the hand-crafted grammar. Some of the unmatched templates can be added to the hand-crafted grammar to improve its coverage. Our experiments showed that the XTAG grammar could cover at least 97.2% of the template tokens in the English Penn Treebank.

This method has several advantages. First, the whole process is semi-automatic and requires little human effort. Second, the coverage can be calculated at the sentence level, template level and sub-structure level. Third, the method provides a list of templates that can be added to the grammar to improve its coverage. Fourth, there is no need to parse the whole corpus, which could have been very time-consuming.

6.3 Comparison of Treebank grammars for different languages

In the last section, we compared a hand-crafted grammar with a Treebank grammar. In this section, we shall compare grammars for different languages for two reasons. First, we want to know how similar or different the languages are with respect to the elementary trees in their grammars. Second, the links between the elementary trees in the grammars
are valuable resources for NLP applications such as machine translation (MT).

To compare grammars for different languages, we can choose either hand-crafted grammars or Treebank grammars. We chose Treebank grammars for the following reasons. First, Treebank grammars can be easily extracted from Treebanks with little human effort. Second, the extracted grammars are guaranteed to cover the source Treebanks. Third, the grammars built by the same extraction tool are based on the same formalisms, making grammar comparison possible. A potential problem for using Treebank grammars is that the grammars may include linguistic implausible templates while missing plausible ones due to the imperfection of the source Treebanks. To alleviate this problem, a threshold-based filter is used to throw away low frequency templates.

Our approach for grammar comparison has three stages: First, we extract grammars from Treebanks; Second, given a grammar pair, we count the number of templates that appear in both grammars; Third, we classify the templates that appear in one but not in the other grammar. In this section, we first introduce the three Treebanks used for grammar comparison. Then, we report experimental results on grammar comparison. Next, we point out the directions for future work.

6.3.1 Three Treebanks for three languages

The languages whose grammars are being compared are English, Chinese, and Korean. They belong to different language families: English is Germanic, Chinese is Sino-Tibetan, and Korean is Altaic (Comrie, 1987). There are several major differences between these languages. First, both English and Chinese have predominantly subject-verb-object (SVO) word order, whereas Korean has underlying SOV order. Second, the word order in Korean is freer than in English and Chinese in the sense that argument NPs are freely permutable (subject to certain discourse constraints). Third, Korean and Chinese allow subject and object deletion, but English does not. Fourth, Korean has richer inflectional morphology than English, whereas Chinese has little, if any, inflectional morphology.

The Treebanks that we used in this section are the English Penn Treebank II (Marcus et al., 1993), the Chinese Penn Treebank (Xia et al., 2000b), and the Korean Penn Treebank (Han et al., 2001). All three Treebanks were developed at the University of Pennsylvania.
in the last decade. The main parameters of these Treebanks are summarized in Table 6.8. The tagsets include four types of tags: POS tags for head-level annotation, syntactic tags for phrase-level annotation, function tags for grammatical function annotation, and empty category (EC) tags for dropped arguments, traces, and so on. The average sentence length for the Korean Treebank is much shorter than those for English and Chinese because the Korean Treebank is a collection of military messages, whereas English and Chinese corpora consist of newspaper articles. Because the Korean Treebank is a small corpus of a limited sub-language, we shall mainly focus on the comparison between the English and Chinese grammars.

<table>
<thead>
<tr>
<th>Language</th>
<th>corpus size (words)</th>
<th>ave sentence length (words)</th>
<th>POS tags</th>
<th>syntactic tags</th>
<th>function tags</th>
<th>EC tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>1,174K</td>
<td>23.85 words</td>
<td>36</td>
<td>26</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Chinese</td>
<td>100K</td>
<td>23.81 words</td>
<td>34</td>
<td>25</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>Korean</td>
<td>54K</td>
<td>10.71 words</td>
<td>27</td>
<td>14</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 6.8: Sizes of the Treebanks and their tagsets

We chose these Treebanks for two reasons: First, their annotation schemata are similar, which facilitates the comparison between the extracted Treebank grammars. For example, all three Treebanks use phrase structures, rather than dependency structures. They all include empty categories, reference indexes, and function tags in addition to syntactic labels. Second, all three Treebanks were designed by linguists and computational linguists and the annotation were at least double checked. Therefore, the grammars extracted from the Treebanks should have good quality.

The results of running LexTract on English, Chinese, and Korean Treebanks are shown in Table 6.9. The last column in the table shows the numbers of the non-lexicalized context-free rules.

<table>
<thead>
<tr>
<th></th>
<th>template types</th>
<th>etree types</th>
<th>word types</th>
<th>context-free rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>6926</td>
<td>131,397</td>
<td>49,206</td>
<td>1524</td>
</tr>
<tr>
<td>Chinese</td>
<td>1140</td>
<td>21,125</td>
<td>10,772</td>
<td>515</td>
</tr>
<tr>
<td>Korean</td>
<td>632</td>
<td>13,941</td>
<td>10,035</td>
<td>152</td>
</tr>
</tbody>
</table>

Table 6.9: Grammars extracted from the three Treebanks

158
6.3.2 Stage 1: Extracting Treebank grammars that are based on the same tagset

In this stage, we need to ensure that the Treebank grammars are based on the same tagset. To achieve that, we create a new tagset that includes all the tags from the three Treebanks. Then we merge several tags in this new tagset into a single tag.10 Next, we replace the tags in the original Treebanks with the tags in the new tagset, and then run LexTract to build Treebank grammars from those Treebanks.

After the tags in original Treebanks have been replaced with the tags in the new tagset, the numbers of templates in the new Treebank grammars decrease by about 50\%, as shown in the second column of Table 6.10 (cf. the second column in Table 6.9). Table 6.10 also lists the numbers of context-free rules and sub-templates in each grammar.

<table>
<thead>
<tr>
<th>templates</th>
<th>context-free rules</th>
<th>sub-templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng</td>
<td>3129</td>
<td>500</td>
</tr>
<tr>
<td>Ch</td>
<td>547</td>
<td>290</td>
</tr>
<tr>
<td>Kor</td>
<td>256</td>
<td>102</td>
</tr>
</tbody>
</table>

Table 6.10: Treebank grammars with the new tagset

6.3.3 Stage 2: Matching templates

Now that the Treebank grammars are based on the same tagset, in the second stage, we count the number of structures (templates, context-free rules, and sub-templates) that appear in more than one grammar.11 Figure 6.9 shows six templates that appear in both

10Merging tags is necessary because certain distinctions among some tags in one language do not exist in another language. For example, the English Treebank has distinct tags for past tense verbs, past participals, gerunds, and so on; however, no such distinction is morphologically marked in Chinese and, therefore, the Chinese Treebank uses the same tag for verbs regardless of the tense and aspect. To make the conversion straightforward for verbs, we use a single tag for verbs in the new tagset.

11Ideally, to get more accurate comparison results, we would like to compare \textit{etrees}, rather than templates (which are non-lexicalized); however, comparing \textit{etrees} requires bilingual parallel corpora, which we are currently building.
the English and the Chinese grammars. The numbers x/y under each template are the percentages of the template tokens in the English Treebank (ETB) and the Chinese Treebank (CTB), respectively. For example, the numbers under α_1 says that the template accounts for 20.91% of template tokens in the ETB, and 20.83% in the CTB.

Initial results

Table 6.11 lists the number of matched templates for each language pair. The third column lists the numbers of template types shared by each pair of Treebank grammars and the percentage of the template tokens in each Treebank that are covered by these matched template types. For example, there are 237 template types that appear in both English and Chinese Treebank grammars. These 237 template types account for 80.1% of the template tokens in the ETB, and 81.5% of the template tokens in the CTB. There are a few things worth mentioning. First, although the numbers of matched templates are not very high, some of these templates have high frequency and therefore the percentages of matched template tokens are pretty high. For example, the six templates in Figure 6.9 accounts for 40.95% of template tokens in the ETB and 41.90% in the CTB. Second, the frequency of the same template in different Treebanks may differ substantially. For example, β_3 in Figure 6.9 accounts for 6.31% of template tokens in the ETB but 0.81% in the CTB, while β_2 accounts for 0.90% in the ETB but 4.94% in the CTB. A major reasons

12 α_1, β_1, and β_2 also appear in the Korean grammar. For β_3, α_2, and α_3, if we reverse the positions of the verb and its sister, the resulting templates are in the Korean grammar as well.
for this difference is that the set of words that anchor the same template may differ across languages; that is, if a word w in language l anchors a template f, it is possible that the translation of w in language l' does not anchor f. For example, in English the β_3 is anchored by auxiliary verbs including modals, *be* verbs as in progressive (e.g., *is eating*) and passive (e.g., *is eaten*), and *have* verbs as in present perfect (e.g., *have eaten*). In contrast, in Chinese the β_3 is anchored only by modals. The *be* and *have* verbs in English are translated into adverbs or aspect markers in Chinese. The adverbs anchor β_2, and the template for the aspect markers appears only in the Chinese grammar.

<table>
<thead>
<tr>
<th></th>
<th>templates</th>
<th>context-free rules</th>
<th>sub-templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Eng, Ch)</td>
<td>type (#)</td>
<td>237</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>token (%)</td>
<td>80.1/81.5</td>
<td>88.0/85.2</td>
</tr>
<tr>
<td>(Eng, Kor)</td>
<td>type (#)</td>
<td>54</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>token (%)</td>
<td>47.6/85.6</td>
<td>53.4/92.2</td>
</tr>
<tr>
<td>(Ch, Kor)</td>
<td>type (#)</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>token (%)</td>
<td>55.9/81.0</td>
<td>63.2/89.3</td>
</tr>
</tbody>
</table>

Table 6.11: Numbers of matched templates, context-free rules, and sub-templates in three grammar pairs

If we compare context-free rules, rather than templates, the percentages of matched context-free rules (as shown in the fourth column in Table 6.11) are higher than the percentages of matched template tokens. This is because two distinct templates may share common context-free rules. Similarly, the percentages of matched sub-templates (see the last column in Table 6.11) are higher than the percentages of matched template tokens.

Results using thresholds

The comparison results shown in Table 6.11 used every template in the Treebank grammars regardless of the frequency of the template in the corresponding Treebank. One potential problem with this approach is that annotation errors in the Treebanks could have a substantial effect on the comparison results. One such scenario is as follows: To compare languages A and B, we use Treebanks T_A for language A and Treebank T_B for language B. Let G_A and G_B be the grammars extracted from T_A and T_B, respectively, and let t be a template that appears in both grammars. Now suppose that t is a linguistically
plausible template for language A and it accounts for 10% of the template tokens in T_A, but t is not a plausible template for language B and it appears once in Treebank B only because of annotation errors. In this scenario, if G_B excluding template t covers 50% of the template tokens in Treebank A, then G_B including t covers 60% of the template tokens in Treebank A. In other words, the single error in Treebank B, which causes the template t to be included in G_B, changes the comparison results dramatically.

In Section 6.1.3, we propose two methods of filtering out implausible templates caused by Treebank annotation errors. In this experiment, we used the threshold-based filter; that is, we used a threshold to discard from the Treebanks and Treebank grammars all the templates with low frequency in order to reduce the effect of Treebank annotation errors on the comparison results. Table 6.12 shows the numbers of templates in the Treebank grammars when the threshold is set to various values. For example, the last column lists the numbers of templates that occur more than 39 times in the Treebanks.\(^{13}\)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>9</th>
<th>19</th>
<th>29</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>3139</td>
<td>1804</td>
<td>1409</td>
<td>1209</td>
<td>1065</td>
<td>762</td>
<td>524</td>
<td>444</td>
<td>386</td>
</tr>
<tr>
<td>Chinese</td>
<td>547</td>
<td>341</td>
<td>272</td>
<td>226</td>
<td>210</td>
<td>155</td>
<td>122</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>Korean</td>
<td>256</td>
<td>181</td>
<td>146</td>
<td>132</td>
<td>122</td>
<td>94</td>
<td>67</td>
<td>57</td>
<td>53</td>
</tr>
</tbody>
</table>

Table 6.12: The numbers of templates in the Treebank grammars with the threshold set to various values

Table 6.13 shows the numbers of matched templates and the percentages of matched template tokens when the low frequency templates are removed from the Treebanks and Treebank grammars. As the value of the threshold increases, for each language pair the number of matched templates decreases. The percentage of matched template tokens might decrease a fair amount at the beginning, but it levels off after the threshold reaches a certain value. This tendency is further illustrated in Figure 6.10. In this figure, the X-axis is the threshold value, which ranges from 0 to 39; the Y-axis is the percentage of matched template tokens in the English and Chinese Treebanks when the templates with low frequency are discarded. The curve on the top is the percentage of template tokens

\(^{13}\)The setting of the threshold should take the Treebank size into consideration. In general, the bigger a Treebank, the higher the threshold can be.

162
Figure 6.10: The percentages of matched template tokens in the English and Chinese Treebanks with various threshold values

in the Chinese Treebank that are covered by the English grammar, and the curve on the bottom is the percentage of template tokens in the English Treebank that are covered by the Chinese grammar. Both curves become almost flat once the threshold value reaches 5 or larger.

<table>
<thead>
<tr>
<th></th>
<th>threshold type (# token (%)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Eng, Ch)</td>
<td>type (#) token (%)</td>
<td>237</td>
<td>165</td>
<td>128</td>
<td>111</td>
<td>100</td>
<td>73</td>
<td>54</td>
</tr>
<tr>
<td>(Eng, Cor)</td>
<td>type (#) token (%)</td>
<td>54</td>
<td>47</td>
<td>37</td>
<td>35</td>
<td>32</td>
<td>29</td>
<td>23</td>
</tr>
<tr>
<td>(Ch, Kor)</td>
<td>type (#) token (%)</td>
<td>43</td>
<td>36</td>
<td>34</td>
<td>29</td>
<td>27</td>
<td>22</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 6.13: Matched templates in the Treebank grammars with various threshold values

To summarize, in order to get a better estimate of the percentage of matched template tokens, we disregard the low frequency templates in the Treebanks. We hope that this strategy reduces the effect of annotation errors on the comparison results. This strategy also makes the difference between the sizes of the three Treebanks less important because, once a Treebank reaches a certain size, the new templates extracted from additional data tend to have very low frequency in the whole Treebank (See Section 6.1.2) and they will be thrown away by the threshold-based filter.
6.3.4 Stage 3: Classifying unmatched templates

Our experiments (see Table 6.11 and 6.13) show that the percentages of unmatched template tokens in three Treebanks range from 14.4% to 52.8%, depending on the language pairs and the threshold value. Given a language pair, there are various reasons why a template appears in one Treebank grammar, but not in the other. In the third step of the grammar comparison, we divide those unmatched templates into two categories: spurious unmatched templates and truly unmatched templates.

Spuriously unmatched templates Spuriously unmatched templates are those that either should have found a matched template in the other grammar or should not have been created by LexTract in the first place if the Treebanks had been complete, uniformly annotated, and error-free. A spuriously unmatched template exists because of one of the following reasons:

(S1) Treebank coverage: The template is linguistically plausible in both languages, and, therefore, should belong to the grammars for these languages. However, the template appears in only one Treebank grammar because the other Treebank is too small to include such a template. Figure 6.11(S1) shows a template that is plausible for both English and Chinese, but it appears only in the English Treebank, not in the Chinese Treebank.

(S2) Annotation differences: Treebanks may choose different annotations for the same constructions; consequently, the templates for those constructions look different. Figure 6.11(S2) shows the templates used in English and Chinese for a VP such as “surged 7 (dollars)”. In the template for English, the QP projects to an NP, but in the template for Chinese, it does not.

(S3) Treebank annotation errors: A template in a Treebank may result from annotation errors in that Treebank. If no corresponding mistakes are made in the other Treebank, the template in the first Treebank will not match any template in the second Treebank. For instance, in the English Treebank the adverb about in the sentence About 50 people showed up is often mis-tagged as a preposition, resulting in the template in Figure 6.11(S3). Not surprisingly, that template does not match any template in the Chinese Treebank.

164
Figure 6.11: Spuriously unmatched templates

Truly unmatched templates A *truly* unmatched template is a template that does not match any template in the other Treebank even if we assume that both Treebanks are perfectly annotated. Here, we list three reasons why a truly unmatched template might exist.

(T1) Word order: The word order determines the positions of dependents with respect to their heads. If two languages have different word orders, the templates that include dependents of a head are likely to look different. For example, Figure 6.12(T1) shows the templates for transitive verbs in English and Korean grammars. They do not match because of the different positions of the object of the verb.

(T2) Unique tags: For a pair of languages, some POS tags and syntactic tags appear in only one language. Therefore, the templates with those tags will not match any templates in the other language. For instance, sentence-ending particles (SPs) are used in Chinese, but not in English. Therefore, the template in Figure 6.12(T2) appears only in the Chinese grammar.

(T3) Unique syntactic relations: Some syntactic relations may be present in only one of the pair of languages being compared. For instance, a yes-no question is expressed in English by subject-verb inversion or *do*-support, whereas a yes-no question is realized in Chinese by attaching a particle *ma* at the end of the sentence. Therefore, the template in Figure 6.12(T3), which is anchored by auxiliary verbs, appears only in the English grammar.

So far, we have listed six possible reasons for unmatched templates. We have manually classified templates that appear in the Chinese grammar, but not in the English grammar.\(^{14}\)

\(^{14}\)For this experiment, we used all the templates in the grammars; that is, we did not throw away low
The results are shown in Table 6.14. The table shows that, for the Chinese-English pair, the main reason for unmatched templates is (T2) because many templates in the Chinese grammar include tags for particles (such as classifiers, aspect markers, and sentence-ending particles), which do not exist in English. For other language pairs, the distribution of unmatched templates may be very different. For instance, Table 6.11 indicates that the English grammar covers 85.6% of the template tokens in the Korean Treebank. If we ignore the word order in the templates, that percentage increases from 85.6% to 97.2%. In other words, the majority of the template tokens that appear in the Korean Treebank, but not in the English Treebank, are due to the word order difference in the two languages. Note that the word order difference only accounts for a small fraction of the unmatched templates in the Chinese-English pair (see the fifth column in Table 6.14). This contrast is not surprising considering that English and Chinese are predominantly head-initial, whereas Korean is head-final.

6.3.5 The next step

So far, we have presented a method of comparing grammars extracted from Treebanks. We have also described six possible reasons why a particular template does not match frequency templates.
any templates in another language. An unmatched template that include unique tags or unique syntactic relations (i.e., (T2) and (T3)) often indicates that the two languages in the language pair express certain syntactic features in different ways. For example, a yes-no question is realized in Chinese by attaching a particle ma at the end of the sentence; that is, ma anchors the template in Figure 6.12(T2). In contrast, a yes-no question is realized in English by subject-verb inversion or do-support; that is, auxiliary verbs anchor the template in Figure 6.12(T3). A MT system should pay attention to the difference and handle the templates properly.

In addition to building Treebank grammars, LexTract can also be used to build etree-to-etree mappings automatically from parallel Treebanks. The process can be simplified as follows:

1. Run bitext mapping algorithms, such as the Smooth Injective Map Recognizer (SIMR) algorithm (Melamed, 1999), on parallel Treebanks to align sentences and produce a word-to-word mapping function in the aligned sentences.

2. For each aligned sentence pair, run LexTract to produce grammars and derivation trees from the ttrees.

3. Link the nodes in the derivation trees using the word-to-word mapping, thus, creating a etree-to-etree mapping.

This process is illustrated in Figure 6.13. In (a), T and T′ are two ttrees in a parallel English-Chinese Treebank. In (b), a bitext mapping algorithm decides that the sentences in T and T′ form a parallel sentence pair. Then it builds the word-to-word mapping \(f_w \). In (c), LexTract produces Treebank grammars \(G \) and \(G' \) and the derivation trees \(D \) and \(D' \) for the sentences. In (d), the etree-to-etree mapping function \(f_t \) is created.

Quite often, the translation of a word consists of several words in another language. For instance, in Figure 6.14(a), the word qù in Chinese is translated into go to in English and the word did in English roughly corresponds to le ma in Chinese.15 As a result, the

15 The sentence-ending particle ma in Chinese indicates that the sentence is a yes-no question, whereas in English the same information is expressed by subject-verb inversion or do-support. The sentence-ending particle le in Chinese indicates that the action qù xùexiáo/go to school happens in the past, whereas in
(a) two *trees* in a parallel Treebank

(b) two sentences are aligned and the word-to-word mapping
is produced by a bitext mapping algorithm

(c) the Treebank grammars and derivation trees are built by LexTract

(d) the nodes in derivation trees are linked and the
etree-to-etree mapping is created

Figure 6.13: Creating *etree-to-etree* mapping from a parallel Treebank
derivation trees D and D' in Figure 6.14(b) are not isomorphic. However, if we group the nodes in the derivation trees and build links between the groups instead of individual nodes, the new derivation trees become isomorphic, as shown in Figure 6.14(c).

There are other types of structural divergence (Dorr, 1993). By comparing the derivation trees for parallel sentences, instances of structural divergence can be detected automatically. Now that we have converted a parallel Treebank into a list of paired derivation trees with instances of structural divergence marked, the next step is to train a MT system on the data so that it can produce a target derivation tree given a source derivation tree. We would like to pursue this line of research in the future.

6.4 Lexicons as training data for Supertaggers

As shown in Section 5.4, LexTract builds an etree for each word in the sentence. This etree sequence has been used to train and test Supertaggers.

6.4.1 Overview of Supertaggers

A Supertagger (Joshi and Srinivas, 1994; Srinivas, 1997) assigns an etree template to each word in a sentence. The templates are called Supertags because they include more information than POS tags. In general, a word has many more Supertags than POS tags because a word appearing in different elementary trees will have different Supertags whereas its POS tag is likely to remain the same. For example, a preposition has different Supertags when the PP headed by the preposition modifies a VP, an NP, or a clause. In the English the tense is part of the inflection for verbs.

16In this section, we use the term template and Supertag interchangeably. A word has x Supertags means that the word can anchor x distinct templates.
Figure 6.14: Handling instances of structural divergence
PTB, on average, a word \textit{type} has 2.67 Supertags, and a word \textit{token} has 34.68 Supertags.\footnote{A \textit{word} in this section, as usual, refers to an inflected word, rather than a lemma. The average number of Supertags per word \textit{type} is calculated as}

\[
\frac{\sum_{w \in W} \text{stag}(w)}{|W|}
\]

In contrast, on average a word \textit{type} has 1.17 POS tags, whereas a word \textit{token} has 2.29 POS tags.\footnote{For these four numbers, we use PTB\textquotesingle s tagset. The numbers would decrease a little bit if we use the reduced tagset instead.} Table 6.15 shows the top 40 words with the most numbers of Supertags in \(G_2\).

Srinivas implemented the first Supertagger and he also built a Lightweight Dependency Analyzer (LDA) that assembles a Supertag sequence to create an almost-parse for a sentence. A Supertagger can also be used as a preprocessor (just like a POS tagger) to speed up parsing, because after the Supertagging stage an LTAG parser only needs to consider one or a few templates (in case of n-best Supertagging) for each word in the sentence, instead of every template that the word can anchor. Besides parsing, Srinivas (1997) has shown in his thesis that Supertaggers are useful for other applications, such as information retrieval, information extraction, language modeling, and simplification.

\subsection*{6.4.2 Experiments on training and testing Supertaggers}

One difficulty in using Supertaggers is the lack of training and testing data. To use a Treebank for that purpose, the phrase structures in the Treebank have to be converted into (word, Supertag) sequences first. Besides LexTract, there have been two other attempts at converting the English Penn Treebank to (word, Supertag) sequences in order to train a Supertagger. To train his Supertagger, Srinivas (1997) first selects a subset of templates from the XTAG grammar, then uses heuristics to map structural information in the Treebank into the subset of templates. Chen \& Vijay\textquotesingle s method (2000) has been

\[
\frac{\sum_{w \in W} \text{stag}(w) \cdot \text{freq}(w)}{\sum_{w \in W} \text{freq}(w)}
\]

where \(W\) is the set of distinct words in a Treebank, \text{stag}(w) is the number of Supertags that a word \(w\) has, and \text{freq}(w) is the number of occurrences of \(w\) in the Treebank.

\footnote{A word may appear to have more Supertags (or POS tags) in the Treebank than they should due to Treebank annotation errors.}
<table>
<thead>
<tr>
<th>word</th>
<th># of Supertags</th>
<th># of POS tags</th>
<th>word frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>171</td>
<td>6</td>
<td>18857</td>
</tr>
<tr>
<td>to</td>
<td>122</td>
<td>3</td>
<td>27249</td>
</tr>
<tr>
<td>and</td>
<td>122</td>
<td>5</td>
<td>19762</td>
</tr>
<tr>
<td>of</td>
<td>117</td>
<td>3</td>
<td>28338</td>
</tr>
<tr>
<td>on</td>
<td>108</td>
<td>3</td>
<td>6367</td>
</tr>
<tr>
<td>for</td>
<td>107</td>
<td>3</td>
<td>9890</td>
</tr>
<tr>
<td>put</td>
<td>101</td>
<td>6</td>
<td>343</td>
</tr>
<tr>
<td>as</td>
<td>94</td>
<td>3</td>
<td>5268</td>
</tr>
<tr>
<td>say</td>
<td>89</td>
<td>5</td>
<td>876</td>
</tr>
<tr>
<td>is</td>
<td>89</td>
<td>2</td>
<td>8499</td>
</tr>
<tr>
<td>set</td>
<td>82</td>
<td>6</td>
<td>331</td>
</tr>
<tr>
<td>up</td>
<td>81</td>
<td>5</td>
<td>2079</td>
</tr>
<tr>
<td>more</td>
<td>81</td>
<td>3</td>
<td>2339</td>
</tr>
<tr>
<td>out</td>
<td>80</td>
<td>5</td>
<td>1254</td>
</tr>
<tr>
<td>said</td>
<td>76</td>
<td>2</td>
<td>7132</td>
</tr>
<tr>
<td>by</td>
<td>76</td>
<td>3</td>
<td>5524</td>
</tr>
<tr>
<td>with</td>
<td>75</td>
<td>3</td>
<td>5170</td>
</tr>
<tr>
<td>make</td>
<td>74</td>
<td>3</td>
<td>727</td>
</tr>
<tr>
<td>made</td>
<td>73</td>
<td>2</td>
<td>650</td>
</tr>
<tr>
<td>like</td>
<td>73</td>
<td>4</td>
<td>603</td>
</tr>
<tr>
<td>take</td>
<td>72</td>
<td>3</td>
<td>510</td>
</tr>
<tr>
<td>from</td>
<td>72</td>
<td>1</td>
<td>5389</td>
</tr>
<tr>
<td>says</td>
<td>71</td>
<td>1</td>
<td>2431</td>
</tr>
<tr>
<td>about</td>
<td>71</td>
<td>5</td>
<td>2604</td>
</tr>
<tr>
<td>have</td>
<td>70</td>
<td>5</td>
<td>3777</td>
</tr>
<tr>
<td>at</td>
<td>70</td>
<td>3</td>
<td>5336</td>
</tr>
<tr>
<td>down</td>
<td>68</td>
<td>7</td>
<td>934</td>
</tr>
<tr>
<td>expected</td>
<td>67</td>
<td>4</td>
<td>665</td>
</tr>
<tr>
<td>over</td>
<td>66</td>
<td>4</td>
<td>1056</td>
</tr>
<tr>
<td>do</td>
<td>64</td>
<td>2</td>
<td>1156</td>
</tr>
<tr>
<td>pay</td>
<td>63</td>
<td>3</td>
<td>438</td>
</tr>
<tr>
<td>paid</td>
<td>61</td>
<td>3</td>
<td>265</td>
</tr>
<tr>
<td>sell</td>
<td>59</td>
<td>4</td>
<td>600</td>
</tr>
<tr>
<td>give</td>
<td>58</td>
<td>2</td>
<td>274</td>
</tr>
<tr>
<td>cut</td>
<td>58</td>
<td>6</td>
<td>323</td>
</tr>
<tr>
<td>sold</td>
<td>56</td>
<td>2</td>
<td>478</td>
</tr>
<tr>
<td>much</td>
<td>56</td>
<td>2</td>
<td>831</td>
</tr>
<tr>
<td>get</td>
<td>56</td>
<td>2</td>
<td>563</td>
</tr>
<tr>
<td>close</td>
<td>54</td>
<td>5</td>
<td>402</td>
</tr>
</tbody>
</table>

Table 6.15: The top 40 words with highest numbers of Supertags in G_2
discussed in Section 5.9.2.

To compare these three methods with respect to Supertagging, we use the data converted by these methods to train a Supertagger. In the experiment, the Supertagger (Srinivas, 1997), the evaluation tool, and the original PTB data are identical, but the conversion algorithms and the data produced by the conversion algorithms are different. The results are given in Table 6.16.20 The results of Chen & Vijay’s method come from their paper (Chen and Vijay-Shanker, 2000). They built eight grammars. We list two of them that seem to be most relevant: C_1 uses a reduced tagset while C_3 uses the PTB tagset. As for Srinivas’ results, we had to rerun his Supertagger using his data on the sections that we have chosen, because his previous results were trained and tested on different sections of the PTB.21

We calculated two baselines for each set of data produced by the conversion algorithms. For the first baseline, we tagged each word in testing data with the most common Supertag with respect to that word in the training data. For an unknown word, the most common Supertag was used. For the second baseline, we used a trigram POS tagger to tag the

20 As usual, we use Sections 2-21 of the PTB for training and Section 22 or 23 for testing. We include the results for Section 22 because (Chen and Vijay-Shanker, 2000) is tested on that section and its results on Section 23 are not available.

21 Notably, the results we report on Srinivas’ data, 85.78% on Section 23 and 85.53% on Section 22, are lower than the 92.2% reported in (Srinivas, 1997), 91.37% in (Chen et al., 1999) and 88.0% in (Doran, 2000). There are several reasons for the differences. First, the size of training data in our experiment is smaller than the one for his previous work, which was trained on Sections 0-24 except for Section 20 and tested on Section 20. Second, we treat punctuation marks as normal words during evaluation because, like other words, punctuation marks can anchor $etrees$, whereas he treated the Supertags for punctuation marks as always correct. Third, he used some equivalence classes during evaluations. If a word is mis-tagged as x, and its the correct Supertag is y, he did not consider that to be an error if x and y appeared in the same equivalence class. We suspect that the reason that these Supertagging errors were disregarded is that they might not affect parsing results when the Supertags are combined to form parse trees. For example, both adjectives and nouns can modify other nouns. The two templates (i.e., Supertags) representing these modification relations look the same except for the POS tags of the anchors. If a word that should be tagged with one Supertag is mis-tagged with the other Supertag, it is likely that the wrong Supertag can still fit with other Supertags in the sentence to produce the correct parse tree. In our experiment, we did not use these equivalence classes.
words first, and then for each word we used the most common Supertag with respect to that (word, POS tag) pair. As shown in the table, the first baselines for Supertagging were quite low, in contrast to the 91% for POS tagging. This indicates that Supertagging is much harder than POS tagging. The results for the second baseline were slightly better than the ones for the first baseline, indicating that using POS tags improves the Supertagging accuracy. The Supertagging accuracy using G_2 was 1.3–1.9% lower than the one using Srinivas’ data. This is not surprising because the size of G_2 is 6 times that of Srinivas’ tagset. Notice that G_1 is about twice the size of G_2 and the accuracy using G_1 is 2% lower.

<table>
<thead>
<tr>
<th></th>
<th># of templates</th>
<th>section</th>
<th>base1</th>
<th>base2</th>
<th>accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Srinivas’</td>
<td>483</td>
<td>23</td>
<td>72.59</td>
<td>74.24</td>
<td>85.78</td>
</tr>
<tr>
<td>our G_2</td>
<td>2920</td>
<td>23</td>
<td>71.45</td>
<td>74.14</td>
<td>84.41</td>
</tr>
<tr>
<td>our G_1</td>
<td>6926</td>
<td>23</td>
<td>69.70</td>
<td>71.82</td>
<td>82.21</td>
</tr>
<tr>
<td>Chen & Vijay’s</td>
<td>2366 — 8996</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>77.8 — 78.9</td>
</tr>
<tr>
<td>C_4</td>
<td>4911</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>78.90</td>
</tr>
<tr>
<td>C_3</td>
<td>8623</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>78.00</td>
</tr>
</tbody>
</table>

Table 6.16: Supertagging results based on three different conversion algorithms

A word of caution is in order. Higher Supertagging accuracy does not necessarily mean the quality of converted data is better because the underlying grammars differ a lot with respect to the size and the coverage. A better measure is the parsing accuracy; that is, the converted data should be fed to a common LTAG parser and the evaluations should be based on parsing results. Nevertheless, the experiments show that the (word, template) sequences produced by LexTract are useful for training Supertaggers. Our results are slightly lower than the ones trained on Srinivas’ data, but our conversion algorithm has two advantages. First, our algorithm does not use a pre-existing Supertag set. Instead, it extracts the Supertag set directly from the Treebank. Second, the Supertags in his converted data do not always fit together, due to the discrepancy between the XTAG grammar and the Treebank annotation and the fact that the XTAG grammar does not cover all the template tokens in the Treebank. In contrast, the Supertags in our converted data always fit together; that is, it is guaranteed that the correct parse will be produced.
by an LTAG parser if the parser is given the correct Supertag for each word and is asked to produce all possible parses.

6.5 Derivation trees as training data for statistical LTAG parsers

In the previous section, we have shown that the (word, template) sequences produced by LexTract can be used to train a Supertagger. The output of a Supertagger can then be fed to an LDA or a parser to produce parse trees. A problem with this approach is that the Supertagging errors can hurt parsing performance.

Another way of using LexTract for parsing is to train an LTAG parser directly, without using a Supertagger as a preprocessor. One of the parsers that have used LexTract's output is a head-corner LTAG statistical parser built by Anoop Sarkar. In this section, we briefly describe his parser and its performance on the PTB; then we discuss one of the adjustments that we have made to the Treebank grammar in order to improve the performance of the parser.

6.5.1 Overview of Sarkar's parser

The parser uses a generative model. In this model, the LTAG derivation D that was built starting from tree α with n subsequent attachments has the probability:

$$Pr(D) = P_{init}(\alpha) \prod_{1 \leq i \leq n} P_{attach}(\tau, \eta \rightarrow \tau')$$

where $P_{init}(\alpha)$ is the probability that the initial tree α is selected to be the root of a derivation tree; $P_{attach}(\tau, \eta \rightarrow \tau')$ is the probability that τ' is substituted/adjointed to the node η in τ. Both $P_{init}(\alpha)$ and $P_{attach}(\tau, \eta \rightarrow \tau')$ are estimated by using the frequency information in the derivation trees produced by LexTract.

To reduce the amount of labeled data needed to train his parser, Sarkar adopts a co-training method, which uses a small amount of labeled data, a large amount of unlabeled data, and a tag dictionary. By labeled data, he means the sentences annotated with phrase structures; unlabeled data are sentences stripped of all annotations; and a tag dictionary
is a set of (word, template) pairs. In his experiment, the labeled data are Sections 02-06 of the PTB, the unlabeled data are Sections 07-21 stripped of all annotation, and the tag dictionary includes all the (word, sequence) pairs from Sections 02-21. When tested on Section 23 of the PTB, the labeled bracketing precision and recall are 80.02% and 79.64%, respectively. Considering that the labeled data used by the parser are only about 25% of the training data used by other parsers, we believe that the results are very promising. The details of the generative model, the co-training method, and the experiment can be found in (Sarkar, 2001).

6.5.2 Adjustments to the Treebank grammars for parsing

To create a Treebank grammar that is more suitable to parsing, we have made a few adjustments to LexTract. In this section, we discuss one of them, which is to add insertion markers to some nodes in fully bracketed trees and to the corresponding nodes in extracted etrees. Let us explain why such tags are needed with an example. In Figure 6.15, to build etrees, LexTract first fully brackets the phrase structure T_1 in (a), then decomposes the fully bracketed structure T_2 in (b) into a set of etrees in (c). In the process, LexTract inserts an extra node VP_3 to T_2, and the corresponding etree node for VP_3, top is the foot node of β_1 in (c). If no insertion tags are used, when an LTAG parser uses the etrees in (c) to parse the sentence *John will come tomorrow*, it will produce T_2 as a parse tree, rather than T_1. When the parse tree T_2 is compared with the original phrase structure in the Treebank (which is T_1), the precision is less than 100%. In other words, the parser is punished for producing the fully bracketed structure. To avoid this, LexTract now adds insertion tags to both VP_3, top in T_2 and the VP foot node of β_1. Now when the parser takes the same etrees in (c) but with this extra tag in the foot node of β_1, it will produce the same parse tree T_2 but with the extra insertion tag in VP_3, top. The parser can then remove all the nodes in T_2 whose top part has an insertion tag, resulting in the parse tree T_1.

22LexTract inserts two types of nodes in the fully bracketed trees: one is for a modifier that appears outside the head and its arguments, as in this example; the other type is for a modifier that appears between the head and its arguments. For the first type, the insertion tag is added to the top part of the inserted node in the fully bracketed tree and to the corresponding node (which is the foot node of a mod- etree);
Figure 6.15: Marking the inserted nodes in the fully bracketed *ttree* and the corresponding *etrees*

6.6 LexTract as a tool for error detection in Treebank annotation

As stated in Section 5.4.4, there is a bidirectional function between the top and bottom parts of the nodes in a fully bracketed *ttree* T and those in the set of *etrees* extracted from T. Linguistically implausible *etrees* may be generated from T because of annotation errors in T. In other words, if an *etree* is considered implausible, it implies that the corresponding nodes in the *ttree* are not annotated correctly. Based on this relation, we can use LexTract to detect annotation errors in a Treebank.

6.6.1 Algorithm for error detection

The algorithm for using LexTract for error detection is in Table 6.17. It is semi-automatic, and the steps that require human involvement are marked with (L1)–(L4). For (L1) and (L3), the two filters proposed in Section 6.1.3 could be used to mark each *template* as plausible or implausible; however, because the filters are not perfect, the *templates* should for the second type, the insertion tag is added to the bottom part of the inserted node in the *ttree* and to the corresponding node (which is the root node of a mod-etree).
still be double checked by a linguistics expert. As for (L2) and (L4), the algorithm would point out the nodes in *trees* that need to be checked, but it is up to the user of the tool to decide what kind of modification is needed to fix the errors in the *tree*.

(A) run LexTract on the whole Treebank to generate a grammar G.
(B) check each template in G and decide whether it is plausible or not. — (L1)
(C) for (each Treebank file f)
 (C1) run LexTract to generate a grammar G_f;
 (C2) for (each template $e_f \in G_f$)
 if (\(\exists e \in G \), such that e_f and e have the same structure)
 then if (\(e \) is marked as implausible in G)
 then modify the *tree* in f that generates e_f; — (L2)
 else
 /* e_f is a new template */
 check e_f and decide whether it is plausible or not; — (L3)
 add e_f to G;
 if (e_f is implausible)
 then modify the *tree* in f that generates e_f; — (L4)
 (C3) repeat (C1)-(C2) until G_f is a subset of G and G_f includes only plausible templates;

Table 6.17: Algorithm for error detection

6.6.2 Types of error that LexTract detects

From the algorithm in Table 6.17, it is clear that annotation errors can be detected by LexTract if and only if they result in implausible templates. These errors can be classified as follows:

- Formatting errors in *trees* such as unbalanced brackets and illegal tags: This type of error can be totally avoided if the Treebank is built with proper annotation tools (See Appendix B.7.2).\(^{23}\) When a *tree* is not properly formatted, LexTract will give a warning and exit without further processing of the *tree*.

\(^{23}\) For example, the English Penn Treebank uses a tool to add a left bracket and a right bracket in one operation, so there should be no unbalanced brackets in that Treebank.
• Wrong syntactic labels (including POS tags, syntactic category tags and empty category tags): Besides careless typos (e.g., using the tag LC (localizer) rather than CL (classifier) for a classifier in the Chinese Treebank), wrong syntactic labels are often due to incompatible labels at several levels. For example, in Chinese, a coordinating conjunction (CC) such as ́tóng ́ is also a preposition (IN); therefore, the sentence “John ́tóng/and with Mary zou/leave le/ASP” means either “John and Mary left” or “John left with Mary”, and both structures in Figure 6.16(a) and 6.16(b) are correct. However, the structure in Figure 6.16(c) is incorrect because the POS tag CC and the syntactic category PP don’t match, resulting in an implausible etree in Figure 6.16(d). This type of error is relatively common because POS tagging and bracketing are often done at separate annotation stages by different annotators.

• Wrong or missing function tags: LexTract uses syntactic labels and function tags to

24Because most of the readers are more familiar with the English Penn Treebank than the Chinese Penn Treebank, in this example we adopt the annotation convention and the tagset that are used in the English Penn Treebank (except for the tag AS for an aspect marker, which does not appear in the English tagset).
distinguish arguments from adjuncts. Wrong or missing function tags may cause an argument to be mistaken as an adjunct by LexTract or vice versa. For example, in Figure 6.17, the structure in (c) is identical to the one in (a) except that the subject in (c) is missing the function tag -SBJ; as a result, LexTract treats the subject in (c) as an adjunct, and creates an implausible etree in (d) rather than the plausible etree in (b).

(a) the correct annotation

(b) valid etree

(c) the NP subject is missing
the function tag -SBJ

(d) invalid etree

Figure 6.17: An error caused by a missing function tag

• Missing etree nodes: One reason for this type of error in the Chinese Penn Treebank is that annotators forgot to mark dropped arguments. In Figure 6.18, the dropped argument should be marked as an empty category *pro*, as in (a). Failing to do that, as in (c), would result in an implausible etree in (d).

• Extra etree nodes: This type of error is rare and mostly caused by careless typos or misunderstanding of the annotation guidelines.
Two observations are in order. First, the main function of LexTract is extracting LTAGs and building derivation trees to train LTAG parsers and Supertaggers. Error detection is only a byproduct of the system. Consequently, there are errors that LexTract cannot detect; namely, the errors that do not result in implausible etree. For example, in English, a PP can modify either an NP or a VP. Given a particular context, in general, only one attachment makes sense. If the Treebank chooses the wrong attachment, LexTract cannot detect that error.

The second observation is that using templates can detect more annotation errors than using context-free rules. For example, in English either the subject or the object of a verb can undergo wh-movement and leave a trace in its position, as shown in Figure 6.19(a) and 6.19(b). But the subject and the object cannot be moved at the same time, as in Figure 6.19(c). That is, the first two templates are plausible but the third template is not. However, all three templates consist of the same set of context-free rules as in Figure 6.19(d), and all the context-free rules are plausible. Thus, the annotation errors that result in the implausible template in Figure 6.19(c) can be detected if we use templates, rather
than context-free rules.

![Diagram of context-free rules]

Figure 6.19: Three templates and corresponding context-free rules

6.6.3 Experimental results

We used LexTract for the final cleanup of the Chinese Penn Treebank. The Treebank contains about 100 thousand words after word segmentation, and the average sentence length is 23.8 words. Before LexTract was used for the final cleanup, each Treebank file had been manually checked at least twice and the annotation accuracy was already above 95%. More details on the Treebank can be found in Appendix B.

Before the final cleanup, the Treebank grammar G_o contained 1245 etree templates. It took a linguistics expert about 10 hours to manually examine all the templates in G_o to determine whether they were plausible. After that, it took another person (who was one of the two annotators in the Chinese Treebank project) about 20 hours to run LexTract and correct each Treebank file. After the cleanup, 169 templates in the old grammar disappeared, and 38 templates were added to the new grammar; so the new grammar has 1114 etree templates.

To report the number of errors found by LexTract, we could have classified the errors according to the types listed in Section 6.6.2, such as POS tagging errors, missing function tags, and so on. However, keeping such a record is time-consuming. Due to time constraints, we did not do that. Instead, we automatically counted the number of word tokens in the Treebank that anchored distinct templates before and after the cleanup. We found 579 word tokens (which account for 0.58% of the total number of word tokens in the Treebank) whose templates had changed after the cleanup. The differences may not be huge, but considering the accuracy before running LexTract was already above 95% (see
Appendix B.6), the results of the final cleanup were satisfactory.

6.7 MC sets for testing the Tree-locality Hypothesis

In Section 5.6, we discussed our strategy for testing the Tree-locality Hypothesis. It has three stages. First, LexTract finds all the examples that seem to violate the hypothesis. We call these examples “non-tree-local”, or “non-local” for short. Second, we classify all the non-local examples according to the underlying constructions (such as NP-extrapolation). Third, we determine whether each construction could become tree-local if an alternative analysis for the construction were adopted. In this section, we report our experimental results on the PTB.

6.7.1 Stage 1: Finding “non-local” examples

Section 5.6 gave an algorithm that finds all the examples that seem to violate the Tree-locality Hypothesis (see Table 4.8). We ran this algorithm on the PTB and found many non-local examples. Table 6.18 lists the the numbers of tree sets with particular sizes. A tree set, in this context, includes (1) the two etree templates e_1 and e_2 in which the co-indexed constituents appear, and (2) the etree templates that connect e_1 and e_2 in the derivation trees. Out of 3151 tree sets, 999 have more than three templates (i.e., the templates for the gap and the filler do not adjoin to the same template), and they account for 8.7% of all the occurrences of tree sets.

<table>
<thead>
<tr>
<th>size of tree sets</th>
<th>≤ 3 (tree-local sets)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>subtotal</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>types</td>
<td>2152(68.3%)</td>
<td>874</td>
<td>94</td>
<td>26</td>
<td>4</td>
<td>1</td>
<td>999(31.7%)</td>
<td>3151</td>
</tr>
<tr>
<td>tokens</td>
<td>19994(91.3%)</td>
<td>1772</td>
<td>102</td>
<td>26</td>
<td>4</td>
<td>1</td>
<td>1905(8.7%)</td>
<td>21899</td>
</tr>
</tbody>
</table>

Table 6.18: Numbers of tree sets and their frequencies in the PTB

6.7.2 Stage 2: Classifying “non-local” examples

We have manually classified the “non-local” examples found in Stage 1. The results are given in Table 6.19. Among the 999 sets, 71 are caused by obvious annotation errors, 65 are
tree-local but our extraction algorithm does not recognize that. For the remaining ones, we divide them into seven classes according to the underlying syntactic constructions.

PTB errors	LexTract errors	NP-EXP extraction from coord.	it-EXP comparative construction of PP parenthetical so ... others				
71	65	337	209	176	30	30	11 19

Table 6.19: Classification of 999 MC sets that look non-tree-local

An example for each construction is given in (1) — (7). According to the Treebank annotation, every sentence except (2) has an empty category εi, which modifies a constituent YP (in boldface) and is co-indexed with another constituent XP. Figures 6.20 to 6.26 show the simplified Treebank annotation for these sentences and the corresponding etree sets which include the etree for εi, etree for XP, and other etrees that connect them in the derivation tree. The arrows in the figures mark the positions of the empty categories and the XPs that co-indexed with the empty categories.

(1) **NP-extraposition:**
Supply troubles were on the minds of **Treasury investors** εi yesterday, [who worried about the flood]i.

(2) **Extraction from coordinated phrases:**
His departure was nothing [that]i we desired εi or worked for εi.

(3) **It-extraposition:**
It εi is too early [to say whether that will happen]i.

25 The reason for the LexTract errors is that LexTract does not factor out predicative auxiliary trees (such as the one for “think”) in a relative clause, as discussed in Section 5.8.4.

26 We also use an additional class for 19 examples that belong to a number of uncommon constructions. All the examples come from the PTB. The treebank has 10 tags for empty categories. For example, it uses *EXP* for the empty categories in the it-extraposition, *T* in the NP-extraposition, of-PP, and parenthetical, and *ICH* in extraction from coordinated phrases, comparative construction, and so ... that construction. For the sake of uniformity, in (1) — (7) and Figures 6.20 to 6.26, we use εi for all empty categories.
(4) **Comparative construction:**
Federal Express goes further εi in this respect [than any company that I know of]i.

(5) **Of-PP:**
[Of all the ethnic tensions in America]i, which εi is the most troublesome right now?

(6) **Parenthetical:**
[He spends most weekends flying his helicopter to one of his nine courses, he said]i, two of which were designed by Jack Nicklaus,εi.

(7) **So ... that construction:**
The opposition parties are so often εi opposed to whatever LDP does [that it would be a waste of time]i.

6.7.3 Stage 3: Studying “non-local” constructions

In the treebank, in addition to markings syntactic movement, empty categories and reference indexes are also used to indicate where a constituent should be interpreted. If a constituent
that appears in position x should be interpreted as if it were in position y, it is possible but not necessarily true that the constituent is base generated at position y and moved to position x via syntactic movement. Therefore, for a “non-local” construction, we first need to decide whether the relation between co-indexed constituents in the construction is due to syntactic movement. If not, the construction is irrelevant to the Tree-locality Hypothesis. If the relation is due to syntactic movement, the next question is whether the relation could become tree-local if another plausible analysis for the construction is used or the LTAG formalism is extended in some way. In other words, in this stage, we need to
study each “non-local” construction and put it into one of the following four classes:

(E1) The relation between the co-indexed constituents in the construction is not due to syntactic movement; therefore, the construction is irrelevant to the Tree-locality Hypothesis.

(E2) The relation between the co-indexed constituents in the construction is due to syntactic movement, but the construction becomes tree-local if another plausible analysis for the construction is adopted.
(E3) The relation between the co-indexed constituents in the construction is due to syntactic movement, but the construction becomes tree-local if the definitions of substitution and adjoining operations in the LTAG formalism are modified. Some recent work on modifying these definitions to account for certain syntactic movement can be found in (Joshi and Vijay-Shanker, 1999; Kulick, 2000).

(E4) The relation between the co-indexed constituents in the construction is due to syntactic movement, and the construction is truly non-local. Therefore, the construction is a counter-example to the Tree-locality Hypothesis.

For some of the constructions in Section 6.7.2 (such as NP-extraposition), there is no consensus in the linguistics community on their treatments. Providing good analyses for them requires linguistic expertise, and is beyond the scope of this thesis. Nevertheless, we
want to point out that for each construction there is strong evidence to support the view that the relation between the co-indexed constituents is not due to syntactic movement. For instance, in (Xia and Blem, 2000), we argued that one type of extraposed phrase in the NP-extraposition construction is *anaphoric* in the sense that the dependency is not represented in the syntax or in the semantics (such as in the synchronous TAG analysis given in (Abeillé, 1994)). Rather, a process more like pronoun resolution should be applied in a pragmatic component to determine the nature of the dependency.

In summary, the Tree-locality Hypothesis is an important hypothesis in the LTAG formalism and is relevant to linguistic theories in general; therefore, it should be thoroughly tested. The method that we propose to test the hypothesis with naturally-occurring data has three steps: finding non-local examples in the data, classifying non-local examples according to the underlying constructions, and studying the non-local constructions and deciding whether the examples are genuine counter-examples to the hypothesis. LexTract enables us to automate the first step; that is, it can automatically extract all the non-local examples from Treebanks.

6.8 Summary

In this chapter, we have discussed four types of applications for LexTract. First, Treebank grammars produced by LexTract are useful for grammar development and comparison. For example, a Treebank grammar can be used as a stand-alone grammar. We also used a Treebank grammar extracted from the English Penn Treebank to estimate and improve the coverage of the XTAG grammar. In addition, we have compared Treebank grammars for English, Chinese, and Korean, and shown that the majority of the core grammar structures for these three languages are easily inter-mappable. Second, the Treebank grammar and derivation trees produced by LexTract were used to train a Supertagger and a statistical LTAG parser with satisfactory results. Third, we have used LexTract to detect annotation errors in the Chinese Penn Treebank. Last, we have used LexTract to find all the non-local examples from the English Penn Treebank. These examples should be examined to determine whether they are counter-examples to the Tree-locality Hypothesis. All these
applications indicate that LexTract is not only an engineering tool of great value, but it is also very useful for investigating theoretical linguistics.
Chapter 7

Phrase structures and dependency structures

Treebanks are of two types according to their annotation schemata: phrase-structure Treebanks such as the English Penn Treebank (Marcus et al., 1993) and dependency Treebanks such as the Czech dependency Treebank (Hajk, 1998). In Chapters 5 and 6, we have run LexTract on phrase-structure Treebanks. In this chapter, we address the following questions:

- What’s the relationship between phrase structures and dependency structures?
- Can LexTract run on a dependency Treebank?

Long before Treebanks were developed and widely used for natural language processing, there had been much discussion of comparison between dependency grammars and context-free phrase-structure grammars. For instance, Gaifman (1965) shows that dependency grammars and context-free grammars (CFGs) are weakly equivalent, and dependency grammars are strongly equivalent to a subclass of CFGs. In this chapter, we address the relationship between dependency structures and phrase structures from a practical perspective; namely, we want to explore different algorithms that convert between dependency structures and phrase structures, and to determine what information should be present in the structures to facilitate the conversion.
The chapter is organized as follows. In Section 7.1, we discuss a particular representation for dependency structures, which we choose to use in this chapter. In Section 7.2, we give an algorithm that converts phrase structures to dependency structures. In Section 7.3, we propose a new algorithm that converts dependency structures into phrase structures, and compare it with two existing algorithms. In Section 7.4, we evaluate the performance of the three algorithms in Section 7.3 using an existing phrase-structure Treebank. In Section 7.5, we argue that the inclusion of empty categories in dependency structures will simplify the conversion between the two representations. We also give an algorithm that builds grammars and derivation trees from dependency Treebanks directly.

7.1 Dependency structures

There is much variety of the representation of dependency structures. Figures 7.1 and 7.2 show two common representations. In the first representation, heads are connected to their dependents by downward-sloping lines. In the second one (we call it a dependency tree, or d-tree for short), heads are parents of their dependents in a tree. If a d-tree is ordered (that is, the dependents of the same head are ordered according to their positions in the sentence) and the sentence is projective, then traversing a d-tree will yield the correct word order of the sentence and therefore the two representations are equivalent. In this chapter, we use the second representation because of its close resemblance to the derivation trees in the LTAG formalism. We further assume that a d-tree is ordered. In addition to the dependency links, a d-tree may also include other information such as Part-of-Speech Tags for words and the type of dependency links (argument, modifier, and so on).

Another variation in the representation of dependency structures is on the treatment of empty categories. Empty categories (such as traces) are often used in phrase structures for syntactic movement, dropped arguments, and so on. For example, in Figure 7.3, the empty category e is coindexed with the WHNP which to mark the wh-movement. The sentence is not projective because the wh-word who depends on the verb win, but the word believe (which appears between who and win) does not directly or indirectly depend on win. Figure

\footnote{A sentence $w_1w_2\ldots w_n$ is \textit{projective} if the following holds: for any pair of words (w_i,w_j), if w_i depends on w_j, then any word between w_i and w_j in the sentence directly or indirectly depends on w_j.}
Figure 7.1: A dependency analysis. Heads are connected to dependents by downward-sloping lines.

Figure 7.2: A dependency tree. Heads are parents of their dependents in an ordered tree.

7.4 shows two alternative d-trees for the sentence. In (a), the empty category ϵ depends on win and the wh-word who appears higher in the d-tree. In (b), no empty category is used and who depends on win. Neither alternative is totally satisfactory. For (a), we need a new dependency type to indicate that who is different from other dependents of believe; For (b), traversing the d-tree would yield the wrong word order. In Section 7.5, we shall talk more about empty categories and argue that it is better to include them in a d-tree. From now on, we use the d-tree in Figure 7.4(a), rather than the one in 7.4(b).

Figure 7.3: A phrase structure with a non-projective construction
7.2 Converting phrase structures to dependency structures

The notion of *head* is important in both phrase structures and dependency structures. In many linguistic theories such as X-bar theory and GB theory, each phrase structure has a head that determines the main properties of the phrase and a head has several levels of projections; whereas in a dependency structure the head is linked to its dependents. In practice, the head information is explicitly marked in a dependency Treebank, but not always so in a phrase-structure Treebank. A common way to find the head in a phrase structure is to use a head percolation table (Magerman, 1995; Collins, 1997), as discussed in Sections 5.3.1 and 5.4.1. For example, the entry *(S right S/VP)* in the head percolation table says that the head-child\(^2\) of an *S* node is the first child of the node from the right with the label *S* or *VP*.

Once the heads in phrase structures are found, the conversion from phrase structures to dependency structures is straightforward, as shown below:

(a) Mark the head-child of each node in a phrase structure, using the head percolation table (see Section 5.4.1).

(b) In the dependency structure, make the head of each non-head-child depend on the head of the head-child.

Figure 7.5 shows a phrase structure in the English Penn Treebank (Marcus et al., 1993). In addition to the syntactic labels (such as *NP* for a noun phrase), the Treebank also uses function tags (such as *SBJ* for the subject) for grammatical functions. In this phrase

\(^2\)The *head-child* of a node *XP* is the child of the node *XP* that is the ancestor of the head of the *XP* in the phrase structure.
structure, the root node has two children: the *NP* and the *VP*. The algorithm will choose the *VP* as the head-child and the *NP* as a non-head-child, and make the head Vinken of the *NP* depend on the head *join* of the *VP* in the dependency structure. The dependency structure of the sentence is shown in Figure 7.2 (repeated as Figure 7.6). As discussed in Section 5.4.1, we can use two additional tables (namely, the argument table and the tagset table) to mark each sibling of a head in a phrase structure as either an argument or an adjunct of the head, and use it to label the corresponding dependency link in the *d-tree*.

![Figure 7.5: A phrase structure](image)

![Figure 7.6: The dependency tree produced by the conversion algorithm](image)

The feasibility of using a head percolation table to identify the heads in phrase structures depends on the characteristics of the language, the Treebank schema, and the definition of the correct dependency structure. For instance, the head percolation table for a strictly head-final (or head-initial) language is very easy to build, and the conversion algorithm works very well. For the English Penn Treebank, which we used in this chapter, the conversion algorithm works very well except for the noun phrases with the appositive
construction. For example, the conversion algorithm would choose the appositive “the CEO of FNX” as the head child of the phrase “John Smith, the CEO of FNX”, whereas the correct head child should be “John Smith”.

7.3 Converting dependency structures to phrase structures

The main information that is present in phrase structures but not in dependency structures is the type of syntactic category (e.g., NP, VP, and S); therefore, to recover syntactic categories, any algorithm that converts dependency structures to phrase structures needs to address the following questions:

Projections for each category: for a category X, what kind of projections can X have?

Projection levels for dependents: Given a category Y depends on a category X in a dependency structure, how far should Y project before it attaches to X’s projection?

Attachment positions: Given a category Y depends on a category X in a dependency structure, to what position on X’s projection chain should Y’s projection attach?

In this section, we discuss three conversion algorithms, each of which gives different answers to these three questions. To make the comparison easy, we shall apply each algorithm to the *d-tree* in Figure 7.6 and compare the output of the algorithm with the phrase structure for that sentence in the English Penn Treebank, as in Figure 7.5.

Evaluating these algorithms is tricky because just like dependency structures there is often no consensus on what the correct phrase structure for a sentence should be. In this chapter, we measure the performance of the algorithms by comparing their output with an existing phrase-structure Treebank (namely, the English Penn Treebank) because of the following reasons. First, the Treebank is available to the public, and provides an objective although imperfect standard. Second, one goal of the conversion algorithms is to make it possible to compare the performance of parsers that produce dependency structures with the ones that produce phrase structures. Because most state-of-the-art phrase-structure parsers are evaluated against an existing Treebank, we want to evaluate the conversion algorithms in the same way. Third, a potential application of the conversion algorithms
is to help construct a phrase-structure Treebank for one language, given parallel corpora and the phrase structures in the other language. One way to evaluate the quality of the resulting Treebank is to compare it with an existing Treebank.

7.3.1 Algorithm 1

According to X-bar theory, a category X projects to X'; which further projects to XP. There are three types of rules, as shown in Figure 7.7(a).

![Diagram of rules in X-bar theory and d-tree](image)

Figure 7.7: Rules in X-bar theory and the algorithm that is based on it

Algorithm 1, as adopted in (Covington, 1994b; Covington, 1994a), strictly follows X-bar theory and uses the following heuristic rules to build phrase structures.

Two levels of projections for any head: X has two levels of projection: X' and XP

Maximal projections for dependents: If Y depends on X, it is always Y's maximal projection YP that attaches to X’s projection.

Fixed positions of attachment according to dependency types: If Y depends on X, YP attaches to the head X’s projection according to the dependency type:

- If Y is an argument of X, YP is a sister of X;
- If Y is a modifier of X, YP adjoins to X';
- If Y is a specifier of X, YP is a sister of X' and a child of XP.

The algorithm requires a *d-tree* to distinguish three types of dependents. If a head has multiple modifiers, the algorithm can assume that either a single X' or stacked X' is used. The algorithm converts the *d-tree* in Figure 7.7(b) to the phrase structure in Figure 7.7(c).
Figure 7.8 shows the phrase structure for the \textit{d-tree} in Figure 7.6, where the algorithm uses single \textit{X'} for multiple modifiers of the same head.3

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7_8.png}
\caption{The phrase structure built by algorithm 1 for the \textit{d-tree} in Figure 7.6}
\end{figure}

\textbf{7.3.2 Algorithm 2}

Algorithm 2, as adopted by Collins and his colleagues (1999) when they converted the Czech dependency Treebank (Hajič, 1998) into a phrase-structure Treebank, produces a phrase structure that is as flat as possible. It uses the following heuristic rules to build phrase structures:

\textbf{One level of projection for any head:} \textit{X} has only one level of projection: \textit{XP}.

\textbf{Minimal projection for dependents:} A dependent \textit{Y} does not project to \textit{YP} unless it has its own dependents.

\textbf{Fixed position of attachment:} A dependent is a sister of its head in the phrase structure.4

The algorithm treats all kinds of dependents equally. It converts the pattern in Figure 7.9(a) to the phrase structure in Figure 7.9(b). Notice that in Figure 7.9(b), \textit{Y} does not

3To make the phrase structure more readable, we use \textit{N'} and \textit{NP} as the \textit{X'} and \textit{XP} for all kinds of POS tags for nouns (e.g., NNP, NN, and CD). Verbs and adjectives are treated similarly.

4If a dependent \textit{Y} has its own dependents, it projects to \textit{YP} and \textit{YP} is a sister of the head \textit{X}; otherwise, \textit{Y} is a sister of the head \textit{X}.

198
project to YP because it does not have its own dependents. The resulting phrase structure for the \textit{d-tree} in Figure 7.6 is in Figure 7.10, which is much flatter than the one produced by Algorithm 1.

(a) d-tree

(b) phrase structure

Figure 7.9: The scheme for Algorithm 2

Figure 7.10: The phrase structure built by Algorithm 2 for the \textit{d-tree} in Figure 7.6

7.3.3 Algorithm 3

The previous two algorithms are linguistically sound. They do not use any language-specific information, and as a result there are several major differences between the output of the algorithms and the phrase structures in an existing Treebank, such as the Penn English Treebank (PTB).

Projections for each category: Both algorithms assume that the numbers of projections for all the categories are the same, whereas in the PTB the number of projections varies from head to head. For example, in the PTB, determiners do not project, adverbs project only one level to adverbial phrases, whereas verbs project to VP, then to S, then to \textit{SBAR}.\footnote{\textit{S} is similar to \textit{IP} (IP is the maximal projection of INFL) in GB theory, so is \textit{SBAR} to \textit{CP} (\textit{CP} is the}
Projection levels for dependents: Algorithm 1 assumes the maximal projections for all the dependents, whereas Algorithm 2 assumes minimal projections; but in the PTB, the level of projection of a dependent may depend on several factors such as the categories of the dependent and the head, the position of the dependent with respect to the head, and the dependency type. For example, when a noun modifies a verb (or VP) such as *yesterday* in *he came yesterday*, the noun always projects to NP, but when a noun N_1 modifies another noun N_2, N_1 projects to NP if N_1 is to the right of N_2 (e.g., in an appositive construction) and it does not project to NP if N_1 is to the left of N_2.

Attachment positions: Both algorithms assume that all the dependents of the same dependency type attach at the same level (e.g., in Algorithm 1, modifiers are sisters of X', whereas in Algorithm 2, modifiers are sisters of X); but in the PTB, that is not always true. For example, an ADVP, which depends on a verb, may attach to either an S or a VP in the phrase structure according to the position of the ADVP with respect to the verb and the subject of the verb. Also, in noun phrases, left modifiers (e.g., *JJ*) are sisters of the head noun, but the right modifiers (e.g., *PP*) are sisters of the NP.

For some applications, these differences between the Treebank and the output of the conversion algorithms may not matter much, and by no means are we implying that an existing Treebank provides the gold standard for what the phrase structures should be. Nevertheless, because the goal of this section is to provide an algorithm that has the flexibility to produce phrase structures that are as close to the ones in an existing Treebank as possible, we propose a new algorithm with such flexibility. The algorithm distinguishes two types of dependents: arguments and modifiers. The algorithm also makes use of language-specific information in the form of three tables: the head projection table, the argument table, and the modification table. As defined in Section 3.3, the projection table specifies the projections for each category, and the argument table (the modification table, maximal projection of *Comp*); therefore, it could be argued that only VP is a projection of verbs in the PTB. Nevertheless, because PTB does not mark *INFL* and *Comp*, we treat S and *SBAR* as projections of verbs.
respectively.) lists the types of arguments (modifiers, respectively) that a head can take and their positions with respect to the head. For example, the entry \(V \rightarrow VP \rightarrow S \) in the projection table says that a verb can project to a verb phrase, which in turn projects to a sentence; the entry \((P, 0, 1, NP/S) \) in the argument table indicates that a preposition can take an argument that is either an \(NP \) or an \(S \), and the argument is to the right of the preposition; the entry \((NP \ DT/JJ \ PP/S) \) in the modification table says that an \(NP \) can be modified by a determiner and/or an adjective from the left, and by a preposition phrase or a sentence from the right.

Given these tables, we use the following heuristic rules to build phrase structures:

One projection chain per category: Each category has a unique projection chain, as specified in the projection table.

Minimal projection for dependents: A category projects to a higher level only when necessary.

Lowest attachment position: The projection of a dependent attaches to a projection of its head as lowly as possible.

The last two rules require further explanation, as illustrated in Figure 7.11. In the figure, the node \(X \) has three dependents: \(Y \) and \(Z \) are arguments, and \(W \) is a modifier of \(X \). Let’s assume that the algorithm has built the phrase structure for each dependent. To form the phrase structure for the whole \(d\text{-}tree \), the algorithm needs to attach the phrase structures for dependents to the projection chain \(X^0, X^1, ..., X^k \) of the head \(X \). For an argument such as \(Z \), suppose its projection chain is \(Z^0, Z^1, ..., Z^u \) and the root of the phrase structure headed by \(Z \) is \(Z' \). The algorithm will find the lowest position \(X^h \) on the head projection chain, such that \(Z \) has a projection \(Z^i \) that can be an argument of \(X^{h-1} \) according to the argument table and \(Z^i \) is no lower than \(Z^s \) on the projection chain for \(Z \). The algorithm then makes \(Z^i \) a child of \(X^h \) in the phrase structure. Notice that based on the second heuristic rule (i.e., minimal projection for dependents), \(Z^i \) does not further project to \(Z^u \) in this case although \(Z^u \) is a valid projection of \(Z \). The attachment

\(^6\)In theory, the last two heuristic rules may conflict each other in some cases. In those cases, we prefer the third rule over the second. In practice, such conflicting cases are very rare, if exist.
for modifiers is similar except that the algorithm uses the modification table instead of the argument table.7

![Diagram](image)

Figure 7.11: The scheme for Algorithm 3

The algorithm is in Table 7.1 and 7.2. We use a variable \texttt{low_visib_index} to store the position of the lowest visible node on the chain; that is, the lowest node on the head chain that the following dependents can attach to. The value of the variable is updated every time a new dependent is attached to the head (see steps (E) and (G) in Table 7.1 and step (F) in Table 7.2). We use another variable \texttt{root_index} to store the position of the current root of the phrase structure. Both variables start from 0 (i.e., the index of the head word is 0).

The phrase structure produced by Algorithm 3 for the \textit{d-tree} in Figure 7.6 is in Figure 7.12. In Figure 7.12, (a)-(e) are the phrase structures for five dependents of the head \textit{join}; (f) is the projection chain for the head. The arrows indicate the positions of the attachment. Notice that to attach (a) to (f), the NNP \textit{Vinken} needs to further project to \textit{NP} because according to the argument table, \textit{VP} can take an NP, but not an NNP, as its argument.

Algorithm 3 has been extended to handle two types of modifiers, punctuation marks and conjunctions. The extended algorithm is shown in Table 7.6:

7Note that once \(Z^k\) becomes a child of \(X^h\), other dependents of \(X\) (such as \(W\)) that are on the same side as \(Z\) but are further away from \(X\) can attach only to \(X^h\) or higher on the projection chain of \(X\).
Input: a d-tree D, the projection table $ProjTb$, the argument table $ArgTb$, the modification table $ModTb$

Output: a phrase structure T

Algorithm: ttree BuildTttee(D, $ProjTb$, $ArgTb$, $ModTb$)

Starting from the root R_D of D, let the node be w/X and it has k dependents w_i/Y_i ($1 \leq i \leq k$).

(A) build a node w/X, let it be the root of T;

(B) if (R_D is a leaf node)

return T;

(C) Let $X_{\text{chain}} (X^0, X^1, ... X^k)$ be the projection chain for head X

according to $ProjTb$;

(D) Let $X_{\text{chain}}.\text{root_index}$ be 1;

Project X to X^1 and let X^1 be the root of T;

/* (E) – (F) attach left dependents */

(E) Let $X_{\text{chain}}.\text{low_visib_index}$ be 1;

(F) for ($i = k; i >= 1; i --$) /* k_l is the number of X’s left dependents */

Let the current left dependent be w_i/Y_i; dep_{type} is its dependency type

Let Y_{chain} be the projection chain for Y_i according to $ProjTb$;

build a phrase structure T_i for the sub-dtree D_i rooted at w_i/Y_i;

AttachDepToHead(T, T_i, X_{chain}, Y_{chain}, dep_{type}, LEFT, $ArgTb$, $ModTb$);

/* (G) – (H) attach right dependents */

(G) Let $X_{\text{chain}}.\text{low_visib_index}$ be 1;

(H) for ($i = k_l + 1; i <= k; i ++$)

Let the current right dependent be w_i/Y_i; dep_{type} is its dependency type;

Let Y_{chain} be the projection chain for Y_i according to $ProjTb$;

build a phrase structure T_i for the sub-dtree D_i rooted at w_i/Y_i;

AttachDepToHead(T, T_i, X_{chain}, Y_{chain}, dep_{type}, RIGHT, $ArgTb$, $ModTb$);

Table 7.1: Algorithm 3 for converting d-trees to phrase structures
Input: a phrase structure T whose head is w/X, a phrase structure T'
whose head is w'/Y, (u' depends on w in a d-tree),
X_{chain} is the projection chain for X, Y_{chain} is the projection chain for Y,
dep_type is the dependency type of w'/Y (i.e., ARGUMENT or MODIFIER),
dep_pos is the position of w' with respect to w,
the argument table $ArgTb$, the modification table $ModTb$.

Output: a new phrase structure T with T' attached to some node in T

Notation:
- $\text{ArgList}(X, ArgTb, \text{dep}_\text{pos})$ returns the list of arguments of X from $ArgTb$.
- $\text{ModList}(X, ModTb, \text{dep}_\text{pos})$ returns the list of modifiers of X from $ModTb$.

Algorithm: void AttachDepToHead(T, T', X_{chain}, Y_{chain}, dep_type, dep_pos, $ArgTb$, $ModTb$)

(A) Let X_{chain} (the projection chain for x) be $X^0, X^1, ... X^k$,
 the root of T be X^a, and X^b be the lowest visible position on X_{chain};
(B) Let Y_{chain} be $Y^0, Y^1, ... Y^r$, the label of the root of T' be Y^p, and
 list1 be \{ Y^p, ... Y^r \};
(C) /* find the lowest attachment position on X_{chain} */
 \(x_{\text{proj}}_\text{cat} = X^b; \) /* default attaching position */
 \(y_{\text{proj}}_\text{cat} = Y^p; \) /* default projection for Y^* */
 for (j=b; j≤k; j++)
 if (\(\text{dep}_\text{type} == \text{ARGUMENT} \))
 then list2 = $\text{ArgList}(X^{j-1}, ArgTb, \text{dep}_\text{pos})$;
 else list2 = $\text{ModList}(X^j, ModTb, \text{dep}_\text{pos})$;
 if (\(Y^q \) is the first common tag in both list1 and list2)
 then \(x_{\text{proj}}_\text{cat} = X^j; \) \(y_{\text{proj}}_\text{cat} = Y^q; \) break;
(D) /* further project the dependent chain if needed */
 if (Y^P is lower than $y_{\text{proj}}_\text{cat}$)
 then project Y^P further until the new projection is $y_{\text{proj}}_\text{cat}$;
 the new projection becomes the new root of T';
(E) /* further project the head chain if needed */
 if (X^a is lower than $x_{\text{proj}}_\text{cat}$)
 then project X^a further until the new projection is $x_{\text{proj}}_\text{cat}$;
 the new projection is the new root of T;
 new parent of dep = the new root of T;
 else new parent of dep = the node on X_{chain} whose label is $x_{\text{proj}}_\text{cat}$;
(F) $X_{\text{chain}}.\text{low visib index} = \text{the position of } x_{\text{proj}}_\text{cat} \text{ on } X_{\text{chain}}$;
 $X_{\text{chain}}.\text{root index} = \text{the position of the new root of } T \text{ on } X_{\text{chain}}$;
(G) /* attach the dependent sub-tree to the main tree */
 make the root of T' the leftmost or rightmost child of new parent of dep in T
 according to dep_pos;

Table 7.2: Algorithm for attaching the phrase structure for the dependent to that for the head

204
Two types of modifiers: In an existing Treebank such as the PTB, a modifier either sister-adoins or Chomsky-adoins to the modificer. For example, in Figure 7.5, MD Chomsky-adoins while the NP Nov. 29 sister-adoins to the VP node. To account for that, we distinguish these two types of modifiers in the modification table and apply the algorithm in Table 7.3 to insert extra nodes so that Chomsky-adoins modifers can be attached higher than sister-adoins modifiers. This step will insert an extra VP node between the S node and the old VP node in the phrase structure in Figure 7.12 and attach the MD will to the new VP node; the resulting phrase structure would be identical to the original structure in the PTB (i.e., the one in Figure 7.5).

Attachment of conjunctions: A coordinated phrase has three or four components: two conjuncts and one or two conjunctions. For a coordinated phrase such as the one in Figure 7.13(a), there are alternative representations for it in a d-tree, as shown in Figure 7.13(b)-(d). We assume that the input d-tree is in the form of 7.13(b). The algorithm in Table 7.1 produces phrase structures in the form of Figure 7.14(b). The algorithm in Table 7.4 would push the conjunction higher in the phrase structure.

We prefer (b) over (c) and (d) because of two reasons: first, only in (b) there is a direct dependency link between two conjuncts so that the constraint that two conjuncts should be of the similar types can be expressed; second, (b) satisfies the assumption that the head of a phrase XP should be of the category X.
and result in the structure in Figure 7.14(c).

![Diagram](https://example.com/diagram.png)

Figure 7.13: Three alternative representations for a coordinated phrase in a \textit{d-tree}

![Diagram](https://example.com/diagram.png)

Figure 7.14: Coordinated phrases before and after applying the algorithm in Table 7.4

Attachment of punctuation marks: Punctuation marks are often missing from a \textit{d-tree}, but they are part of input sentences and Treebank phrase structures. We use the algorithm in Table 7.5 to put them back into the phrase structures by attaching them as high as possible.

7.3.4 Algorithm 1 and 2 as special cases of Algorithm 3

Although the three algorithms adopt different heuristic rules to build phrase structures, the first two algorithms are special cases of the last algorithm; that is, we can design a distinct set of projection/argument/modification tables for each of the first two algorithms so that running Algorithm 3 with the associated set of tables for Algorithm 1 (Algorithm 2, respectively) would produce the same results as running Algorithm 1 (Algorithm 2, respectively).

For example, to produce the results of Algorithm 2 with the code for Algorithm 3, the three tables should be created as follows:
Input: a phrase structure T, the modification table M^aTb
Output: a new T
Algorithm: void HandleChomAdjNodes(T, M^aTb)

Starting from the root R of T:
(A) if (R is a leaf node)
 return;
(B) for (each child N_i of R)
 HandleChomAdjNodes(T_i, $ModTb$), where T_i is the subtree of T rooted at N_i
(C) find the leftmost child N_i and rightmost child N_j that are not
 chomsky-modifiers according to M^aTb;
(D) if ((N_i is not the leftmost child of N) or
 (N_j is not the rightmost child of N))
 then add a new node N^* as the new parent of the children
 between N_i and N_j (inclusive);
 let N^* have the same syntactic label as N;
 let N be the parent of the remaining children and N^*;

Table 7.3: Algorithm for handling Chomsky modifiers

Input: a d-tree D, a phrase structure T for D
Output: a new phrase structure T
Algorithm: void MoveUp ConjNode(T, D)
(A) for (each conjunction node CC in T)
 Let X_1 and X_2 in T be the heads of the two conjuncts connected by CC;
 find the lowest common ancestor X_a of X_1 and X_2 in T;
 move up CC so that it becomes a child of X_a;

Table 7.4: Algorithm for moving up conjunctions
Input: a phrase structure T, the input sentence $W (w_1w_2\ldots w_n)$
Output: a new phrase structure T
Algorithm: void AttachPuncMarkToTtree(T, W)
(A) for (each punctuation mark w)
create a leaf node N_i for w;
find the word w_i (w_j, resp.) such that w_i (w_j, resp.) is the closest word to w
that is to the left (right, resp.) of w and is not a punctuation mark;
if (both w_i and w_j exist)
then find the leaf nodes N_i and N_j in T for the two words;
find the lowest common ancestor N_r of N_i and N_j in T;
make N_i a child of N_r;
else make N_i a child of the root of T;

Table 7.5: Algorithm for attaching punctuation marks to phrase structures

Input: a sentence W, the d-tree D for W,
the projection table $ProjTb$, the argument table $ArgTb$,
modification table $ModTb$
Output: a phrase structure T
Algorithm: ttree ConvDtreeToTtree(W, D, $ProjTb$, $ArgTb$, $ModTb$)
(A) $T = \text{BuildTtree}(D, ProjTb, ArgTb, ModTb)$;
(B) HandleChomAdjNodes(T, $ModTb$);
(C) MoveUpConjNode(T, D);
(D) AttachPuncMarkToTtree(T, W);
(E) return T;

Table 7.6: The complete Algorithm 3 for converting d-tree to phrase structure
• In the projection table, each head X has only one projection XP;

• In the argument table, if a category Y can be an argument of a category X in a d-tree, then include both Y and YP as arguments of X;

• In the modification table, if a category Y can be a modifier of a category X in a d-tree, then include both Y and YP as sister-modifiers of XP.

Algorithm 1 assumes that the input d-tree distinguishes three types of dependents: argument, modifiers and specifiers. To use the code of Algorithm 3 with such a d-tree input, we first need to map a specifier to either an argument or a modifier according to some linguistic convention. For example, the subject of a sentence, which is in $[\text{Spec, VP}]$ or $[\text{Spec, IP}]$ position in the GB-theory, can be treated as an argument of V' or INFL'; whereas the determiner, which is in $[\text{Spec, NP}]$ position, can be treated as a modifier of N'. Once we have created such a mapping, we can use the code for Algorithm 3 to produce results for Algorithm 1, when the three tables are built as follows:

• In the projection table, each head X has two projections: X' and XP;

• In the modification table,

 – if a category Y can be a modifier of a category X in a d-tree, then include YP as a Chomsky-modifier of X';

 – if the specifier Y of XP is mapped to a modifier, then include YP as a sister-modifier of XP.

• In the argument table,

 – if a category Y can be an argument of a category X in a d-tree, include YP as arguments of X;

 – if the specifier Y of XP is mapped to an argument, then include YP as an argument of X'.
7.4 Experiments

So far, we have described two existing algorithms and proposed a new algorithm for converting \(d\text{-}trees \) into phrase structures. As explained at the beginning of Section 7.3, we evaluated the performance of the algorithms by comparing their output with an existing Treebank. Because there are no English dependency Treebanks available, we first ran the algorithm in Section 7.2 to produce \(d\text{-}trees \) from the PTB, then applied these three algorithms to the \(d\text{-}trees \) and compared the output with the original phrase structures in the PTB.\(^9\) The process is shown in Figure 7.15.

![Diagram](image)

Figure 7.15: The flow chart of the experiment

The results on Section 0 of the PTB are shown in Table 7.7. The precision and recall rates are for unlabeled brackets. \textit{No crossing} is the percentage of sentences that has zero crossing brackets. \textit{Average crossing} is the average number of crossing brackets per sentence. The last column shows the ratio of the number of brackets produced by the algorithms and the number of brackets in the original Treebank. From the table (especially the last column), it is clear that Algorithm 1 produces many more brackets than the original Treebank, resulting in a high recall rate but low precision rate. Algorithm 2 produces very flat structures, resulting in a low recall rate and high precision rate. Algorithm 3 produces roughly the same number of brackets as the Treebank and has the best recall rate, and its precision rate is almost as good as that of Algorithm 2.

The differences between the output of the algorithms and the phrase structures in the PTB come from four sources:

\(^9\)Punctuation marks are not part of the \(d\text{-}trees \) produced by LexTract. We use the algorithm in Table 7.5 to attach them as high as possible to the phrase structures produced by the conversion algorithms.
<table>
<thead>
<tr>
<th></th>
<th>recall (%)</th>
<th>precision (%)</th>
<th>no crossing (%)</th>
<th>average crossing (%)</th>
<th>test/gold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alg1</td>
<td>81.34</td>
<td>32.81</td>
<td>50.81</td>
<td>0.90</td>
<td>2.48</td>
</tr>
<tr>
<td>Alg2</td>
<td>54.24</td>
<td>91.50</td>
<td>94.90</td>
<td>0.10</td>
<td>0.59</td>
</tr>
<tr>
<td>Alg3</td>
<td>86.24</td>
<td>88.72</td>
<td>84.33</td>
<td>0.27</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Table 7.7: Performance of three conversion algorithms on Section 0 of the PTB

(S1) Annotation errors in the PTB

(S2) Errors in the language-specific tables used by the algorithms in Sections 7.2 and 7.3 (e.g., the head percolation table, the projection table, the argument table, and the modification table)

(S3) The imperfection of the conversion algorithm in Section 7.2 (which converts phrase structures to d-trees)

(S4) Mismatches between the heuristic rules used by the algorithms in Section 7.3 and the annotation schemata adopted by the PTB

To estimate the contribution of (S1)–(S4) to the differences between the output of Algorithm 3 and the phrase structures in the PTB, we manually examined the first twenty sentences in Section 0. Out of thirty-one differences in bracketing, seven are due to (S1), three are due to (S2), seven are due to (S3), and the remaining fourteen mismatches are due to (S4).

While correcting annotation errors to eliminate (S1) requires much human effort, it is quite straightforward to correct the errors in the language-specific tables and therefore eliminate the mismatches caused by (S2). For (S3), we mentioned in Section 7.2 that the algorithm chose the wrong heads for the noun phrases with the appositive construction. As for (S4), we found several exceptions (as shown in Table 7.8) to the one-projection-chain-per-category assumption (i.e., the assumption that there is a unique projection chain for each POS tag), an assumption which was used by all three algorithms in Section 7.3. The performance of the conversion algorithms in Section 7.2 and 7.3 could be improved by using additional heuristic rules or statistical information. For instance, Algorithm 3 in Section 7.3 could use a heuristic rule that says that an adjective (JJ) projects to an NP if
the JJ follows the determiner *the* and the JJ is not followed by a noun as in *the rich are getting richer*, and it projects to an ADJP in other cases. Notice that such heuristic rules are Treebank-dependent.

<table>
<thead>
<tr>
<th>most likely projection</th>
<th>other projection(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JJ → ADJP</td>
<td>JJ → NP</td>
</tr>
<tr>
<td>CD → NP</td>
<td>CD → QP → NP</td>
</tr>
<tr>
<td>VBN → VP → S</td>
<td>VBN → VP → RRC</td>
</tr>
<tr>
<td>NN → NP</td>
<td>NN → NX → NP</td>
</tr>
<tr>
<td>VBG → VP → S</td>
<td>VBG → PP</td>
</tr>
</tbody>
</table>

Table 7.8: Some examples of heads with more than one projection chain

7.5 Discussion

In this section, we argue for including empty categories in dependency structures. We also give an algorithm that builds grammars and derivation trees from dependency structures directly.

7.5.1 Extending Algorithm 3

We can extend Algorithm 3 in two ways. First, in the current algorithm, we assume that the argument/adjunct distinction is marked explicitly in the input dependency structure. We can relax this constraint: instead of requiring the type of a dependency link to be ARGUMENT or ADJUNCT, the dependency type can be things such as agent and theme, or no label at all. We treat these dependency types the same way as we treat the function tags in a phrase-structure. Now to build a phrase structure from a dependency structure, the only thing that we need to change in Algorithm 3 is line (C) in Table 7.2. Another extension to Algorithm 3 is to relax the constraint that each category has only one projection chains for a category. Once the multiple projection chains are we then need to use either heuristic rules or statistical information to
7.5.2 Empty categories in dependency structures

Empty categories are often explicitly marked in phrase-structures, but they are not always included in dependency structures. We believe that including empty categories in dependency structures has many benefits. First, empty categories are useful for NLP applications such as machine translation. To translate a sentence from one language to another, many machine translation systems first create the dependency structure for the sentence in the source language, then produce the dependency structure for the target language, and finally generate a sentence in the target language. If the source language (e.g., Chinese and Korean) allows argument deletion and the target language (e.g., English) does not, it is crucial that the dropped argument (which is a type of empty category) is explicitly marked in the source dependency structure, so that the machine translation systems are aware of the existence of the dropped argument and can handle the situation accordingly. The second benefit of including empty categories in dependency structures is that it can improve the performance of the conversion algorithms in Section 7.3, because the phrase structures produced by the algorithms would then have empty categories as well, just like the phrase structures in the PTB. Third, if a sentence includes a non-projective construction such as wh-movement in English, and if the dependency tree did not include an empty category to show the movement, traversing the dependency tree would yield the wrong word order.10

7.5.3 Running LexTract on a dependency Treebank

In Chapter 5, we give algorithms that takes phrase-structure Treebanks as input, and produce grammars (LTAGs and CFGs) and derivation trees as output. In Section 7.3, we have proposed an algorithm for converting dependency structures to phrase structures. Therefore, given a dependency Treebank, we can simply convert the dependency Treebank to a phrase-structure Treebank using that conversion algorithm, then run algorithms in Chapter 5 to produce Treebank grammars and derivation trees.

We can also produce grammars and derivation trees from the dependency structures directly without first creating the corresponding phrase structures. The algorithm (shown

10For more discussion of non-projective constructions, see (Rambow and Joshi, 1997).
in Table 7.9 and 7.10) is very similar to the Algorithm 3 in Section 7.3 (see Table 7.1 and 7.2). The main difference is that the algorithm in Table 7.9 and 7.10 produces an elementary tree for each word in the d-tree, whereas the algorithm in Section 7.3 produces one phrase structure for the whole d-tree.

Figure 7.16 shows a d-tree, which is the same as the one in Figure 7.6 except that it includes the POS tags for the words and marks dependents as either arguments (with solid lines) or adjuncts (with dashed lines). Similar notation is used in Figures 7.18 and 7.19 later on. Given this d-tree, the algorithm will produce the elementary trees in Figure 7.17. Another way to understand the algorithm is: the algorithm decomposes the d-tree in Figure 7.16 into a list of dependent units as in Figure 7.18, and each unit corresponds to an elementary tree in Figure 7.17. By decompose, we mean that we can define two operations as shown in Figure 7.19. The first operation is similar to the substitution operation in the LTAG formalism, where the lexical head w_i of an argument is added to the dependency tree. The second one is similar to the adjoining operation, where the lexical head w_j of an adjunct is added to the dependency tree.\(^\text{11}\) Combining the units in Figure 7.18 via these two operations will produce the d-tree in Figure 7.16.

\[
\text{join/VB} \\
\text{Viken/NNP} \\
\text{will/MD} \\
\text{board/NN} \\
\text{as/IN} \\
\text{29/CD} \\
\text{the/DT} \\
\text{director/NN} \\
\text{Nov/NNP} \\
\text{a/DT} \\
\text{nonexecutive/JJ}
\]

Figure 7.16: A dependency tree that marks the argument/adjunct distinction

Once we have built an elementary tree for each word in the d-tree, adding those elementary trees to the nodes in the d-tree will result in the derivation tree for the sentence.\(^\text{11}\) In the second operation, the position of the adjunct with respect to the arguments of the head is not specified in the resulting d-tree. For example, a right modifier can appear before the first right argument, after the last right argument, or any position in between.

\(^{11}\)In the second operation, the position of the adjunct with respect to the arguments of the head is not specified in the resulting d-tree. For example, a right modifier can appear before the first right argument, after the last right argument, or any position in between.
Input: a *d-tree* D, the projection table $ProjTb$, the argument table $ArgTb$, the modification table $ModTb$
Output: a list of elementary trees $ESet$
Notation: E_i is the current elementary tree for the word w_i;
D_i is the sub-dtree of D whose root is w_i;
$ESet_i$ is the set of elementary trees for the sub-dtree D_i;
Y_i is the POS tag of the word w_i;
Algorithm: etree BuildEtrees(D, $ProjTb$, $ArgTb$, $ModTb$)

Starting from the root R_D of D, let the node be w/X and it has k dependents w_i/Y_i ($1 \leq i \leq k$).

(A) build a node w/X, let E be a singleton elementary tree that includes only the node w/x as its anchor;
(B) if (R_D is a leaf node)
then $ESet = \{E\}$;
return $ESet$;
(C) Let X_{chain} ($X^0, ..., X^k$) be the projection chain for head X according to $ProjTb$;
(D) Let $X_{chain}.root_index$ be 1;
Project X to X^1 and let X^1 be the root of E

/* (E) - (F) handle left dependents */
(E) Let $X_{chain}.low_visib_index$ be 1;
(F) for ($i = k_l; i >= 1; i -= -$) /* k_l is the number of X's left dependents */
Let the current left dependent be w_i/Y_i; dep_type is its dependency type;
Let Y_{chain} be the projection chain for Y_i according to $ProjTb$;
build a set of elementary tree $ESet_i$ for the sub-dtree D_i rooted at w_i/Y_i;
let E_i be the current elementary tree anchored by w_i;
UpdateEtrees(E, E_i, X_{chain}, Y_{chain}, dep_type, LEFT, $ArgTb$, $ModTb$);
$ESet = ESet \cup ESet_i$;

/* (G)-(H) attach right dependents */
(G) Let $X_{chain}.low_visib_index$ be 1;
(H) for ($i = k_r + 1; i <= k; i += +$)
Let the current right dependent be w_i/Y_i; dep_type is its dependency type;
Let Y_{chain} be the projection chain for y_i according to $ProjTb$;
build a set of elementary tree $ESet_i$ for the sub-dtree D_i rooted at w_i/Y_i;
let E_i be the current elementary tree anchored by w_i;
UpdateEtrees(E, E_i, X_{chain}, Y_{chain}, dep_type, LEFT, $ArgTb$, $ModTb$);
$ESet = ESet \cup ESet_i$;
(I) $ESet = ESet \cup \{E\}$; return $ESet$;

Table 7.9: Algorithm for building elementary trees directly from a *d-tree*
Input: an elementary tree E whose head is w/X, an elementary tree E' whose
head is w'/Y, (w' depends on w in a dtree),
X_chain is the projection chain for X, Y_chain is the projection chain for Y,
dep_type is the dependency type of w'/Y (i.e. ARGUMENT or MODIFIER),
dep_pos is the position of w' with respect to w,
the argument table $ArgTb$, the modification table $ModTb$
Output: elementary tree E and E' are updated
Algorithm: void UpdateEtrees($E, E', X_chain, Y_chain, dep_type, dep_pos,$
$ArgTb, ModTb)$
(A) Let X_chain (the projection chain for x) be X^0, X^1, \ldots, X^k,
the root of E be X^0, and X^b be the lowest visible position on X_chain;
(B) Let Y_chain be Y^0, Y^1, \ldots, Y^r, the label of the root of E' be Y^p,
and list1 be $\{Y^p, \ldots, Y^r\}$;
(C) /* find the lowest attachment position on $X_chain */
 $x_proj_cat = X^b$; /* default attaching position */
 $y_proj_cat = Y^p$; /* default projection for Y^p*/
 for (j=b; j<k; j++)
 if (dep_type == ARGUMENT)
 then list2 = ArgList($X^{j-1}, ArgTb, dep_pos$);
 else list2 = ModList($X^j, ModTb, dep_pos$);
 if (Y^q is the first common tag in both list1 and list2)
 then $x_proj_cat = X^j$; $y_proj_cat = Y^q$; break;
(D) /* further project the dependent chain if needed */
 if (Y^p is lower than y_proj_cat)
 then in E' project Y^p further until the new projection is y_proj_cat;
 the new projection becomes the new root of E'.
(E) /* further project the head chain if needed */
 if (X^a is lower than x_proj_cat)
 then in E project X^a further until the new projection is x_proj_cat;
 the new projection is the new root of E;
 new_parent_of_dep = the new root of E;
 else new_parent_of_dep = the node on X_chain whose label is x_proj_cat;
(F) $X_chain_low_visib_index = the$ position of x_proj_cat on x_chain;
 $X_chain_root_index = the$ position of the new root of E on x_chain;
(G) /* modify E or E' according to dep_type */
 if (dep_type == ARGUMENT)
 then create a new substitution node that has the same label as y_proj_cat;
 make the node the leftmost or rightmost child of new_parent_of_dep in E
 according to dep_pos;
 else create two new nodes N_f and N_r, both have the same label as x_proj_cat;
 N_r has two children: N_f and the current root of E';
 make N_r the new root of E' and N_f the foot node of E'.

Table 7.10: Algorithm for updating the elementary trees for the head and the dependent
Figure 7.17: The elementary trees built directly from the dependency tree in Figure 7.16

Figure 7.18: The dependency units that form the dependency tree in Figure 7.16

7.6 Summary

In this chapter, we have proposed a new algorithm that converts dependency structures to phrase structures and compared it with two existing ones. We have shown that our algorithm subsumes the two existing ones. By using simple heuristic rules and taking as input certain kinds of language-specific information such as the types of arguments and modifiers that a head can take, our algorithm produces phrase structures that are very close to the ones in an existing phrase-structure Treebank; moreover, the quality of the phrase structures produced by our algorithm can be further improved when more language-specific information is used. We also give an algorithm that converts phrase structures to dependency structures.

217
Figure 7.19: The operations that combine dependency units to form a dependency tree

In addition, we argue that it is better to include empty categories in the dependency structures. We also show that we can build grammars (LTAGs and CFGs) and derivation trees from a dependency Treebank in two ways: in the first approach, we can simply use the conversion algorithm in Section 7.3 to convert the dependency Treebank to a phrase-structure Treebank first, then run the algorithms in Chapter 5 to produce Treebank grammars and derivation trees. In the second approach, we give a new algorithm that builds grammars and derivation trees directly from dependency structures. Intuitively, the algorithm decomposes a dependency structure into a set of dependency units and then builds an elementary tree from each dependency unit.
Chapter 8

Conclusion

Grammars are valuable resources for natural language processing. In this dissertation, we pointed out the problems with the traditional approach to grammar development and provided two systems that build grammars automatically from either descriptions or Treebanks. In this chapter, we summarize the contributions of this work and point out directions for further study.

8.1 Contributions

Traditionally, grammars are built by hand. In Chapter 1, we listed six problems with this approach. To address these problems, we first defined the prototypes of the target grammars, then built two systems, LexOrg and LexTract, that generate grammars automatically from either descriptions or Treebanks. The differences between the traditional approach, LexOrg, and LexTract are summarized in Table 1.1, repeated as Table 8.1. We use symbols \times, \square, and $\sqrt{}$ to indicate that an approach did not solve the problem, partially solved the problem, and solved the problem, respectively. From the table, it is clear that LexOrg and LexTract have advantages over the traditional approach.

8.1.1 The prototypes of elementary trees

Before building a grammar for a particular language, we identified four types of information that should be included in elementary trees of a grammar. They are the head and its
<table>
<thead>
<tr>
<th>traditional approach</th>
<th>LexOrg</th>
<th>LexTract</th>
</tr>
</thead>
<tbody>
<tr>
<td>human effort</td>
<td>tremendous (×)</td>
<td>some (□)</td>
</tr>
<tr>
<td>flexibility</td>
<td>very little (×)</td>
<td>some (□)</td>
</tr>
<tr>
<td>coverage</td>
<td>hard to evaluate (×)</td>
<td>can be inferred from the input (□)</td>
</tr>
<tr>
<td>statistical info</td>
<td>not available (×)</td>
<td>not available (×)</td>
</tr>
<tr>
<td>consistency</td>
<td>not guaranteed (×)</td>
<td>consistent (✓)</td>
</tr>
<tr>
<td>generalization</td>
<td>hidden in elementary trees (×)</td>
<td>expressed explicitly (✓)</td>
</tr>
</tbody>
</table>

Table 8.1: The comparison between three approaches for grammar development

projections, the arguments of the head, the modifiers of the head, and syntactic variations. Next we defined three prototypes of elementary trees, which are spine-етrees, mod-етrees, and conj-етrees. Every elementary tree in the LTAG grammar produced by LexOrg or LexTract should belong to one of these three types. Then we gave an algorithm that builds a grammar G_{Table} from three tables (i.e., the head projection table, the argument table, and the modification table). We showed that G_{Table} overgenerates because the tables do not provide sufficient information about a language. In order to produce better grammars, we developed two systems: LexOrg and LexTract.

8.1.2 LexOrg: a system that generates grammars from descriptions

LexOrg generates elementary trees by combining descriptions. The main idea is as follows: an elementary tree has one or more of the four types of information. Since the three language-specific tables do not provide sufficient information about a language, LexOrg uses descriptions, which are much more expressive than the tables. LexOrg treats these descriptions as building blocks of elementary trees. Given a subcategorization frame, LexOrg automatically selects subsets of descriptions to build elementary trees for the subcategorization frame. LexOrg also uses lexical rules to produce new subcategorization frames given a subcategorization frame. The output of LexOrg is a grammar in which elementary trees are grouped into tree families. We used the system to develop two LTAG grammars, one for English and the other for Chinese.

Out of the six problems of the traditional approach, LexOrg solves two (i.e., consistency and generalization) and alleviates three (i.e., human effort, flexibility, and coverage).
First, the tree structures that are shared by many templates are represented as descriptions. Users of LexOrg build and maintain descriptions, rather than templates. If they want to change the analysis of a certain phenomenon (e.g., wh-movement), they need to modify only the description that represents the phenomenon. LexOrg will propagate the modification in the description to all the templates that subsume the description. As a result, LexOrg greatly improves the consistency of a grammar, reduces human effort, and makes it easier to modify a grammar. It is also easy to infer from the input of LexOrg (i.e., subcategorization frames, lexical rules, and descriptions) what syntactic phenomena are covered by the resulting grammar. Second, the underlying linguistic information (such as wh-movement) is expressed explicitly as descriptions and so forth, so it is easy to grasp the main characteristics of a language and to compare languages. Compared with three other systems (namely, HyTAG, the DATR system, and Candito’s system), LexOrg is more elegant in that it does not need hand-crafted lexical hierarchies (or inheritance networks), it does not require users to provide constraints on how descriptions should be combined, and it needs only one description to specify the information for a syntactic variation such as wh-movement.

8.1.3 LexTract: a system that extracts grammars from Treebanks

Conceptually, LexTract uses a Treebank as a filter to throw away the elementary trees in G_{table} that are not used to handle the sentences in a Treebank. In practice, it extracts grammars in two steps. In the first step, it determines the types (i.e., head, argument, or adjunct) of each node in a $tree$, and then creates a derived tree in which the three types of nodes are treated differently. In the second step, it decomposes the derived tree into a set of $etrees$.

Out of six problems of the traditional approach, LexOrg solves two (i.e., human effort and statistical information) and alleviates two (i.e., flexibility and coverage). First, given a Treebank, it takes very little human effort to build three language-specific tables. Once the tables are ready, running LexTract on the Treebank will produce a grammar in little time. Second, LexTract produces not only a Treebank grammar, but also the information about how frequently certain elementary structures are combined to form syntactic structures;
to be more specific, the system produces a unique derivation tree for each sentence in the Treebank. This frequency information can be used to train a statistical LTAG parser. Third, LexTract allows its users to have some control over the type of Treebank grammar to be extracted. The users can run LexTract with different settings of the tables and other parameters to get several different Treebank grammars, and then choose the one that best fits their goals. Fourth, the grammar produced by LexTract is guaranteed to cover the source Treebank. If the Treebank is a good representative of the language itself, the Treebank grammar will have very good coverage of the language.

In addition to providing Treebank grammars, LexTract is also used in several tasks:

- A Treebank grammar can be used as a stand-alone grammar. In addition, matching templates in a Treebank grammar with the templates in a hand-crafted grammar allows us to estimate the coverage of the hand-crafted grammar and find the constructions that are not covered by that grammar. Our experiments show that the XTAG grammar covers 97.2% of the template tokens in the English Penn Treebank (Xia and Palmer, 2000).

- We have compared the Treebank grammars for three languages (English, Chinese, and Korean) and shown that the majority of the core grammar structures for these three languages are easily inter-mappable (Xia et al., 2001).

- The Treebank grammar and derivation trees produced by LexTract are used to train a Supertagger (Xia et al., 2000a) and a statistical LTAG parser (Sarkar, 2001) with satisfactory results.

- We have used the Treebank grammar to detect certain types of annotation errors in the Chinese Penn Treebank.

- We have used LexTract to find all the examples in the English Penn Treebank that seem to violate the Tree-locality Hypothesis and classified them according to the underlying constructions (Xia and Bleam, 2000).

All these applications indicate that LexTract is not only an engineering tool of great value, but it is also useful for investigating theoretical linguistics.
For people who want to use LexOrg or LexTract to build a grammar, they should choose one system or the other based on the availability of Treebanks, the applications for which the target grammar is used, and other considerations. If a Treebank is available, LexTract is often more desirable because it requires little human effort, it allows its users to change the language-specific tables or other parameters to get different grammars from the same Treebank, and it provides statistical information that can be used to train statistical parsers or Supertaggers. If a Treebank is not available, there are two options: one is to create descriptions, subcategorization frames, and lexical rules and then use LexOrg to generate a grammar; the other is to create a Treebank and then use LexTract to extract a grammar from it. Creating a Treebank requires more human efforts than creating the input to LexOrg. Nevertheless, once a Treebank is available, all kinds of NLP tools including LexTract can benefit from it.

8.1.4 The role of linguistic experts in grammar development

LexOrg and LexTract greatly reduce human effort in grammar development, but they cannot replace the role of linguistic experts. In LexOrg, the users have to provide LexOrg with descriptions, subcategorization frames, and lexical rules. Creating such input requires linguistic knowledge. Building language-specific tables for LexTract does not require much linguistic expertise but LexTract needs a Treebank which is often designed by scholars with a solid linguistic background. In Appendix B, we discuss in detail the approach that we used for building the Chinese Penn Treebank, including the development of the guidelines for segmentation, POS tagging and syntactic bracketing, our methodology for quality control, and the roles of various NLP tools. From this experience, we conclude that the process of writing annotation guidelines for a Treebank — which is one of the major tasks in Treebank development — is very similar to the process of manually crafting a grammar in that both processes require a thorough study of the linguistics literature, extensive discussion with linguists, and possible revisions to account for new data. Therefore, it is not surprising that a grammar extracted from a high-quality Treebank by LexTract may look very much like a hand-crafted grammar. We believe that the participation of linguistic experts is crucial for the success of any grammar or Treebank development project.
8.1.5 Relationship between two types of syntactic representation

Two of the most commonly used syntactic representations are phrase structures and dependency structures. In Chapter 7, we addressed the relationship between dependency structures and phrase structures from a practical perspective; namely, we explored different algorithms that convert between dependency structures and phrase structures. We proposed an algorithm that converts dependency structures into phrase structures. By using simple heuristic rules and taking three language-specific tables as input, our algorithm produces phrase structures that are very close to the ones in a phrase-structure Treebank; moreover, the quality of the phrase structures produced by our algorithm can be further improved when more language-specific information is used. We also argue that including empty categories in the dependency structures would make the conversion much easier. In addition, we give an algorithm that converts phrase structures to dependency structures. This experiment showed that the conversion between phrase structures and dependency structures is pretty easy as long as sufficient information (such as empty categories) is included in the structures.

Furthermore, we proposed two ways to build grammars (LTAGs and CFGs) and derivation trees from a dependency Treebank: in the first approach, we can simply convert the dependency Treebank to a phrase-structure Treebank using the conversion algorithm in Section 7.3, and then run the algorithms in Section 5.4 to produce Treebank grammars and derivation trees. In the second approach, we gave a new algorithm that builds grammars and derivation trees directly from dependency structures. Intuitively, the algorithm decomposes a dependency structure into a set of dependency units and then builds an elementary tree from each dependency unit.

8.2 Future work

In this section, we point out directions for future work.
8.2.1 Combining the strengths of LexOrg and LexTract

From Table 8.1, it is clear that both LexOrg and LexTract have advantages over the traditional approach. Grammars generated by LexOrg are consistent and linguistic generalizations are expressed explicitly, whereas running LexTract on a Treebank requires little human effort and the resulting grammar has statistical information. A natural question is as follows: how can we combine the strengths of both systems?

![Diagram of the combination process](image)

Figure 8.1: One way to combine LexOrg and LexTract

One possible scenario is shown in Figure 8.1. In this scenario, LexTract extracts from a Treebank T a grammar G_T and other information (such as derivation trees and frequencies of elementary trees in G_T). G_T may include implausible elementary trees that are caused by annotation errors in the Treebank T. It may also exclude plausible trees which do not appear in the Treebank. To get a better grammar, we need a new module that takes the output of LexTract as input and produces subcategorization frames, lexical rules, and descriptions as output. In Sections 4.9.2 and 5.7, we show that it is possible to decompose templates to get descriptions and subcategorization frames, but such decompositions are not always unique. Ideally, the new module should be able to take advantage of frequency information produced by LexTract to choose the most plausible decompositions. The output of the new module is then fed to LexOrg to generate a new grammar G_T^*. If the new module works properly, the new grammar G_T^* should be able to exclude implausible elementary trees in G_T that are caused by random annotation errors in the Treebank T, and to include plausible elementary trees that are missing from G_T as long as other related elementary trees appear in the Treebank.

To see how G_T^* can actually include elementary trees that are not in G_T, let us assume a Treebank T has only two sentences: one is *who bought that car?* the other one is
Mary gave John a book. \(G_T \) built by LexTract has only two elementary trees that are anchored by verbs, as shown in Figure 8.2(a). Decomposing the templates in \(G_T \) would yield the descriptions and subcategorization frames in Figure 8.2(b). When they are fed to LexOrg, LexOrg builds a new grammar \(G_T^* \), which has seven elementary trees for verbs, as shown in Figure 8.2(c). Two of them (i.e., \#2 and \#4) are in \(G_T \), but the other five are new. As a result, \(G_T^* \) can handle not only wh-questions anchored by transitive verbs and declarative sentences anchored by ditransitive verbs, but also declarative sentences anchored by transitive verbs and wh-questions anchored by ditransitive verbs.

In summary, the approach shown in Table 8.1 inherits the strengths of both LexOrg and LexTract: the input to this new system requires little human effort, and the users can change the input tables to get different grammars; the output of the system is a consistent grammar and linguistic generalizations are expressed explicitly; the output grammar \(G_T^* \) also has a better coverage than the Treebank grammar \(G_T \), as illustrated in Figure 8.2. To implement this approach, two details need to be worked out. First, how does the module produce descriptions, subcategorization frames, and lexical rules, given the grammar \(G_T \) and frequency information produced by LexTract? Second, how do we assign probabilities to the elementary trees in \(G_T^* \), given the frequency information assigned to the trees in \(G_T \)? We leave these for future work.

8.2.2 Building and using parallel Treebanks

Treebanks are a prerequisite for running LexTract and training NLP tools such as POS taggers and parsers. In Appendix B, we discuss three topics in creating a monolingual Treebank – making annotation guidelines, ensuring annotation accuracy, and using NLP tools. Building a parallel Treebank will face a series of new challenges.

The first issue is the choice of the corpus for the Treebank. Unlike monolingual texts, it is not trivial to find high-quality bilingual texts that are freely available to the public. An alternative is to find a monolingual corpus and then have it translated into the other language. A question about the translation is: should we choose the most natural translation or the one that is as literal as possible so that presumably it is easier for a machine translation system to learn useful patterns from the parallel Treebank?
(a) Elementary trees in G_T

(b) Descriptions and subcategorization frames

(c) Elementary trees in G_T^e

Figure 8.2: The etrees in G_T and G_T^e
Another issue is the development of NLP tools for parallel Treebank annotation. For example, given a bilingual text (A, B), if one side (say A) is already bracketed, is there any way to speed up the annotation of the other side (i.e., B) using the information from A? A possible approach is to first convert the phrase structure P_A of language A into its dependency structure D_A (see Section 7.2), then map D_A into the dependency structure D_B for language B, next convert D_B into the phrase structure P_B (see Section 7.3). A difficulty of this approach is the well-known structural divergence problem (Dorr, 1993); that is, a sentence and its translation in other languages may have different syntactic structures. In another scenario, if A is bracketed and B is not, but there is a parser for language B, which is trained and tested on a different Treebank, could the information from A help to improve the parser’s performance on B?

Once a parallel Treebank becomes available, we plan to run LexTract on parallel Treebanks. For example, running an alignment algorithm on the Treebank would produce word-to-word mappings. Given such word-to-word mappings and our template matching algorithm in Section 6.3, we can automatically create lexicalized $etree$-to-$etree$ mappings, which can be used for semi-automatic transfer lexicon construction. Furthermore, LexTract can build derivation trees for each sentence in the corpora. By comparing derivation trees for parallel sentences in two languages, instances of structural divergence can be automatically detected.
Appendix A

Language-specific tables

In this dissertation, we have used five language-specific tables (namely, the head percolation table, argument table, tagset table, modification table, and head projection table) to perform the following tasks:

- We use the head projection table, argument table, and modification table to build the grammar G_{table} (see Section 3.3), to filter out linguistically implausible templates (see Section 6.1.3), and to convert a dependency structure into a phrase structure (see Section 7.3.3).

- We use the head percolation table, argument table, and tagset table to build elementary trees (see Section 5.4).

In this appendix, we first explain the formats of the tables, then show the tables that we built for the English, Chinese and Korean Penn Treebanks.

A.1 The formats of the language-specific tables

We briefly mentioned the formats of the language-specific tables in Sections 3.3 and 5.3. In this section, we describe the tables in detail.
A.1.1 Tagset table

Each tag in a Treebank tagset must have an entry in the tagset table. An entry has three fields. The first field uses a number to mark the type of the tag; namely, 0 for POS tag, 1 for syntactic tag, 2 for empty category, and 3 for function tag. The second field is the name of the tag (e.g., JJ for an adjective). The third field is a possibly empty set of attributes for the tag, as explained below:

- CONJ: a tag for conjunctions
- UCP: a tag for unlikely coordinated phrase
- PU: a tag for punctuation marks
- PRN: a tag for parenthetical
- ELLIPSIS: a tag for ellipsis
- IGNORE: the word with that tag will be ignored when LexTract builds etrees.
- BUILDMC: an empty category tag that marks “movement”. LexTract will build multi-component sets for the word with that tag and its antecedent (see Sections 5.6 and 6.7).
- HEAD: a tag that always marks heads
- ADJUNCT: a tag that always marks adjuncts
- ARGUMENT: a tag that always marks arguments

A user can use the last three attributes (HEAD, ADJUNCT, ARGUMENT) to inform LexTract how a function tag should be interpreted when LexTract determines the types (heads, arguments, and adjuncts) of nodes.

A.1.2 Head percolation table

LexTract uses the head percolation table and the tagset table to choose the head-child of a category. Each entry in the head percolation table is of the form $(x \ direct \ y_1/y_2/\ldots/y_n)$,
where x and y_i are syntactic tags, $direct$ is either $LEFT$ or $RIGHT$. $\{y_i\}$ is the set of possible tags for x’s head-child. Unlike most people who use this table, we treat $y_1/y_2/.../y_n$ as a set, rather than as a list. Treating it as a set makes the construction of the head percolation table easier than treating it as a list, and the former works better than the latter in some scenarios (e.g., the selection of the head-child of noun phrases in the English Penn Treebank). However, in other scenarios, the latter works better. David Chiang at the University of Pennsylvania suggested a more general form; that is, the tags of possible head-children for each x are put into a list of sets:

$$(x (direct_1 y_{i_1}/.../y_{i_{m_1}})$$

$$...$$

$$(direct_m y_{i_m}/.../y_{i_{m_n}})$$

Each $y_{i_1}/.../y_{i_{m_i}}$ is interpreted as a set, but the ordering between $y_{i_1}/.../y_{i_{m_i}}$ and $y_{j_1}/.../y_{j_{m_j}}$ matters. For some cases we need to use this general format.

A.1.3 Argument table

An argument table informs LexTract about the types and maximal numbers of arguments a head-child can take. The entry in an argument table is of the form $(head_tag, left_arg_num, right_arg_num, y_1/y_2/.../y_n)$. $head_tag$ is the syntactic tag of the head-child, $\{y_i\}$ is the set of possible tags for the head-child’s arguments, $left_arg_num$ and $right_arg_num$ are the maximal numbers of arguments to the left and to the right of the head-child, respectively. Several points are worth mentioning:

- The default: if LexTract cannot find an entry for a category x in the table, LexTract assumes that x cannot take any arguments. Therefore, the user needs to include in this table only the categories that can take arguments, such as verbs and prepositions.

- The meaning of argument: if X is an argument of Y but X is not a sibling of Y in the phrase structures ($ttrees$) in a Treebank, we treat X as an argument of Y^* when we build the argument table, where Y^* is a projection of Y which is a sibling of X in the $ttrees$. For instance, in all three Penn Treebanks, the subject NP is a sibling
of a VP in a tree. We treat the subject as an argument of the VP, not that of the verb.

- The possible extension of the table: each entry has only one list for possible tags for the head-child’s arguments. If a category happens to have both left and right arguments, LexTract assumes that the argument types on both sides are the same. If this assumption is wrong, we can easily change the format of the table entry to include two lists, instead of one. If necessary, we may also want to add the minimal numbers of arguments to the table.

A.1.4 Modification table

A modification table specifies the types of modifiers a constituent can take. Each entry of the table is of the form $\langle mod_tag, x_1/\ldots/x_n, y_1/\ldots/y_m \rangle$, which means a mod_tag can be modified by x_i from the left and by y_i from the right. In Section 7.3.3, we used an extended version of the modification table to distinguish two types of modifiers: sister-adjointing modifiers and Chomsky-adjointing modifiers; as a result, in this extended version there are four sets of tags associated with mod_tag, rather than two sets.

A.1.5 Head projection table

A head projection table is a set of (x, y) pairs, where y projects to x. Sometimes, we represent the pair (x, y) as $y \rightarrow x$, and represent the pairs (x, y) and (y, z) as $z \rightarrow y \rightarrow x$, and so forth.

A.2 Tables for the English Penn Treebank

In this section, we show the language-specific tables that we built in order to run LexTract on the English Penn Treebank (see Chapters 6 and 7).

A.2.1 Tagset table

The tagset table for English. Everything after the semicolon is a comment and is optional. The meaning of each tag comes from (Santorini, 1990) and (Bies et al., 1995).
O JJ ; adjective
O JJR ; comparative adjective
O JJS ; superlative adjective
O RB ; adverb
O RBR ; comparative adverb
O RBS ; superlative adverb
O WRB ; wh-adverb (e.g., the word ‘‘how’’)
O DT ; determiner
O PDT ; predeterminer (e.g., ‘‘all’’ in ‘‘all his marbles’’)
O WDT ; wh-determiner (e.g., the word ‘‘which’’)
O CD ; cardinal number
O CC CONJ ; coordinating conjunction
O NN ; singular or mass common noun
O NNS ; plural common noun
O NNP ; singular proper noun
O NNPS ; plural proper noun
O POS ; possessive ending
O PRP ; personal pronoun
O PRP$; possessive pronoun
O WP ; wh-pronoun
O WP$; possessive wh-pronoun (e.g., the word ‘‘whose’’)
O MD ; modal verb
O VB ; base form of a verb
O VBP ; present tense verb, other than 3rd person singular
O VBZ ; present tense verb, 3rd person singular
O VBN ; past participle
O VBD ; past tense verb
O VBG ; gerund or present participle
O TO ; the word ‘‘to’’
O IN ; preposition or subordinating conjunction
0 RP ; particle (e.g., ‘‘up’’ in ‘‘pick up’’)
0 LS ; list item marker
0 UH ; exclamation
0 EX ; existential ‘‘there’’
0 FW ; foreign word
0 SYM ; symbol
0 , PU/IGNORE ; comma
0 . PU/IGNORE ; period
0 : PU/IGNORE ; colon
0 $; dollar sign
0 ‘‘ PU/IGNORE ; left double quotation mark
0 ’’ PU/IGNORE ; right double quotation mark
0 # ; pound sign
0 -LRB- PU/IGNORE ; left round bracket
0 -RRB- PU/IGNORE ; right round bracket
0 -LCB- PU/IGNORE ; left curly bracket
0 -RCB- PU/IGNORE ; right curly bracket
0 -LSB- PU/IGNORE ; left square bracket
0 -RSB- PU/IGNORE ; right square bracket
0 ; CONJ ; semicolon
0 -- PU/IGNORE ; dash
0 ... PU/IGNORE ; ellipsis mark
0 - PU/IGNORE ; hyphen
0 ’ PU/IGNORE ; single quotation mark
1 S ; simple declarative clause
1 SQ ; inverted yes/no question
1 SBAR ; clause introduced by a subordinating conjunction
1 SBARQ ; direct question introduced by a wh-word or wh-phrase
1 SINV ; inverted declarative sentence
1 ADJP ; adjective phrase
1 ADVP; adverb phrase
1 CONJP; conjunction phrase
1 FRAG; fragment
1 INTJ; interjection
1 LST; list marker
1 NAC; ‘not a constituent’, used within a noun phrase
1 NP; noun phrase
1 NX; used within certain complex noun phrases
1 PP; prepositional phrase
1 PRN PRN; parenthetical
1 PRT; particle
1 QP; quantifier phrase
1 RRC; reduced relative clause
1 UCP UCP; unlike coordinated phrase
1 VP; verb phrase
1 WHADJP; wh-adjective phrase
1 WHADVP; wh-adverb phrase
1 WHNP; wh-noun phrase
1 WHPP; wh-prepositional phrase
1 X; unknown, uncertain, or unbracketable
2 -NONE-; empty category
2 *T* BUILDMC; trace of A’-movement
2 *; arbitrary PRO, controlled PRO, and trace of A-movement
2 *NP*; arbitrary PRO, controlled PRO
2 *PAS*; trace of A-movement
2 *PPA*; permanent predictable ambiguity
2 *U*; unit
2 *NOT*; anti-placeholder in template mapping
2 0; the null complementizer
2 *??* ELLIPSIS; placeholder for ellipsed material
2 *RNR* BUILDMC ; right node raising
2 *ICH* BUILDMC ; ‘interpret constituent here’ (discontinuous dependency)
2 *EXP* BUILDMC ; expletive (extraposition)
3 ADV ADJUNCT ; adverbial
3 NOM ; nominal
3 DTV ARGUMENT ; dative
3 LGS ; logical subject
3 PRD HEAD ; predicate
3 PUT ARGUMENT ; marks the locative complement of the word ‘put’
3 SBJ ARGUMENT ; surface subject
3 TPC ADJUNCT ; topicalized element
3 VOC ADJUNCT ; vocative
3 BNF ; benefactive
3 DIR ADJUNCT ; direction
3 EXT ADJUNCT ; extent
3 LOC ADJUNCT ; locative
3 MNR ADJUNCT ; manner
3 PRP ADJUNCT ; purpose or reason
3 TMP ADJUNCT ; temporal
3 CLR ADJUNCT ; closely related
3 CLF ; cleft
3 HLN ; headline
3 TTL ; title
4 *T* ; trace of A’-movement
4 * ; arbitrary PRO, controlled PRO, and trace of A-movement
4 0 ; the null complementizer
4 *U* ; unit
4 *??* ; placeholder for ellipsed material
4 *NOT* ; anti-placeholder in template mapping
4 *RNR* ; right node raising

236
4 *ICH* ; ‘interpret constituent here’ (discontinuous dependency)
4 *EXP* ; expletive (extraposition)
4 *PPA* ; permanent predictable ambiguity

A.2.2 Head percolation table

The head percolation table for English:

<table>
<thead>
<tr>
<th></th>
<th>right</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>right</td>
<td>VP/SBAR/S</td>
</tr>
<tr>
<td>SINV</td>
<td>right</td>
<td>VP/SINV</td>
</tr>
<tr>
<td>SQ</td>
<td>right</td>
<td>VP/SQ</td>
</tr>
<tr>
<td>SBAR</td>
<td>right</td>
<td>S/SBAR/SINV</td>
</tr>
<tr>
<td>SBARQ</td>
<td>right</td>
<td>SQ/SBARQ</td>
</tr>
<tr>
<td>RRC</td>
<td>right</td>
<td>VP/RRC</td>
</tr>
<tr>
<td>NX</td>
<td>right</td>
<td>NX/NN/NNS/NNP/NNPS</td>
</tr>
<tr>
<td>NP</td>
<td>right</td>
<td>NP/NN/NNS/NNP/NNPS/NX/EX/QP/JJ/JJR/JJS/PRP/DT/POS</td>
</tr>
<tr>
<td>NAC</td>
<td>right</td>
<td>NAC/NN/NNS/NNP/NNPS/NX</td>
</tr>
<tr>
<td>WHNP</td>
<td>right</td>
<td>WDT/WP/NP/NN/NNS/NNP/NNPS/NX/WHNP</td>
</tr>
<tr>
<td>QP</td>
<td>right</td>
<td>CD/QP</td>
</tr>
<tr>
<td>ADJP</td>
<td>right</td>
<td>JJ/JJR/VBN/ADJP/??*</td>
</tr>
<tr>
<td>WHADJP</td>
<td>right</td>
<td>JJ/WHADJP</td>
</tr>
<tr>
<td>VP</td>
<td>right</td>
<td>VP/VB/VBN/VBP/VBZ/VBG/VBD/??*</td>
</tr>
<tr>
<td>PP</td>
<td>left</td>
<td>IN/TO/VBG/PP</td>
</tr>
<tr>
<td>WHPP</td>
<td>left</td>
<td>IN/WHPP</td>
</tr>
<tr>
<td>ADV</td>
<td>right</td>
<td>ADVP/RB/RBR/RBS/WRB</td>
</tr>
<tr>
<td>WHADVP</td>
<td>right</td>
<td>WRB/WHADVP</td>
</tr>
<tr>
<td>PRT</td>
<td>right</td>
<td>RP/PRT</td>
</tr>
<tr>
<td>INTJ</td>
<td>left</td>
<td>UH/INTJ</td>
</tr>
<tr>
<td>UCP</td>
<td>right</td>
<td>UCP</td>
</tr>
<tr>
<td>X</td>
<td>right</td>
<td>X</td>
</tr>
<tr>
<td>LST</td>
<td>left</td>
<td>LS</td>
</tr>
</tbody>
</table>
A.2.3 Argument table

The argument table for English is as follows:

<table>
<thead>
<tr>
<th></th>
<th>0 3 PRT/NP/PP–PUT/PP–DTV/S/SBAR/SBARQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBP</td>
<td></td>
</tr>
<tr>
<td>VBZ</td>
<td></td>
</tr>
<tr>
<td>VBN</td>
<td></td>
</tr>
<tr>
<td>VBD</td>
<td></td>
</tr>
<tr>
<td>VBG</td>
<td></td>
</tr>
<tr>
<td>JJ</td>
<td>0 1 S/NP</td>
</tr>
<tr>
<td>IN</td>
<td>0 1 NP/S/SBAR</td>
</tr>
<tr>
<td>WP</td>
<td>1 1 NP–SBJ/S–SBJ/SBAR–SBJ</td>
</tr>
<tr>
<td>ADJP</td>
<td>0 1 S/SBAR</td>
</tr>
</tbody>
</table>

A.2.4 Modification table

For the modification table, the following is the basic version. We put the left modifier set and the right modifier set in two adjacent lines. If a set is too big to be displayed in one line, we break it into two lines, and use “+++” at the end of the first line and at the beginning of the second line to indicate that. The empty list is represented as “--”.

<table>
<thead>
<tr>
<th></th>
<th>LST/RB/RBR/RBS/ADV/PP/S/SBAR/SBARQ/SP/SINV/INTJ/IN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S/SBAR/SBARQ/PP/ADV</td>
</tr>
<tr>
<td>SINV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MD/VB/VBD/VBP/VBZ/RB/RBR/RBS/ADV/PP/S/SBAR/SBARQ/SP/SINV/INTJ</td>
</tr>
<tr>
<td></td>
<td>S/SBAR/SBARQ/PP/ADV</td>
</tr>
<tr>
<td>SQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MD/VB/VBD/VBP/VBZ/RB/RBR/RBS/ADV/PP/S/SBAR/INTJ</td>
</tr>
<tr>
<td></td>
<td>S/SBAR/SBARQ/PP/ADV</td>
</tr>
<tr>
<td>SBAR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RB/RBR/RBS/ADV/PP/S/SBAR/WH/ADV/WH/WHPP/WHADJP/WRB/O/IN</td>
</tr>
<tr>
<td></td>
<td>S/SBARQ</td>
</tr>
<tr>
<td>SBARQ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MD/VB/VBD/VBN/VBP/VBG/RB/RBR/RBS/ADV/PP/S/SBAR/WHADVP/+++</td>
</tr>
<tr>
<td></td>
<td>++WH/WHPP/WHADJP/WRB/O/IN</td>
</tr>
<tr>
<td></td>
<td>S/SBARQ/PP/ADV/PP/ADV</td>
</tr>
</tbody>
</table>

238
ADJP RB/RBR/RBS/ADVP/CD/QP/NP/NN/NNP/NNS/WRB/WHADVP
PP

ADVP RB/RBR/RBS/ADVP/WRB/WHADVP
PP

NAC NP/DT/PRP$/JJ/JJR/JJS/RB/RBR/ADVP/ADJP/QP/CD/NN/NNS/NNP/NNPS/NAC/+++
 +++POS/VBN/VBG/$
 ADVP/RB/RBR/ADVP/PP/RRC/S/SBAR/SBARQ/SQ/VP
NP NP/PDT/DT/PRP$/JJ/JJR/JJS/RB/RBR/ADVP/ADJP/QP/CD/NN/NNS/NNP/NNPS/+++
 +++NAC/NX/POS/VBN/VBG/$
 ADJP/RB/RBR/ADVP/PP/RRC/S/SBAR/SBARQ/SQ/NP
NX NP/DT/PRP$/JJ/JJR/JJS/RB/RBR/ADVP/ADJP/QP/CD/NN/NNS/NNP/NNPS/NAC/+++
 +++NX/POS/VBN/VBG/$
 ADJP/RB/RBR/ADVP/PP/RRC/S/SBAR/SBARQ/SQ/VP
WHNP WP$
 RB/RBR/ADVP/PP
VP RB/RBR/RBS/ADVP/PP/MD/VB/VBD/VBN/VBP/VEZ/VEG/TO/VP
 RB/RBR/RBS/ADVP/PP/NP/S/SBAR
RRC RB/RBR/RBS/ADVP/NP/PP/S/SBAR
 S/SBARQ
QP RB/RBR/RBS/ADVP/CD/$/DT
 -
PP RB/RBR/RBS/ADVP/WHADVP/PP
 PP/ADVP

A.2.5 Head projection table

The head projection table for English used in Chapter 6.

JJ -> ADJP
JJR -> ADJP
JJS -> ADJP
RB -> ADVP
RBR → ADVP
RBS → ADVP
WBR → ADVP
DT → NP
PDT → NP
WDT → WHNP
CD → NP
CC → UCP
NN → NP
NNS → NP
NNP → NP
NNPS → NP
POS → NP
PRP → NP
PRP$ → NP
WP → WHNP
WP$ → WHNP
MD → VP
VB → VP → S → SBAR
VBP → VP → S → SBAR
VBZ → VP → S → SBAR
VBN → VP → S → SBAR
VBD → VP → S → SBAR
VBG → VP → S → SBAR
IN → PP
RP → PRT
LS → LST
EX → NP
FW → NP
A.3 Tables for the Chinese Penn Treebank

In this section, we show the first three language-specific tables, which we built in order to run LexTract on the Chinese Penn Treebank. We are not showing the last two tables as we did not run the experiments in Section 7.4 on the Chinese Treebank.

A.3.1 Tagset table

The tagset table for Chinese. The meaning of each tag comes from (Xia, 2000a) and (Xue and Xia, 2000).

<table>
<thead>
<tr>
<th>Tag</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>adverb</td>
</tr>
<tr>
<td>AS</td>
<td>aspect marker</td>
</tr>
<tr>
<td>BA</td>
<td>the word ‘‘ba’’ in ba-construction</td>
</tr>
<tr>
<td>CC</td>
<td>coordinating conjunction</td>
</tr>
<tr>
<td>CD</td>
<td>cardinal number</td>
</tr>
<tr>
<td>CS</td>
<td>subordinating conjunction</td>
</tr>
<tr>
<td>DEC</td>
<td>the word ‘‘de’’ in a relative clause</td>
</tr>
<tr>
<td>DEG</td>
<td>associative ‘‘de’’</td>
</tr>
<tr>
<td>DER</td>
<td>the word ‘‘de’’ in V-de and V-de-R constructions</td>
</tr>
<tr>
<td>DEV</td>
<td>the word ‘‘de’’ before a VP</td>
</tr>
<tr>
<td>DT</td>
<td>determiner</td>
</tr>
<tr>
<td>ETC</td>
<td>for the words ‘‘deng’’ and ‘‘dengdeng’’</td>
</tr>
<tr>
<td>FW</td>
<td>foreign word</td>
</tr>
<tr>
<td>IJ</td>
<td>interjection</td>
</tr>
<tr>
<td>JJ</td>
<td>other noun-modifier</td>
</tr>
<tr>
<td>LB</td>
<td>the word ‘‘bei’’ in long bei-construction</td>
</tr>
<tr>
<td>LC</td>
<td>localizer</td>
</tr>
<tr>
<td>M</td>
<td>measure word</td>
</tr>
<tr>
<td>MSP</td>
<td>miscellaneous particle</td>
</tr>
<tr>
<td>NN</td>
<td>common noun</td>
</tr>
<tr>
<td>NR</td>
<td>proper noun</td>
</tr>
</tbody>
</table>
0 NT ; temporal noun
0 OD ; ordinal number
0 ON ; onomatopoeia
0 P ; preposition
0 PN ; pronoun
0 PU PU/IGNORE ; punctuation mark
0 SB ; the word ‘‘bei’’ in short bei-construction
0 SP ; sentence-final particle
0 VA ; predicative adjective
0 VC ; copula
0 VE ; the word ‘‘you’’ as a main verb
0 VV ; other verb
0 X ; unknown
0 -LRB- PU/IGNORE ; left round bracket
0 -RRB- PU/IGNORE ; right round bracket
0 -LCB- PU/IGNORE ; left curly bracket
0 -RCB- PU/IGNORE ; right curly bracket
0 -LSB- PU/IGNORE ; left square bracket
0 -RSB- PU/IGNORE ; right square bracket
1 ADJP ; adjective phrase
1 ADVP ; adverbial phrase
1 CLP ; classifier phrase
1 CP ; clause headed by complementizer
1 DNP ; phrase formed by ‘‘XP + DEG’’
1 DP ; determiner phrase
1 DVP ; phrase formed by ‘‘XP + DEV’’
1 FRAG ; fragment
1 INTJ ; interjection phrase
1 IP ; simple clause
1 LCP ; phrase formed by ‘‘XP + LC’’
1 LST ; list marker
1 NP ; noun phrase
1 PP ; preposition phrase
1 PRN PRN ; parenthetical
1 QP ; quantifier phrase
1 UCP UCP ; unlike coordinated phrase
1 VCD ; coordinated verb compound
1 VCP ; verb compounds formed by VV + VC
1 VNV ; verb compounds formed by A-not-A or A-one-A
1 VP ; verb phrase
1 VPT ; potential form V-de-R or V-bu-R
1 VRD ; verb resultative compound
1 VSB ; verb compounds formed by a modifier plus a head
1 WHNP ; wh-noun phrase
1 WHPP ; wh-preposition phrase
2 NONE ; empty category
2 *OP* ; operator
2 *pro* ; dropped argument
2 *PRO* ; arbitrary PRO, controlled PRO
2 *RNR* ; right node raising
2 *T* BUILDMC ; trace of A’-movement
2 *?* ELLIPSIS ; ellipsis
2 * ; trace of A-movement
3 FW ; foreign word
3 ADV ADJUNCT ; adverbial
3 APP ; appositive
3 BNF ; beneficiary
3 CND ; condition
3 DIR ; direction
3 EXT ; extent

243
3 FOC ; focus
3 HLN ; headline
3 IJ ; interjctional
3 IMP ; imperative
3 IO ; indirect object
3 LGS ; logic subject
3 LOC ; locative
3 MNR ; manner
3 OBJ ; direct object
3 PN ; proper name
3 PRD ; predicate
3 PRP ; purpose or reason
3 Q ; question
3 SBX ; subject
3 SHORT ; short form
3 TMP ; temporal
3 TPC ; topic
3 TTL ; title
3 WH ; wh-phrase
4 *OP* ; operator
4 *pro* ; dropped argument
4 *PRO* ; arbitrary PRO, controlled PRO
4 *RNR* ; right node raising
4 *T* ; trace of A’-movement
4 *?* ; ellipsis
4 * ; trace of A-movement

A.3.2 Head percolation table

The head percolation table for Chinese:

ADJP right ADJP/JJ
ADVP right ADVP/AD
CP right CP/IP
DNP right DNP/DEG
DP left DP/DT
INTJ left INTJ/IJ
IP right IP/VP
LCP right LCP/LC
NP right NP/NN/NT/NR/QP
PP left PP/P
QP right QP/CD/OD
VP right VP/VA/VC/VE/VV/LB/VCD/VSB/VRD/VNV/VCP
VV right VV
VA right VA
VE right VE
VC right VC
VCD right VCD/VV/VA/VC/VE
VRD right VRD/VV/VA/VC/VE
VSB right VSB/VV/VA/VC/VE
VCP right VCP/VV/VA/VC/VE
VNV right VNV/VV/VA/VC/VE

A.3.3 Argument table

The argument table for Chinese:

VA 0 1 NP-OBJ
VV 0 2 NP-OBJ/LCP-OBJ/QP-OBJ/DP-OBJ/IP/CP/UCP-OBJ/NP-IO/LCP-IO/UCP-IO
VE 0 2 NP-OBJ/LCP-OBJ/QP-OBJ/DP-OBJ/IP/CP/UCP-OBJ
BA 0 1 IP
LB 0 1 IP/CP
A.4 Tables for the Korean Penn Treebank

In this section, we show the language-specific tables that our colleague Chunghye Han built in order to run LexTract on the Korean Penn Treebank.

A.4.1 Tagset table

The tagset table for Korean. The meaning of each tag comes from (Han and Han, 2001) and (Han et al., 2001).

<table>
<thead>
<tr>
<th>Tag</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 CO</td>
<td>copula</td>
</tr>
<tr>
<td>0 NPR</td>
<td>proper noun</td>
</tr>
<tr>
<td>0 NNU</td>
<td>ordinal or cardinal number</td>
</tr>
<tr>
<td>0 NNC</td>
<td>common noun</td>
</tr>
<tr>
<td>0 NNX</td>
<td>dependent noun</td>
</tr>
<tr>
<td>0 NPN</td>
<td>demonstrative pronoun</td>
</tr>
<tr>
<td>0 NFW</td>
<td>foreign word</td>
</tr>
<tr>
<td>0 VV</td>
<td>verb</td>
</tr>
<tr>
<td>0 VJ</td>
<td>adjective</td>
</tr>
<tr>
<td>0 VX</td>
<td>auxiliary predicate</td>
</tr>
<tr>
<td>0 ADV</td>
<td>constituent adverb, clausal adverb</td>
</tr>
</tbody>
</table>
0 ADC CONJ ; conjunctive adverb
0 DAN ; configurative, demonstrative
0 IJ ; exclamation
0 LST ; list marker
0 LV ; light verb
0 CV ; complex verb
0 SCM PU/IGNORE ; comma
0 SFN PU/IGNORE ; sentence-ending punctuation (i.e., ‘.’, ‘?’ , and ‘!’)
0 SLQ PU/IGNORE ; left quotation mark
0 SRQ PU/IGNORE ; right quotation mark
0 SSY PU/IGNORE ; other punctuation mark
0 PQO ; complementizer
0 PAD ; adverbial postposition
0 PAU ; auxiliary adverbial postposition
0 PCA ; case postposition
0 PCJ ; conjunctional postposition
1 S ; simple sentential clause
1 ADJP ; adjective phrase
1 ADVP ; sentential and phrasal adverb phrase
1 ADCP ; coordinate adverb phrase
1 INTJ ; interjection
1 LST ; list marker
1 VP ; verb phrase
1 NP ; noun phrase
1 DANP ; adnominal phrase
1 PRN ; parenthetical
1 X ; unknown
1 WHNP ; wh-noun phrase
1 LVP ; light verb phrase
2 --NONE-- ; empty category
2 *T* BUILDMC ; trace of movement
2 *pro* ; dropped argument
2 *OP* ; empty operator
2 *?* ELLIPSIS ; ellipsis
3 LV ; used coupled with the LV tag on the light verb
3 ADV ADJUNCT ; marks NP when it is used adverbially
3 SBJ ARGU ; marks NP subject with nominative case marker
3 OBJ ARGU ; marks NP complements with accusative case marker
3 COMP ARGU ; marks NP complements that occur with adverbial postposition
3 VOC ADJUNCT ; marks nouns of address
4 *T* ; trace of movement
4 *pro* ; dropped argument
4 *OP* ; empty operator
4 *?* ELLIPSIS ; ellipsis

A.4.2 Head percolation table

The head percolation table for Korean:

S right S/VP/ADJP
ADJP right ADJP/VJ
ADVP right ADVP/ADV
ADCP right ADCP/ADC
VP left VP/VV/VX/ADJP
NP right NP/NNC/NPR/NPN/NNX/*pro*/*T*
WHNP right WHNP/*OP*

A.4.3 Argument table

The argument table for Korean:

VV 2 0 NP-OBJ/NP-COMP/S-COMP
VJ 2 0 NP-OBJ/NP-COMP/S-COMP
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>RULE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VP</td>
<td>3</td>
<td>0</td>
<td>NP-SBJ/S-SBJ/NP-OBJ/NP-COMP/S-COMP/S-OBJ</td>
</tr>
<tr>
<td>ADJP</td>
<td>1</td>
<td>0</td>
<td>NP-OBJ/NP-COMP/S-COMP/S-OBJ</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>0</td>
<td>NP-OBJ/NP-COMP/S-COMP/S-OBJ/WHNP</td>
</tr>
</tbody>
</table>
Appendix B

Building a high-quality Treebank

Treebanks are a prerequisite for running LexTract and training any supervised NLP tools such as POS taggers and parsers. It is well-known that building a large high-quality Treebank is very challenging. In this appendix, we want to address the following question: how to best build a high-quality Treebank from scratch? The discussion on this issue is mainly based on my experience as the project manager and one of the guideline designers of the Chinese Penn Treebank Project (Xia et al., 2000b) and as a user of various Treebanks including the three Penn Treebanks. Instead of examining each aspect of Treebank development, we shall concentrate on the following three topics.

Guideline preparation: Preparing good guidelines is never easy, and doing so for Chinese is even more difficult because of certain characteristics of Chinese, which we shall discuss in Section B.2.

Quality control: We have explored various methods to improve inter-annotator consistency and annotation accuracy.

The role of NLP tools: It is well-known that using NLP tools (e.g., POS taggers and parsers) for preprocessing can reduce human annotation time. In this appendix, we shall show that they can also be used for guideline preparation and quality control.

Although our approach was aimed at solving problems that we encountered in the Chinese Penn Treebank Project, we believe that our methodology is general enough to
be applied to text annotation for other languages as well. This appendix is organized as follows: in Section B.1, we give an overview of the Chinese Penn Treebank Project; in Section B.2, we describe the methodology for guideline preparation; in Section B.3 — B.5, we highlight the challenges encountered while making three sets of guidelines; in Section B.6, we discuss a strategy for quality control; in Section B.7, we explore various ways that NLP tools are used to speed up annotation and to improve the quality of the Treebank. in Section B.8, we address the similarities and differences between Treebank guidelines and hand-crafted grammars.

B.1 Overview of the Chinese Penn Treebank Project

The on-going Chinese Penn Treebank Project started in late 1998. The goal of the project is to build a large-scale high-quality Treebank for Chinese. The first portion of the Treebank, which has about 100 thousand words, was released to the public in December 2000. Since then, more data from various sources have been annotated. In this appendix, by the Treebank, we mean this 100-thousand-word portion of the Treebank unless specified otherwise.

The Treebank consists of 325 articles from the Xinhua newswire published in 1994-1998.1 It contains 172 thousand hanzi (Chinese characters), or 100 thousand words after word segmentation. The corpus has 4183 sentences, averaging 41 hanzi (or 23.8 words after segmentation) per sentence.2 A preliminary version of the Treebank was released to the public in June 2000, and the final version was released in December 2000.

Our team includes two linguistics professors, three computational linguists, two annotators (both are linguistics graduate students) and several external consultants. As the project manager and one of the guideline designers, my responsibilities include writing word segmentation and POS tagging guidelines, co-authoring bracketing guidelines, designing strategies for quality control, organizing weekly meetings and leading discussions.

1The majority of these documents focus on economic developments, while the rest describe general political and cultural topics.

2A sentence is anything that ends with a period, an exclamation mark or a question mark. We also treat the headline of each article as a sentence.
with a group of linguists, organizing a number of workshops and meetings in USA and abroad, and so on.

B.1.1 Project inception

With growing interest in Chinese Language Processing, numerous NLP tools (e.g., word segmenters, POS taggers, and parsers) for Chinese have been developed all over the world. However, when we started the project in late 1998, there were no large-scale Chinese Treebanks available to the public; as a result, it was difficult to compare results and gauge progress in the field.

To assess community interest in a Chinese Treebank, we organized a three-day workshop on Chinese language processing at the University of Pennsylvania in June 1998. The aim of this workshop was to bring together influential researchers from mainland China, Hong Kong, Taiwan, Singapore, and the United States in a move towards consensus building with respect to word segmentation, POS tagging, syntactic bracketing and other areas. The workshop included presentations of guidelines that were used in mainland China and Taiwan, as well as segmenters, POS taggers and parsers. There were also several working groups that discussed specific issues in segmentation, POS tagging and the syntactic annotation of newswire text.

There was general consensus at this workshop that an effort to create a large-scale Chinese Treebank would be well-received, and that linguistics expertise was a necessary prerequisite to successful completion of such a project. The workshop made considerable progress in defining criteria for segmentation guidelines as well as addressing the issues of POS tagging and syntactic bracketing. The Chinese Penn Treebank Project began shortly after the workshop.4

3 The American groups included the Institute for Research in Cognitive Science and the Linguistics Data Consortium (which distributes the English Treebank) at the University of Pennsylvania, the University of Maryland, Queens College, the University of Kansas, the University of Delaware, Johns Hopkins University, New Mexico State University, Systran, BBN Technology, AT & T, Lucent Technology, Xerox, West, Unisys and the US Department of Defense. We also invited scholars from mainland China, Taiwan, Hong Kong and Singapore.

4 Our Chinese Penn Treebank website, http://www.klc.upenn.edu/ctb, includes segmentation, POS tagging and bracketing guidelines, as well as sample files, information on two Chinese Language Processing
B.1.2 Annotation process

The annotation was done in two phases: the first phase was word segmentation and POS tagging, and the second phase was syntactic bracketing. At each phase, all the data were annotated at least twice with a second annotator correcting the output of the first annotator. During the process, we held several meetings to get feedback from the Chinese NLP community and revised our guidelines accordingly. Figures B.1 and B.2 summarize the milestones of the project. Throughout the project, we also used various NLP tools to speed up and improve the quality of the annotation (see Section B.7 for details).

Figure B.1: The first phase: segmentation and POS tagging

Figure B.2: The second phase: bracketing and data release

workshops and much more.

workshops and meetings

guidelines and annotations

"draft": draft of word segmentation and POS tagging guidelines

"pass": segmenting and POS tagging the corpus

Figure B.1: The first phase: segmentation and POS tagging

3-day CLP workshop

Philadelphia

USA

meeting during

ACL-98

Montreal

Canada

meeting during

ICCID-98

Beijing, China

start 1st pass

finish 1st pass

finish 1st draft

start 1st pass

finish 2nd pass

finish 2nd pass

finalize guidelines

extract grammars

workshops and meetings

guidelines and annotations

"draft": draft of bracketing guidelines

"pass": bracketing the corpus

Figure B.2: The second phase: bracketing and data release

meeting during

ACL-99

Maryland, USA

prelim release

2nd CLP workshop

Hong Kong

5/99 6/99 10/99 12/99 4/00 6/00 9/00 10/00 12/00
B.2 Methodology for guideline preparation

To build a Chinese Treebank we need three sets of guidelines — word segmentation, part-of-speech tagging and bracketing guidelines. Making these guidelines for Chinese is especially challenging because of the following characteristics of Chinese.

- Unlike Western writing systems, Chinese writing does not have a natural delimiter between words, and the notion of *word* is very hard to define.

- Chinese has very little, if any, inflectional morphology. Words are not inflected with number, gender, case, or tense. For example, a word such as huǐ-miè in Chinese corresponds to *destroy/destrains/destruction* in English. This fuels the discussion in Chinese NLP communities on whether the POS tags should be based on meaning or on syntactic distribution. If only the meaning is used, huǐ-miè should be a verb all the time. If syntactic distribution is used, the word is either a verb or a noun according to the context.

- There are many open questions in Chinese syntax. To further complicate the situation, Chinese, like any other language, is under constant change. With its long history, a seemingly homogeneous phenomenon in Chinese (such as long and short *bēi*-construction) may be, in fact, a set of historically related but syntactically independent constructions (Feng, 1998).

- Chinese is widely spoken in areas as diverse as mainland China, Hong Kong, Taiwan, and Singapore. There is a growing body of research in Chinese natural language processing, but little consensus on linguistic standards along the lines of the EAGLES initiative in Europe.\(^5\)

To tackle these issues, we adopted the following approach:

- In addition to studying the literature on Chinese morphology and syntax, we collaborated closely with our linguistics experts to work out plausible analyses for syntactic constructions.

• When there were no clear winners among several alternatives, we chose one, and annotated the corpus in a way that our annotation could be easily converted to accommodate other alternatives when needed.

• We studied other groups’ standards or guidelines, such as the Segmentation Standard in mainland China (Liu et al., 1993) and the one in Taiwan (Chinese Knowledge Information Processing Group, 1996), and accommodated them in our guidelines if possible.

• We organized regular workshops and meetings and invited experts from the United States and abroad to discuss open questions, share resources and seek consensus. We also visited mainland China, Hong Kong, and Taiwan to present our work and ask for feedback.

• Annotators were encouraged to ask questions during the annotation process, and in the second pass of bracketing randomly selected files were re-annotated by both annotators to evaluate their consistency and accuracy. Annotation errors and inter-annotator inconsistencies revealed places in the guidelines that needed revision.

In an ideal situation, guidelines should be finalized before annotation begins. However, the raw data from a Treebank are far more complicated and subtle than the examples discussed in the linguistics literature. Many problems do not surface until sufficient data have been studied. In this project, we divided each phase of the annotation and guideline development into several steps:

1. Before the first pass, we created the first version of guidelines based on corpus analysis, review of the literature, and consultation with experts in Treebanking and Chinese linguistics.

2. During the first pass, these guidelines evolved gradually through the resolution of annotation difficulties and annotator inconsistencies.

3. After the first pass, the guidelines were partially finalized and when possible the corpus was automatically converted to be consistent with the new guidelines before the second pass began;
4. In the second pass, we applied our quality control method (see Section B.6) to detect places in the guidelines that needed revision. Fortunately, very little revision at this stage was needed.

5. After the second pass, the guidelines were finalized and the annotation was revised if necessary.

In this process, through careful design of the first version of the guidelines, no substantial changes were made in the following versions and most revision of the annotation was done automatically by simple conversion tools. In the next three sections, we discuss highlights from each set of guidelines.

B.3 Segmentation guidelines

The central issue for word segmentation is how the notion of word should be defined.

B.3.1 Notions of word

There are many different notions of words. Sciullo and Williams (1987) discuss four of them; namely, morphological object, syntactic atom, phonological word and listeme. According to (Sciullo and Williams, 1987), the syntactic atoms are the primes of syntax. They possess the syntactic atomicity properties; that is, the inability of syntactic rules to analyze the contents of X^0 categories.\footnote{Whether morphology and syntax are truly independent is still an open question (Sciullo and Williams, 1987). We shall not go into details in this thesis.} Packard (2000) defines eight notions of word; namely, orthographic word, sociological word, lexical word, semantic word, phonological word, morphological word, syntactic word, and psycholinguistic word. Because our goal was to build syntactic structures for sentences, we adopted the notion syntactic word (or syntactic atom in (Sciullo and Williams, 1987)) for our word segmentation task.\footnote{In the word segmentation and POS tagging phase, we broke the sentences into segments. Most segments are syntactic words, but we treat certain bound morphemes (such as aspect markers) as segments to make the Treebank more compatible with several widely used standards in the Chinese NLP community.}
Once the notion of word is defined, the notions of affix, bound morpheme, compound and phrase can be defined accordingly. However, the distinction between a word and a non-word is not always clear-cut. For example, in English, the morpheme pro- (which means supporting) cannot be used alone; therefore, it looks like a bound morpheme. However, it can appear in a coordinated structure, such as pro- and anti-abortion. Based on the assumption that only words and phrases can be coordinated, it behaves like a word. Therefore, the status of pro- is somewhere between a bound morpheme and a word. Making the word and non-word distinction is even more difficult for Chinese for a number of reasons:

- Chinese is not written with word delimiters, so segmenting a sentence into "words" is not a natural task even for a native speaker.
- Chinese has little inflectional morphology to ease the word segmentation problem.
- The structures within words and phrasal structures are similar in many cases, making the distinction between words and phrases more elusive.
- There is little consensus in the community on the treatment of some constructions that could affect word segmentation. For example, there are two competing views for verb resultatives (e.g., chuī-gān/blow-dry). One view believes that a verb resultative is formed in the lexicon, and therefore should be one word; whereas the other view says that a simple sentence with a verb resultative is actually bi-clausal and the verb resultative is formed by movement; therefore, it should be treated as two words.
- Many monosyllabic morphemes that used to be able to stand alone become bound in Modern Chinese. The influence of non-Modern Chinese makes it difficult to draw the line between bound morphemes and free morphemes, the notions which could otherwise have been very useful for deciding word boundaries.

Not surprisingly, the definition of word in Chinese has been notoriously controversial in the Chinese linguistic community; as a result, the word standards adopted by various

8For example, both a- and im- are bound morphemes and "amoral and immoral" cannot be shortened into "a- and immoral".
research groups, including the national standard in mainland China (Liu et al., 1993) and the word standard used by the Academia Sinica in Taiwan (Chinese Knowledge Information Processing Group, 1996), differ substantially.

B.3.2 An experiment

To test how well native speakers agree on word segmentation of written texts, we randomly chose 100 sentences (5060 hanzi) from the Xinhua newswire and asked the participants of the first Chinese Language Processing (CLP) workshop to segment the sentences according to their personal preferences.9 We got replies from seven groups, almost all of whom hand corrected their output before sending the results to us. Table B.1 shows the results of comparing the output between each group pair. Here, we use three measures that are commonly used to measure parsing accuracy: precision, recall, and the number of crossing brackets (Black et al., 1991).10

The experiment was similar to the one discussed in (Sproat et al., 1996) in which six native speakers were asked to mark all the places they might pause if they were reading the text aloud. In both experiments, the native speakers (or judges) were not given any specific segmentation guidelines. Following (Sproat et al., 1996), we calculated the arithmetic mean of the precision and the recall as the measure of agreement between each output

9We did not give them any segmentation guidelines. Some participants applied their own standards for which they had automatic segmenters, while others simply followed their intuitions.

10Given a candidate file and a Gold Standard file, the three metrics are defined as: the precision is the number of correct constituents in the candidate file divided by the number of constituents in the candidate file, the recall is the number of correct constituents in the candidate file divided by the number of constituents in the Gold Standard file, and the number of crossing brackets is the number of constituents in the candidate file that cross a constituent in a Gold Standard file.

If we treat each word as a constituent, a segmented sentence is similar to a bracketed sentence whose depth is one. To compare two outputs, we chose one as the Gold Standard, and evaluated the other output against it. As noted in (Sproat et al., 1996), for two outputs J_1 and J_2, taking J_1 as the Gold Standard and computing the precision and recall for J_2 yields the same results as taking J_2 as the Gold Standard and computing the recall and the precision respectively for J_1. However, the number of crossing brackets when J_1 is the Gold Standard is not the same as when J_2 is the Gold Standard. For example, if the string is $A B C D$ and J_1 segments it into $A B \ C D$ and J_2 marks it as $A \ B C \ D$, then the number of crossing brackets is 1 if J_1 is the Gold Standard and the number is 2 if J_2 is the Gold Standard.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>90/88/6</td>
<td>90/90/4</td>
<td>83/88/3</td>
<td>92/91/3</td>
<td>91/91/3</td>
<td>92/84/9</td>
<td>90/89/5</td>
</tr>
<tr>
<td>2</td>
<td>88/90/3</td>
<td>-</td>
<td>87/90/3</td>
<td>80/88/14</td>
<td>89/90/4</td>
<td>86/89/3</td>
<td>89/83/7</td>
<td>87/88/6</td>
</tr>
<tr>
<td>3</td>
<td>90/90/3</td>
<td>90/87/5</td>
<td>-</td>
<td>82/88/2</td>
<td>89/88/5</td>
<td>89/89/4</td>
<td>89/82/10</td>
<td>88/87/5</td>
</tr>
<tr>
<td>4</td>
<td>88/83/9</td>
<td>88/80/10</td>
<td>88/82/7</td>
<td>-</td>
<td>92/86/7</td>
<td>86/81/9</td>
<td>87/74/16</td>
<td>88/81/10</td>
</tr>
<tr>
<td>5</td>
<td>91/92/3</td>
<td>90/89/4</td>
<td>88/89/4</td>
<td>86/92/9</td>
<td>-</td>
<td>90/90/4</td>
<td>92/85/8</td>
<td>90/90/5</td>
</tr>
<tr>
<td>6</td>
<td>91/91/3</td>
<td>89/86/6</td>
<td>89/89/4</td>
<td>81/86/3</td>
<td>90/90/4</td>
<td>-</td>
<td>91/83/10</td>
<td>89/88/5</td>
</tr>
<tr>
<td>7</td>
<td>84/92/1</td>
<td>83/89/2</td>
<td>82/89/2</td>
<td>74/87/4</td>
<td>85/92/1</td>
<td>83/91/1</td>
<td>-</td>
<td>82/90/2</td>
</tr>
</tbody>
</table>

Table B.1: Comparison of word segmentation results from seven groups

pair. The average agreement in our experiment was 87.6%, much higher than 76% in (Sproat et al., 1996). Without comparing the raw text used in these two experiments, we do not know for sure why the numbers differed so much. One factor that might have contributed to the difference is that the instructions given to the judges were not exactly the same: in our experiment, the judges were asked to segment the sentences into *words* according to their own definitions of *word*, whereas in their experiment, the judges were asked to mark all places they might possibly pause if they were reading the text aloud. There are places in Chinese – for example, between a verb and the aspect marker that follows the verb – where native speakers do not pause, but they still treat the verb and the aspect marker as two words. Another factor that might explain why the degree of the agreement in our experiment was much higher is that in our experiment all the judges were well-trained computational linguists. Some judges had their own segmentation guidelines and/or segmenters. They either followed their guidelines or used their segmenters to automatically segment the data and then hand corrected the output. Either way, their outputs may be more consistent than the output of an average native speaker.

The fact that the average agreement in our experiment was 87.6% and the highest agreement among all the pairs was 91.5% confirms the belief that, without a set of segmentation guidelines, native speakers often disagree on where word boundaries should be. On the other hand, in our experiment the average number of crossing brackets between each pair for the whole 100 sentences was only 5.4. Furthermore, most of these crossing brackets were caused by careless human errors. This implies that much of the disagreement was not critical and if the judges had been given good segmentation guidelines, the agreement between them should have improved greatly.

259
B.3.3 Tests of wordness

Now that we have decided to use the notion of syntactic words for word segmentation, the next task is to come up with a set of tests for establishing word boundaries. The following tests have been proposed in the literature: (Without loss of generalization, we assume the string that we are trying to segment is X-Y, where X and Y are two morphemes)

- **Bound morpheme**: a *bound* morpheme should be attached to its neighboring morpheme to form a word when possible.

- **Productivity**: if the rule that combines the expression X-Y is not productive, then X-Y is likely to be a word.

- **Frequency of co-occurrence**: if the expression X-Y occurs very often, it is likely to be a word.

- **Complex internal structure**: strings with complex internal structures should be segmented when possible.

- **Compositionality**: if the meaning of X-Y is not compositional, it is likely to be a word.

- **Insertion**: if another morpheme can be inserted between X and Y, then X-Y is unlikely to be a word.

- **XP-substitution**: if a morpheme cannot be replaced by a phrase of the same type, then it is likely to be part of a word.

- **The number of syllables**: several guidelines (Liu et al., 1993; Chinese Knowledge Information Processing Group, 1996) use syllable numbers on certain cases. For example, in (Liu et al., 1993), a verb resultative is treated as one word if the resultative part is monosyllabic, and it is treated as two words if the resultative part has more than one syllable.

Notice that these tests are aimed at different notions of *head*. For instance, the compositionality test is related to the notion of semantic word, whereas the XP-substitution
test is more relevant to syntactic word. Furthermore, none of these tests is sufficient by itself for covering the entire range of difficult cases. Either the test is applicable only to limited cases (e.g., the XP-substitution test) or there is no objective way to perform the test as the test refers to vaguely defined properties (e.g., in the productive test, it is not clear where to draw the line between a productive rule and a non-productive rule). For more discussion on this topic from the linguistics point of view, please refer to (Sciullo and Williams, 1987; Packard, 1998; Packard, 2000).

Because the segments in our Treebank roughly correspond to syntactic words, we always apply the tests for syntactic words (e.g., the XP-substitution test) first. If these tests are not sufficient, the tests for other notions of word are used. The rationale behind this decision is that, although various notions of word differ in their definitions and applicable fields, in most cases these notions of word do coincide with one another.11 Rather than having the annotators memorize and apply these tests themselves, in the guidelines we spell out what the results of applying the tests would be for all of the relevant phenomena. For example, for the treatment of verb resultatives, we select the relevant tests (in this case the number of syllables and the insertion test), and give several examples of the results of applying these tests to the verb resultatives. This approach makes it straightforward, and thus efficient, for the annotators to follow the guidelines.

The guidelines are organized according to the internal structure of the corresponding expressions (e.g., a verb resultative is represented as V+V, whereas a verb-object form is represented as V+N), so it is easy for the annotators to search the guidelines for reference. The complete segmentation guidelines, including the comparisons between our guidelines and the ones used in mainland China and Taiwan, can be found in (Xia, 2000b).

11For example, Packard (2000) defines a morphological word as the output of word-formation rules in the language, and a syntactic word as a form that can stand as an independent occupant of a syntactic form class slot. He also shows that miǎo-tóu/cat-head is a morphological word, but not a syntactic word. Nevertheless, most morphological words are syntactic words and vice versa.
B.4 POS tagging guidelines

The central issue on POS tagging is how POS tags should be defined and distinguished from one another.

B.4.1 Criteria for POS tagging

People generally agree that a POS tagset for Chinese should include the tags for nouns, verbs, prepositions, adverbs, conjunctions, determiners, classifiers, and so on, but they differ in how these tags should be defined. Because Chinese has little, if any, inflectional morphology, the definition of a POS tag is based on either semantics or syntax. The first view believes that the tags should be defined based on meaning, whereas the second one defines POS tags based on syntactic distribution. As mentioned before, a word such as hū-mìè in Chinese can be translated into *destroy/destructs/destroyed/destroying/destruction* in English, and it is used roughly the same way as its counterparts in English. According to the first view, POS tags should be based solely on meaning. Because the meaning of the word remains roughly the same across all of these usages, the word should always be tagged as a verb. The second view claims that POS tags should be determined by the syntactic distribution of the word. When hū-mìè is the head of a noun phrase, it should be tagged as a noun in that context. Similarly, when it is the head of a verb phrase, it should be tagged as a verb. These two competing views have been under debate since the 1950s (Gong, 1997) and the controversy remains.

We choose syntactic distribution as our main criterion for POS tagging, because this approach complies with the principles adopted in contemporary linguistics theories (such as the notion of head projections in X-bar theory and GB theory) and it captures the similarity between Chinese and other languages. One argument that is often used against this approach is as follows: because many verbs in Chinese can also occur in noun positions, using this approach will require these verbs to have two tags, thus increasing the size of the lexicon. We find this argument not convincing. First, many verbs (such as monosyllabic verbs) cannot occur in noun positions. The extra POS tag allows us to distinguish the verbs that can occur in noun positions from the ones that cannot. Second, if there are
generalizations about what verbs can occur in noun positions and what cannot, these
generalizations can be represented as morphological rules, which allows the lexicon to
be expanded automatically. On the other hand, if no such generalizations exist and the
nominalization process is largely idiosyncratic, it supports the view that verbs that can
be nominalized should be marked by having two POS tags in the lexicon. Third, the
phenomenon that many verbs can also occur in noun positions is not unique to Chinese,
and the standard treatment in other languages is to give them both tags.

B.4.2 Choice of a POS tagset

Once we have decided that the POS tagging should be based on syntactic distribution of
words, the next step is choosing a POS tagset and then finding tests to distinguish each
pair of POS tags in the tagset. The annotators then use the tests to tag the words in the
Treebank.

The syntactic distribution of a word can be seen as a set of positions at which the word
can appear, such as the argument position of a VP, the head of a VP and so on. The task
of choosing a tagset and tagging a corpus with the tagset can be stated as follows (see
Figure B.3):

Given the set of words W, a set of positions P, and a relation $f \subseteq \{(w, p) \mid w \in
W, p \in P\}$, find a set of POS tags T, a relation $f_1 \subseteq \{(w, t) \mid w \in W, t \in T\}$,
and a relation $f_2 \subseteq \{(t, p) \mid t \in T, p \in P\}$, such that f is a subset of $f_1 \circ f_2.$12

In this representation, f specifies the positions in which the words in W can appear, f_1
gives all possible POS tags of a word, and f_2 specifies the positions in which each POS
tag can appear. Once T, f_1, and f_2 are defined, any pair (t_1, t_2) of POS tags can be
distinguished by comparing the sets of positions in which t_1 and t_2 can appear. To tag a
word w in a sentence, the annotator first decides the position p of the word in the sentence,
then chooses a tag t such that $(w, t) \in f_1$ and $(t, p) \in f_2$.

Given W, P and f, it is obvious that the choice of T, f_1 and f_2 is not unique. For the
purpose of Treebank annotation, we prefer the following measures to be small:

12$f_1 \circ f_2$ is the composition of two relations; that is, $(x, y) \in f_1 \circ f_2$ if and only if there exists z such that
$(x, z) \in f_1$ and $(z, y) \in f_2.$

263
(1) The number of over-generated (word, position) pairs (i.e., \(|f_1 \circ f_2 - f| \))

(2) The size of the tagset (i.e., \(|T| \))

(3) The average number of POS tags per word (i.e., \(|f_1| / |W| \))

(4) The average number of positions per POS tag (i.e., \(|f_2| / |T| \))

Notice that, even with this preference, there is no optimal solution for the choice of \(T, f_1, \) and \(f_2 \) because the four measures cannot be minimalized at the same time. For example, when \(T \) has only one tag (i.e., all the words have the same tag), (2) and (3) are minimal but (1) and (4) are not. At the other extreme, if \(T \) has a distinct tag for each word, (1) and (3) are minimal, but (2) is not.

Because there is no optimal solution, we used the approach in Table B.2 to find \(T, f_1 \) and \(f_2 \). Steps (A), (B), and (C) were done during the writing of the first draft of the POS guidelines, and step (D) was done during the POS tagging annotation and the revision of the POS guidelines. For the Chinese Treebank, in step (A) we chose a tagset with 11 tags (noun, verb, determiner, number, measure word, adverb, preposition, coordinating conjunction, interjection, punctuation and a tag for the rest). The tagset had 34 tags after step (C). Several observations are in order. First, splitting tags under the condition in (C) may be desirable because, although the splitting slightly increases the size of the
tagset, it greatly reduces the number of over-generated (word, position) pairs while the
other two measures (i.e., (3) and (4)) remain roughly the same. Second, splitting the tags
in step (D-4) is much more expensive than doing it in step (C); therefore, the borderline
elements (i.e., the examples that might cause some tags to be split) should be considered
as early as possible. In an ideal situation, all the borderline examples should be considered
and the POS tagset should be fixed before the POS tagging starts, and step (D-4) should
be unnecessary. However, in practice, when guideline designers write the first draft of
the guidelines, they have not examined the whole Treebank; therefore, they do not know
all the possible (word, position) pairs in the Treebank (i.e., \(f \) is not completely defined).
As a result, they may fail to split some tags in step (C) and have to do it in step (D-4)
instead; in other words, the tagset may have to be expanded after the first pass of the POS
annotation starts. Fortunately, through careful design of the first version of the guidelines,
no such revision was needed in our project.

B.5 Syntactic bracketing guidelines

In this section, we discuss three issues on bracketing guidelines.

B.5.1 Representation scheme

The first issue is the choice of a representation scheme. Given that the sentences in the
corpus are very long and complex, the representation scheme needs to be robust enough
to be able to represent all the important grammatical relations and at the same time be
sufficiently simple so that the annotators can follow it easily and consistently. An overly
complicated scheme will slow down productivity and jeopardize consistency and accuracy.

At the syntactic level, we first need to decide what type of syntactic representation
should be used in the Treebank. Two commonly used representations are phrase struc-
tures and dependency structures. To choose between these two representations, we need to
consider many factors such as the feasibility of the conversion between them (see Chapter
7), the amount of linguistic work based on each representation, the preferences of guide-
line designers, annotators, and the potential users of the Treebank, and the availability of
/* Steps (A)-(C) are used to create the first draft of the POS tagging guidelines */
(A) choose an initial tagset T, which includes only the well-established tags (such as nouns, verbs, and adverbs) and a tag that captures the rest of tags;
(B) choose f_2 so that it includes only the basic positions for each tag;
 (For example, nouns can be the argument of VPs and verbs can be the heads of VPs)
(C) for (each tag t in T)
 if (there is a position $p \in P$, such that both $W_{t,p}$ and W_{t,p^*} are large)
 /* $W_{t,p}$ is the set of words with tag t that can appear in position p */
 /* W_{t,p^*} is the set of words with tag t that cannot */
 then consider splitting t into two tags t_1 and t_2 and updating f_2 accordingly;

/* Step (D) is used during the POS tagging stage */
(D) for (each word token w in the Treebank)
 (D-1) choose a position p for the word;
 if $(w,p) \notin f$
 then add (w,p) to f;
 (D-2) choose a tag t in T;
 (D-3) if $(w,t) \notin f_1$
 then add (w,t) to f_1;
 (D-4) if $(t,p) \notin f_2$
 then add (t,p) to f_2;
 if (both $W_{t,p}$ and W_{t,p^*} are large)
 then consider splitting the tag t into two tags t_1 and t_2 and
 updating f_1 and f_2 accordingly;

Table B.2: The process of creating and revising POS guidelines
annotation tools. We chose phrase structures for the Chinese Treebank for several reasons: First, it seems that for Chinese the conversion from phrase structures to dependency structures is easier than the conversion in the opposite direction; Second, there is more Chinese linguistic work done based on phrase structures than dependency structures; Third, most tools available to us (such as parsers and corpus search tools, see Section B.7) are based on phrase structures.

The next question is what information should be included in a phrase structure. We decided to use syntactic labels, function tags, reference indexes, and empty categories. In our representation scheme, each bracket has a syntactic label, zero or more function tags, and zero or more reference indexes. The syntactic label indicates the syntactic category of the phrase, whereas the function tags provide additional information such as adjunct type. For example, when a noun phrase such as 昨天/yesterday modifies a verb phrase, its syntactic label will be NP (for noun phrase) and it is given a function tag -TMP, indicating that the NP is a temporal phrase and its function is similar to that of an adverbial phrase. Reference indexes and a subset of empty categories (such as trace and operator) are used to mark syntactic movement or to indicate where a phrase should be interpreted. Other empty categories are used to mark dropped arguments, ellipsis, and so on. Our scheme is similar to the one adopted in the Penn English Treebank (Marcus et al., 1994).

B.5.2 Syntactic constructions

The bracketing guidelines have to specify the treatment of various syntactic constructions. Many of them (such as the ba-construction and the bei-construction) have been studied for decades, but there is still no consensus on their treatment. To tackle this issue, we

- studied the linguistics literature,
- attended conferences on Chinese linguistics,
- had discussions with our linguistic colleagues,
- studied and tested our analyses on the relevant sentences in our corpus, and
- used special tags to mark crucial elements in these constructions.
For example, the word bà in the ǎo-construction has been argued to be a case marker, a secondary topic marker, a preposition, a verb, and so on in the literature. The word is clearly different from other prepositions and other verbs, and there is no strong evidence to support the view that Chinese has overt case markers or topic markers. We believe that the word is more likely to be a verb than a preposition, but to distinguish it from other verbs, we assign a unique POS tag BA to it, and in the bracketing guidelines we provide detailed instructions on how to annotate the construction. If some users of our Treebank prefer to treat it as a preposition, our annotation can be easily converted to accommodate that approach.

B.5.3 Ambiguities

Another issue with respect to bracketing guidelines is the treatment of ambiguous sentences. In the guidelines, we classified ambiguous sentences according to the cause of the ambiguity, and specified the treatment for each type. We decided to give each sentence exactly one syntactic structure even if the sentence was ambiguous because of several reasons. First, our Treebank is a collection of newspaper articles, rather than a list of independent sentences; as a result, very few sentences are truly ambiguous once they are put into the context of the whole article. Second, people often don’t see the ambiguity until it is pointed out by someone else. Asking annotators to mark more than one reading of a truly ambiguous sentence not only substantially slows down the annotation but also affects the consistency of the annotation as it is almost certain that the annotators would miss certain readings. Third, some sentences could be annotated in several ways and all these annotations are closely related and have roughly the same meaning. For these sentences, giving one annotation is sufficient, and other related annotations can be derived easily if needed. For example, some Chinese adverbs can occur either before the subject or after it. When the subject is phonologically empty as a result of subject drop or relativization, the empty subject (which is an empty category) can be put either before the adverb or after the adverb with no difference in meaning. Consequently, the adverb either attaches to the VP or the S, and there is no syntactic evidence to favor one annotation over the other. If nothing is specified in the guidelines and the annotator is allowed to mark the
empty subject in either place, inconsistency is bound to occur as either annotation can be chosen. To eliminate this kind of inconsistency, in the guidelines we specified one of the two positions as the "default" position for the empty subject, and required annotators to always put the empty subject in that position.

B.6 Quality control

A major challenge in providing a high-quality Treebank is ensuring consistency and accuracy. Carefully documented guidelines (see Section B.2 — B.5), linguistically trained annotators,13 and annotation supporting tools (see Section B.7) are pre-requisites to creating a high quality Treebank. In this section, we describe our strategy for quality control.

B.6.1 Two passes in each phase

As mentioned in Section B.1, the Treebank annotation was done in two phases: the first phase was word segmentation and POS tagging, and the second phase was syntactic bracketing. At each phase, all the data were annotated at least twice with a second annotator correcting the output of the first annotator. In addition to correcting human errors made in the first pass, the second pass was necessary also because the guidelines had been revised after the first pass (see Section B.2).

B.6.2 Double re-annotation in the bracketing phase

During the second pass of the bracketing phase, we randomly selected 20\% of the Treebank for double re-annotation. By double re-annotation, we mean that annotators re-annotate the same files from the output of the first pass. Double re-annotation allowed us to quantitatively evaluate inter-annotator consistency and annotation accuracy. The process of this evaluation was as follows: First, some files from the output of the first pass were

13Both of our annotators are linguistics graduate students, one of whom co-authored the Bracketing Guidelines and regularly participated in our meetings on Chinese syntax. Their knowledge of linguistics in general, and syntax in particular, was crucial for the success of the project.
randomly selected and double re-annotated. Next, a software tool named evalb14 was used to compare the two re-annotations, and any discrepancies were carefully examined and the annotation was revised — this may in turn lead to revisions of the guidelines to prevent a recurrence of similar inconsistencies. Then, the corrected, reconciled annotation was considered the Gold Standard, and each of the two original re-annotations was then run against the Gold Standard and against each other, to provide a measure of individual annotator accuracy and inter-annotator consistency.

We first used this method to re-train annotators at the beginning of the second pass,15 when forty files from the output of the first pass were randomly selected for double re-annotation. After that, the annotators continued to correct first pass data and each week two files were randomly selected and double re-annotated, and the re-annotations were compared. In this way, we continued to monitor the consistency and accuracy and to enhance guidelines. Figure B.4 shows the accuracy of each annotator (denoted by 1st annotator and 2nd annotator in the chart) compared to the Gold Standard and the inter-annotator consistency during the second pass after the re-training period. The Figure shows both measures are in the high 90\% range, which is very satisfactory.16

B.6.3 Error detection using LexTract

After the second pass of the word segmentation and POS tagging phase, a list of (word, POS tag) pairs was compiled out of the Treebank and manually checked. This process revealed many POS tagging errors.

As discussed in Section 6.6, we also ran LexTract to build a Treebank grammar after the second pass of bracketing phase. We then checked the grammar for implausible templates and fixed the corresponding errors in the Treebanks.

14 The software tool was written by Satoshi Sekine and Mike Collins. It takes two input files as input and produces precision, recall, numbers of crossing brackets, and other measures.

15 The re-training process was necessary because we had revised the guidelines after the first pass.

16 Because only two files (about 600 words) were double re-annotated and compared each week and the complexity of sentences varied a lot from file to file, the consistency and accuracy rates for these files did not keep improving as time went by, as one might have expected.
Figure B.4: Accuracy and inter-annotator consistency during the second pass

B.7 The role of NLP tools

Throughout the project, we used various NLP tools to speed up and improve the quality of the Treebank annotation.

B.7.1 Preprocessing tools

Before the first pass of the word segmentation and POS tagging phase, our Treebank was automatically segmented and POS tagged by the BBN/GTE integrated stochastic segmenter and POS tagger. The tagger was trained on the Academia Sinica Balanced Corpus (ASBC). Because our tagset and the one used by the ASBC are quite different (Xia, 2000a), we wrote a tool to convert the ASBC tags into our tags automatically. Although the mapping between the two tagsets was not one-to-one and the conversion introduced new errors, this pre-processing process greatly accelerated annotation.

When the bracketing phase began, a Chinese parser was not available to us; therefore, we started the bracketing annotation from scratch. Since the completion of our 100K-word Treebank, two parsers have been trained on the data and their precision and recall rates were about 80% (Bikel and Chiang, 2000). One of these parsers has been used to pre-process the new data that we are annotating, and the pre-processing doubles the bracketing speed (Chiou et al., 2001).
B.7.2 Annotation and conversion tools

To facilitate human annotation, our annotators used an interface that was created for the English Penn Treebank (Marcus et al., 1994), which was then extended to include word segmentation operations and other features for Chinese. The interface restricted the combinations of keys that annotators could use, and therefore reduced the number of careless human errors. For example, only legitimate tags (whose names appear in a predefined tagset) could be entered, and the left and right brackets were added or removed in one operation so that there were no unmatched brackets. The interface also indented the phrase structures automatically.

In addition, we developed a collection of tools that converted the Treebank from one format to another, as various NLP tools used slightly different formats. When we revised the guidelines after the first pass of each phase, some modification of the Treebank was done automatically by these conversion tools.

B.7.3 Corpus search tools

One reason that the annotation guidelines require revision is that, quite often when the guideline designers write the draft of the guidelines, they have not checked all the relevant data in the Treebank; as a result, they don’t realize that the guidelines do not cover certain cases until the annotators find these cases in the Treebank.

Corpus search tools allow the guideline designers to extract from the Treebank the relevant sentences that match certain patterns. A search can be conducted on raw data, segmented and POS tagged data, or bracketed data. For the first two types of data, simple string matching tools (such as *grep* in UNIX) are sufficient. For pattern matching on bracketed data, more sophisticated tools are needed. One of such tools (called CorpusSearch) was developed by Beth Randall.\(^\text{17}\) We used this tool after the first pass of the bracketing to pull out all the sentences in the Treebank that were relevant to a particular syntactic construction, and then examined these sentences to ensure that our guidelines could handle all these sentences correctly.

\(^{17}\)More information about this tool can be found at http://www.cis.upenn.edu/ brandall/CSManual and http://www.ling.upenn.edu/mideng/ppcme2dir/corpussearch.html.
B.7.4 Quality-control tools

As mentioned in Section B.6, we used two tools for quality control: one is the evalb, which calculates the precision rate, recall rate, and the number of crossing brackets given two annotations; the other is LexTract, which extracts grammars from Treebanks.

It is worth noting that both guideline preparation and Treebank annotation require much human effort. While there is no doubt that using the NLP tools mentioned in this section (such as word segmenter, POS tagger, and parser) can greatly speed up Treebank annotation, it does not help a lot with guideline preparation because a thorough linguistic study of the language is an irreplaceable and substantial part of guideline preparation.

B.8 Treebank guidelines and hand-crafted grammars

In many aspects, the process of making Treebank guidelines is very similar to the process of creating a grammar by hand: both require a thorough study of the linguistics literature and extensive discussion with linguists (see the discussion in Section B.2 – B.5); both guidelines and hand-crafted grammars require revisions when they cannot account for new data. Therefore, it is not surprising that the grammar extracted from a high-quality Treebank by LexTract may look very much like a hand-crafted grammar.

On the other hand, there are two major differences between guidelines and hand-crafted grammar. First, unlike hand-crafted grammars, the guidelines can use special tags to mark a phenomenon without deciding the nature of the phenomenon. For example, distinguishing arguments from adjuncts is notoriously difficult. For each dependent of a head, the developers of a hand-crafted LTAG have to decide whether to treat the dependent as an argument or an adjunct. In contrast, the designers of a Treebank can use function tags to mark the function of the dependent (e.g., location, time, purpose, and so on) without making the argument/adjunct decision, and later the users of the Treebank can determine whether they want to treat the dependent with certain function tags as an argument. Another example is the usage of empty categories in Treebanks and hand-crafted grammars. To treat constructions such as NP-extraposition (see Section 6.7), the developers of a hand-crafted LTAG have to decide whether the relation between the
exraposed phrase and the position where the phrase is interpreted is due to syntactic movement. If it is due to syntactic movement, the gap and the “antecedent” should appear in one elementary tree or one multi-component set. If it is not, this tree-locality requirement should not be imposed. In contrast, the designers of the Treebank can use a special empty category to mark the NP-extraposition construction without deciding the nature of the movement.

The second difference between annotation guidelines and hand-crafted grammars is that annotation guidelines have to explicitly specify the treatment for ambiguous sentences, whereas grammars for human languages are always ambiguous and the selection of the most likely parse for ambiguous sentences is left to the parsers that use the grammars.

B.9 Summary

We have discussed in details the approach that we used to build the Chinese Penn Treebank, including the development of the guidelines for word segmentation, POS tagging and syntactic bracketing, our methodology for quality control, and the roles of various NLP tools. We believe that our approach is general enough to apply to monolingual text annotation for other languages as well, and will be testing this hypothesis.
References

Chunghye Han, Na-Rae Han, and Eon-Suk Ko. 2001. Bracketing Guidelines for the Penn Korean Treebank (forthcoming).

Aravind K. Joshi. 1987. An Introduction to Tree Adjoining Grammars. In Alexis
Manaster-Ramer, editor, Mathematics of Language. John Benjamins Publishing Co,
Amsterdam/Philadelphia.

Laura Kallmeyer and Aravind Joshi. 1999. Underspecified Semantics with LTAG.

Karin Kipper, Hoa Trang Dang, and Martha Palmer. 2000. Class-based Construction of

Anthony S. Kroch and Aravind K. Joshi. 1985. The Linguistic Relevance of Tree Ad-
joining Grammars. Technical Report MS-CIS-85-16, Department of Computer and
Information Science, University of Pennsylvania.

Anthony S. Kroch. 1989. Asymmetries in Long Distance Extraction in a TAG Gram-
mar. In M. Baltin and A. Kroch, editors, Alternative Conceptions of Phrase Structure.
University of Chicago Press.

Alexander Krotov, Mark Hepple, Robert Gaizauskas, and Yorick Wilks. 1998. Compacting

Workshop on TAG and Related Frameworks (TAG+4).

Seth Kulick. 2000. Constraining Non-Local Dependencies in Tree Adjoining Grammar:

The University of Chicago Press.

Y. Liu, Q. Tan, and X. Shen. 1993. Segmentation Standard for Modern Chinese Informa-
tion Processing and Automatic Segmentation Methodology.

ACL-1995.

James Rogers and K. Vijay-Shanker. 1994. Obtaining Trees from Their Descriptions: An Application to Tree Adjoining Grammars. Computational Intelligence, 10(4).

