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Abstract

In order to extend Information Processing technol-
ogy to new languages, we are developing a sys-
tem that automatically generates an LTAG grammar
from an abstract specification of a language. Our
approach uses language-independent specifications
that can be tailored to specific languages by elic-
iting linguistic information from native informants,
thus partially automating the grammar development
process.

1 Introduction

Lexicalized Tree Adjoining Grammar (LTAG) is a
tree-rewriting formalism. It is more expressive than
a context-free grammar (CFG), and therefore a bet-
ter formalism for representing various phenomena in
natural languages. In the last decade, it has been
applied to various NLP tasks such as parsing (Srini-
vas, 1997), machine translation (Palmer et al., 1998),
information retrieval (Chandrasekar and Srinivas,
1997), generation (Stone and Doran, 1997; McCoy et
al., 1992), and summarization applications (Baldwin
et al., 1997), and substantial grammars now exist for
French, German, Japanese and English. However,
there is a substantial development time required for
LTAGs, lessening their appeal for languages of low
diffusion, such as Portuguese.

In this paper we present a system developed to
generate an LTAG automatically from an abstract
specification of a language. In addition to pro-
viding obvious benefits with respect to performing
maintenance and ensuring consistency, we believe
this approach has exciting potential for partially au-
tomating the LTAG development process. We have
found that the abstract specification that lends it-
self most readily to automatic tree generation also
corresponds closely to a division into language inde-
pendent and language dependent properties.

2 LTAG Development System

LTAGs are based on the Tree Adjoining Grammar
(TAG) formalism developed by Joshi, Levy, and
Takahashi (Joshi et al., 1975). An important char-
acteristic of an LTAG is that it is lexicalized, i.e.,

each lexical item anchors one or more tree struc-
tures that encode its subcategorization information.
Trees with the same canonical subcategorizations
are grouped into tree families. Figure 1 shows a
few trees in the tree family for a verb such as break
in English. Each individual tree includes two types
of grammatical information: one is the subcatego-
rization frame: break takes one argument in tree
1(a)-(c), and two in tree 1(d)-(e); the other type
of information is the transformational information:
tree 1(a) and 1(d) share the structure for declara-
tive, tree 1(b) and 1(e) for wh-movement, and 1(c)
and 1(f) for relativization.

As the size of the grammar grows, developing and
maintaining those trees by hand faces two major
problems: first, the reuse of tree substructures in
many elementary trees creates redundancy. To make
certain change of the grammar, all the related trees
have to be manually checked. The process is ineffi-
cient and can not guarantee the consistency(Vijay-
Shanker and Schabes, 1992);! second, the underlying
linguistic information is not expressed explicitly. As
a result, from the grammar itself (i.e. a set of thou-
sands of trees), it is hard to grasp the characteristics
of a particular language, to compare languages, and
to build a grammar for a new language given existing
grammars for other languages.

Our system aims at solving those problems. It re-
quires the grammar developers to state the linguistic
information explicitly and assumes the syntactic in-
formation of a language can be represented in three
types of specifications: subcategorization frames,
lexical redistribution rules (LRRs), and tree descrip-
tions which are called blocks in our system. Blocks
are further divided into subcategorization blocks and
transformation blocks according to their functions.
To produce the grammar, our system takes those
specifications as the input and combines them to au-
tomatically generate the elementary trees.

Figure 2 shows the framework of the system. The
input to the system are marked by * and in bold

IFor a discussion of other approaches that address this
issue, (Becker, 1994; Evans et al., 1995; Candito, 1996), see
(Xia et al., 1998).
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Figure 1: Some elementary trees that break anchors
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Figure 2: The framework of the system

font. The output are elementary trees, marked as
(a)-(f), corresponding to the ones in Figure 1. Con-
ceptually, each verb has a lexical semantic represen-
tation, which lists the thematic roles that the verb
has. Those roles can be realized in various ways in
syntax. For example, the theme can be realized as
the subject (e.g. The window broke) as in the first
subcategorization frame, or the object (e.g. Mike
broke the window) as in the second subcategorization
frame. Because it is not clear what kind of the lex-
ical semantic representation is appropriate for each
verb, our current system does not include that part.
Instead, we assume there is a canonical subcatego-
rization frame, and other frames can be derived from
it by applying Lexical Redistribution Rules(LRRs).

@@ (NP1 V) (b) (NPO V NP1)
Figure 3: Two subcategorization frames that break
anchors

(NPL V) =>(NPO V NP1)

Figure 4: The ergative LRR

2.1 Input to the System: Three Types of

Specifications

Three types of specifications are defined more pre-
cisely below.

2.1.1 Subcategorization Frames:

Subcategorization frames specify the category of its
anchor, the number of its arguments, each argu-
ment’s category and other information such as fea-
ture equations.

2.1.2 Lexical Redistribution Rules (LRRs):

Lexical Redistribution Rules (LRRs) specify the re-
lations between subcategorization frames. An LRR
is a pair of subcategorization frames. It can be seen
as a function that takes a subcategorization frame as
the input and generates a new frame as the output.
For example, The LRR shown in Figure 4 creates
the subcategorization frame (NP V NP) when it is
applied to the frame (NP V).

2.1.3 Blocks

Blocks are tree descriptions specified in a logical lan-
guage patterned after (Rogers and Vijay-Shankar,
1994). A block specifies categorical labels of nodes,
feature value assignments, and structural relation-
ships between nodes. There are four types of struc-
tural relations: dominance, immediate dominance
(i.e. parent), strictly dominance, and precedence.
Figure 5 and 6 are some blocks used in English



NPRoot('NP')

ExtRoot(’S')
~
NewSite URoot(‘ S) NPFoot('NP') EXtRo0(('S)
H NewSite URoot('S')
ExtSite
| ExtSite

e I
€

(a) Extraction and wh-movement (b) Relative Clause

Figure 6: Transformation block for extraction

XTAG grammar.?

Blocks are very similar to elementary trees except
that the former can leave some information unspec-
ified. For example, when x dominates y, the number
of intermediate nodes between z and y is unspeci-
fied. Elementary trees can be seen as a combination
of blocks where all the structural relations between
each pair of nodes are totally specified.

Blocks are divided into two types according to
their functions: subcategorization blocks and trans-
formation blocks. The former describes the struc-
tural configuration incorporating the various argu-
ments in a subcategorization frame in their canoni-
cal positions.® Some of the subcategorization blocks
used in the development of the English grammar are
shown in Figure 5. For example, the is_main_frame
block describes the spine of a clause. While in
most cases the verb will be the anchor (specified
in main_anchor_is_verb) , is_main_frame does not
equate the anchor with the verb. This allows for
the analysis used in the Penn English LTAG where
a noun or an adjective can serve as an anchor in the
tree for small clauses.

The transformation blocks are used for various
transformations such as wh-movement.? Figure 6(a)
depicts our representation of phrasal extraction.
This can be specialized to give the blocks for wh-
movement, relative clause formation, etc. For ex-
ample, relative clause, as in Figure 6(b), is defined
by further specifying that the ExtRoot modifies an
NP node. wh-movement is the same as the phrasal
extraction except the node NewSite has a +wh fea-

2In order to focus on the use of tree descriptions and to
make the figures less cumbersome, we show only the struc-
tural aspects and do not show the feature specification. Dot-
ted lines, solid lines and dash-dotted lines denote dominance,
immediate dominance and strictly dominance relation respec-
tively. The arc between nodes shows the precedence order of
the nodes are unspecified. The nodes’ categories are enclosed
in parentheses.

3Here canonical positions roughly corresponds to the po-
sitions in deep structure in GB-theory.

4These transformation blocks do not encode rules for mod-
ifying trees, but rather describe the properties of a particular
syntactic construction.

ture, which is not shown in the Figure 6(a).

2.2 Tree Generation from the Specification

Once we introduce the notion of LRRs, a tree family
is defined as the set of elementary trees with the
same “canonical” subcategorization frame.> Given
a subcategorization frame f and sets of LRRs and
blocks, to generate a tree family for that frame, the
system takes several steps:

1. Derive subcategorization frames :
Apply sequences of LRRs to f and generate
a set F'set of the related subcategorization
frames.

2. Select subcategorization blocks :
For each frame f; in Fset, select a set of sub-
categorization blocks SBset;.

3. Combine with transformation blocks :
For each subset T'Bset; of transformation
blocks,” combine it with SBset; to form a new
set of blocks Bset; ;.

4. Generate trees :
For each Bset; ;, generate a set of elementary
trees that are consistent with the tree descrip-
tion in Bset; ;. If there are more than one tree,
choose the ones with the minimal number of
nodes.

Given the frame (NP V) in Figure 3(a), the LRR
in Figure 4, and blocks in Figure 5 and 6, the system
will generate the same trees as the ones in Figure 1
plus the trees in Figure 7. For instance, the trees in
Figure 1(f) and 7(b) are automatically generated by
applying the LRR to the frame (NP V) to get the
frame in 3(b), then choosing the subcategorization
blocks in Figure 5, and next combining them with
the relative-clause block in 6(b), as shown Figure 2.

5As mentioned before, if we introduce the notion of lexical
semantic representation, we don’t have to assume the exis-
tence of a canonical subcategorization frame. Rather, we can
define tree family as the set of elementary trees with the same
underlying lexical semantics representation.

6The system uses a default mapping from the information
in the frame to the name of subcategorization blocks. For ex-
ample, if the anchor in the frame takes an NP subject, the sys-
tem will select the blocks pred_has_subject and subject_is-NP.
The default mapping can be easily modified.

"Theoretically, the system can try all the the subsets
of transformational blocks. However, some transformation
blocks are incompatible in that the combinations of them will
fail to produce any elementary tree. For example, an ele-
mentary tree may use the block for wh-movement or relative-
clause, but it will never use both at the same time. The sys-
tem can rule out those combinations in tree generation stage,
but for the purpose of efficiency, instead of letting the system
try those combinations and fail, the grammar developer can
partition the transformation blocks into several parts such as
the blocks in the same part are incompatible. The system will
take the partition and only try the subsets where each block
in the subset comes from different parts.
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English Chinese

LRRs passive existential-const
dative-shift causative
ergative etc. | ergative

trans blocks wh-question | topicalization
relativization | relativization
gerund etc arg-drop etc.

# LRRs 6 8

# subcat blocks | 34 24

# trans blocks 8 15

# tree families 43 35

# trees 638 482

Table 1: Major features of English and Chinese grammars
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Figure 7: Trees generated by the system besides the
ones in Figure 1

2.3 Building Grammar

We have used our system to develop grammars for
English and for Chinese. The major features of these
two grammars are summarized in Table 1.

The specification of LRRs and blocks in our sys-
tem highlight the similarities and differences be-
tween languages. For example, both languages have
relative-clauses, imperatives, etc. As a result, both
grammars have similar LRRs or blocks for these
phenomena. For phenomena that occur in one lan-
guage, only that language will have the correspond-
ing LRRs or blocks, such as the argument-drop block
in Chinese, and the dative-shift LRR and the gerund
block in English.

3 Eliciting language specific
information

Section 2 described the procedure used to automat-
ically build a grammar by combining subcategoriza-
tion frames, LRRs, and blocks.® It presumes that
the user provides this information to the system.
Defining such information from scratch for a new
language is easier than building all the elementary
trees by hand, but it is still a difficult and time-
consuming task. Bracketed corpora such as Penn
Treebank(Marcus et al., 1993) can be used for ex-
tracting those information if such corpora exist, as
shown in (Xia, 1999), but quite often such corpora
are not available for low diffusion languages.

A central assumption in the field of formal syn-
tax is there exists a universal grammar, and the dif-
ference among languages can be captured by differ-
ent setting of a parameter list. Based on this as-
sumption, We have extended our system to include
language-independent structures. Our goal is to
couple these language-independent structures with
an interface which elicits language-dependent details
from a native speaker. These language-dependent
details instantiate certain parameter settings, and

8An LTAG may also include trees for modification and
conjunction. Our system can easily produce those trees from
other forms of abstract specification. This is omitted from
the paper due to space limitations.
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thus generate blocks tailored to the specific lan-
guage. The grammar developer may still need to add
additional details to these blocks, but the develop-
ment time should be shortened significantly. In this
section, we will illuminate the way how transforma-
tion blocks are built by this process. Other kinds of
specifications can be elicited similarly.

To build a transformation block, we start with
the definition of the corresponding phenomenon,
which is language-independent. For example, rela-
tive clause can be roughly defined as an NP is modi-
fied by a clause in which one constituent is extracted
(or co-indexed with an operator). We build a tree
description (for clarity, we will call it meta-block)
according to the definition. Notice the exact shape
of the meta-block often depends on the theory. For
example, both meta-blocks in Figure 8 are consis-
tent with the definition of relative clause, the former
follows the way that Penn XTAG group treats the
complementizer(COMP) as adjunct, the latter fol-
lows more closely to the GB theory where COMP is
the functional head of CP. The meta-block must be
general enough to be language-independent. Next,
the system will recognize parts in the meta-block
that are not fully specified and prompt the user for
answers. Then, add those information to be meta-
block so it is tailored to our target language. Meta-
blocks plus language-specific information form our
transformation blocks for that language.

For example, Figure 8 shows the possible meta-
blocks for relative clauses. Table 2 lists the ques-
tions about those meta-blocks and the answers in
four languages. In relative clause, relative pro-
noun(RelPron) occupies the position marked by
NewSite. If we start with the meta-block in 8(b),
the second part of the questions under double lines
should also be used. The corresponding blocks are
shown in Figure 9 if we start with the meta-block in

Figure 8(a).?

Several points are worth noting. First, the setting
of some parameters follows from higher-level gener-
alizations and some pairs of parameters are related.
For example, the position of NPFoot follows from
the head position in that language. Korean is a SOV
language, so we can infer the position of the NPFoot
without asking native speakers. Second, the setting
of the parameters provides a way of measuring the
similarities between the languages. According to the
settings, Chinese is more similar to Korean than to
English.

A word of caution is also in order. Both the con-
struction of the meta-block and the correct answers
to the questions require some degree of linguistic ex-
pertise. Also, certain language specific details can
not be easily expressed as yes-no questions. For ex-
ample, the answers marked with * mean they are
true only under certain conditions which need more
specification, e.g. in English, COMP and RelPron
can be both dropped only when the relativized NP
is not the subject.

4 Conclusion

In summary, we have presented an LTAG develop-
ment system that shows interesting promise with re-
spect to semi-automating the grammar development
process. The LTAG generation is driven by an ab-
stract specification of different types of linguistic in-
formation: subcategorization frames, blocks and lex-
ical redistribution rules. An appropriate elicitation
process can glean this linguistic information from the
user, thus allowing the system to semi-automatically
begin the definition of the abstract specification, and
actively supporting the user during the development
process. The abstract level of representation for the
grammar both necessitates and facilitates an exam-
ination of the linguistic assumptions. This can be
very useful for gaining an overview of the theory that
is being implemented and exposing gaps that remain
unmotivated and need to be investigated. The gram-
mar development then becomes an interactive pro-
cess between the system and the language expert,
with the system assisting in the precise definition of
the linguistic categories, and then highlighting areas
that need further definition. Once an LTAG is built
by the system, all the IP technologies developed for
LTAG become readily available.

The system has benefits building translation tools
as well as grammar development, since the language
dependent properties of a language will be clearly

9The blocks for relative clause in English and Portuguese
are the same as shown in Figure 9(a) and 9(b) but English
and Portuguese differ in one aspect: when the ExtSite is not
the subject, in English, both COMP and NewSite are op-
tional, but in Portuguese, one of them must be present. The
difference is captured by features which are not shown in the
figure.



English | Portuguese | Chinese | Korean
position of NPFoot? left left right right
overt wh-movement? yes yes no no
has overt RelPron? yes yes no no
RelPron can be dropped? yes* yes* - -
position of COMP? left left right suffix
COMP can be dropped? yes* yes* yes* no
COMP and RelPron co-occurs? no no - -
COMP and RelPron both be dropped? | yes* no - -

Table 2: Settings for relative clauses in four languages
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(a) English and Portuguese
with Relative Pronoun

NPRoot(’ NP)

ExtRoot('S')

€
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(c) Chinese and Korean

Figure 9: The blocks for relative clauses in four languages

specified, and can be contrasted with those of other
languages. By focusing on syntactic properties at
a higher level, our approach allows new opportuni-
ties for the investigation of how languages relate to
themselves and to each other.
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