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Abstract

In this paper, we report our work on extracting lexi-
calized tree adjoining grammars (LTAGs) from par-
tially bracketed corpora. The algorithm first fully
brackets the corpora, then extracts elementary trees
(etrees), and finally filters out invalid etrees using
linguistic knowledge. We show that the set of ex-
tracted etrees may not be complete enough to cover
the whole language, but this will not have a big im-
pact on parsing.

1 Introduction

Lexicalized Tree Adjoining Grammar (LTAG) is a
tree-rewriting formalism. It is more expressive than
a context-free grammar (CFG),! and therefore a bet-
ter formalism for representing various phenomena in
natural languages. In the last decade, it has been
applied to various NLP tasks such as parsing (Srini-
vas, 1997), machine translation (Palmer et al., 1998),
information retrieval (Chandrasekar and Srinivas,
1997), generation (Stone and Doran, 1997; McCoy
et al., 1992), and summarization applications (Bald-
win et al., 1997). A wide-coverage LTAG for a par-
ticular natural language often contains thousands of
trees and takes years to build.

There has been work on extracting CFGs (Shi-
rai et al., 1995; Charniak, 1996; Krotov and oth-
ers, 1998) and lexicalized tree grammars (Neumann,
1998; Srinivas, 1997) from bracketed corpora. In
this paper, we propose a new method for learning
LTAGs from such corpora.?

2 Penn Treebank and LTAG
2.1 Penn Treebank

In this paper, we use the English Penn Treebank as
our bracketed corpus, which includes about 1 million

* The author wishes to thank Chung-hye Han, Aravind
Joshi, Martha Palmer, Carlos Prolo, Anoop Sarkar, and three
anonymous reviewers for many helpful comments.

LLTAG is more expressive than CFG formalism both in
weak and strong generative capacity, e.g. it can handle cross
dependency elegantly.

2A related work is (Srinivas, 1997), but its goal is not to
learn a new LTAG but to extract the useful information, such
as dependency and frequency of trees, for an existing LTAG.
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Figure 1: A simple example

words from Wall Street Journal annotated in Tree-
bank II style (Marcus et al., 1994). Its tagset has 85
syntactic labels — 48 POS tags, 27 syntactic category
tags such as NP for noun phrase, 10 tags for empty
categories such as *T* for trace — and 30 function
tags(e.g. SBJ for the subject in surface structure).
Each bracket is labeled with one syntactic category,
up to four function tags and reference indices if nec-
essary, cf. (Santorini, 1990) and (Bies et al., 1995).
Figure 1 is a simple example. We will use this exam-
ple throughout the paper. The meaning of the tags
used in this example are listed in Table 1.

2.2 Basics of LTAGs

LTAGs are based on the Tree Adjoining Grammar
(TAG) formalism developed by Joshi, Levy, and
Takahashi (Joshi et al., 1975; Joshi and Schabes,
1997). The primitive elements of the LTAG formal-
ism are elementary trees. Each elementary tree is
associated with at least one lexical item (called the
anchor of the tree) on its frontier, and the tree pro-
vides extended locality over which the syntactic and
semantic constraints can be specified.



ADVP | adverb phrase

NP noun phrase

PP preposition phrase

VP verb phrase

S sentence

CC coordinating conjunction
IN preposition

JJ adjectives

MD modal

NN noun, singular or mass
NNS noun, plural

PRP pronoun

RB adverb

VB verb, base form

VBN verb, past participle
VBP verb, non-3rd singular present
, comma

. period

7 quotation mark

DTV dative

SBJ subject

TMP temporal

Table 1: Treebank tags which appear in this paper
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Figure 2: The substitution operation

There are two types of elementary trees: initial
trees and auxiliary trees. Each auxiliary tree has
a unique leaf node, called the foot node, which has
the same label as the root. In both types of trees,
leaf nodes other than anchors and foot nodes are
substitution nodes.

Elementary trees are combined by two operations:
substitution and adjunction. In the substitution op-
eration (Figure 2), a substitution node in an ele-
mentary tree is replaced by another elementary tree
whose root has the same label as the substitution
node. In an adjunction operation (Figure 3), an aux-
iliary tree is inserted into an initial tree. The root

Y

Figure 3: The adjunction operation
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Figure 4: Elementary trees and the derived tree for
I ve got limited production

and the foot nodes of the auxiliary tree must match
the node label at which the auxiliary tree adjoins.
The resulting structure of the combined elementary
trees is called a derived tree.

In Figure 4, al, a2 and a3 are initial trees an-
chored by got, I and production respectively. 81 and
(2 are auxiliary trees for verb we and adjective lim-
ited. Foot and substitution nodes are marked by =,
and | respectively. To parse the sentence ['ve got
limited production, a2 substitutes at NPy in al, 52
adjoins to the NP node in a3, then the whole tree
substitutes into the N P, node in a1, meanwhile, 51
adjoins to the VP node in a1, thus, forming the de-
rived tree 7. The process is denoted by the dotted
lines between trees.

For the sake of clarity, from now on, we will call
the bracketed structures in the Penn Treebank ttrees,
and the elementary trees in LTAGs etrees.

2.3 A special form of LTAGs

The LTAG formalism does not impose constraints on
the shapes of the elementary trees as long as they
satisfy the requirements mentioned in Section 2.2.
As a result, given a corpus C, there are numerous
LTAGs each of which covers C'. An LTAG G is said
to cover a corpus C' if each ttree in C' can be gener-
ated by combining the etrees in G with substitution
and adjunction operations.

To ensure the grammar extracted is compact and
linguistically sound, we require that the etrees in the
grammar have one of the following forms, as shown
in Figure 5:3

e spine-etree: the anchor of the etree is X, which

3This description is similar to the rules in X-bar theory:
a spine-etree can be seen as a result of combining the rules
Xm — ykxm=1"__ X! - XZP in one tree; a mod-etree
corresponds to the rule W% — W2X™ and X™ is further
expanded to include its arguments.
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Figure 5: The three forms that extracted etrees
should belong to

projects to X1, X2, all the way to the root X ™.
Note: each X*? and its parent X*t! have differ-
ent labels, e.g. VB and VP. At each level, the re-
lation between X and its sisters is a predicate-
argument relation. A spine-etree is either an
initial tree or a predicative auxiliary tree.

e mod-etree: the root of the etree has two chil-
dren, one is a foot node with the same label
W4, the other node X™ is the root of a spine-
etree whose head X is the anchor of the whole
mod-etree. X™ is a modifier of W?. A mod-
etree is always an auxiliary tree.

e conj-etree: The anchor of the etree is a conjunc-
tion. It conjoins two components X™ (one of
them is a foot node, the other is a substitution
node.) and the root is also labeled as X™.* A
conj-etree is always an auxiliary tree.

In Figure 4, al-a3 are spine-etrees, 81 and 82 are
mod-etrees. From now on, etrees in the paper refers
to elementary trees with one of the three forms just
mentioned.

3 Extracting LTAG from the
Treebank

The algorithm for grammar extraction can be di-
vided into three steps: fully bracket the ttrees, ex-
tract etrees and filter out invalid etrees.

3.1 Fully bracketing the ttrees

The ttrees from Penn Treebank are partially brack-
eted: the head/argument/modifier distinction is not
marked explicitly, and arguments and modifiers for
the same head are both sisters of the head. In the
LTAG, arguments appear in spine-etree and modi-
fiers in mod-etree, and each mod-etree takes exactly
one modifier. To account for this difference, we need

4Coordination of different syntactic categories can be han-
dled similarly. An alternative to handle coordination is to use
mod-etrees: treat one conjoined X" as the foot node, expand
the other X™ and mark the conjunction as a substitution
node. The algorithm in Section 3 can be easily modified to
accommodate this approach.

to first fully bracket the ttrees. To do that, we start
from the root R of the ttree:

Step A: Choose the head-child® hc according to a
head percolation table. The table lists the pos-
sible head-child for each syntactic category (b-
tag for short), e.g. the VP’s head-child can be
VBN, VB, VP, etc. A similar method has been
used in (Magerman, 1995; Collins, 1997) among
others.

Step B: Decide what the relationship between hc
and its sisters is by comparing the b-tags of hc
and the root R, and check whether one of R’s
children is a conjunction.

Step C: based on the result of step B, go to one of
the following;:
(1) predicate-argument relation:
For each sister « of he, fully bracket the sub-
tree rooted at x, then decide whether z is an
argument or a modifier of hc according to the
argument table and tagset table.%
If in addition to sisters which are arguments, hc
also has sisters which are its modifiers, insert an
intermediate node R* with R’s b-tag as the new
root of hc and its arguments, then insert m — 1
intermediate nodes with R’s b-tag between R*
and R, as in (2).
(2) modification relation:
Suppose hc has m sisters (all of them are modi-
fiers), insert m—1 nodes with R’s b-tag between
hc nd R so that each level has exactly one mod-
ifier.
(3) coordination relation:
Use conjunctions to partition the non-
conjunction children into m groups. If each
group has more than one component, insert a
new node with R’s b-tag as the new root of
the group. Fully bracket each group. If m is
larger than 2, insert m — 2 intermediate nodes
with R’s b-tag between R and its children so
that each level has exactly 2 groups plus one
conjunction.

The output” is shown in Figure 6. The nodes in-
serted by the algorithm are in bold font.

5The head-child differs from the head in X-bar theory in
that the head of X™ is X, while its head-child can be X, X1,
e w

6The argument table lists the types of the arguments that
each head can take, e.g. VB can take NP, PP and S as ar-
guments. Tagset table specifies whether certain function tags
mark modifiers or arguments, e.g. phrases with -TMP are
modifiers, those with -DTV are arguments. z is hc’s argument
if #’s b-tag is among the possible types of hc’s arguments and
z’s function tag does not indicate it is a modifier.

"The bracketing process may eliminate the potential am-
biguity which exists in the original trees, but in most cases,
it will not affect the extracted etrees. In this step, we also
remove the punctuations.



((S(S (NP-SBJ(PRPI))
(VP (VBP've)
(VP (VBN got)
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Figure 6: The fully bracketed structure for the ex-
ample in Figure 1

3.2 Building etrees

Once the ttrees are fully bracketed, the extraction al-
gorithm is straightforward.® Let’s first define a few
terms. A head-path starting from a node R in a ttree
is the path from R to a leaf node where each node ex-
cept R is the head-child of its parent in the ttree. A
node on the head-path is called a link node if its b-tag
is the same as the b-tag of its head-child.? The ex-
traction process involves copying nodes x from ttree
to etree. Let’s denote the copy of x as z*.1% To build
a set of etrees for a ttree, we start from the root R
of the ttree T":

Step A: Choose the head-child hc and decide the
relation between hc and its sisters, as mentioned
in the previous section.

Step B: Based on the result of step A, go to one of
the following according to the relation.
(1) predicate-argument relation (c.f. Figure
5(a)): Find a head-path p from R to a leaf node
A in the T'. Create a spine-etree T in which
the copy of the nodes on p is the spine (R* is
the root, A* is the anchor of Ts.). Copy the
children (nodes only, not the whole subtrees) of
each non-link nodes z. In T, merge z* with its
head-child if z is a link node on p, and mark all
leaf nodes except A* as substitution nodes.

Repeat A-B for x in téree if x is a link node on
por z* is a substitution node in T%.

8Empty categories require special treatment. Due to the
space limitation, we can not elaborate our strategy in this
paper. The main idea is to use co-indices between the traces
and the antecedents on the ttree to group etrees together (i.e.
multi-component LTAGs).

9Fach link node and its children form a recursive structure
that will map to mod-etrees or conj-etrees. When we build
spine-etrees, those structures should be factored out.

10Fach node in ttree may correspond to up to two nodes in
two different etrees. We will not get into the details here.
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Figure 7: The extracted etrees from the ttree in Fig-
ure 6.

(2) modification relation (c.f. Figure 5(b)):

At this stage, hc should have only one sister,
call it mod. Create a mod-etree T, in which
R* is the root, hc* is the foot node, mod* is
he’s sister. Find a head-path p from mod to
leaf node A in the ttree. Build an etree T from
the path as stated in (1). In Tj,, replace mod*
with T.

Repeat step A-B for x in ttree if x is a link node
on p or z* is a substitution node in T.

(8) coordination relation (c.f. Figure 5(c)):

At this stage, he should have a conjunction sis-
ter conj and another sister coord. Create a
conj-etree T, in which R* is the root, hc* is
the foot node, conj* is the anchor, and coord*
is the substitution node.

Repeat step A-B for coord.

Figure 7 shows the etrees extracted from the ttree
examples. The numbers inside the parentheses are
the counts of the etrees.

3.3 Filter out invalid etrees

For a large corpus like Penn Treebank, annotation
errors are inevitable. The errors in ttrees will result
in wrong etrees. An etreeis called invalid if it doesn’t
satisfy some linguistic requirement. Right now, we
check whether modifier-modifiee pairs in mod-etrees
and parent-headchild and head-argument pairs in
spine-etrees are allowed in that language.!! Among
the 14 etrees in Figure 7, tree #9 will be correctly

1 One extra table is required for this task which lists possi-
ble modifiers for each b-tag. To check parent-headchild pairs,
we can use head percolation table.



ruled out by our filter because ADVP can not modify
PP from the right.'?

An alternative is to use a threshold to throw away
infrequent trees. This approach has two drawbacks:
first, it will throw away some infrequent but valid
etree templates; second, it can not rule out frequent
but invalid etrees. In fact, 11.7% of invalid etree tem-
plates occur 10 or more times in the corpus. For ex-
ample, one of such invalid etrees occurs 1832 times.
In that etree, prepositions modify numbers, such as
about modifies 160 in the tiree

(NP (QP (IN about) (CD 160))
(NNS workers))

The etree is created from the ttree because in this
context about is often mis-tagged as a preposition in
the Treebank. It should be tagged as an adverb.

4 The Experiment

We ran our algorithm on the Penn Treebank II. Be-
cause the number of etrees is directly related to the
number of words in the corpus, we count the num-
ber of etree templates™® instead.The results are listed
in Table 2. LTAG G; is the grammar extracted
from the Treebank. Gy uses the original partially
bracketed Treebank, and G; and G use the fully
bracketed corpus. '* The etrees in G} uses Tree-
bank’s tagset which has 72 non-punctuation tags,
while G uses a reduced tagset (44 non-punctuation
tags) where some tags such as VB, VBN, VBP are
merged into a single tag. Each occurrence of a tem-
plate in the corpus is counted as a template token.
The table shows that fully bracketing the ttrees be-
fore extracting etrees reduce the number of extracted
templates tremendously. Using a smaller tagset fur-
ther reduces that number. Notice that the num-
ber of valid templates actually decreases without full
bracketing because many templates extracted from
partial bracketed corpus will have both arguments
and modifiers as the sisters of predicates, which will
be judged as invalid by our filter.

2Tree #9 and #10 were created because the word then
was incorrectly tagged as RB. In this context, it is a temporal
noun. Notice an error in {tree may cause errors in multiple
etrees.

I31f we abstract away from the individual lexical items in
each elementary tree, we get an elementary tree template.
Each template indicates where the anchor of that tree will
be instantiated. Each etree is a (lexical-item, etree template)
pair. e.g. etree #1, #6 and #7 in Figure 7 share the same
etree template.

14 Neumann (Neumann, 1998) converts sentences in section
02-04 in Penn Treebank to a lexicalized tree grammar. He
does not make argument/adjunct distinction, and therefore he
does not factor out the recursive structures in the elementary
trees. In that sense, his approach is similar to the second step
of our algorithm (c.f. Section 3.2). Not surprisingly, his result
(11979 elementary tree templates from about 8.8% of ttrees
in Treebank) is similar to the size of in Go (34307 templates
from the whole corpus).

7000 T
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3000 - 1
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0 20 80 100
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Figure 8: The growth of etree templates

Two questions come to mind. First, from the
grammar developer’s viewpoint, is the set of ex-
tracted templates complete enough to cover the lan-
guage? The answer is No. Figure 8 shows the
number of templates converges slowly as the size of
the corpus grows, implying there are many unseen
templates. On the other hand, interestingly, out of
48889 ttrees, 2286 (4.67%) can produce all the valid
templates.!® This implies the size of corpus needed
for grammar extraction can be greatly reduced if we
could find the right ttrees.

We have just showed that the set of templates
extracted from one million word is not complete
enough to cover the language, the next question is:
how often do the unseen templates occur in new
data? To answer the question, we calculate the per-
centage of (word, template) pairs in Treebank sec-
tion 23 which do not occur in section 2-21.'6 In
the unseen pairs, the words can be unseen (uw) or
seen(sw), similarly, the templates can be unseen (ut)
or seen (st), so there are four combinations. (sw, st)
means both words and templates have been seen in
section 2-21, but not the pair. The percentage of
each type is listed in Table 3.3. We also list the
percentage of unseen (word, POS tag) pairs in same
section for comparison. The table shows the per-
centage of words with unseen templates is very low,
0.27% for GG; and 0.09% for G2, i.e. unseen tem-
plates represent only 3.6% of new pairs in G, and
1.5% in G. So the fact that the extracted template
set is incomplete does not seem to have a big impact
on parsing. Notice that the percentage of (sw, st)
is much higher than (uw, ut) plus (sw, ut), imply-
ing some type of smoothing over sets of templates
(e.g. the notion of tree families in XTAG English

15We just count the the ttrees that produce the first occur-
rence of etrees as the extraction process goes. If we restrict
the length of ttrees to be less than 31 words, 2308 such ttrees
can generate all but 35 valid templates.

16Geveral state-of-art parsers(e.g.  (Collins, 1997)) are
trained on section 2-21, and tested on section 23.



# of etree # of valid etree | % of valid % of valid
templates(types) | template types | template types | template tokens
LTAG Gy | 34307 1157 3.37% 19.5%
LTAG G, | 6099 2757 45.2% 96.1%
LTAG G- | 3014 895 29.7% 96.2%
Table 2: Eltree templates extracted from the Treebank
# of tags | (sw, st) | (uw, st) | (sw, ut) | (uw, ut) | total
POS tags | 48 0.44% 2.47% 0 0 2.91%
LTAG G, | 6099 4.68% 2.45% 0.25% 0.02% 7.40%
LTAG G, | 3014 3.42% 2.46% 0.08% 0.01% 5.97%

Table 3: The types of unknown (word, template) pairs in Treebank section 23

grammar(XTAG-Group, 1995)) is desirable.

5 Conclusion

We have outlined an algorithm for extracting lexical-
ized tree adjoining grammars from partially brack-
eted corpora. This approach has a few advantages
over hand-crafted grammars: First, it requires lit-
tle human effort — the head percolation table etc.
should take at most a couple of hours to build —
if bracketed corpora are available. Second, the ex-
tracted grammar covers the corpus, i.e. the corpus
can be seen as a collection of derived trees for the
grammar, and therefore the corpus can be used to
train statistical LTAG parsers directly.

The number of templates extracted from the Tree-
bank converges slowly, implying there are many new
templates outside the corpus. On the other hand,
4.67% of the Treebank generates the same number
of valid templates as the whole Treebank. This im-
plies that if there is no bracketed corpus available
and we want to build a new one, the sampling of
the sentences in the corpus is crucial if our goal is to
generate a wide-coverage grammar from it.
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