
Extracting Tree Adjoining Grammars from Bracketed CorporaFei Xia�Department of Computer and Information ScienceUniversity of Pennsylvania3401 Walnut Street, Suite 400APhiladelphia PA 19104, USAfxia@linc.cis.upenn.eduAbstractIn this paper, we report our work on extracting lexi-calized tree adjoining grammars (LTAGs) from par-tially bracketed corpora. The algorithm �rst fullybrackets the corpora, then extracts elementary trees(etrees), and �nally �lters out invalid etrees usinglinguistic knowledge. We show that the set of ex-tracted etrees may not be complete enough to coverthe whole language, but this will not have a big im-pact on parsing.1 IntroductionLexicalized Tree Adjoining Grammar (LTAG) is atree-rewriting formalism. It is more expressive thana context-free grammar (CFG),1 and therefore a bet-ter formalism for representing various phenomena innatural languages. In the last decade, it has beenapplied to various NLP tasks such as parsing (Srini-vas, 1997), machine translation (Palmer et al., 1998),information retrieval (Chandrasekar and Srinivas,1997), generation (Stone and Doran, 1997; McCoyet al., 1992), and summarization applications (Bald-win et al., 1997). A wide-coverage LTAG for a par-ticular natural language often contains thousands oftrees and takes years to build.There has been work on extracting CFGs (Shi-rai et al., 1995; Charniak, 1996; Krotov and oth-ers, 1998) and lexicalized tree grammars (Neumann,1998; Srinivas, 1997) from bracketed corpora. Inthis paper, we propose a new method for learningLTAGs from such corpora.22 Penn Treebank and LTAG2.1 Penn TreebankIn this paper, we use the English Penn Treebank asour bracketed corpus, which includes about 1 million� The author wishes to thank Chung-hye Han, AravindJoshi, Martha Palmer, Carlos Prolo, Anoop Sarkar, and threeanonymous reviewers for many helpful comments.1LTAG is more expressive than CFG formalism both inweak and strong generative capacity, e.g. it can handle crossdependency elegantly.2A related work is (Srinivas, 1997), but its goal is not tolearn a new LTAG but to extract the useful information, suchas dependency and frequency of trees, for an existing LTAG.
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Figure 1: A simple examplewords from Wall Street Journal annotated in Tree-bank II style (Marcus et al., 1994). Its tagset has 85syntactic labels { 48 POS tags, 27 syntactic categorytags such as NP for noun phrase, 10 tags for emptycategories such as *T* for trace { and 30 functiontags(e.g. SBJ for the subject in surface structure).Each bracket is labeled with one syntactic category,up to four function tags and reference indices if nec-essary, cf. (Santorini, 1990) and (Bies et al., 1995).Figure 1 is a simple example. We will use this exam-ple throughout the paper. The meaning of the tagsused in this example are listed in Table 1.2.2 Basics of LTAGsLTAGs are based on the Tree Adjoining Grammar(TAG) formalism developed by Joshi, Levy, andTakahashi (Joshi et al., 1975; Joshi and Schabes,1997). The primitive elements of the LTAG formal-ism are elementary trees. Each elementary tree isassociated with at least one lexical item (called theanchor of the tree) on its frontier, and the tree pro-vides extended locality over which the syntactic andsemantic constraints can be speci�ed.



ADVP adverb phraseNP noun phrasePP preposition phraseVP verb phraseS sentenceCC coordinating conjunctionIN prepositionJJ adjectivesMD modalNN noun, singular or massNNS noun, pluralPRP pronounRB adverbVB verb, base formVBN verb, past participleVBP verb, non-3rd singular present, comma. period" quotation markDTV dativeSBJ subjectTMP temporalTable 1: Treebank tags which appear in this paper
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Figure 4: Elementary trees and the derived tree forI 've got limited productionand the foot nodes of the auxiliary tree must matchthe node label at which the auxiliary tree adjoins.The resulting structure of the combined elementarytrees is called a derived tree.In Figure 4, �1, �2 and �3 are initial trees an-chored by got, I and production respectively. �1 and�2 are auxiliary trees for verb 've and adjective lim-ited. Foot and substitution nodes are marked by �,and # respectively. To parse the sentence I've gotlimited production, �2 substitutes at NP0 in �1, �2adjoins to the NP node in �3, then the whole treesubstitutes into the NP1 node in �1, meanwhile, �1adjoins to the VP node in �1, thus, forming the de-rived tree 
. The process is denoted by the dottedlines between trees.For the sake of clarity, from now on, we will callthe bracketed structures in the Penn Treebank ttrees,and the elementary trees in LTAGs etrees.2.3 A special form of LTAGsThe LTAG formalism does not impose constraints onthe shapes of the elementary trees as long as theysatisfy the requirements mentioned in Section 2.2.As a result, given a corpus C, there are numerousLTAGs each of which covers C. An LTAG G is saidto cover a corpus C if each ttree in C can be gener-ated by combining the etrees in G with substitutionand adjunction operations.To ensure the grammar extracted is compact andlinguistically sound, we require that the etrees in thegrammar have one of the following forms, as shownin Figure 5:3� spine-etree: the anchor of the etree is X , which3This description is similar to the rules in X-bar theory:a spine-etree can be seen as a result of combining the rulesXm ! Y kXm�1, ... X1 ! XZp in one tree; a mod-etreecorresponds to the rule W q ! W qXm and Xm is furtherexpanded to include its arguments.
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Figure 5: The three forms that extracted etreesshould belong toprojects to X1, X2, all the way to the root Xm.Note: each X i and its parent X i+1 have di�er-ent labels, e.g. VB and VP. At each level, the re-lation between X i and its sisters is a predicate-argument relation. A spine-etree is either aninitial tree or a predicative auxiliary tree.� mod-etree: the root of the etree has two chil-dren, one is a foot node with the same labelW q , the other node Xm is the root of a spine-etree whose head X is the anchor of the wholemod-etree. Xm is a modi�er of W q . A mod-etree is always an auxiliary tree.� conj-etree: The anchor of the etree is a conjunc-tion. It conjoins two components Xm (one ofthem is a foot node, the other is a substitutionnode.) and the root is also labeled as Xm.4 Aconj-etree is always an auxiliary tree.In Figure 4, �1-�3 are spine-etrees, �1 and �2 aremod-etrees. From now on, etrees in the paper refersto elementary trees with one of the three forms justmentioned.3 Extracting LTAG from theTreebankThe algorithm for grammar extraction can be di-vided into three steps: fully bracket the ttrees, ex-tract etrees and �lter out invalid etrees.3.1 Fully bracketing the ttreesThe ttrees from Penn Treebank are partially brack-eted: the head/argument/modi�er distinction is notmarked explicitly, and arguments and modi�ers forthe same head are both sisters of the head. In theLTAG, arguments appear in spine-etree and modi-�ers in mod-etree, and each mod-etree takes exactlyone modi�er. To account for this di�erence, we need4Coordination of di�erent syntactic categories can be han-dled similarly. An alternative to handle coordination is to usemod-etrees: treat one conjoined Xm as the foot node, expandthe other Xm and mark the conjunction as a substitutionnode. The algorithm in Section 3 can be easily modi�ed toaccommodate this approach.

to �rst fully bracket the ttrees. To do that, we startfrom the root R of the ttree:Step A: Choose the head-child5 hc according to ahead percolation table. The table lists the pos-sible head-child for each syntactic category (b-tag for short), e.g. the VP's head-child can beVBN, VB, VP, etc. A similar method has beenused in (Magerman, 1995; Collins, 1997) amongothers.Step B: Decide what the relationship between hcand its sisters is by comparing the b-tags of hcand the root R, and check whether one of R'schildren is a conjunction.Step C: based on the result of step B, go to one ofthe following:(1) predicate-argument relation:For each sister x of hc, fully bracket the sub-tree rooted at x, then decide whether x is anargument or a modi�er of hc according to theargument table and tagset table.6If in addition to sisters which are arguments, hcalso has sisters which are its modi�ers, insert anintermediate node R� with R's b-tag as the newroot of hc and its arguments, then insert m� 1intermediate nodes with R's b-tag between R�and R, as in (2).(2) modi�cation relation:Suppose hc has m sisters (all of them are modi-�ers), insertm�1 nodes with R's b-tag betweenhc nd R so that each level has exactly one mod-i�er.(3) coordination relation:Use conjunctions to partition the non-conjunction children into m groups. If eachgroup has more than one component, insert anew node with R's b-tag as the new root ofthe group. Fully bracket each group. If m islarger than 2, insert m � 2 intermediate nodeswith R's b-tag between R and its children sothat each level has exactly 2 groups plus oneconjunction.The output7 is shown in Figure 6. The nodes in-serted by the algorithm are in bold font.5The head-child di�ers from the head in X-bar theory inthat the head of Xm is X, while its head-child can be X, X1,..., Xm.6The argument table lists the types of the arguments thateach head can take, e.g. VB can take NP, PP and S as ar-guments. Tagset table speci�es whether certain function tagsmark modi�ers or arguments, e.g. phrases with -TMP aremodi�ers, those with -DTV are arguments. x is hc's argumentif x's b-tag is among the possible types of hc's arguments andx's function tag does not indicate it is a modi�er.7The bracketing process may eliminate the potential am-biguity which exists in the original trees, but in most cases,it will not a�ect the extracted etrees. In this step, we alsoremove the punctuations.
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Figure 6: The fully bracketed structure for the ex-ample in Figure 13.2 Building etreesOnce the ttrees are fully bracketed, the extraction al-gorithm is straightforward.8 Let's �rst de�ne a fewterms. A head-path starting from a node R in a ttreeis the path from R to a leaf node where each node ex-cept R is the head-child of its parent in the ttree. Anode on the head-path is called a link node if its b-tagis the same as the b-tag of its head-child.9 The ex-traction process involves copying nodes x from ttreeto etree. Let's denote the copy of x as x�.10 To builda set of etrees for a ttree, we start from the root Rof the ttree T :Step A: Choose the head-child hc and decide therelation between hc and its sisters, as mentionedin the previous section.Step B: Based on the result of step A, go to one ofthe following according to the relation.(1) predicate-argument relation (c.f. Figure5(a)): Find a head-path p from R to a leaf nodeA in the T . Create a spine-etree Ts in whichthe copy of the nodes on p is the spine (R� isthe root, A� is the anchor of Ts.). Copy thechildren (nodes only, not the whole subtrees) ofeach non-link nodes x. In Ts, merge x� with itshead-child if x is a link node on p, and mark allleaf nodes except A� as substitution nodes.Repeat A-B for x in ttree if x is a link node onp or x� is a substitution node in Ts.8Empty categories require special treatment. Due to thespace limitation, we can not elaborate our strategy in thispaper. The main idea is to use co-indices between the tracesand the antecedents on the ttree to group etrees together (i.e.multi-component LTAGs).9Each link node and its children form a recursive structurethat will map to mod-etrees or conj-etrees. When we buildspine-etrees, those structures should be factored out.10Each node in ttree may correspond to up to two nodes intwo di�erent etrees. We will not get into the details here.
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Figure 7: The extracted etrees from the ttree in Fig-ure 6.(2) modi�cation relation (c.f. Figure 5(b)):At this stage, hc should have only one sister,call it mod. Create a mod-etree Tm in whichR� is the root, hc� is the foot node, mod� ishc's sister. Find a head-path p from mod toleaf node A in the ttree. Build an etree Ts fromthe path as stated in (1). In Tm, replace mod�with Ts.Repeat step A-B for x in ttree if x is a link nodeon p or x� is a substitution node in Ts.(3) coordination relation (c.f. Figure 5(c)):At this stage, hc should have a conjunction sis-ter conj and another sister coord. Create aconj-etree Tc in which R� is the root, hc� isthe foot node, conj� is the anchor, and coord�is the substitution node.Repeat step A-B for coord.Figure 7 shows the etrees extracted from the ttreeexamples. The numbers inside the parentheses arethe counts of the etrees.3.3 Filter out invalid etreesFor a large corpus like Penn Treebank, annotationerrors are inevitable. The errors in ttrees will resultin wrong etrees. An etree is called invalid if it doesn'tsatisfy some linguistic requirement. Right now, wecheck whether modi�er-modi�ee pairs in mod-etreesand parent-headchild and head-argument pairs inspine-etrees are allowed in that language.11 Amongthe 14 etrees in Figure 7, tree #9 will be correctly11One extra table is required for this task which lists possi-ble modi�ers for each b-tag. To check parent-headchild pairs,we can use head percolation table.



ruled out by our �lter because ADVP can not modifyPP from the right.12An alternative is to use a threshold to throw awayinfrequent trees. This approach has two drawbacks:�rst, it will throw away some infrequent but validetree templates; second, it can not rule out frequentbut invalid etrees. In fact, 11.7% of invalid etree tem-plates occur 10 or more times in the corpus. For ex-ample, one of such invalid etrees occurs 1832 times.In that etree, prepositions modify numbers, such asabout modi�es 160 in the ttree(NP (QP (IN about) (CD 160))(NNS workers))The etree is created from the ttree because in thiscontext about is often mis-tagged as a preposition inthe Treebank. It should be tagged as an adverb.4 The ExperimentWe ran our algorithm on the Penn Treebank II. Be-cause the number of etrees is directly related to thenumber of words in the corpus, we count the num-ber of etree templates13 instead.The results are listedin Table 2. LTAG Gi is the grammar extractedfrom the Treebank. G0 uses the original partiallybracketed Treebank, and G1 and G2 use the fullybracketed corpus. 14 The etrees in G1 uses Tree-bank's tagset which has 72 non-punctuation tags,while G2 uses a reduced tagset (44 non-punctuationtags) where some tags such as VB, VBN, VBP aremerged into a single tag. Each occurrence of a tem-plate in the corpus is counted as a template token.The table shows that fully bracketing the ttrees be-fore extracting etrees reduce the number of extractedtemplates tremendously. Using a smaller tagset fur-ther reduces that number. Notice that the num-ber of valid templates actually decreases without fullbracketing because many templates extracted frompartial bracketed corpus will have both argumentsand modi�ers as the sisters of predicates, which willbe judged as invalid by our �lter.12Tree #9 and #10 were created because the word thenwas incorrectly tagged as RB. In this context, it is a temporalnoun. Notice an error in ttree may cause errors in multipleetrees.13If we abstract away from the individual lexical items ineach elementary tree, we get an elementary tree template.Each template indicates where the anchor of that tree willbe instantiated. Each etree is a (lexical-item, etree template)pair. e.g. etree #1, #6 and #7 in Figure 7 share the sameetree template.14Neumann (Neumann, 1998) converts sentences in section02-04 in Penn Treebank to a lexicalized tree grammar. Hedoes not make argument/adjunct distinction, and therefore hedoes not factor out the recursive structures in the elementarytrees. In that sense, his approach is similar to the second stepof our algorithm (c.f. Section 3.2). Not surprisingly, his result(11979 elementary tree templates from about 8.8% of ttreesin Treebank) is similar to the size of in G0 (34307 templatesfrom the whole corpus).
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Figure 8: The growth of etree templatesTwo questions come to mind. First, from thegrammar developer's viewpoint, is the set of ex-tracted templates complete enough to cover the lan-guage? The answer is No. Figure 8 shows thenumber of templates converges slowly as the size ofthe corpus grows, implying there are many unseentemplates. On the other hand, interestingly, out of48889 ttrees, 2286 (4.67%) can produce all the validtemplates.15 This implies the size of corpus neededfor grammar extraction can be greatly reduced if wecould �nd the right ttrees.We have just showed that the set of templatesextracted from one million word is not completeenough to cover the language, the next question is:how often do the unseen templates occur in newdata? To answer the question, we calculate the per-centage of (word, template) pairs in Treebank sec-tion 23 which do not occur in section 2-21.16 Inthe unseen pairs, the words can be unseen (uw) orseen(sw), similarly, the templates can be unseen (ut)or seen (st), so there are four combinations. (sw, st)means both words and templates have been seen insection 2-21, but not the pair. The percentage ofeach type is listed in Table 3.3. We also list thepercentage of unseen (word, POS tag) pairs in samesection for comparison. The table shows the per-centage of words with unseen templates is very low,0.27% for G1 and 0.09% for G2, i.e. unseen tem-plates represent only 3.6% of new pairs in G1, and1.5% in G2. So the fact that the extracted templateset is incomplete does not seem to have a big impacton parsing. Notice that the percentage of (sw, st)is much higher than (uw, ut) plus (sw, ut), imply-ing some type of smoothing over sets of templates(e.g. the notion of tree families in XTAG English15We just count the the ttrees that produce the �rst occur-rence of etrees as the extraction process goes. If we restrictthe length of ttrees to be less than 31 words, 2308 such ttreescan generate all but 35 valid templates.16Several state-of-art parsers(e.g. (Collins, 1997)) aretrained on section 2-21, and tested on section 23.



# of etree # of valid etree % of valid % of validtemplates(types) template types template types template tokensLTAG G0 34307 1157 3.37% 19.5%LTAG G1 6099 2757 45.2% 96.1%LTAG G2 3014 895 29.7% 96.2%Table 2: Etree templates extracted from the Treebank# of tags (sw, st) (uw, st) (sw, ut) (uw, ut) totalPOS tags 48 0.44% 2.47% 0 0 2.91%LTAG G1 6099 4.68% 2.45% 0.25% 0.02% 7.40%LTAG G2 3014 3.42% 2.46% 0.08% 0.01% 5.97%Table 3: The types of unknown (word, template) pairs in Treebank section 23grammar(XTAG-Group, 1995)) is desirable.5 ConclusionWe have outlined an algorithm for extracting lexical-ized tree adjoining grammars from partially brack-eted corpora. This approach has a few advantagesover hand-crafted grammars: First, it requires lit-tle human e�ort { the head percolation table etc.should take at most a couple of hours to build {if bracketed corpora are available. Second, the ex-tracted grammar covers the corpus, i.e. the corpuscan be seen as a collection of derived trees for thegrammar, and therefore the corpus can be used totrain statistical LTAG parsers directly.The number of templates extracted from the Tree-bank converges slowly, implying there are many newtemplates outside the corpus. On the other hand,4.67% of the Treebank generates the same numberof valid templates as the whole Treebank. This im-plies that if there is no bracketed corpus availableand we want to build a new one, the sampling ofthe sentences in the corpus is crucial if our goal is togenerate a wide-coverage grammar from it.ReferencesBreckenridge Baldwin, Christine Doran, Je�rey Reynar,Michael Niv, B. Srinivas, and Mark Wasson. 1997. EA-GLE: An Extensible Architecture for General LinguisticEngineering. In Proceedings of RIAO97, Montreal.Ann Bies, Mark Ferguson, Karen Katz, and Robert MacIn-tyre. 1995. Bracketing guidelines for treebank ii style penntreebank project.R. Chandrasekar and B. Srinivas. 1997. Gleaning informationfrom the web: Using syntax to �lter out irrelevant infor-mation. In Proceedings of AAAI 1997 Spring Symposiumon NLP on the World Wide Web.Eugene Charniak. 1996. Treebank grammars. In Proceedingsof AAAI-96.Mike Collins. 1997. Three generative, lexicalised models forstatistical parsing. In Proceedings of the 35th ACL.Aravind Joshi and Yves Schabes. 1997. Tree adjoining gram-mars. In A. Salomma and G. Rosenberg, editors, Hand-book of Formal Languages and Automata. Springer-Verlas,Herdelberg.Aravind K. Joshi, L. Levy, and M. Takahashi. 1975. Tree
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