From Treebanks to Tree-Adjommg
| Grammars

FEl XIA AND MARTHA PALMER

2.1 Introduction’

Grammars are valuable resources for natural language processing. A large-scale
grammar may incorporate a vast amount of information on morphology, syntax,
and semantics. Traditionally, grammars are built manually. Hand-crafted grammars
often ‘contain rich information, but they require tremendous human effort to build
and maintain. As large-scale treebanks become available in the last decade, there
has been much work on extracting grammars automatlcally from treebanks Such
grammars are called treebank grammars.! :

Many of the previous work on grammar extraction such as (Shirai et al., 1995;
Charniak, 1996; Krotov et al., 1998) generate context-free grammars (CFGs). In this
chapter, we present a system, LexTract, which generates both CFGs and lexicalized
tree-adjoining grammars (LTAGs).

Extracting LTAGs is more complicated than extracting CFGs because of

~ the differences between LTAGs and CFGs. First, the primitive elements of an
LTAG are lexicalized tree structures (called elementary trees), rather than context-
free rules.- Therefore, an LTAG extractloh algorithm needs to -examine a larger

portion of a phrase structure to build an elementary tree. Second, because the -

adjoining operation in LTAG allows an elementary tree to be inserted within"
another élementary tree, an elementary tree is often formed by gluing together
several disconnected parts of a phrase structure. Third, unlike in CFGs, parse trees
(also known as derived trees in the LTAG formalism) and derivation trees (which
describe how elementary trees are combined to form parse trees) are distinct in the
LTAG formalism in the sense that a parse tree can be produced by several distinct
derivation trees. Therefore, to provide training data for statistical LTAG parsers,
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an LTAG extraction algorithm should also build derivation trees in addition to
elementary trees.

There were two main considerations when we designed LexTract: First, given
a parse tree, the number of distinct LTAG grammars that produce this parse tree
can be exponential with respect to the number of leaf nodes in the parse tree,
and most of those grammars are not linguistically plausible. In order to extract
only linguistically plausible grammars, we make certain assumptions about how
three major relations (predicate-argument relations, modification relations, and
coordinated relations) should be handled in LTAG grammars. The assumptions
are based on well-established linguistic riotions such as the notion of head. Second,
in order to make LexTract a good grammar extraction tool that can be applied
to various treebanks for different languages, we put all the language-dependent
or treebank-dependent information in three tables (that is, the head percolation
table, argument table, and tagset table). Users can easily modify these tables to
-reflect their own preferences. Given the assumptions and the tables, the process of
extracting grammars is totally deterministic and we extract exactly one grammar for
any given treebank. We have run the system on three publicly available treebanks,
and the system output has been used in various NLP tasks. :

As the LTAG formalism is a general framework and its usage is not restricted to
natural languages, the formalism itself does not impose any constraint that is based
solely on the properties of natural languages. Because the grammars that LexTract
aims to extract are for natural languages only, we impose additional constraints
on the treebank grammars to reflect the properties of natural languages. In section
2.2, we introduce these constraints and describe the grammar that we intend to
extract. In section 2.3, we describe the extraction algorithm and compare it with
related work. In section 2.4, we report experimental results on some tasks that use

extracted grammars.

2.2 The Target Grammars

Given a parse tree, the LTAG grammars that can generate the parse tree are not
unique. For instance, a simple parse tree such as the one in figure 2.1a can be
produced by either grammar G; in figure 2.1b or grammar Gy in figure 2.1c. While
both grammars are LTAGs, people with a linguistic background would prefer G
. over G because it is more plausible to have the verb (rather than the noun) anchor
a clause. The question is how we can equip LexTract with such linguistic knowledge
so that it will produce Gy rather than G,.

Recall that the LTAG formalism is a general framework. Besides natural
languages, the formalism can be used to generate formal languages such as {a™b™c"}.
Because its usage is not restricted to natural languages, the formalism itself does
not impose constraints that are based solely on the properties of natural languages.
As the grammars that LexTract aims to extract are for natural languages only, we
would like to impose constraints on the target grammars (i.e., the grammars built
by LexTract) to reflect the properties of natural languages. These extra constraints
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FIGURE 2 1 A parse tree a.nd two LTAGs that can generate the parse tree

are based on Well deﬁned hngulstlc notlons such as the notion of head As a ‘result,
the target grammars form only a subset of all poss1b1e LTAG gramma.rs For the
‘ example in figure 2.1, LexTract will produce.only G1, not.Gs. ' SRR
In this sect1on let us first review a few important syntactic notlons and show
" how they are represented in linguistic theories and LTAG grammars. The notions
are a head and its projections, arguments and modifiers. We shall also define three
prototypes and requ1re that each elementary tree in the target grammars fall into
one of the prototypes.? ~

2.2.1 . Several 1mportant syntactic notions

An important concept. in many contemporary linguistic theories sich as X-bar .

theory (Jackendoff, 1977) and GB theory (Chomsky, 1981) is the notion of head. A
head determines the main properties of the phrase that it belongs to, and it may
project to various levels. We call the chain formed by a head and its projections a
projection chain. In X-bar theory (see figure 2.2a), a head X projects to X, which
further projects to XP. The X in this paradigm can be any part of speech such
as a verb, where the X P is a phrase such as a verb phrase. GB theory divides
heads into two types: lexical heads and functional heads. In figure 2.2b, V'(for

verb) is a lexical head, whereas C (for compleimentizer) and I (for inflection) are-
functional heads. The projections of lexical and functional heads are called lezical.

and functional projections, respectively. The solid arrows in the ﬁgure show the
syntactic movement from a lower position to a higher position.
A head may have several arguments, and it and its projections can be modified

by other components. For instance, a verb can project to a verb phrase, and it may
have one or more arguments, and a verb phrase can be modified by preposition

phrases, adverbial phrases, and SO on.

2.2.2 Prototypes of elementary trees

- Recall that LTAG is a general framework, and therefore it does not have to follow
a particular linguistic theory such as X-bar theory. However, the notions of head,
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. projéction, argumeht,‘ and modifier are widely accepted in the LTAG community, -
and people often follow some conventions when manually crafting LTAG grammars™

for natural languages. For instance, they often use initial trees to express predicate-
argument relations: the anchor of an initial tree is the head of the root node, and all
the arguments of the head are included in the same initial tree. In contrast, auxiliary
trees are used to express modification relations, where the root node and the foot
node have the label of the modified element, and the modifier is a sibling of the
foot node. We formalize these conventions and define three types of elementary tree
(etree for short) according to the relations between the anchor of the elementary
tree and other nodes in the tree, as shown in figure 2.3:

-« Spine- etrees for predlcate—argument relations: A spme—etree is formed by a head

X9, its projections X1,..., X™, and its arguments. We call the path from X°

to the root X™ a pmjectwn cham The head X0 is also the anchor of the tree,
and its arguments are leaf nodes attached at various levels.

. Mod-etrees for modification relations: The root of a’ mod-etree has two children:
one child has the same label (W9) as the root, while the other child, X™, is
a modifier of W9, The X™ child is further expanded into a spme—etree Whose
head X° is the anchor of the whole mod-etree. ~

. Cong-etrees for coordination relations: In a conj-etree, the children of the root
are two conjoined constituents and one conjunction. 3 One comomed constituent
is expanded into a spine-etree whose head is the anchor of the whole tree.

Structurally, a conj-etree is the same as a mod-etree except that the root has

one extra conjunction child.

© The similarity between the forms in figure 2.3 and rules in X-bar theory is
obvious: a spine-etree is a tree that combines the first and the third types of rules
in X-bar theory (see figure 2.2a); Similarly, a mod-etree incorporates all three types
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of rules. A spine-etree is also very’éimilar to the basic structure in GB-theory, as in
figure 2.2b.

'Some explanations about the prototypes are in order. First, each node in these
prototypes may have zero or more children; when it has more than one child, the
order among these children is not specified in the prototypes. For instance, the
prototypes allow arguments Y* and ZP to appear to the left or to the right of X 0,
Second, in the LTAG formalism elementary trees are divided into two types: initial
trees and auxiliary trees. In this section, we define three forms of elementary trees.
These two classifications are based on different criteria. The former classification is
Jbased on the existence of a foot node in the tree. Our classification is based on. the
- relation between the anchor of the tree and other nodes in the tree. In general, spine-
etrees are initial trees, mod-etrees and conj-etrees are auxiliary trees; however, there
are exceptions to this generalization.* Third, the notions of head and anchor do not
always coincide: the anchor of a spine-etree is the head of the root node, whereas
the anchor of a mod-etree (or conj-etree) is the head of the modifier phrase, but not

the head of the root node.

Now that we have defined the prototypes, we require each elementary tree
produced by LexTract to fall into one of three prototypes. For a little abuse of
notation, we also use the terms spine-etree, mod-etree, and conj-etree to refer to the
corresponding templates.

2.3 The Extraction Algorithm

The core of LexTract is an extraction algorithm that takes a phrase structure in a
treebank and produces an LTAG grammar. Extracting LTAGs is more complicated
than extracting CFGs because of the differences between LTAGs and CFGs. First,
the primitive elements of an LTAG are elementary trees, rather than context-
free rules. Therefore, an LTAG extraction algorithm needs to examine a larger
portion of a phrase structure to build an elementary tree. Second, because the
adjoining operation in LTAG allows an elementary tree to be inserted within another
elementary tree, an elementary tree is often formed by gluing together several
disconnected parts of a phrase structure.

Our extraction algorithm has three steps: first, we convert a treebank tree (ttree
for short) into a derived tree in the LTAG formalism. Figure 2.4 is a ttree example
that we shall use throughout the section. The labels come from the English Penn
Treebank (Marcus et al., 1993). There is a major difference between a ttree and a
derived tree: in a ttree, arguments and modifiers are not always explicitly marked
and structurally distinguished, and they can be siblings of one another. In contrast,
the target grammars that we just defined distinguish heads, argument, and adjuncts,
and arguments and adjuncts are never siblings in an LTAG derived tree. We convert
a ttree into a derived tree by inserting more internal nodes so that arguments and
adjuncts are attached at different levels.

In the second step of the algorithm, the newly created derived tree is decomposed
into a set of elementary trees (a.k.a. etrees). In the third step, we create derivation
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"trees, wh1ch show how etrees are combined to form the der1ved tree The derwatlon SN
trees are used to train statistical LTAG parsers. .

We start the section with descriptions of three tables as part of the input to
LexTract; we then describe the three steps of the extraction algorithm; finally we
briefly discuss the uniqueness of the system output.

2.3.1 Distinguishing head, argument, and modifiers using
three tables ‘

In a ttree, the head of a phrase is not explicitly marked. Slmllarly, arguments and
adjuncts are not structurally distinguished. In order to construct the etrees, which -
make this distinction, LexTract requires its user to provide some information about
the treebank in the form of three tables: a Head Percolation Table, an Argument
“Table, and a Tagset Table. The Head Percolation Table is used to find the head
of a phrase, whereas the Argument Table and the Tagset Table are used to make-
argument/modifier distinction.

In a Head Percolation Table, an entry is of the form (z direct y1/y2/.../Yn)s
where z and y; are syntactic labels, direct is either LEFT or RIGHT, and {y;} is
the set of possible tags of z’s head child. A head -child of a node z in a tiree is the
child of z which dominates the head of z. For instance, in figure 2.4, the head of

-the root node S is the VBP node, so the head child of S is the VP node.

A Head Percolation Table has previously been used in several statistical parsers
(Magerman, 1995; Collins, 1997) to find heads of phrases. Our strategy for choosing
heads is similar to theirs except that the order of the tags in the set {y;} does not
matter in our algorithm and we do not use special rules to choose the head of noun
phrases. To be more specific, to choose the head child of a node whose tag is X, we
check the tags of the node’s children from left to right (or vice versa according to
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direct) and find the first child whose tag is in {y;}. Given that table, we mark the
head child of every node in figure 2.4, as shown in figure 2.5.

An Argument Table specifies the number and the types of arguments that a head
can take. The entry in an argument table is of the form (head_tag, left_arg_num,
right-arg-num, y1/Y2/.../Yn): head_tag is the syntactic tag of a head, {y;} is the
set of possible tags for the head’s arguments, and left_arg-num (right_arg_num,

" respectively) is the maximal number of arguments to the left (right, respectively) of
the head. For example, the entry (IN, 0, 1, NP/S/SBAR) says that a preposition
(IN) does not have left arguments, and it has at most one right argument whose
label is NP, S, or SBAR.

The Tagset Table provides types and attributes of the tags in'the treebank’s
tagset. A few function tags (e.g., SBJ for subject) always mark arguments. Similarly,
some function tags such as TMP for a temporal phrase always mark modifiers.
Such information is specified in the Tagset Table. With the Argument Table and
the Tagset Table, LexTract marks each sibling of a head as an argument if the
sibling can be an argument of the head according to the Argument Table and none
of the function tags of the sibling indicates that it is an adjunct. For example, in
figure 2.4, the head of the root S is the verb draft, and the verb has two siblings:
LexTract marks the noun phrase policies as an argument of the verb because from
the Argument Table we know that verbs-in general can take an NP object; it marks
the clause using fountain pens and blotting papers as a modifier of the verb because,
although verbs in general can take a sentential argument, the Tagset Table informs
LexTract that the function tag -MNR. (manner) always marks a modifier.

All three tables can be created by hand. As each table contains only dozens
of entries, it should take a person no more than a couple of hours to create these
tables if he understands the basic notions of heads, arguments, and adjuncts, and
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is famﬂlar Wlth the tagset of the treebank The three sets of tables that we: created ‘

-for English, Ch1nese, and. Korean 'Ikeebanks can be found i in Xia (2001)

T2, 3 2 Step 1:. Convertmg ttrees into derlved trees

. 'To extract etrees from a ttree, Lex'_[?ract first converts the ttree 1nto a.derived tree
. by addmg intermediate nodes to the ttree 50 that at each level of the new ttree,‘
, lexactly one of the following holds . ;

(I-Iead—argument relatlon) there are one or more nodes: one is the head, the rest-» o

- are its arguments; : - .
(Modification relatlon) there are exactly two nodes one node is modlﬁed by the
“other; . S : . . . ‘
: (Coordlnatlon relatlon) there are three nodes: two nodes are coordmated by a:
conJunctlon : ' : :

Lex’I‘ract achleves this" by first ohoosmg the head-chlld at each level and
distinguishing arguments from adjuncts as mentioned in section 2.3.1, then adding .
- intermediate nodes so that the modifiers and arguments of a head attach to different -
- levels. Figure 2.6 shows the new ttree after adding new nodes to the ttree in figure
_2.4. The inserted nodes are in bold. It shall become clear after the next section that
_ - this new ttree is indeed a derived tree for the sentence if the sentence is parsed with
" the extracted etrees produced by LexTract. '

2.3.3 Step 2: Building etrees .

In this stage, each node X in the derived tree is split into two parts: the top part
Xt and the bottom part X.b. The reason for the splitting is as follows. When two -
etrees are combined during LTAG parsing, the root of one etree is merged with a
node in the other etree. The resulting structure of the combined etrees is a derived
" tree. Therefore, a node in‘a derived tree actually has two parts (top and bottom),"
_which could come from different etrees. Extracting etrees from a derived tree can -
be seen as the reverse process of parsing. Therefore, during the extraction _process,
each node in the derived tree is split into the top and bottom parts.

In this step, LexTract decomposes the derived tree into a set of eirees: LexTract
removes recursive structures (which will become mod-etrees or conj-etrees) from the -
derived tree, and builds spine-etrees for the remaining nonrecursive structures. To
. be more specific, starting from the root of a derived tree, LexTract first finds the
path from the root to its head. It then checks each node Ac on the path. If a sibling
s of he in the ttree is marked as an adjunct, the algorithm factors out from the ¢tree
the recursive structure that includes hc.t, s.t, and the bottom part of hc’s parent
p. The recursive structure becomes part of a mod-etree (or a conj-etree if hc has
another sibling that is a conjunction), in which p.b is the root node, hc.t is the foot
node, and s.t is a sister of the foot node. Next, LexTract creates a spine-etree with
the remaining nodes on the path and their siblings. It repeats the process for the
subtrees whose roots are not on the path
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FIGURE 2.6 The new, expanded tiree: the five nodes in dotted circles are inserted by
LexTract.

/ #7

FIGURE 2.7 The extracted etrees can be seen as a decomposition of the new, éxpanded
tiree. ‘
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To see how the algorithm works, let us look at an example. Figure 2.7 shows the
same derived tree as the.one in figure 2.6 except that some nodes are numbered and
split into the top and bottom parts. For the sake of simplicity, we show the top and -
the bottom parts of a node only when the two parts will end up in different etrees.
The path from the root S; to the head VBPis §4 — So » VP, = VP, = VP —

"VBP. Along the path the PP “at FNX” has been marked as a modifier of Sp in
the previous stage; therefore, S1.b, So.t, and the spine-etree rooted at PP form a -
mod-etree #1. Similarly, the ADVP still is a modifier of V P, and S3 is a modifier
of V P3, and the corresponding structures form mod-etrees #4 and #7. On the path
from the root to VBP, S1.t and S,.b are merged (and so are VP,.t and V Ps.b) to
form the spine-etree #5. Repeating this process for other nodes will generate other
trees such as trees #2, #3 and #6. The whole tiree yields twelve etrees as shown in .-
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"figure 2.8. Notice that the tree structures that form an etree are often not adjacent

in the derived tree. For instance, the spine-etree #5 in figure 2.7 is separated by
three mod—etrees (#1, ##4, and #7) in the derived tree. :

2.3.4 Step 3: Creating derwatlon trees

For the purpose of grammar development, a set of etrees may be sufficient. However,
" to train a statistical LTAG parser, derivation trees, which store the history of how’
etrees are combined to form derived trees, are required. Recall that, unlike in CFG,
the derived trees and derivation trees in the LTAG formalism are different in the
sense that a derived tree can be produced by several distinct derivation trees. There
are two slightly different definitions of derivation trees in the LTAG literature. The
first definition adopts the no-multi-adjunction constraint, whereas the second one
allows multiple adjunctions at the same nodes under certain conditions (Schabes
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and -Shieber, 1992). The no-multi-adjunction constraint says that, when etrees are
combined, at most one adjunction is allowed at any node in any etree. As a result,
if a phrase X P in an etree By, has several adjuncts (each adjunct belongs to a mod-
etree), according to the first definition, the mod-etrees with these adjuncts form
a chain in the derivation tree, with one mod-etree-adjoining to Ej and the rest
adjoining to one another; whereas according to the second definition, these mod-
etrees are allowed, but not required, to all adjoin to Ej,. Figures 2.9 and 2.10 show
two derivation trees, both combining the etrees in figure 2.8 to form the derived tree
in figure 2.7. Note that mod-etrees #4 and #7 both modify #5 at the VP node,
and they form a chain in figure 2.9, whereas they are siblings in figure 2.10.

———— -
—— -——
I e - -

at(#1) underwriters(#3) policies(#6) using(#7)

rd
7

FNX(#2) still(#4)  pen(#9)
[ -
four1|tain(#8)

!
paper(#12)

and(#10)  blotting(#11)

FIGURE 2.9 The derivation tree with the no-multi-adjunction constraint

draft (#5)

at@1)  underwriters#3) still(#4) policies(#6) using(#7)

FNX(#2) pen(#)

fountain(#8) = Paper(#12)
and(#10)  blotting(#11)

FIGURE 2.10 The derivation tree without the no-multi-adjunction constraint

In general, given a derived tree T’ and a set ESet of etrees, there may be more
than one derivation tree that generates T' by combining etrees in ESet. This is
because, when a phrase has several adjuncts, the corresponding etrees could form a
chain in the derivation tree and the order of these etrees on the chain is not fixed.
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' For 1nstance sw1tch1ng the order of trees. #4 and #7 in, ﬁ°'u16 2. 9 (1 é. makmg #4. N

the parent of #7 and the child of #5) will yield a different derlva.tlon tree, which
generates the same derived tree. Such differences in the derivation trees arguably do.
" ‘not imply any ambiguity in the meaning of the sentence. Therefore; we can'impose
either of the following constraints to make the derlvatlon tree unique glven a der1ved‘ '
‘tree T and a set ESet of etrees. .

« If we adopt the 'ﬁrst deﬁnition of derivation trees (which allows at most one
. adjunction at any node), we add an additional constraint which says that no "
adjunction operation is allowed at the. foot node of any auxiliary tree. This no-

_ adjunction-at-foot-node constraint ‘makes the derivation tree unique by forcing

- the ordering of mod—etrees on the chain. This constraint has been adopted by

~ several hand-crafted grammars such as the XTAG grammar for English (XTAG- B
. Group,.1998) i in order to eliminate this source of spurious amblgmty :
o - If we use the second. definition. of derivation trees (Whlch allows multiple
adjunction at any node), we require all mod-etrees to adjoin to the -etree that

l they modify. Because of this requirement, mod-etrees that modlfy the same etree o L

~are alwa.ys s1b11ngs in the derivation tree. -

The user of LexTract can choose either optlon and inform LexTract about
one’s choice by setting a parameter.®. Once the choice is made, LexTract builds
the derivation tree in two steps. First, for each etree in ESet, it finds the etree & ‘
which e substitutes/adjoins into; é Will be the parent of e in the derivation tree.
Second, it builds a derivation tree from those (e, &) pairs. The algorithm can be
found in chapter 5 of Xia (2001). '

2.3.5 Umqueness of decomposﬂuon '

So far we have discussed the extraction algorlthm used by LexTract. The algorithm
takes three tables with language-specific information and a ttree T', and creates (1)
a derived tree T, (2) a set ESet of etrees, and (3) a derivation tree D for T*. The
derivation tree D is unique given T and ESet once we choose one of two options.

Furthermore, in general, ESet is the only tree set that satisfies all the following *

conditions:

(C1) Decomposition: The tree set is a decomposition of T*; that is, T* can be
- generated by combining ’che trees in the set via the substltutlon and adjoining
operations. .

(C2) LTAG formalism: Each tree in the set is an elementary tree according to .

" the LTAG formalism. For instance, each tree is lexicalized and in an auxiliary
tree the foot node and the root node have the same label.

(C8) Target grammar: Each tree in the. set falls into one of the three types as
specified in section 2.2.2.

(C4) Language-specific information: The head/argument/adjunct distinction
in the trees is made according to the language-specific information provided
by the user.
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This uniqueness of the tree set may be quite surprising at first sight, considering
that the number of possible decompositions of T* is Q(2"), where n is the number
of nodes (including POS tags such as N, but excluding lexical items such as John) in
T*.5 Instead of giving a proof of the uniqueness, we use an example to illustrate how
the conditions (C1)~(C4) rule out all the decompositions except the one produced
by LexTract. In figure 2.11, the derived tree T* has five nodes (i.e., §, NP, N, VP,
and V). There are thirty-two distinct decompositions for 7%, six of which are shown
in the same figure. Out of these thirty-two decompositions, only five (i.e., Bz — Eg)
are fully lexicalized — that is, each tree in these tree sets is anchored by a lexical
item. The rest, including E1, are not fully lexicalized, and are therefore ruled out
by the condition (C2). For the remaining five etree sets, E» — Fy are ruled out by
the condition (C3), because each of these tree sets has one tree that violates the
constraint that in a spine-etree an argument of the anchor should be a substitution
node, rather than an internal node.” For the remaining two, Fs is ruled out by (C4)
because, according to the head percolation table provided by the user, the head-
child of the 5 node should be the VP node, rather than the NP node. Therefore, Ejg,
the tree set that is produced by LexTract, is the only etree set for T* that satisfies

(C1)-(C4).
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PN s I\F -\l,P PN
NP VP NP VP
] & e NV L
N 4 b N Vv
l | John left ] |
Jobn  1eR _jobn_to_|
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[ [ John [ v | T
N' \l/ IT i lt!ﬂ \ll John
left John left
(Ep , %) ‘ (Es) (Eg)

FIGURE 2.11 Six tree sets for the derived tree T*: F4 is ruled out by C2, E; — E4 are
ruled out by C3, and Fs is ruled out by C4; Eg satisfies all four conditions and is the one
produced by LexTract.



. Frc;in Cl}ee“'baﬁks"tvo T.ree’-Adjoining Greizmmar'sv‘ -. U v - 49
2.3.6 Comparlson with other work -

Lex’ﬁ:act is designed to extract LTAGs but, as shown in figure 2. 12 sunply readmg'
context-free rules off the templates in an extracted LTAG yields a context-free
grammar. In this section, we compare LexTract with. other extractmn algonthms

- for CEGs and LTAGS proposed m the literature.

m{\,P. . () S>NPVP
e © (2) VP->VBDNP °
VBD@ NP{ . .
- ‘(a)vateinp‘la'te ~ (b)CFG rules derived frorri'(a) , S

- FIGURE 2.12 The context-free rules derived from a template’

CFG extractlon algorlthms

Many systems that use treebank context free grammars simply read context-free
rules off the phrase structures in treebanks. Because the phrase structures in the
source treebanks are partially flat (i.e., arguments and adjuncts can be siblings),
the resulting grammars are very large. There have been several research efforts:
addressing this issue. Due to space limitations, we compare LexTract with only one
of these efforts, which is an algorithm that reduces the size of the derived grammar
by eliminating redundant ' rules (Krotov et al.,.1998). A rule is redundant if it can
‘be “parsed” (in the familiar sense of context—free parsmg) using other rules of the
grammar. The algorithm checks each rule in the grammar in turn and removes
" the redundant rules from the grammar. For example, in a grammar that has the
following three rules, the algorithm would remove Rule (1) because Rule (1) can be

parsed by Rules (2) and (3):

Rule (1): VP — VB NP PP
Rule (2): VP — VB NP
Rule (3): NP — NP PP

The rules that remain when all rules have been checked constitute the compacted
grammar. The compact grammar for the PTB has 1,122 context-free rules, and the
recall and precision of a CFG parser with the compact grammar are 30.93% and
19.18% respectively, in contrast to 70.78% and 77.66% of the same parser with the
. full grammar, which has 15,421 context-free rules.

Krotov’s method differs dramatically from LexTract in several ways. First, it

does not use the notion of head and it does not distinguish adjuncts from arguments.
In the previous example, because of the existence of Rules (2) and (3), Rule (1) is
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considered redundant and gets removed even though the PP in Rule (1) can be
- an argument of a verb such as put. Second, the compacting process may result in
different grammars depending on the order in which the rules in the full grammar
are checked. To maintain order-independence, their algorithm removed all unary
and epsilon rules by collapsing them with the sister nodes. Because of frequent
occurrences of empty categories and unary rules in the treebank, we suspect that
this practice will make the resulting grammars less intuitive, and it might also
contribute to the low parsing accuracy when the compact grammar was used. Third,
the growth of their grammar is nonmonotonic in that, as the corpus grows, the size
of the grammar may actually decrease because the new rules in the grammar may -
cause the existing rules to become redundant and get eliminated. Although the size
of the compact grammar might approach a limit eventually in their experiment, it is
not clear how stable the grammar really is, considering the existence of annotation
errors in the treebank. For example, it is possible that a few bad rules (e.g., {X — X
ZP}, where ZP can be any syntactic label) can ruin the whole grammar because they
make many good rules become redundant and get eliminated. They mentioned in
their paper that they developed a linguistic compaction algorithm that could retain
redundant but linguistically valid rules, and they gave the sizes of two grammars
built by this new algorithm. Unfortunately, the description is too sketchy for us to
determine exactly how that algorithm works. '

In contrast, LexTract uses the notion of head and it distinguishes arguments
from adjuncts. For instance, LexTract determines whether the PP in Rule (1) is an
argument or an adjunct according to the Argument Table and the Tagset Table.
If it is an argument, LexTract will keep the rule; if it is an adjunct, LexTract will
replace this rule with Rule (2) and another rule VP — VP PP. The redundant
rules that Krotov’s method would remove are not produced by LexTract because
a context-free rule produced by LexTract never has both arguments and adjuncts
as siblings. Second, the CFG produced by LexTract is order-independent, and it
allows unary rules and epsilon rules. In addition, the growth of the grammar is
monotonic, and the existence of bad rules would not affect the good rules. As for
the number of context-free rules, the CFG built by LexTract from the PTB has
1,524 rules (see section 2.4.1), whereas in Krotov’s approach, the compact grammar
has 1,122 rules and the two linguistically compact grammars have 4,820 and 6,417

rules, respectively.®
LTAG extraction algorithms

We first published the extraction algorithm used by LexTract in Xia (1999). The
algorithm was later revised and the new version and a few applications of LexTract
were discussed in Xia et al. (2000a) and other papers. Besides LexTract, there are
two systems that extract LTAGs from treebanks: they are (Neumann, 1998) and

(Chen and Vijay-Shanker, 2000). .

Neumann’s lexicalized tree grammars: Neumann (1998) describes an
extraction algorithm and tests it on the PTB and a German Treebank called
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‘NEGRA (Skut et al., 1997 ). There are several 31m11ar1t1es between hlS approach and. .

© LexTract. First, both approaches adopt notions of head and use a head percolation
table to identify the head-child at each level. Second, both decompose the ttrees from
" the top downward such that the subtrees rooted by nonhead children are cut off
-and the cutting point is marked for substitution. The main difference between the

two is that Neumann’s system does not d1st1ngu1sh arguments from a,djuncts, and
_ therefore it does not factor out the majority of recursive structures with adjuncts. As’
" aresult, only 7.97% of the templates in his grammar are auxiliary trees, and the size .
. of his grammar is much larger than ours: his system extracts 11,979 templates from.
. three sections of the PTB (ie., -Sections 02-04), whereas LexTract extracts 6926 .
- _templates from the whole corpus (i.e., Sections 00-24). It is also not clear from his -

paper how he treats conjunctions, empty categories and comdexatlon therefore we

‘ cannot compare these two: approaches on these issues.

Chen ‘and V1_]ay—Shanker s approach Chen and Vuay—Shanker s method :

(Chen and Vijay-Shanker, 2000) is similar to LexTract in that both use a head

-percolation table to find the head. and both d1st1ngmsh arguments from adJuncts :

: Nevertheless, there are several differences.

One major difference is the overall archltecture When we designed LexTract, k

we exphc1t1y defined three prototypes of elementary trees in the target grammars.
The prototypes are language independent and every etree built by LexTract falls
into one of three prototypes. Given a treebank and three tables containing language-
specific information, for each phrase structure (¢tree) in the treebank, LexTract first
explicitly inserts internal nodes to the ttree to form a LTAG derived tree. It then
decomposes the derived tree into a set of etrees.

The b1d1rect10na1 mapping between the nodes in this derived tree and the etrees

makes LexTract. a useful tool for treebank annotation and error detection (see

section 2.4.5). LexTract also explicitly builds derivation trees. Chen and Vijay-
Shanker’s system does not explicitly define the prototypes of elementary trees,
and .it does not build derivation trees. Also it does not convert a tiree into an
LTAG derived tree; therefore, there are no one-to-one mappings between the nodes
in a ttree and the nodes in the extracted etrees. The two systems .also differ in
their algorithms for. making argument/adjunct distinctions, their treatments for
coordination, punctuation marks, and so forth. .

Another way to compare these systems is to evaluate the performances of a
common NLP tool that is trained by the data produced by the systems. One of such

tools is Srinivas’s Supertagger. In section 2.4.3, we shall report the performances of

the Supertagger with the data produced by these two. systems

2.4 Applications of LexTract

In the previous section, we introduced a grammar extraction tool LexTract,
which takes treebanks and three tables as input and produces grammars and
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derivation trees. In this sectlon we discuss some applications of LexTract and report
experlmental results. These applications roughly fall into four types: -

»  The treebank grammars built by LexTract are useful for grammar development
and comparison (sections 2.4.1 and 2.4.2). "

-« The lexicon and derivation trees derived from treebanks can be used to train
statistical tools such as Supertaggers and parsers (sections 2.4.3 and 2.4.4).

-~ The bidirectional mappings between ttree nodes and etree nodes makes LexTract
a useful tool for treebank annotation (section 2.4.5).

. LexTract can retrieve the data from treebanks to test theoretical linguistic
‘hypotheses such as the tree-locality hypothesis (Xia and Bleam, 2000).

In this section, we shall briefly discuss the first three types.®

All the experlmental results reported in this section were conducted by us,
except for the parsing results of an LTAG statistical parser in section 2 4.4, which

was produced by Anoop Sarkar.'0

2.4.1° Treebank grammars as stand-alone grammars

The treebank grammars extracted by LexTract can be used as stand-alone grammars
for languages that do not have wide-coverage grammars.

We ran LexTract on the English Penn Treebank (PTB) and extracted two
treebank grammars. The first one, G4, uses PTB’s tagset. The second treebank
grammar, G, uses a reduced tagset, where some tags in the PTB tagset are merged
into a single tag, as shown in Table 2.1. The reduced tagset is basically the same
as the one used in the XTAG grammar (XTAG-Group, 1998), which is a large-
scale hand-crafted grammar that has been under development at the University
of Pennsylvania since the early 1990s. We built G with this reduced tagset for
two reasons. First, we use G to estimate the coverage of the XTAG grammar (see
section 2.4.2). Second, Gy is much smaller than G and presumably the sparse data
problem is less severe when Gy is used. For some applications such as Supertagging
and testing the tree-locality hypothesis, Gy is as good as, if not better than, G;.

The sizes of the two grammars are in Table 2.2. The first two columns show the
number of templates and elementary trees. Recall that a template is an elementary
tree without the anchor word. There are 49,206 unique words in the PTB, and the
third column lists the average number of elementary trees that a word anchors. The
last column of the table shows the number of context-free rules when we simply
read context-free rules off the templates in an extracted LTAG.

In Gy as well as G, a few templates occur very often while others occur rarely
in the corpus. Among 6,926 templates in G1, 96 templates each occur more than a
thousand times, and they account for 86.91% of the template tokens in the PTB.
In contrast, 3,276 templates occur only once, and together they account for only
0.27% of the template tokens in the PTB. In figure 2.13, we plot the frequency of
the templates as a function of the rank of the templates on doubly logarithmic axes.
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- TABLE 2.1 Séme tagsfin'-the English Penn Treebank tagset are merged into'a single tag. -
. ‘The reduced tagset is used in G2 and is similar to the tagset used in the XTAG grammar.

tags in the PTB tags in XTAG
: . and Gy o {and Gy =
" | adjectives - © [ .JJ/JIR/IIS A
| adverbs -~ - '|'RB/RBR/RBS/WRB .| Ad -
determiners . |.DT/PDT/WDT/PRP$/WP$  |D .
nouns - CD/NN/NNS/NNP/NNPS/PRP N
. | WP/EX/$/# - - -
verbs - : . 'MD/VB/VBP/VBZ/VBN ' '
o 'V VBD/VBG/TO , C
clauses - = - S/SQ/SBAR/SBARQ/SINV. . | §
noun phrases . | NAC/NP/NX/QP/WHNP | NP
adjective phrases | ADJP/WHADJP | AP
adverbial phrases - | ADVP/WHADVP = .| AdvP
- | ‘preposition phrases | PP/WHPP' ' - |'PP -,

TABLE 2.2 Two LTAG grammafs extracted from the Eﬁglish Penn Treebank

template | etree # of etrees || context-free

types types per word ' rules
LTAG G, || 6,926 131,397 | 2.67 1,624 -
LTAG G4 || 2,920 | 117,356 | 2.38 675

~The curve is close to -a straight line, indicating that the relationship between the
rank and frequency of templates satisfies a general version of Zipf’s law.!?

Once LexTract extracts grammars from treebanks, a natural question that
comes to mind is: how complete is the grammar? To answer the question, we plot the
 number of templates as a function of the percentage of the corpus used to generate

the templates, as in figure 2.14. To reduce the effect of the original ordering of the
ttrees in the treebank, we randomly shuffle the tirees in the treebank before running
" LexTract. We repeat the process ten times, and calculate the minimal, maximal,
and average numbers of the templates generated by a certain percentage of the
corpus. The figure shows that the curves for the minimal, maximal, and average
template numbers are almost identical. Furthermore, in all three curves the number
of templates does not converge as the size of the treebank grows, 1mp1y1ng that
there could be many new templates in new data.

As the number of templates does not coverage as the size of the treebank
grows, the next question is whether these low frequency templates are linguistically
plausible. To answer this question, we randomly selected 100 templates from the
3,276 templates in Gy that occur only once in the corpus. After manually examining
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FIGURE 2.13 -The relation between the rank and frequency of etree templates: X-axis and

Y-axis show the rank and frequency of templates respectively, and both are on log scales.

them, we found that 41 templates resulted from annotation errors and two from
missing entries in the language-specific tables that we made for the PTB; the
remaining 57 were linguistically plausible. This experiment shows that, although
the PTB is pretty large, Gy is still missing many plausible templates for English.?

So far, the discussion has been based on templates, rather than on etrees. For
parsing purposes, a more important question is: how often do the unseen etrees
occur in new data? Recall that an efree is equivalent to a (word, template) pair. If
an etree is unseen, the word can be unseen. (uw) or seen(sw), and the template can be
unseen (ut) or seen (st). Therefore there are four kinds of unseen pairs, where (sw,
st) means both words and templates have appeared in the training data, but not the
pair. Table 2.3 shows that in G; only 7.85% of the pairs in Section 23 of the PTB are
not seen in Sections 2 to 21.12 Of all the unseen (word, template) pairs in Gy, only
4.20% (0.31%-+0.02% divided by 7.85%) are caused by unseen templates, and the
remaining 95.80% are caused by unseen words or unseen combinations. This implies
that the presence of unseen templates is unlikely to have a significant impact on
Supertagging or parsing. In addition, most unseen (word, template) pairs are (sw,
st) pairs, indicating that some type of smoothing over sets of templates (e.g., the
notion of tree families in the XTAG grammar) could be helpful for improving parsing
accuracy. In the table, we also list the percentages of unseen (word, POS tag) pairs
in the same data for comparison. This table shows two differences between POS tags
and templates. First, the number of POS tags is much smaller, and there are no
unseen POS tags; consequently, the percentages for (sw, ut) and (uw, ut) are zero.
Second, the percentage of unknown (word, POS tag) pairs where both words and
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FIGURE 2 14 The growth of templates in Gi1: X-axis shows the’ percentage of the corpus
used for extraction (e.g., 0.2 means 20%), Y-axis shows the number of extracted -
templates.

" POS tags are known is much lower than that for (word, template) pairs. Because
of these differences, the baseline for POS tagging is much higher than the one for -
template tagging (i.e., Supertagging), as shall be discussed in section 2.4.3.

TABLE 2.3 Theé types of unseen (word, template) pairs in Section 23 of the English Penn

Treebank
# of tags | (sw, st) | (uw, st) | (sw, ut) | (uw, ut) | total
POS tags | 48 0.44% 247% |0 0 2.91%
LTAG G1 | 6,926 5.09% 2.43% 0.31% 0.02% 7.85%
LTAG Gy | 2,920 4.20% 2.45% 0.10% 0.01% 6.76%

In addition to the English treebank, we also extracted grammars from the .
Chinese Penn Treebanks and the Korean Penn Treebanks.** The results are shown
in Table 2.4. An interesting question is what kind of elementary trees and subtrees
are shared among grammars for different languages. We have conducted some
preliminary experiments and the results were reported in Xia et al. (2001).

An interesting question is how similar or different those treebank grammars are.
In one of our previous experiments, we looked at each language pair, and counted
the numbers of templates that are shared between the two corresponding treebank
grammars. Then we classified the templates that appear in one grammar but not
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TABLE 2.4 Grammars extracted from the English, Chinese, and Korean Penn Treebanks

corpus size |. word || template etree || context-free

| (in words) | types " types types rules
English 1M-| 49,206 6,926 | 131,397 || 1,524
Chinese 100K | 10,772 1,140 | 21,125 _ 515
Korean 50K | 10,035 632 | 13,941 152

the other. Some of the mismatches are due to spurious reasons (such as annotation
errors or different annotation style), whereas the rest are due to the true differences
between the two languages (for instance, some syntactic constructions appear only in
one of the two languages). Our preliminary results were reported in Xia et al. (2001).
The exercise helps us better understand the similarities and differences between
languages with respect to their grammars. Another potential benefit of this exercise
is that it produces the links between the templates in the grammars, which could
be a valuable resources for transfer-based machine translation systems.

2.4.2 Treebank grammars combined‘ with hand-crafted
grammars

If a language already has a hand-crafted grammar such as the XTAG English
grammar, we can use a treebank grammar to evaluate and improve the coverage of

this hand-crafted grammar.

Previous evaluations (Doran et al., 2000; Srinivas et al., 1998) of hand-crafted
grammars use raw data (i.e., a set of sentences without syntactic bracketing). The
data are first parsed by an LTAG parser and the coverage of the grammar is
measured as the percentage of sentences in the data that can be parsed.'® For
more discussion on these evaluations, see Prasad and Sarkar (2000).

Now with the treebank grammar produced by LexTract, we can estimate the
coverage of a hand-crafted grammar by measuring the overlap of the hand-crafted
grammar and the treebank grammar. The main idea is as follows: given a treebank T'
and a hand-crafted grammar Gy, let Gy be the set of templates extracted from T by
LexTract. The coverage of G, on T" can be measured as the percentage of template
tokens in T" that are covered by the intersection of G; and Gp. One complication
is that the treebank and G may choose different analyses for certain syntactic
constructions; that is, although some constructions are covered by both grammars,
the corresponding templates in these grammars would look very different. To address
this problem, some human effort is required. In this section, we report the main
results of our experiment; the details can be found in Xia and Palmer (2000).

In our experiment, we chose Gy as our treebank grammar (see Table 2.2 in
section 2.4.1) and the XTAG grammar as the hand-crafted grammar. The former
has 2,920 templates, and the latter has 1,004 templates. We- first calculate how
many templates in the XTAG grammar match some template in Go. We define two
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types of matching: t-match’ and s- match We say that two templates t—match (t for
template) if they are identical barring the types of information present only in one
grammar — such as feature structures in the XTAG grammars and the frequency _
‘information in G,. The definition of t-match is pretty strict becausé it does not o
tolerate minor differences between two grammars such as the number of projections -
of a head: A more lenient measure is called s-match. Two templates are said to -

- s-match if they are decomposed into the same set of subtemplates. A'subtemplate . .

can'be a subcategorlzatlon frame, a modification pair, or a head pI‘OJeCtIOIl chain.
16 :

Table 2.5 lists the numbers of matched templates in the two grammars. The
- last row lists the percentage of the template tokens in the PTB that match some
" templates in XTAG. For instance, the first column. says 173 templates in XTAG t- -
match 81 templates in Gg, and these 81 templates.account for 78.6% of thie template - -
tokens in the PTB. There are 17.9% of the template tokens in the PTB that do: -
‘not match any template in the XTAG grammar. There are several reasons Why a : :
template appears in Gz but not in the XTAG grammar :

TABL'EF,‘Z.S The numbers of templates'in the XTAG grammar that match some templates -
_in G2 and their frequencies in-the English Penn Treebank

t-match | s-match | matched || unmatched | total
: ‘ subtotal subtotal |
# of templates in XTAG 173 | - 324 497 507 | 1,004
# of templates in Go 81 134 215 2,705 | 2,920
| % of template tokens. || 786% |  35% | 821% [ = 17.9% | 100% ]|

(T1) incorrect templates in Ga: These templates - result from treebank
annotation errors, and therefore they are not in XTAG. :

(T2) coordination in XTAG: the templates for coordination in XTAG are
generated on-the-fly during parsing (Sarkar and Joshi, 1996), and are not part
of the 1,004 templates. Therefore, the conj-templates in Go, which account for
about 3.4% of the template tokens in the PTB, do not match any templates
in the XTAG grammar. .

(T3) alternative analyses: XTAG and Ga sometimes choose different analyses
for the same phenomena. As a result, the templates used to handle these
phenomena do not match according to our definition.

(T4) constructions not covered by XTAG: Some constructions, such as the
unlike coordination phrase (UCP), parenthetical (PRN), and ellipsis, are not
currently covered by the XTAG grammar.

For the first three types, the XTAG grammar can handle the corresponding
constructions although the templates used in two grammars look different and do
not match according to our definition. To find out. what constructions are not covered
by XTAG, we manually classified the 289 most frequent unmatched templates in
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Go according to (T1)—(T4) as previously defined. These 289 templates account for
16.8% of all the template tokens in the treebank. The results are shown in Table
*2.6, where the percentage is with respect to all the template tokens in the treebank.
From the table, it is clear that most unmatched template tokens are due to (T3);
that is, alternative analyses adopted by the two grammars. Combining the results
in Tables 2.5 and 2.6, we conclude that 97.2% of template tokens in the PTB can
be handled by the current XTAG grammar,'” while another 1.7% cannot. There are
2416 unmatched templates in Gg that we have not checked manually, which account

for the remaining 1.1% of template tokens in the PTB. ' ' '

 TABLE 2.6 Classification of 289 templates that are in Gz, but not in the XTAG grammar

T1 T2 T3 T4 total

# of template types 51 52 93 93 289
% of template tokens || 1.1% | 3.4% | 10.6% | 1.7% || 16.8%

Instead of just calculating the percentage of template tokens in the PTB that
match templates in the XTAG grammar, we can also calculate the percentage of
sentences in the PTB that can be parsed by the XTAG grammar. This can be done
by first running LexTract to build a derivation tree for each sentence in the PTB as
‘discussed in section 2.3.4. Each node in a derivation tree is a (word, template) pair
as in figures 2.9 and 2.10. A sentence is covered by the XTAG grammar if both of

the following conditions hold:

+ TFor each (word, template) pair (w,t) in the derivation tree, there exists a
template ¢’ in the XTAG grammar such that ¢’ t-matches or s-matches ¢ and
(w,t') is in the lexicon of the XTAG grammar.

~ The new derivation tree made up of (w,#') could fit together.'8

- The average length of the sentences in the PTB is 23.8 words. For most of the
sentences, their derivation trees contain at least one (word, template) pair that is
not in the XTAG grammar; therefore, the percentage of sentences in the PTB that
satisfies both conditions is very low. Nevertheless, this experiment provides a list of
(word, template) pairs that could be added to the XTAG grammar to improve its
coverage.

To summarize this section, we have presented a method for evaluating the
coverage of a hand-crafted grammar — the XTAG grammar — on a treebank.
First, we used LexTract to automatically extract a treebank grammar. Second,
we matched the templates in the two grammars. Third, we manually classified
unmatched templates in the treebank grammar to decide how many of them were
due to missing constructions in the hand-crafted grammar. Some of the unmatched
templates can be added to the hand-crafted grammar to improve its coverage. Our
experiments showed that the XTAG grammar covers at least 97.2% of the template
tokens in the English Penn Treebank. This method has several advantages. First, the
whole process is semiautomatic and does not require much human effort. Second,
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the method prov1des a-list of templates and (Word template) pairs that can be

- added to the grammar to improve its coverage. Third, there is no need to use

~ the grammar to parse the whole corpus and manually check whether the correct -
" parses are produced, which can be very time-consuming. Fourth, the coverage of"

the grammar can be estimated at either the template level or the sentence level.

-2 4.3 Lex1cons as training data for.Supertaggers

B A Supertagger (Joshl and Srinivas, 1994; Srinivas, 1997) assigns an etree template =
" to each word in a sentence. The templates are called Supertags because they include = .

more information than part-of-speech (POS) tags. In this section, we use these two

" terms (i.e., template and Supertag) interchangeably, and a word has x Supertags
means that the word can anchor z distinct templates. In general, a word has many " '
more Supertags than POS tags because a word appearing in different elementary -
trees will have different Supertags even if the POS tag of the word remains the B

same. For example, a preposition has different Supertags when the PP headed by

-the preposition modifies a VP, an NP, or a clause. In the PTB, on average, & word - :
type has 2.67 Supertags, and a word token has 34.68 Supertags.’® In contrast, on..

average a word type has 1.17 POS tags, whereas a vvord token has 2. 29 POS tags.?0

Srinivas 1mplem_ented an nm-gram Supertagger and he also bullt a nghtwelght

Dependency Analyzer (LDA) that assembles a Supertag sequence to create an
almost-parse for a sentence. A Supertagger can also be used as a preprocessor-

(just like a POS tagger) to speed up parsing, because after the Supertagging
stage an LTAG parser needs to consider only one or a few templates (in case
of n-best Supertaggmg) for each word in the sentence, instead of every template
that the word can anchor. Besides parsing, Srinivas (1997) has shown in his thesis
that Supertaggers are useful for other applications, such as information retrieval,

" information extraction, language modeling, and 31mp11ﬁcat10n

One difficulty in using Supertaggers is the lack of training and testing data.
To use a treebank for that purpose, the phrase structures in the treebank have
to be converted into (word, Supertag) sequences first. As discussed in'section 2.3.3,
LexTract builds a set of elementary trees from a parse tree. As an elementary tree is
a (word, Supertag) pair, LexTract can easily produce a (word, Supertag) sequence

for each sentence in the treebank. Besides LexTract, there have been two other
. attempts at converting the English Penn Treebank to (word, Supertag) sequerices

in order to train a Supertagger. One is Chen and Vijay-Shanker’s method (Chen
and Vijay-Shanker, 2000), which has been discussed in section 2.3.6. The other was

reported in Srinivas (1997), in which the author first selected a subset of templates -

from the XTAG grammar, then used heuristics to map structural information in
the treebank into the subset of templates. Srinivas’s approach differs from LexTract
and Chen and Vijay-Shanker’s method in that it uses-a preex1st1ng Supertag set,

" rather than extracting a Supertag set directly from the treebank. ‘As a result, it
" is not guaranteed that the Supertag sequences in Srinivas’s converted data would

always fit together, due to the discrepancy between the XTAG grammar and the
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treebank annotation and the fact that the XTAG grammar does not cover all the
template tokens in the treebank. :

In our experiment, we use the data converted by these three methods to train
and test the same Supertagger (i.e., Srinivas’s n-gram Supertagger). Except for
the conversion methods, everything else is identical, including the Supertagger, the
evaluation tool, and the original PTB data. The results are given in Table 2.7.
Following the convention of recent parsing work, we use Sections 02-21 for training,
and Section 23 for testing. We also include the results for Section 22 because (Chen
‘and Vijay-Shanker, 2000) is tested on that section and its results on Section .23
are not available. The results of Chen and Vijay-Shanker’s method come from their
paper (Chen and Vijay-Shanker, 2000). They built eight grammars. We list two of
them that seem to be most relevant: Cy uses a reduced tagset while Cs uses the
PTB tagset. As for Srinivas’s results, we had to rerun his Supertagger using his
data on the sections that we have chosen, because his previous results were trained
and tested on different sections of the PTB.%

TABLE.2.7 Supertagging results based on three different conversion algorithms,
everything else such as the original data and Supertagger are identical. For comparison,
two sets of baselines are provided: in the first set (basel), a word is tagged with most
common Supertag for that word; in the second set (base2), a word is first POS tagged
using a trigram POS tagger, then tagged with the most common Supertag for that
(word, POS tag) pair.

# of templates | section | basel | base2 | tagging accuracy

Srinivas’s 483 23 72.59 | 74.24 | 85.78
grammar 22 72.14 | 73.74 | 85.53
our Gq 2020 23 71.45 | 74.14 | 84.41

22 70.54 | 73.41 | 83.60
our Gy 6926 23 | 69.70 | 71.82 | 82.21

22 68.79 | 70.90 | 81.88
Chen and 2366 — 8996 22 - - 77.8-178.9
Vijay-Shanker’s C »
Cy 4911 22 - - 78.90
Cs 8623 22 - - 78.00

We calculated two sets of baselines. For the first set, we tagged each word in the
testing data with the most common Supertag for that word in the training data.
For an unknown word, the most common Supertag was used. For the second set of
baselines, we used a trigram POS tagger to tag the words first, and then for each -
word we used the most common Supertag for that (word, POS tag) pair. The table
shows that the first set of baselines for Supertagging were around 70%, which are
much lower than the 91%.baseline for the POS tagging task if the same method is
used. This implies that Supertagging is a much harder task than POS tagging. The
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. second set of baselines were slightly better than the first set of baselines; indicating =

~ that POS tags could help to improve the Supertaggmg accuracy.

. A 'word of caution.is in order. Because the sets of Supertags used by these
- conversion methods differ a lot with respect to the size, coverage, and so on, we
~ cannot use Supertagging accuracy to compare the quality- of gramma.r,éktra.ctien -
" tools that produce the training data for the Supertagger. For instance, the accuracy -

‘using G4 is-about 2% lower than the one using Ga, although both are produced by
- LexTract. Furthermore, higher Supertagging accuracy does not necessarily imply
higher parsing accuracy when a tool (such as an LDA) is used to assemble a
Supertag sequence to create a parse tree. We conducted this experiment only to
“show that the (word, template) sequences produced by LeX'Ifract are useful for

training Supertaggers.

2. 4 4 Derlvatlon trees as tralnmg data for statlstlcal LTAG
' parsers , ‘

In the previous section, we have shown that the' (word,» template) sequences -
‘produced by LexTract can be used to train a Supertagger. The output of a
Supertagger can then be fed to an LDA or a parser to produce parse trees. A problem
-with this approach is that the Supertagging errors can hurt parsmg performance. |

Another way of using LeXT.ca,ct for parsing is to train an LTAG parser dlrec’cly,
* without using a Supertagger as a preprocessor. There have been two LTAG parsers
that use LexTract’s output as training data. One is a head-corner LTAG statistical
‘parser built by Anoop Sarkar. To reduce the amount of labeled data needed to
train his parser, Sarkar adopts a cotraining method, which uses a small amount.
of labeled data, a large amount of unlabeled data, and .a tag dictionary. Labeled
data are sentences annotated with-phrase structures; unlabeled data are sentences
stripped of all annotations; and a tag dictionary is a set of (word, template) pairs. In
his experiment, the labeled data are Sections 02-06 of the PTB, the unlabeled data
are Sections 07-21 stripped of all annotation, and the tag dictionary includes all the
*(word, sequence) pairs from Sections 02-21. When tested on Section 23 of the PTB,

" ‘the labeled bracketing precision and recall are 80.02% and 79.64%, respectively.
Considering that ‘the labeled data used by the parser are only about 25% of the
training data used by other parsers, we believe that the. results are very promising.
The details of the generative model, the co-training method, and the experiment
can be found in Sarkar (2001). The second parser that uses LexTract to convert the .
treebank data to the training data for LTAG parsers is a LR parser developed by .

Carlos Prolo. The details can be found in Prolo (2000).

2.4.5 LexTract as a tool for error detectlon in treebank
annotation .

Recall that given a treebank tree T, LexTract inserts additional internal nodes into
it to form a new tree T* and decomposes T* into a set ESet of elementary trees.
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Because ESet is a decomposition of T, there is a mapping between the nodes in
" T* and the nodes in FSet.?2 If there are annotation errors in T, those errors will be-
passed into T, and then to some etrees in ESet; as a result, those corresponding
etrees are likely to be linguistically implausible.?® For the reversed direction, if an
etree is linguistically implausible, it implies that the corresponding nodes in the T°*
and T are not annotated correctly. Based on this relation, we use LexTract to detect
annotation errors m a treebank. :

The algorithm for error detection has three steps: first, we run LexTract on the
whole treebank to generate a grammar G; second, we check each template in G,
decide whether it is plausible and mark it accordingly; third, for each ttree T; in the
treebank, we run LexTract and generate a grammar G;. Obviously, G; is a subset
of G. If G; includes any implausible etree as marked in G, then we modify T; to T}
so that the etrees generated by T} are all plausible. It is possible that the new ttree
T/ yields some new etrees which are not in G. In that case, we mark the plausibility
of such etrees and add them to G. In this algorithm, human effort is required with
respect to two aspects: checking the plausibility of etrees and modifying ttrees.?*

‘We used LexTract for the final cleanup of the Chinese Penn Treebank. The
treebank contained about 100,000 words after word segmentation, and the average
sentence length was 23.8 words. Before LexTract was used for the final cleanup, the
treebank had been manually checked at least twice and the annotation accuracy
was already above 95%. Details on the treebank can be found in Xia et al. (2000b)
and at the website http://www.ldc.upenn.edu/cth; the treebank is available to the
public via LDC.

Before the final cleanup, the treebank grammar G, contained 1245 etree
templates. It took a linguistics expert about ten hours to manually examine all
the templates in G, to determine whether they were plausible. After that, it took
another person (who was one of the two annotators in the Chinese Treebank project)
about twenty hours to run LexTract and correct treebank annotation. After the
cleanup, 169 templates in the old grammar disappeared, and 38 templates were
added to the new grammar; so the new grammar has 1,114 etree templates. We also
automatically counted the number of word tokens in the treebank that anchored
distinct templates before and after the cleanup. We found 579 word tokens (which
account for 0.58% of the total number of word tokens in the treebank) whose
templates had changed after the cleanup. The differences may not be huge, but
considering the accuracy before running LexTract was already above 95%, the
results of the final cleanup were satisfactory. These errors found by LexTract can

be classified as follows:

«  Formatting errors in ttrees such as unbalanced brackets and illegal tags: when a
ttree is not properly formatted, LexTract will give a warning and exit without
further processing of the ttree.

«  Mismatched syntactic labels (including POS tags, phrase labels and empty
category tags): Except for careless typos (e.g., using the tag LC (localizer)
rather than CL (classifier) for a classifier in the Chinese Treebank), mismatched
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- syntactic labels are often due to- 1ncompat1b1e labels at several Ievels For'.
- example, in Chinese, a coordinating conjunction (CC) such as tong is also a
- preposition (IN); therefore, the sentence “John tong/and-with Mary zou/leave
; le/ASP” means either “John and Mary left” or “John left with. Mary”, and both
structures in figure 2.15a-and 2.15b are correct. 25 However, the structure in '
figure 2.15¢ is incorrect because the POS tag CC and the phrase label PP do »
not match, resulting in an implausible etree in figure 2.15d. This type of error is .
~ relatively common because POS tagging and bracketing were done at separate
~ annotation stages by dn‘ferent annotatms : ‘ » :

(s (NP-SBJ (NP (NNPJohn)) ‘ - (S (NP-SBJ (NNP John)) vv

(CC tong) . (VP (PP (INtong) . .
(NP (NNP Mary})) R (NP (NNP Mary)))
(VP (VB zon) : 0 (VB zou)

(ASle)) - R (ASle)))
(a)tongasa conjunction - el (b) tong as a preposition :
(S (NP-SBJ (NNP John)) VP

~ (VP (PP (CC tong) ) - PP/\
(NP (NNP Mary : Vp*
w2

ASle)). ro

’ ' ) tong
(c) the incompatible labels (d) the resulting etree

FIGUR.Ek 2.15 An error caused by incompatible labels: (a)and (b) are two correct
. structures; (c) has two mistatched labels (PP and CC), both marked in boldface; (d) is
the elementary tree resulted from the annotation errors in (c). '

Wrong or missing function tags: LexTract uses syntactic labels and function tags
to. distinguish arguments from adjuncts. Wrong or missing function tags may
cause an argument to be mistaken as an adjunct by LexTract or vice versa. For
example, the Chinese Treebank annotation guidelines require that the subject
_of a verb should always have the function tag -SBJ, but sometimes annotators
‘forgot to do that. In figure 2.16, the structure in (c) is identical to the one in
(a) except that the subject in (c) is missing such a function tag; as a result,
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LexTract treats the subject in (c¢) as an adjunct, and creates an implausible
etree in (d) rather than the plausible etree in (b). '

(S (NP-SBJ (NNP John)) | S
(VP (PP (IN tong) - PN
(NP (NNP Mary))) NPV, VIP
(VB zou) @ '
(AS Ie))) VIB
~zou
(a) the correct annotation (b) plausible etree
(S (NP (NNP John)) . S
(VP (PP (IN tong) : |
(NP (NNP Mary))) —>
(VB zou) VIP
(AS le)))
N
zou
(c) the NP subjeét is missing
the function tag -SBJ (d) implausible etree

FIGURE 2.16 An error caused by a missing function tag: (a) is the correct structure; (b) is
one of the efrees extracted from (a); (c) misses the function tag SBJ; (d) is an extracted
etree from (c), and it is implausible because it does not contain the subject of the verb.

= Missing ttree nodes: One reason for this type of error in the Chinese Penn
Treebank is that annotators forgot to mark dropped arguments. In figure 2.17,
the dropped argument should be marked as an empty category *pro* as in (a).
Failing to do that, as in (c), would result in an implausible etree in (d).

- Extra ttree nodes: This type of error is rare and mostly caused by careless typos
or misunderstanding of the annotation guidelines.

Two observations are in order. First, the main function of LexTract is extracting
LTAGs and building derivation trees to train LTAG parsers and Supertaggers. Error
detection is only a byproduct of the system. Consequently, there are errors that
LexTract cannot detect; namely, the errors that do not result in implausible etrees.
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(S (NP-SBY (:NONE-*pro¥)) = .S
(VPP (Wtong) N
(N?(NNPMary») A IS‘TP, ' VIPA _.
(VBzou) _ o § . o o
(sl *pro* . l.
(a) the correct amotaﬁon o S (b) plaﬁsbilg’; etree
(s (VP (P (N tong) o S
opoNeMa)
“(VBzow) - —> = VP
C@asle) T V;’B |
o ’ zou
(c) the sentence misses : .
the subject node (d) implausible etree

FIGURE 2.17 An error caused by a missing subject node: (a) is the correct structure; (b)

is one of the etrees extracted from (a); (c) misses the NP-SBJ node and its child; (d) is

an extracted etree from (c), and it is implausible because it does not contain the subject
' of the verb.

For example, in English, a PP can modify either an NP or a VP Given a particular
_ context, in general, only one attachment makes sense. If the treebank chooses the
wrong attachment, LexTract cannot detect that error.

‘ The second observation is that using templates can detect more annotation
errors than using context-free rules. For example, in English either the subject or

- the object of a verb can undergo wh-movement and leave a trace in its position, as
shown in figure 2.18a and 2.18b. But the subject and the object cannot be moved

at the same time, as in figure 2.18c. That is, the first two templates are plausible

i but the third template is not. However, all three templates consist of the same set
of context-free rules as in figure 2.18d, and all the context-free rules are plausible.
Thus, the annotation errors that result in the implausible template in figure 2.18¢c
can be detected only if we use templates, rather than context-free rules.
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' ~ ' S g
/S\ , /S\ NP/\S §->NPS
NP} /s\ NPy /s\ | JNP/\VP | S ->NP VP
NP VP NP} VP - ‘ VP >V NP
| N AN | N
V@ NP v@ NP e V@ NP NP> ¢
g ) | | )
£ e
(a) (®) © @

FIGURE 2.18 Three templé.tes and corresponding context-free rules: the first two
templates are plausible, while the third one is not. The context-free rules derived from
these three templates are identical and each rule is plausible.

2.5 Summary_

‘We outlined a system named LexTract, which takes a treebank and language-
specific information, and produces grammars (LTAGs and CFGs) and derivation
trees. LexTract has several advantageous properties. First, it takes very little human
effort to build three tables (i.e., the Tagset Table, the Head Percolation Table, and
the Argument Table). Once the tables are ready, LexTract can extract grammars
from treebanks in a short time. Because LexTract does not include any language-
dependent code, it can be applied to various treebanks for different languages.
Second, LexTract builds a unique derivation tree for each sentence in the treebank,
which can be used to train statistical LTAG parsers directly. Third, LexTract allows
its users to have some control over the kind of treebank grammar to be extracted.
For example, by changing the entries in the Head Percolation Table, the Argument
Table, and the Tagset Table, users can get different treebank grammars and they
can then choose the ones that best fit their goals. Fourth, the grammar produced
by LexTract is guaranteed to cover the source treebank.

We have used LexTract for -four types of tasks. First, treebank grammars
produced by LexTract are useful for grammar development and comparison. For
example, a treebank grammar can be used as a stand-alone grammar. We also
used a treebank grammar extracted from the English Penn Treebank to estimate
and improve the coverage of the XTAG grammar. Second, the treebank grammar
and derivation trees produced by LexTract were used to train a Supertagger and a
statistical LTAG parser with satisfactory results. Third, we used LexTract to detect
annotation errors in the Chinese Penn Treebank. Last, we used LexTract to find all
the nonlocal examples from the English Penn Treebank in order to test the tree-
locality hypothesis. The details of these experiments can be found in Xia (2001). All
these applications indicate that LexTract is not only an engineering tool of great
value, but it is also very useful for investigating theoretical linguistics.
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* Notes |

1. Treebank grammars may contain less information (e.g.," feature structures
associated with nonterminal nodes) than some hand-crafted grammars, but they

" are sufficient for some NLP tasks such as Supertaggmg and parsing as descrlbed in

section 2.4.

2. Another p0531b1e name for a prototype.is template. We do not use this name

- because the term template in the LTAG formalism is used to refer to an unlexicalized
elementary tree. :
3. Some users may prefer to treat the corljﬁrictiori as the anchor of the tree, and -
treat the conjoined constituents as substitution nodes. It is also possible that two

. conjoined constltuents are connected by two conjunctions (e.g., the conjunctlon pair
. “both ...-and ...” in English). LexTract can accommodate: both cases, but we om1t :

the detaﬂs in thls chapter for the sake of 31mp11c1ty

4. One exceptmn is the predlcatlve auxﬂlary tree for verbs such as think. The
elementary tree for the verb think in a.declarative sentence is an auxiliary tree to
handle long-distance movement, but it is also a spine-etree as it shows the predicate-
argument relation of the verb. : -

5. This choice will not change the elerrlentary trees extracted from a ttree, but
they will result in different derivation trees, as in figures 2.9 and 2.10. It is possible
that one option is better than the other for training a particular LTAG. parser.

6. Recall that the process of building etrees has two steps. First, LexTract treats
each node as & pair of the top and bottom parts. The derived tree is cut into pieces
along the boundaries of the top and bottom parts of some nodes. In any partition,

‘the top and the bottom parts of each node belong to either two distinct pieces or one
piece; as a result, there are 2™ distinct partitions of the derived tree. In the second

step, two nonadjacent pieces in a partition can be glued together to form a bigger

‘piece under certain conditions. Therefore, each partition will result in one or more

decompositions of the derived tree. In total, there are at least 2™ decompositions

- for any derived tree with n nodes; that is, the number of p0551b1e decomposmons is

9(2”)

7. The prototypes actually allow the arguments of an anchor to be further

expanded and lexicalized in order to handle noncompositional phrases such as keep

the bucket, however, because the Penn Treebanks currently do not mark these
noncompositional phrases, all the etrees extracted from the treebanks will have

- single anchors, and the arguments of the anchor are substitution nodes.

8. Unfortunately, we do not have access to the CFG parser they used; therefore,
we cannot compare our grammar with their grammars with respect to the precision

and recall rates of the parser.
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9. We leave out the last type mainly because understanding our experiment for
this type requires the knowledge of Multiple-Component Tree-Adjoining Grammars
(MCTAG), a topic that we do not cover in this chapter.

10. Anoop Sarkar attended graduate school at the University of Pennsylvania when
the experiment was conducted. He is currently a faculty member at Simon Fraser
University in Vancouver, Canada.

11. Zipf’s Law says that in a large corpus the rank of a word multiplied by its
frequency is a constant .(Zipf, 1949). The rank of a word is the position of the word
in the word list when the list is sorted in decreasing order according to the words’
frequencies in the corpus. Graphically, if the frequency of each word is plotted as a
function of rank on doubly logarithmic axes, the curve is close to a straight line with
slope--1. To achieve a closer fit to the empirical distribution of words, Mandelbrot
(1954) derives the following more general relationship between rank and frequency:

freq = P(rank + p)~5

where P, B, and p are parameters of a text, that collectively measure the richness

- of the text’s use of words (Manning and Schiitze, 1999). Interestingly, the curve in
figure 2.13 shows that the relationship between the rank and frequency of templates
satisfies Mandelbrot’s equation.

12. Chiang (2000) did similar experiments for the tree insertion grammar that he
extracted from the PTB. His grammar had 3,626 templates, of which 1,587 occur
once. He found that out of 100 randomly selected once-seen templates, 34 results
from annotation errors, 50 from deficiencies in the heuristics used by his extraction
algorithm, and 4 from performance errors; only 12 appeared to be genuine. It is hard
0 compare the results of these two experiments because the treebank grammars and
the extraction algorithms in his and our experiments were very different.

13. We chose those sections because most state—of the-art parsers are trained and
tested on those sections.

14. The Chinese Treebank had about 100,000 words when our experiments were
conducted. Since then, the treebank has been expanded and now it contains more

than 500,000 words. ‘ ;

15. Ideally, the coverage of a grammar should be measured as the percentage of
. sentences for which the correct parse trees can be generated by the grammar.
However, because it is time consuming to manually check whether the parse trees
produced by the grammar contain the correct ones, previous evaluations used a
more lenient measure, which is the percentage of sentences for which the grammar
will produce at least one parse tree.

16. For instance, in the XTAG grammar, the templates for intransitive verbs such
as come and the templates for the intransitive usage of ergative verbs such as break
in the sentence The window broke look the same except that the subject in the
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former is named N P, whlle the subJeCt in the latter is named NP,. The‘subsc'.rip't

0 implies that the NP is the agent, and the subscript 1 implies that the NP is the - -

theme. On the other hand, the Penn Treebanks do not mark agents and themes, and
therefore the templates for come and the intransitive usage of break will be identical
in the treebank grammar. Because subscripts appear only in the XTAG grammar

and are ignored when templates are matched, the two slightly d1fferent templates" B

in the XTAG grammar will match the same template in G2

17 The number 97.2% is the sum of two- numbers the ﬁrst one is the percentage
of matched template tokens (82.1% from Table 2.5). The second number is the
percentage of template tokens in Tl—-T3 (16 8% - 17% = 15.1% from Table 2.6).

~18.Tt is p0331ble that the new. derlvatlon tree cannot fit tovether because tand t'

‘are not identical.

C19.A word in this section, as usual, refers to an inflected word, rather than a lemma.

The-average number of Supertags per word .type is calculated as
Zwewstag(w) i
: e
The average number of Supertags per word token is calculated as
Pwew Stag(w) * freq(w) -
2wew freg(w)

where W is the set of distinct words in a treebank, stag(w) is the number of
Supertags that & word w has, and freg(w) is-the number of occurrences of w in
-the treebank. :

20. For these four numbers, we use PTB's tagset. The numbers would decrease a
- little bit if we used the reduced tagset instead. A word may appear to have more
Supertags (or POS tags) in the treebank than it should due to treebank annotation

€ITOrS.

21 Notably, the results we report on Srinivas’s data, 85.78% on Section 23 and
85.53% on Section 22, are lower than the 92.2% reported in Srinivas (1997), 91.37%
in Chen et al. (1999) and 88.0% in Doran (2000). There are several reasons for the
differences. First, the size of training data in our experiment is smaller than the
one for his previous work, which was trained on Sections 00-24 except for Section
20 and tested on Section 20. Second, we treat punctuation marks as normal words
during evaluation because, like other words, punctuation marks can anchor etrees,
whereas he treated the Supertags for punctuation marks as always correct. Third, he
predefined some equivalence classes and used them during evaluations. If the correct
Supertag for a word is x, and the output of the Supertagger for that word is y, he did
‘not consider that output to be an error if x and y appeared in the same equivalence
class. We suspect that the reason that these Supertagging errors were disregarded
is that they might not affect parsing results when the Supertags are combined to
form parse trees. For example, both adjectives and nouns can modify other nouns.
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The two templates (i.e.; Supertags) representing these modification relations look
the same except for the POS tags of the anchors. If a word that should be tagged
with one Supertag is mistagged with the other Supertag, it is likely that the wrong.
Supertag can still fit with the rest of Supertags in the sentence to produce the
correct parse tree. In our experiment, we did not use these equivalence classes.

22. Let R be the root of T*. If each node ¢ in T* is split into a (%.top, t.bot) pair,
and each node e in ESet is split into a pair (e.top, e.bot) except that the foot and
substitution nodes have only the top part and the root nodes have only the bottom
part, then there is a bidirectional function f from the set {¢.top, t.bot} — {R.top}
to the set {e.top, e.bot}. Details can be found in section 5.4.4 in Xia (2001).

23. While the exact definition of plausibility could vary depending on the underlying
linguistic theory, there are some requirements that most people would agree that a
good elementary tree should satisfy: for example, arguments should appear in the
same elementary tree as their head; if the. category of a phrase is XP (e.g., VP),
the category of the head of the phrase should be X (e.g., V). For the experiment
described in this section, we let our linguistic expert use her own judgment to decide
-on the plausibility of elementary trees. '

24. While the algorithm would point out the nodes in ttrees that need to be checked,
it is up to the user of the tool to decide what kind of modification is needed to fix

the errors in the ttree.

25. Because most of the readers are more familiar with the English Penn Treebank
than the Chinese Penn Treebank, in this example we adopt the annotation
convention and the tagset that are used in the English Penn Treebank (except
for the tag AS for an aspect marker, which does not appear in the English tagset).
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