| '"Developmg Tree-AdJommg Grammars;
| '_':’w1th Lexical Descrlptlons T

- FEI XIA, MARTHA PALMER AND K VIJAY—SHANKER

3.1 Introduction

LTAG is’an appealing. formalism for representing various phenomena (espeéially '
‘syntactic” phenomena) in natural languages because of its linguistic and

computational properties such as the Extended Domain of Locality,. stronger
‘generative capacity and lexicalized elementary trees. Because templates (i.e.,
elementary trees with the lexical items removed) in an LTAG grammar often
share some common structures, as the number of templates increases building and
_maintaining templates by hand presents two major problems. First, the reuse of

_tree'structures in many templates creates redundancy. To make a single change in.

a grammar, all the related templates have to be manually checked. The process
is inefficient and cannot guarantee consistency (Vijay-Shanker and Schabes, 1992).
Second, the underlying linguistic information (e.g., the analysis of Wh—movement)
is not expressed explicitly. As a result, from the grammar itself (i.e., hundreds of
. templates plus the lexicon), it is hard to grasp the characteristics of a particular

language, to compare languages, and to build a gramma,r for a new language given

ex1st1ng grammars for other languages.

To address these problems, we designed a grammar development system
“named LexOrg, which automatically generates LTAG grammars from abstract
specifications. The system is based on the ideas expressed in Vijay-Shanker and
Schabes (1992), for using tree descriptions in specifying a grammar by separately
defining pieces of tree structure that' encode independent syntactic principles.
Various individual specifications are then combined to form the elementary trees of
the grammar. We have carefully designed our systém to be as language-independent
as possible and tested its performance by constructing both English and Chinese
grammars, with significant reductions in grammar development time. The system
not only enables efficient development and maintenance of a grammar, but also

73

74 . Fei Xia, Martha Palmer, and K. Vijay-Shanker

Transitive verbs: (NP0 V NP1) _
#1: ' #2:) #3: . #4:

FIGURE 3.1 Templates in two tree families

allows underlying linguistic constructions (such as wh-movement) to be expressed
explicitly.

The chapter is organized as follows. In section 3.2, we give an outline of the
LexOrg system. In section 3.3, we define descriptions, trees, and four classes of
descriptions. In sections 3.4 to 3.6, we describe the three main components of
LexOrg. In section 3.7, we discuss how a user creates a set of abstract specifications
for a language. section 3.8 includes a report on our experiments using LexOrg to
generate grammars for English and Chinese. In section 3.9, we compare LexOrg
with related work. '

3.2 An Overview of LexOrg

To better understand the redundancy problem, let us look at an example. Figure
3.1 shows seven templates in two tree families:! the top four elementary trees are
for the verbs with the subcategorization frame (NP0 V NP1), and the bottom
three elementary trees are for the verbs with subcategorization frame (NP1 V).
Of course, these are not the only trees in the tree families associated with these
subcategorization frames. In the XTAG grammar for English, for example, there

~ are nineteen templates in the transitive verb’s tree family.?

Among these seven templates, #1, #2, #3, and #4 all share the structure in
figure 3.2a; templates #2, #3, and #:6 all have the structure in figure 3.2b; templates

‘ "‘.D’eve'l“op‘ing Tree-Adjoining Grammars with Lexi’calyDes'crip‘tibhé S : ’ 75 .: »

...... ar's
PN NPY S
“.NPy VP . : |
Ve W, o
............................ el
w . wm @

‘- 'FIGURE 3.2 Structures shared by the témplates' in figure 3.1

#4 and #7 both'havekth'e structure in figure 3.2c. The dashed line in ﬁgure 3.2b

between the lower S and the node NP indicates that the Snode dom1na‘ces the NP' o

" “node, but it is hot necessarily thé parent of the NP.

Because of the redundancy ‘among templates, the processu.of manually‘ ‘

creating and maintaining grammanrs is inefficient and cannot guarantée consistency.

Nevertheless, if there exists a tool that combines these common structures to
_generate templates automatically (as illustrated in figure 3.3), then the task of '

the grammar designers changes from building templates to building these common
structures, providing an elegant solution. First, one can argue that the common

structures form the appropriate level for stating the linguistic generalizations. .

Considering that these common structures are much smaller-and simpler than

templates and the number of the former is much less than that of the latter, the '

-grammar development time will also be reduced significantly. Second, if grammar
designers want to change the analysis of a certain phenomenon (e.g., wh-movement),
they need to modify only the structuré that represents the phenomenon (e.g., the

structure in figure 3.3b for wh-movement). The modifications in the structure will .
be automatically propagated to all the templates that subsume the structure, thus-
guaranteeing consistency among the templates. Third, the underlying linguistic

information (such as wh-movement) is expressed explicitly, making it easy to grasp
the main characteristics of a language and to compare languages.

All of these advantages will be derived if the grammar designer is able to state
the linguistic principles and generalizations at the appropriate level. That is, the
domain of the objects being specified must be only large enough to. state these
principles. While the enlarged domain of locality in templates is touted as one
of the fundamental strengths of LTAG, it must be noted that from the grammar
development point of view each template expresses several (often independent)
principles. Thus, in coming up with a template, the designer has to consider
the instantiation of several principles that could interact in some cases and also

instantiate the same principles multiple times (sometimes hundreds of times). We -

76 v Fei Xia, Martha Palmer, and K. Vijay—Shankér

........ S8
......... S K
~ AN SN
k NPO VP + : —
T Ve NP |
............................ E,
(a) : ® (c)

FIGURE 3.3 Combining descr{ptions, to generate templates

believe that this aspect makes the grammar development process unnecessarily
error-prone and cumbersome. Our aim in developing LexOrg is-to let the grammar
designer define individual grammar principles within a domain that is appropriate
for that principle. (Roughly, these domains and the instantiation of principles would
represent the shared structures found among templates in existing grammars as
discussed earlier.) The LexOrg system then assumes the burden of considering
what set of principles should fit together to make up a template and also considers
the interactions and consistency of such a set of principles. Thus, the process of
grammar development or prototyping can be significantly simplified, thereby made
more rapid and less error-prone. Over a period of time, as the grammar is developed
to further its coverage, certain principles are bound to be modified. No matter how
small the modification is, ensuring that the possible effect on all the templates
already designed is properly accounted for by manually checking the templates is
an onerous task. However, with a tool such as LexOrg, the focus is correctly placed
on the principle. The propagation of this principle and ensuring the consistency of
its interactions with other principles is now mechanized. '

In LexOrg, instead of manually creating templates, a grammar designer needs
to provide the following specifications for a language: subcategorization frames,
lexical subcategorization rules, and four different kinds of tree descriptions; head-
projection, head-argument, modification, and syntactic variation descriptions. These
specifications relate closely to the different aspects of LTAG elementary trees and the
notion of tree families. The subcategorization frames associated with different lexical
items specify which arguments of the lexical items the designer intends to localize

-within the elementary trees. Together with the head-projection and head-argument

descriptions (where the grammar designer expresses how the lexical heads project
and how they combine with their “subcategorized” arguments), they will cause
LexOrg to produce the basic tree structure for each subcategorization frame.3 The
lezical subcategorization rules allow the grammar designer to specify the processes
that they consider to be lexical, which define related subcategorization frames. For
example, the difference between the passive and active forms can be stated using this
machinery. In addition to head-projection and head-argument descriptions, there

" Developing Tree-Adjoining Grammars with Lexical Descriptions e R

‘ lexical rules descriptions”
asubcat | l \L - emboat | ‘l’ l’ l ‘setsof'_ - | a
- ' frames ' Y Y descriptions templates
frame _ . .) : ,
: Frame Description————>| Tree = [———— =
Generator) Selector Generator ‘

FIGURE 3.4 The architeétﬁre of LexOrg

* . .are two additional kinds of desdriptions: modification "descriptions and syntactic
‘. variation descriptions. Modification descriptions are used to describe the other kind

of elementary trees in LTAG, modifier auxiliary trees, which are used to represent - -

the tree structures for various forms of modification. Syntactic variation descriptions

are to be used to account for the design of the rest of the elementary trees that are.

not obtained from mere projections of the basic subcategorization frames or frames
derived from using lexical subcategorization rules. In the next sect1ons, we shall
* define each kind of spec1ﬁcat1on in more detall -

We believe that most linguistic theories in some form ar the other use these-

different types of grammatical mechanisms. We have separated them out into the
different kinds of specifications as described above because of their relationship to
the different aspects of elementary trees and tree families, which are now familiar to
the LTAG community. Nevertheless, in spite of this connection, we make no a priori
assumption about how a grammar designer should use these types of grammatical

specification methods. For example, the treatment of wh-movement can be specified :

via syntactic variation descriptions or as a lexical process and hence by using
lexical subcategorization rules; the descriptions can be structured hierarchically or
could have a relatively flat organization. Because we give grammar designers such
“freedom in choosing appropriate grammatical specification methods, evaluation of
one particular set of specifications (such as the ones given in section 3.8) is not
central to LexOrg’s evaluation. In the next few sections, we will describe pieces of a
" particular specification of an LTAG grammar. However, this should be understood
as an attempt to suggest the usefulness of LexOrg .and_to' provide examples of
using the different aspects of LexOrg. Hence, by no means do we intend for this
specification to suggest any particular grammastical principle to be assomated with
LTAG nor even how pr1nc1p1es have to be stated in LexOrg.

Figure 3.4 shows the architecture of the LexOrg system, which has three
components: a Frame Generator, a Description Selector, and a Tree Generator.
The inputs to the system are subcategorization frames, lexical subcategorization
rules, and tree descriptions. The Frame Generator (described in section 3.6) accepts
the subcategorization frames and lexical subcategorization rules, and for each
subcategorization frame it considers all the applicable lexical subcategorization
-rules to produce a set of subcategorization frames in a format that is appropriate
for later stages. The Description Selector (described in section 3.5) automatically

78 Fei Xia, Martha Palmer, and K. Vijay-Shanker

" identifies the set of descriptions (used to construct the tree templates) appropriate .

for each template for each subcategorization frame. Finally, the Tree Generator

* (section 3.4) produces the templates corresponding to the selected descriptions and

subcategorization frame. In the next section, we first describe the language used
in specifying the grammatical descriptions and consider four different classes of
descriptions that a grammar designer may provide.

3.3 'Tree Descriptions

Tree descriptions (or descriptions for short) were introduced by Vijay-Shanker and
Schabes (1992) in a scheme for efficiently representing an LTAG grammar. Rogers
and Vijay-Shanker (1994) later gave a formal definition of (tree) descriptions. We
extended their definition to include features and further divided descriptions into
four classes: head-projection descriptions, head-argument descriptions, modification
descriptions, and syntactic variation descriptions. This section presents the
characterizations of each of these classes in detail. ’

3.3.1 The definition of a description

In Rogers and Vijay-Shanker (1994), descriptions are defined to be formulas in a
simplified first-order language L, in which neither variables nor quantifiers occur.
L is built up from a countable set of constant symbols K, three predicates (parent,
domination, and lefi-of relations), the equality predicate, and the usual logical
connectives (A, V,). We extended their definition to include features because, in
the LTAG formalism, feature structures are associated with the nodes in a template
to specify linguistic constraints. Feature specifications, in a PATR-II like format,
are added to descriptions so that when descriptions are combined by LexOrg, the
features are carried over to the resulting templates. In addition to any feature that
a user of LexOrg may want to include, there are two predefined features for each
constant symbol in K: one is cat for category, the value of which can be N (noun),
NP (noun phrase), and so on; the other feature is type for node types, which has
four possible values: foot, anchor, subst, and internal. The first three values are for
the three types of leaf nodes in a template: foot node, anchor node, and substitution
node, and the last value is for all the internal nodes in a template.

Figure 3.5a shows a description in this logical form, where <, <*, and < stand for
parent, domination, and left-of predicates, respectively; cat stands for category and
is a feature. For instance, N Py.cat = ‘NP’ means that NP, has a feature named
cat whose value is N P (i.e., noun phrase). Most descriptions used by LexOrg can be
represented in a treelike figure. Figure 3.5b is the graphical representation for the
same description. In this graph, dashed lines and solid lines stand for domination
and parent predicates, respectively. The values of some features of nodes (such as
the category of a node) are enclosed in parentheses. The graphical representation
is more intuitive and easier to read, but not every description can be displayed as
a graph because a description may use negation and disjunctive connectives. In the

' Deve]opmg ’Iree—AdJoznmg Grammars WJth Lexwal Descrlptmns K S 9

'(50<1NP0)/\(50451) B L) S (S) -
ANPo < S)A(S1<"NP) -~ NP,w) s, ('s)
ANPy < Trace) A (So.cat ="'8") .~ ! o
R A(NPy.cat = 'NP") A (81.cat = 'S’) : S NP'(‘NP)
o '/\(NP1 cat = ’NP’) A (Tmce cat =) : S |
R o Trace(ﬁ) N
- (a) the ‘logic.al r‘epresentation-\ - S ~(b) the graphical representa'tion. o A

_FIGURE 3.5 Two representations of a description

. followmg sections, we shall use the graphmai representatlon when p0531ble and use »
the loglcal representatmn in other cases. N

3.3.2 The defin1t1on of a tree

Accordmg to Rogers and V1Jay—Shanker (1994), a treeis a structure that 1nterprets

" the constants and predlcates of Lk such that the interpretation of the predicates .
reflects the properties of the trees. A tree is said to satisfy a description if the tree
as a structure satisfies the description as a formula in Lg. As we have extended the -

_definition of description to include features, we also. placed additional requirements
on trees with respect to features. For instance, the category of every node in a tree
must be specified. For more details about this revision, please see section 4.3.3. of

- Xia (2001).

From each satisfiable descrlptmn we “can always recover a ‘minimal tree
that satisfies the description. For example, figure 3.6a is a tree that satisfies
the description given in figure 3.5. In this representation, a node has the form
{ki}{fm = vm}), where {k;} is a list of node names, and vy, is the value of &
feature fi,. For simplicity, we often omit from this: graphical representation the
curly brackets and all the features except the category of a node. When {ki} has
more than one member, it means that several nodes from different descriptions are
merged in the tree. In figure 3.6a, one such case is Obj,EztSite(’NP’). As we will
show later; Obj comes from a head-argument description, while EztSite comes from
a syntactic variation description. The two names refer to the same node in the tree.
In section 3.4, we shall show that it is trivial to build a unique template from such

a representation.
3.3.3 . Four classes of descriptions

In section 3.4, we shall demonstrate how a component of LexOrg, namely the Tree
Generator, generates templates from descriptions. Because the goal of LexOrg is to
build grammars for natural languages, rather than any arbitrary LTAG grammar,
descriptions used by LexOrg should contain all the syntactic information that could

80 ‘ Fei Xia; Martha Palmer, and K. Vijay-Shanker

FHeadP(’S") S
NewSite("NP?) HeadP(’S?) v NPy /S\ ﬁ
SWICNP) peadmarcvey TN
v@ NP
Head(’V?) Obj,ExtSite("NP”) . |
' €
Trace('e’) '
(a) a tree (b) the corresponding template

FIGURE 8.6 A tree and the template that is built from the tree

appear in the templates for natural languages. In this section, we identify four types
of syntactic information in a template and define a class of descriptions for each type

of information. .
Head-projection descriptions

An important notion in many contemporary linguistic theories such as X-bar theory"
(Jackendoff, 1977), GB theory (Chomsky, 1981), and HPSG (Pollard and Sag, 1994)
is the notion of a head. A head determines the main properties of the phrase that it
belongs to. A head may project to various levels, and the head and its projections
form a projection chain.

The first class of description used by LexOrg is called a head-projection
description. Tt gives the information about the head and its various projections.
For instance, the description in figure 3.7a says that a verb projects to a VP, and
the VP projects to an §. Typically this should be straightforwardly derivable from
head projection principles as found in X-bar theory or similar intuitions expressed
in GPSG or HPSG. But in order to give flexibility to-a grammar designer to use
any appropriate linguistic theory and, for example, to use any choice in the number
of projection levels and categories, we do not implement the derivations from any
specific linguistic principles, but rather expect the grammar designer to state the
head-projection descriptions explicitly.

Head-argumerit descriptions

A head may have one or more arguments. For instance, a transitive verb has
two arguments: a subject and an object. The second class of description, the
head-argument description, specifies the number, the types, and the positions of
arguments that a head can take, and the constraints that a head imposes on
its arguments. For instance, the description in figure 3.7b says that the subject
— a left argument of the head — is a sister of the HeadBar.* In this case, the
feature equation in the description, given below the tree in figure 3.7b, specifies

De'yelqping Tk’ee—Adjoining_Grammars With‘Lex'iceiI 'Descrjptions, R) 81 v

* HeadP('S") - .) ' HeadP(’S") '
B R ~ HeadP RS NG :
‘HeadBar(VP') o NG " - HeadBar . . SubCNP) HeadBar('VP’)
Subj’NP’) HeadBar ’ s ,. N - Lo i
INP) Heid OBCNP) ~ - Head(v) OBCNP)
Head(*V?) .) : S A A
Subj.t:<agr»>=I»IcadB‘ar.t‘:<a.g.r>‘l . . . L subja <agr>=HeadBar.t <égr> '
-(a) head_is_V (b) V_has_a_left NP_arg ~ (c) V_has_-a;right_NP_arg o . % (d) anew description

FIGURE 3.7 Subcategorization descrii)tiohs S

o vModRoot(’-.V'P’)
- ModFoot("VP’) HeadP(’S”)

Subj(’NP*) -

o
" PRO('¢)

FIGURE 3.8 A description for purpose clauses

that the subject and the HeadBar must agree with respect to number, person, and
so on. The description in figure 3.7¢ says that a head can take an NP argument,
which appears as a right sister of the head." Combining head-projection and head-
argument descriptions forms a description for the whole subcategorization frame,
as in figure 3.7d; therefore, we use the term subcategorization description to refer
to descriptions of either class. As we will describe in section 3.5, the Description
Selector is responsible for choosing the set of descriptions appropriate for. a given
subcategorization frame. Again; for reasons similar to the one that we used at the
end of the previous section on head-projection descriptions, for flexibility in choosing
structures for head-argument realizations, we do not include in LexOrg a reliance on
any specific linguistic principle governing descriptions of head-argument structures.

Modification descriptions

A syntactic phrase can be modified by other phrases. The third class of description,
called a modification description, specifies the type and the position of a modifier
with respect to the modifiee, and any constraint on the modification relation. For
instance, the description in figure 3.8 says that a clause can modify a verb phrase
- from the right,’ but the clause must be infinitival (as indicated by the PRO subject).

The modification descriptions are expected to describe the so-called modifier
auxiliary trees in the resulting LTAG grammar, which are used to express
modification in LTAG.

82 " Fei Xia, Martha Palmer, and K. Vijay-Shanker
FHeadP(’S")

NewSite HeadP(’S’)

- ExtSite

Trace('€’)

NewSite.t:<trace> = ExtSite.t;<trace>

FIGURE 3.9 A description for wh-movement

Syntactic variation descriptions

Head-projection and head-argument descriptions together define a basic tree
structure for a subcategorization frame, which forms a subtree of every template
in the tree family for that subcategorization frame. For instance, the structure
in figure 3.7d appears in every template in the transitive tree family, as shown
on the top part of figure 3.1. In addition to this basic structure, a template may
contain other structures that represent syntactic variations such as wh-movement
and argument drop. For example, template #2 in figure 3.1 can be decomposed
into two parts: the first part, as in figure 3.2a, is the basic structure that comes
from head-projection and head-argument descriptions; the second part, as in figure
3.2b, comes from the description in figure 3.9. We call this description a syntactic
variation description, as it provides information on syntactic variations such as wh-
movement. This description says that, in wh-movement, a component is moved from
a position FztSite under HeadP to the position NewSite, as indicated by the feature
equation NewSite.t :< trace >= ExtSite.t :< trace >; NewSite is the left sister of
HeadP; both NewSite and HeadP are children of FHeadP; both FHeadP and HeadP

are of the category S.

Note that LexOrg allows descriptions to “inherit” from other descriptions; that
is, a grammar designer has the flexibility of specifying a description as a further
specification of other descriptions, which represent more general principles (such
as X-bar theory couched in this framework). For example, a grammar designer
may choose to create a description head has_an_arg for the head-complement
structure in X-bar theory, in which the position of the argument with respect to
the head and the categories of the head and the argument are unspecified. The
description is specialized further in giving the position of the argument, resulting
in a new description head-has-a-right_arg. The latter description can be further
specialized for the case where the argument has a category of NP, yielding a new
description head_has_a_right_NP_arg, and for the case where the argument is an
S, yielding another description head_has_a_right_S-arg. Similarly, the description in
figure 3.9 can form the basis for movement specification in' the grammar and can
be further instantiated to cover not only wh-movement but also relative clauses,

N Deve]opmg Tk‘ee-AdJommg Grammars Wlth Lex1ca] Deschptzons L - 83 ' :

‘-1f desired. Using the 1nher1tance among descnptlons may reduce the redundancy i

among descriptions. For instance, if grammar designers later decide to change the -
representation for the head—complement structure, they need to change only the -

description head-has_an_arg, not the descriptions that inherit from this description. :

One final note about the inheritance relation among descriptions: while we (as the:

- creators of LexOrg) encourage grammar de51gners ‘to take advantage of thls feature
. of LexOrg to make their descriptions more concise and hierarchical, we still allow "

 a grammar designer to “create -all descriptions such that they are all “atomic” and
there is no-inheritance among: them : : -

" To summarize, we have discussed four classes of descriptions. In sectlon 3. 5 we

-will show that another component:of LexOrg, namely the Description Selector,

“.chooses descriptions according to their classes; that is, it-will create sets of." - A

descriptions such that each set includes:one head-projection . descrlptlon, zero or .
more. head—argument descriptions, zero or one modlﬁcatlon descrlptlons, and zero

Or more syntactlc variation descnptlons

3 4 The Tree Generator

The most complex component of LexOrg is called the Tree Genemtor (’I’reeGen) :
which takesa set of descriptions as input and generates a set of templates as output.
This is done in three steps: first, TreeGen combines the input set of descriptions to
get a new description; second, TreeGen builds a set of trees such that each tree in the
set satisfies the new description and has minimal number of nodes; third, TreeGen .
builds a template from each tree in the tree set. In figure 3.10, the descriptions in
(a) are the inputs to TreeGen. Combining them results in a new description in (b).°
There are many trees that satisfy this new description, but the two trees in (c) -are
‘the only ones with minimal number of nodes. From these two trees, TreeGen builds
two templates in (d). In this section, we explain each step in detail.

3.4.1 Step 1: Combining descriptions to form a new
description

" The Description Selector selects a set of descriptions that might potentially form
one or more templates. TreeGen combines such a set of descriptions to form a
new description. Recall that a description is a well-formed formula in a simplified
first-order language. Given a set of descriptions {¢:}, the new description ¢, which

combines {¢;}, is simply the conjunction of ¢;; that is, ¢ = ¢1 A da... A ¢n, Where
n is the size of {¢;}. - ‘ :

3. 4 2 Step 2: Generating a set of trees from the new
description .

In the second step, TreeGen generates a set of trees, TreeS etm,in(é), for the new
description ¢. Let T'reeSet($) be the set of trees that satisfies ¢ and NumNodes(T')

84 Fei Xia, Martha Palmer, and K. Vijay-Shanker

#1: Lo #3: #4:
HeadP(*S") B HeadP) " HeadBar ‘ w
o Pl T NewSite(NP') Head?('S")
cadBarCVP) - qipieNP) HeadBar _ Head Obj('NP") .
: ExtSite(’NP")
Head("V") '
_ trace(e)

() four descriptions as the input to the Tree Generator

#s: FHeadP(’S")

NewSite("NP’) HeadP(’S’)
R T e L

Subj(’NP?) HeadBar("VP”) E;}tSite(’NP’)
Head('V?) Ob(NP") 4rg0e(c)

(b) the new description that combines the four descriptions in (a)

#6: #7: FHeadP(’S’)
FHeadP(’S?) i —N
NewSite('NP*) HeadP(’S")
NeWSite(’NP') . Hﬂﬂdp(’s,) ——

/\

. . Subj(’NP’) HeadBar("VP*)
Subj, ExtSiteNP") HeadBar("VP") — T~

Head('v’) Obj, ExtSite('NP)
Head(’V’) Obj(’NP’)

trace(e) trace(e)
(c) trees generated from the new description
#9: S
#8: S : P
S .
NPy S NPy /S\

o . NP} VP

| S

e V@ NPy ve ¥
€

(d) the templates as the output of _the Tree Generator

FIGURE 3.10 The function of the Tree Generator

‘ Developmg 'Hee—AdJommg Grammars Wlth Lex1ca1 Descrzptzons 5 BRI o8

be the number of nodes in a tree T, then TreeSetmm(gb) is deﬁned to be the subset’t o

~of TreeSet(¢) in which each tree has the mlmma.l number of nodes; that i 1s,

TreeSetmm(db) = arg mmTGTT&eSet@) NumN. odes()

Wlth 3 little abuse of notatlon, we also use NumN odes(qS) to represent the o
number of nodes occurring in a description ¢. Accordmg to our deﬁmtl_on of tree,
each node in a-tree must have a category; therefore, each tree in T'reeSet(¢) can
" have at most NumNodes(¢) nodes. Because NumNodes(¢) is finite for each 4,
TreeSet(¢) and its subset TreeSetmn($) are finite too. As a result, TreeSetmin(4)
can be calculated by the following naive algorithm: first, initialize ¢ to.1; second,

' generate a set T'S(7) that includes all the trees with 4 nodes; third, put.into the set

TreeSetmin all the trees in T'S(i) that satlsfy ¢; if TreeSetmin is empty, increase 4
by one and repeat the second and third steps until TreeSetmn, i is not empty or ¢ is -
more than NumNodes(¢). Because NumNodes(@) is finite for any ¢, the algorithm
will always terminate; furthermore, when it termlnates TreeSetmin 1 is the same as
TreeSetmm(d)) because by definition TreeSetmin contains all the trees that satisfy
¢ with the minimal number of nodes. However, this algorithm is inefficient because
it generates a large number of trees that do not satisfy ¢ and have to be thrown

away in later steps T

_ TreeGen uses a more efficient algorithm in which 1t first builds a new descrlp’mon

such that a tree satisfies if and only it satisfies ¢, and ¢ is in the disjunctive
normal form ¢1 .V ¢m, where each ¢z uses only the conjunctive connectives.
It does so by using rewmte rules that essentially capture the properties of trees
- to convert a negated formula into a disjunction of tree constraints, and then -uses
distributive rules to convert the formula into disjunctive normal form. 8 Second, for
each ¢Z in qS, TreeGen builds a graph G;..G; is not necessarily a tree, as it might
be disconnected; have loops, and so on. Third, TreeGen turns each G; into a tree.
There may be more than one possible tree for a graph; as a result, TreeGen gets
a set of trees T'C;. Last, TreeGen chooses the subset of UTC with the minimal
number of nodes.

The new algorithm is in table 3.1. The major steps of the algorithm. are
illustrated in figure 3.11. The input description is in (a). Since the description is
already in disjunctive normal form, TreeGen skips Step (A) in table 3.1. In steps
(C1) and (C2), TreeGen creates a graphical representation for the description, as
shown in figure 3.11b. A dashed edge (a solid edge, resp.) from ‘the node z to y is in
the graph if and only if z <* y (z <y, resp.) is one of the literals in the description.
steps (C3) — (C5) convert the graph into a tree. In (C3) TreeGen removes loops
in the graph. If a loop contains only dashed edges, TreeGen removes the loop by
merging all the nodes on the loop.® If a loop contains one or more solid edges, the
nodes on the loop cannot be merged; that is, the description corresponding to the
graph is inconsistent, and no templates will be created from this description. In this
example, the nodes C and E are on a loop in graph #2 in figure 3.11b, and after
merging, they become one node in the new graph, as shown in graph #3 in figure

- | Output: TreeSet,, (i.e., T’r'eesetmin(¢))

86 Fei Xia, Martha Palmer, and K. Vijay-Shanker

|Input: a description ¢

Notation: <1 and <* denote parent and dominance relations, respectively.
Algorithm: void GenTreesEff(¢, TreeSet,,) :

// & description ¢ = a new description ¢ .
(A) build a ¢ which satisfies the following two conditions:
(1) TreeSet(¢) = TreeSet(¢), and
(2) ¢ is in the disjunctive normal form and does not use
) negation connectives; that is, d = 1 V... V ¢,
where qﬁz Yiy A Yig-.. A, and 1y, is a literal.

// a description d=a set of trees TC
(B) TC = {};
(Q) for (each ;)
// a description $; = a graph G;
(C1) draw a directed graph G;. In G, there is a dashed edge
(a solid edge, resp.) from the node z to y iff
one of the literals in ¢; is £ <* y (z <y, resp.).
(C2) store with the graph the lefi-of information that appears in b;.

// a graph G; = a tree set T'C;
(C3) if (G; has cycles)
then if (the set of nodes on each cycle are compatible)
then merge the nodes;
else T'C; = {}; continue;
(C4) merge the nodes in G; until it does not have any compatible set;
(this step may produce more than one new graph)
(C5) for (each new G;)
build a set of trees T'C; such that each tree
includes all the edges in G; and
satisfies the left-of information;
TC=TCUTC;

// a set of trees T'C' = a set of minimal trees TreeSet,,
(D) a = ming.eroNumNodes(tr);
(E) TreeSety, = {tr |tr € TC and NumN odes(tr) =a};

TABLE 3.1 A more efficient algorithm for building T'reeSetmin(4)

Deyeloping"l'i‘é‘e-Adjoim’ng G’fam_m_ars with ‘L“exice_il Descriptions | 87

#l: (A<*B)A(A<*C)A(C<D)A(C<*E)
ANE<Q*CYNESF)A(GQH)NB=<E) ‘
NA.cat = 'a’y N (B.cat = 'b') A (Cicat = '¢/) A(D.cat.= 'd") .
(F.cat = V')A (G.cat = V') A (H.cat = '€’) e

- (a) a description .

o ACE)

- . : }’/\\§ "
BCb) CCe) GCb) .
D(d”) % H(e)

FCb) .

: -Léﬁ—af information: B < E * °

*_(b) a graph built from the description
‘ #4. ACa")
, RN
B,G('®) CE(c) -
Vo ’
H(e) DC®) - pewy)

- Left-of information: B,G < C, E

- T

AC)

R }/\\\ e .' . s e
BCY) CECe) (-}(lb,)
. H(e)

D(,d") » N F(,by)
Left-of information: B < C, E

“(c) the graph after cybles are r‘emoved.,

: #5' .' ,A(.’a");

%’N‘§ .
B(Y) CECc)
=

DCd) . FGebY

H(e)
Left-of information: B < C, E

(d) the graphs after compatible sets aré merged

#6: - o
A(2’)
B.GCY) Cpee)
I =

H(e) peay revy

#7. . A(’a’) ‘

B(b) CE(c)
NG

PCEY r6Cb)
|
H(e)

(e) the trees built from the graphs

FIGURE 8.11 An example that illustrates how the new algorithm works: (a) is the’
original description in logical representation; (b) shows the graph built in steps (C1) and
(C2) in table 3.1; (c) shows the graph after step (C3) when cycles are removed; (d) shows

two graphs produced in step (C4), in which compatible sets are merged; and (e) shows
the trees produced in step (C5).

88 : ‘ » Fei Xia, Martha Palmer, and K. Vijay-Shanker

FHeadP('S’) . ‘ S
/\
NewSite("NP?) HeadP('S") NPy S
e NP; VP
Subj(’NP*) HeadBar('VP?) .
. V@
Head(’'V’) Obj ExtSiteCNP*) - . l
- €
o Trace('e’) _
(a) a tree (b) the corresponding template

FIGURE 3.12 A tree and the template built from it

3.11c. In step (C4), TreeGen merges nodes that are compatible. A set of nodes are
called compatible if the categories of the nodes in the set match and after merging
the nodes there is at least one tree that can satisfy the new graph. In graph #3,
the nodes G and B are compatible, so are G and F. Merging G and B results in
graph #4 in (d), and merging G and F results in graph #5.1% In step (C5), for
each graph produced by step (C4), TreeGen builds a set of trees that satisfy that
graph. In this case, step (C4) produces two graphs: #4 and #5. There is only one
tree, #6, that satisfies graph #4, and one tree, #7, for graph #5. So the tree set
T'C after step (C5) contains two trees: #6 and #7. Notice that without the left-of
information, the node B in graph #4 could be C’s sibling, parent, or child. But with
the left-of information, B has to be C’s left sibling. In steps (D) and (E), TreeGen
produces the final result T'reeSet,,, which contains only the trees in T'C that have
the minimal number of nodes. In our example, the two trees in T°C' have the same
number of nodes, so both are kept in the final result TreeSet,,.

3.4.3 Step 3: Build‘ing templates from the trees

In this step, TreeGen builds a unique template from each tree produced by the
previous step. Recall that a node in a tree has the form {k;}({/m = vm}), where
{k:} is a list of node names, and fn, is a feature and vy, is the feature value. In
this step, LexOrg simply replaces {k;}({fm = vn}) with {({fm = Um}), where [is
the category of k; (i.e., ! is the value of k;.cat). For a leaf node, if its type (i.e.,
anchor node, substitution node or foot node) is not specified by features, TreeGen
determines its type by the following convention: if the leaf node is a head (an
argument, a modifiee, respectively), it is marked as an anchor node (a substitution
node, a foot node, respectively). Figure 3.6 (repeated as figure 3.12) shows a tree
and the template built from the tree. . ’

‘ DeVéIoping Tree-Adjoining Gra,mmars' with Lexzcal Deserfptions o .89

3.5 The Descr1pt10n Selector - |

In the previous sectlon, we showed that the Tree Generator bu1lds templates from

- a set of descriptions. The set of descriptions used by the Tree Generator is only a
subset of descriptions provided by the user. The function of the second component

‘of LexOrg, the Description Selector, is to choose the descriptions for the Tree
" 'Generator; to be more specific, it takes as input a subcategorization frame and the

set of descriptions provided by the user, and produces sets of descrlptlons which are

~ then fed to the ’Hee Generator This process 111ustrated in ﬁgure 3 13, is descrlbed' :

below.

3.5.1 The deﬁnltlon of a subcategomzatzon frame |

'A subcategonzatlon frame. spec1ﬁes the categones of a head and its. arguments the

‘positions of arguments with respect to the head and other information such as .
“feature equations. While our definition of & subcategorzzatzon frame ‘is essentially

the same as the one commonly used in' the literature, we can also interpret a- ‘
“subcategorization frame as a subcategorization description.'! For instance, the =
subcategorization frame (N Py’ V NP;) can. be seen as.the shorthand. version of '

the description ‘
(leftarg < head) A (head < rightarg) A ‘(lieftarg.cat = 'NP') A (head.cat = 'V")
A(rightarg.cat = 'NP') A (le ftarg.subscript = 0) A (rightarg.subscript =1)

This interpretation allows LexOrg to treat a subcategorlzatlon frame the same
way as other descriptions, as W111 be shown next.

3.5.2 The algorithm for the Description Selector

Recall that descriptions are divided into four classes: the ones for head-
projection relations, head-argument relations, modification relations and syntactic
variations. The first two classes (e.g., Dy, Dz and Dj in figure 3.13) are also
called. subcategorization descriptions since they specify structures for a particular
subcategorization frame. Because the templates in a tree family have the same
subcategorization frame, the Description Selector should put in every description
set SD; all the subcategorization descriptions for that subcategorization frame.
In addition to subcategorization information, in -its choice of including other
descriptions, the Description Selector’s guiding principle is to capture the fact that
elementary trees in an LTAG grammar reflect zero or more syntactic variations,
and zero or one modification relations. Therefore, each description set built by the
Description Selector should include all the related subcategorization descriptions,
zero or more syntactic variation descriptions, and zero or one modification
descriptions. ’

The algorithm is quite straightforward: given a subcategorization frame Fr, a
set Subcat of subcategorization descriptions, a set Synvar of syntactic variation
descriptions, and a set Mod of modification descriptions, the Description Selector’s

Fei Xia, Martha Palmer, and K. Vijay-Shanker

HeadP('S") HeadP HeadBar . FHeadP('S") Modl.lonl('vl") ‘
" NewSite’NP") HeadP('S”) ModFool("VE") HeadP(’S")
HadBorCVE) ubjoNp) HeadBor gead OHCNP) : !

| ExiSite(’NP") SUBCNP)

Trlace (e) JJRO (¢)

@) ®,) @) ®) ®3)

|£,> Descriptioh Selector

.. .

Fr, D1, D2, i

D3, D4, D5 5

SR e LA o OOt 2 S .20 S ;

.. .

1

i

1

i

:

1

E

1

]

]

T E

[T A :

: s s S e '

1 N 1

N\ Nef s NPt S VEr g !

+ NP t VP —~ NP/'\VP —~ l,

: ° /\ NP,, VP 0 S NPu /VE 1

1 s ve NPy ! H

¢ V@ Nei € V@ NP} X € V@ Nr i
]

) t

E tree family for the transitive verb i

FIGURE 3.13 The function of the Description Selector

Deve]opmg ’Ii'ee-AdJomzng Grammars Wzth Lex1ca1 Descrzptzons . 91 -

, ﬁrst respon51b1hty is to select a subset S ubcat1 of Subcat according to the a.rguments R
. and category information mentioned in Fr. For instance, if Fris (NPy V- NPy),
Subcat; will include descriptions such as head.is-V, head.has_alefi NP-ary,
head_has_a_right NP_arg and so on. As noted earlier, these descriptions need not

be atomic and could be instantiations of more basic descriptions. Next, for each
subset Synvar’ of Synvar and each member m’ of Mod, the Description Selector

creates a set SD;, which is Subcaty U Synvar’ U {Fr}, and another set SD;, which

is SD; U {m’ }.12 This process is illustrated in figure 3.13. In this example, Subcat is

{Dy, Dy, D3}, Synvar is { D4}, and Mod is { Ds}. Given the subcategorization frame :

Fr, which is (NP, V' NP;), the Description Selector first chooses a subset Subcaty
of Subcat, which happens to be the same as .Subcat in this case; it then creates
- multiple descriptions sets, each set incliuding Subcat; and a subset of Synvar. Some

description sets also include a member of Mod. As a result; the Description Selector ‘ -

- produces four description sets for F'r: SDy, SDs, SDs, and SDy4. Each SD; is sent
to the Tree Generator to generate a tree set T;. Each T; has zero or more trees. For

. instance, T5 has two trees, whereas Ty is empty because the descrlptlons in-SDy-

" (ie., Dy and Ds) are incompatible. The union of the T;s forms a tree family.

Notice- the. -Desvcripti_on' Selector considers different combinations -of the . .-
_descriptions that define the principles underlying the grammar design. The TreeGen -
produces the trees that are defined by the combinations of these principles when

the combinations lead to consistent descriptions. Thus, these two components
of LexOrg together take away from the LTAG grammar designer the burden of
considering which set of principles are compatible with each other and which
lead to inconsistencies. Thereby, the grammar designer can now focus on stating

- the individual linguistic principles, while the system automatically oversees the

ramifications of these principles with respect to the details of the grammar.

3.6 The Frame Generator

In an LTAG grammar, eéch word anchors one or more élémentary trees. Figure 3.1

(repeated as figure 3.14) shows seven templates anchored by ergative verbs such

as break. The templates belong to two tree families because the subcategorization
frames for them are different, but there is a clear connection between these two
subcategorization frames, and all the ergative verbs (such as break, sink, and melt)
have both frames. Levin (1993) listed several dozen alternations and classified
English verbs according to alternations that they participate in, In LexOrg, we use
lexical subcategorization rules to link related subcategorization frames.® Figure
3.15 shows the lexical subcategorization rule that links the two subcategorization
frames in the causative/inchoative alternation. The function of the third component

of LexOrg, the Frame Generator, is to apply lexical subcategorization rules to a

subcategorization frame and generate all the related frames.

9 Fei Xia, Martha Palmei’, and K. Vijay-Shanker

Transitive verbs: (NP0 V NP1)

FIGURE 3.14 Templates in two tree families

(NP0 V NP1) => (NP1 V)

FIGURE 3.15 The lexical subcategorization rule for the causative/inchoative alternation

Developing.'.I'i*'ee-Adjoz'ziing Grammars with Lexical "Dés'.ériptions. G 93 -

"3 6.1 The deﬁmtlon of a le:mcal subcategomzatwn mle

A lexical subcategorization rule is of the, form fri = fre, where fr; and fro are o
just like subcategorization frames except that the categories of the nodes in fry and -~ =

frs can be unspecified, in which case we will use a special label, XP, to represent

an unspecified category. A lexical subcategorization rule fry = frp is said to be .~
applicable to a subcategorization frame fr if fr and fr; are compat1ble that is, fr - f

“and fr, have the same number of arguments and the features of the corresponding

nodes can be unified.’4 Applying this rule to fr yields a new frame that combines =

* the information in fr-and fre. For instance, the lexical subcategorization rule

" (XPV 8) = (XPV NP) says that if a verb can take an S object, it can also-

take an NP object. Applying this rule to the frame (NP, V S1) generates a new =

_frame (NP, V NP). In'this new frame, the category of the subject comes from'- =~ .~ -

' the input frame; where the category of the object comes from the right frame of =~ o1

the lexical subcategorization rule. Because the category of the subject in the lexical

subcategorization rule is not specified as indicated by the use of the label XP, the -

-r'rule is also applicable to the frame (Sp V' 51). .
In addition to categories, the nodes in a lexical subcategonzatlon rule may

include other features. For instance, a lexical subcategorization rule for passivization -

is similar to the one in figure 3.15 but the feature voice will have the value “active’ for

the verb in the left frame, and have the value ’passive’ for the same verb in the right . . .

frame. This feature will prevent the rule from being applied to a subcategorization

frame in which the verb is already in the passive voice, such as given in John is

gwen 6 book.

Lexical subcategorization rules and syntactic variation descriptions are very

different in several aspects. First, a lexical subcategorization rule is a function that
takes a subcategorization frame as input, and produces another frame as output;
a syntactic variation description is a well-formed formula in a simplified first-order
logic. Second, lexical subcategorization rules are more idiosyncratic than syntactic

"variations. For instance, the lexical subcategorization rule in figure 3.15 is only -

applicable to ergative verbs, rather than to all the transitive verbs. In contrast,
the description for wh-movement applies to all the verbs. Third, when lexical
subcategorization rules -are applied to a subcategorization frame in a series, the
‘order of the rules matters. In contrast, if a set of descriptions includes more than
one syntactic variation description (e.g., the descriptions for topicalization and
argument drop in Chinese), the order between the descriptions does not matter.
Last, lexical subcategorization rules can be non-additive, allowing arguments to be
removed; descriptions are strictly additive, meaning that a description can only
add information and it cannot remove information. Notice that LexOrg does not
place any constraint on which aspect of the grammar must be specified using lexical
subcategorization rules or syntactic variation descriptions, and a grammar designer
might even choose to use only one of these devices. However, because we believe
that they. can serve different purposes and we also like to provide flexibility to the

94 | . Fei Xia, Martha Palmer, and K. Vijay-Shanker ‘ '

‘grammar designer, both of these methods of grammar specification are available in
LexOrg. '

3.6.2 The algorithm for the Frame Generator

The Frame Generator takes a subcategorization frame Fr and a set of lexical
subcatégorization rules Rules as input and produces as output a set FrSet of
related frames. The algorithm. is in table 3.2: Initially, F'rSet contains only ene .
frame, Fr; the Frame Generator then applies each rule in Rules to each frame in
FrSet, and appends the resulting new frames to FrSet.

Qutput: a list of related frames FrSet
Algorithm: void GenFrames(F'r, Rules, FrSet)

(A) let F'rSet contain only the frame Fr
(B) for each frame f in FrSet - :
for each lexical subcategorization rule r in Rules
if r is applicable to f
let £ be the new frame as r is applied to f
if £ is not in FrSet
append f’ to FrSet

Input: a subcategorization frame Fr and a set of lexical subcategorization rules Rules

- TABLE 3.2 The algorithm for generating related subcategorizaﬁion frames

In this process, the Frame Generator may first apply a rule r; to a frame
f1 and generate a new frame f; (which is added to FrSet); it may later apply
.another rule, 79, to fo which generates fs; and the process continues. When that
happens, we say that a sequence [r1,72, ..., of lexical subcategorization rules is
applied to the frame f;. The order of the rules in such a sequence is important.
For example, a passivization rule is applicable after the dative shift rule is applied
to the subcategorization frame for ditransitive verbs, but the dative shift rule
is not applicable after a passivization rule is applied to the same frame. Rather
than placing the burden of determining the order of applicability of the rules on
the grammar designer, the system automatically tries all possible orders but will
only succeed in producing the frames for ones with the correct ordering. Also,
the set of possible sequences of lexical subcategorization rules is finite because
the set of distinct lexical subcategorization rules is finite and in general each
lexical subcategorization rule appears in a sequence at most once.'® Therefore, the
algorithm in table 3.2 will always terminate.

Developing Tree-Adjoining Grammars with Lexical Descriptioﬁs , : ‘ 9%

S %ag]r;'<2>]

- /\ [agr:<2>]

NP0¢ [agr<2>] " = o Y E [agn<1>] ’

e '[agr:;lg] ‘ r',[.]
. T[v] - NPly,
brea/

FIGURE 3.16 _An elemientary ‘tree for the verb break -

3.7 - Creating abstract specifications

In previous sections, we have described the three components of LexOrg: the
Tree Generator, the Description Selector, and the Frame Generator. To generate a
grammar, the users of LexOrg need to provide three types of abstract specifications:
' subcategorization frames, lexical subcategorization rules, and tree descriptions. A
" natural question arises: how does a user create such information? In this section we
briefly discuss our approach to.this question.

Before we get into the details, let us first emphasize one point. Any large-scale
grammar development requires a thorough study of various linguistic phenomena in
the language to decide how these phenomena should be represented in the grammar,
no matter whether or not tools such as LexOrg are used. The advantage of using
LexOrg is that LexOrg not only allows but actually reguires grammar designers to
state linguistic principles and generalization at the appropriate level; that is, LexOrg

.forces grammar designers to state the underlying linguistic principles explicitly. For
instance, figure 3.16 contains two feature equations, as indicated as the coindexes
< 1 > and < 2 >. The same equations appear in hundreds of tree templates in
the XTAG grammar. If templates are created by hand, grammar designers have to
consider for each template whether such equations should be included, and there
is nothing to ensure that this process is done consistently. In contrast, if LexOrg

. is used to generate templates, grammar designers need to decide which abstract

specifications such feature equations should belong to. Once the equations are added
to appropriate specifications,'® LexOrg will ensure that they are propagated to all

relevant templates.

96 Fei Xia, Martha Palmer, and K. Vijay-Shanker

3.7.1 Subcategorization frames and lexical subcategoriiation
rules -

Only a limited number of categories (such as verbs and prepositions) take arguments
and therefore have nontrivial subcategorization frames and lexical subcategorization
rules. By nontrivial, we refer to subcategorization frames with at least one
argument. Among these categories, verbs are the most complicated ones. To create
subcategorization frames and lexical subcategorization rules fof verbs, we studied
the literature on verb classes such as Levin (1993) which discusses alternations and
classifies verbs according to the alternations that the verbs can undergo.

An alternation describes a change in the realization of the argument structure
of a verb, and is illustrated by a pair of sentences in which a verb can appear.
For instance, the spray/load alternation is illustrated by these two sentences
“Jack sprayed paint on the wall ” and “Jack sprayed the wall with paint.” For
each alternation, if all the dependents of the verb involved in the alternation
are arguments of the verb, then each sentence in the sentence pair is abstracted
into a subcategorization frame, and the alternation is represented as a lexical
subcategorization rule. As the goal of the current experiment was to use LexOrg to
create a grammar similar to the XTAG grammar, and the XTAG grammar has a
very strict definition of arguments, only a few alternations (such as the causative
alternation, the dative shift alternation, and the passive alternation) fall into this
category and they are represented as lexical subcategorization rules.'”

3.7.2 'Tree descriptions

To create the first three classes of descriptions (namely, head-projection descriptions,
head-argument descriptions, and modification descriptions), we adopt the following
approach: in a head-projection description, the head and its projections form a
chain, and the categories of the head and its projection are specified; in a head-
argument description, the categories of the head and its argument are specified, as
well as the positions of the arguments with respect to the head; in a modification
description, the categories of the modifiee, the modifier and the head of the modifier
are supplied, as well as the position of the modifier with respect to the modifiee.

"~ To build a transformation variation description, we start with the definition
of the corresponding phenomenon, which is language-independent. For example,
relative clause can be roughly defined as an NP is modified by a clause in which
one constituent is extracted (or co-indezed with an operator). We build a tree
description (for clarity; we will call it metablock) according to the definition.
Notice that the exact shape of the metablock often depends on the theory. For
example, both metablocks in figure 3.17 are consistent with the definition of
relative clause, the former follows the way that the Penn XTAG group treats the
" complementizer(COMP) as an adjunct, the latter follows more closely to the GB
theory where COMP is the functional head of CP. '

, De{/elopihg .i}éeéAHjofning Grammars with Lexical Descriptions . - 9T

NPROf’NP’) - NPROOi(NP?)
C S CRCS) NPFoot(NP)
EXtROOt(,S,) NPFOOt(,NP’)‘ ;)) » : .
\ C - NewSite }ga{(’S’)

NewSite - URoot0s?) - COMP IP|(’.s.’)‘ :
R e N
ExtSite) BT _ ‘ vEXt‘fSIte .
€ =4
@ . m

‘-'-EIGURE 3.17 The possible metablocks for relative clause ' .

‘ ' ‘ , English | Portuguese | Chinese | Korean |
position of NPFoot? : left - left right . | right

overt wh-movement? ' | yes yes .| no . no - -

has overt.RelPron? ' yes yes - . | no no .
RelPron can be dropped? yes¥ yes* - P
position of COMP? : left left right suffix
COMP can be dropped? yes* | yes* yes* no

COMP and RelPron co-occurs? no no - -

COMP and RelPron both be dropped? | yes* no - -

TABLE 3.3 Settingé for relative clauses in four languages

NPRoot('NP’) " NPRoot("NP’) NPRoot(’NP?)
/\ .) . ExtRoot (’S/’)\ .
Q7 . X 2 XtRoo NPFoot’NP’
NPFoot(Np?) ~ EXtRoot(’S’) NPFoot(’Np?) - EXtRoot(S") : 00t("NP”)
NewSite URoot(’S") : NewSite URoot(’S") <Ne|“’s“"' URoot(’S’)
| ! |
ExtSite & ExtSite ExltSite
i : I
& £ £

(2) English and Portuguese (b) English and Portuguese (c) Chinese and Korean
. with Relative Pronoun without Relative Pronoun '

FIGURE 3.18 The transformation variation descriptions for relative clauses in four)
languages '

98 _ Fei Xia, Martha Palmer, and K. Vijay-Shanker

The metablocks must be general enough to be language-independent; therefore,
certain relations in metablocks are are not fully specified. For instance, the order
between the noun phrase and the relative clause in figure 3.17 is unspecified. To
generate transformation variation descriptions for a particular language, metablocks
have to be combined with language-specific information. We can elicit language-
specific information by asking native speakers questions that are derived from the
underspecification in metablocks.

For example, figure 3.17 shows the possible metablocks for relative clauses. Table
3.3 lists the questions about those metablocks and the answers for four languages.
In a relative clause, a relative pronoun(RelPron) occupies the position marked by
NewSite. If we choose the metablock in 3.17a, the top four questions should be asked,
and the corresponding transformation variation descriptions are shown in figure
3.18.18 If we choose the metablock in 3.17b, all the eight questions are relevant.

Several points are worth noting. First, the setting of some parameters follows
from higher-level generalizations and some pairs of parameters are related. For
example, the position of NPFoot follows from the head position in that language.
Korean is an SOV language, so we can infer the position of the NPFoot without
asking native speakers. Second, the setting of the parameters provides a way of
measuring the similarities between the languages. According to the settings, Chinese
is more similar to Korean than to English.

A word of caution is also in order. Both the construction of the metablock and
the correct answers to the questions require some degree of linguistic expertise. Also,
certain language-specific details cannot be easily expressed as yes-no questions. For
example, the asterisk-marked answers in table 3.3 mean that they are true only -
under certain conditions; for instance, in English, COMP and RelPron can be both
dropped only when the relativized NP is not the subject.

3.8 The Experiments

To test our implementation of LexOrg, we created two sets of abstract specifications
(one for English and the other for Chinese) as discussed in the previous chapter. We
chose English because we wanted to compare our automatically generated grammar
_with the XTAG grammar, and we chose Chinese because one of the authors was very
familiar with literature on Chinese linguistics which greatly facilitated the creation
of the set of abstract specifications for Chinese. These languages also come from
two very different language families, offering interesting points of comparison and a
test of LexOrg’s language independence. ’

At that time, the XTAG grammar contained about one thousand elementary
trees. Among them, about 700 trees were anchored by verbs. Because verbs have
nontrivial subcategorization frames and lexical subcategorization rules, the goal
of our experiment was to use LexOrg to “reproduce” this subset of trees with as
little effort as possible. Given a preexisting grammar where the related linguistic
phenomena had been well-studied, as in the English XTAG, creating a new version
with LexOrg was quite straightforward, and required no more than a few weeks

De_ve]opiﬁg Tree-Adjoining Grammars With‘Lexical.‘DescﬁptiOns e o 99

Aal:.' S | .azz"" ‘VS :
NP/\VP o N
R | . NP VP .

€. vA@;._SN, | | e A@'

FIGURE 3.19 Two elementary trees for adjectives with sentential arguments

~of effort. A tree-by-tree comparison of this new grammar and the ‘original XTAG ‘
grammar allowed us to discover gaps in the XTAG grammar that needed to be .
investigated. The types of gaps included missing subcategorization frames that were ,

created by LexOrg’s F&"eme Generator and which Would correspond to an entlre ’cree

- for a.subcategorization frame, or missing features in some elementary trees. Based

on ‘the results of this comparison, the English XTAG was extensively revised and
extended.

The experiment also revealed that some elementary trees were easier to generate
with LexOrg than other elementary trees. Figure 3.19 shows two elementary trees
where an adjective such as glad takes a sentential argument. They differ in the
positions of the Sy node: in ¢ the S node is a sister of the A node, but in as it
is a sister of the AP node. As both trees can handle a sentence such as Mary was
glad that John came to the party, it is difficult to choose one tree over the other
according to the set of sentences that each tree accepts. While it is equally easy to

draw these two trees by hand, o; would be preferred over s if LexOrg is used to

generate a grammar. This is because the head-argument description in figure 3.20,
which is used to generate all the elementary trees anchored by transitive verbs or
prepositions, can also be used to generate ay. In contrast, the elementary tree o

would require a different head-argument description. Because our grammar includes
the transitive verb family and one of the trees in figure 3.19, choosing o over ap

will require a smaller set of descriptions. This example illustrates another advantage
of using LexOrg besides the ease of creating and maintaining a grammar: the users
of LexOrg are encouraged to create elegant, consistent, well-motivated grammars
by defining structures that are shared across elementary trees and tree families.

In addition to English, we also used LexOrg to generate a medium-size grammar
for Chinese. The Chinese grammar, although smaller than the English grammar,
required several person-months, since many of the linguistic principles had to be
defined along the way before the structures could be generated. Note that most of
the time invested for the Chinese grammar was in linguistic analysis which would be
applicable to any style of grammar, rather than in structure generation. In designing

100 - . Fei Xia, Martha Palmer, and K. Vijay-Shanker
HeadBar

PN

Head - Obj

FIGURE 3.20 A head-argument description

these two grammars, we have tried to specify grammars that reflect the similarities
and the differences between the languages. :

English ~ | Chinese

subcategorization frames (NP, V, NP) : - | (NP, V, NP)
. (NP, V, NP, NP, S) (V)
lexical subcategorization rules passive without by-phrase | short bei-const
: dative-shift ba-const
head-projection descriptions S_has_V_head S_has_V_head
..o ... | S has P head .
head-argument descriptions V_has_NP_right_arg V_has_NP_right_arg
» V-has_3.right_arg V- has PP_left_arg
modification descriptions NP_modify_NP_from left | NP_modify_NP_from left
S-modify_ NP_from right | S_modify_NP_from_left
syntactic variation descriptions wh-question _ topicalization :
gerund etc arg-drop etc.
subcategorization frames 43 23
lexical subcategorization rules | 6 12
descriptions 42 39
templates . 638 280

TABLE 3.4 Major features of English aﬁd Chinese grammars

To illustrate the similarities and differences between these two languages, for
each language we give two examples for each type of abstract specification in table
3.4: the first example has similar content in the two languages, while the second
example appears in only one language. For example, the lexical subcategorization
rule for passive without the by-phrase in English is very similar to the rule for the
short bei-construction in Chinese, whereas the rule for dative-shift appears only in
English, and the rule for the ba-construction appears only in Chinese. Similarly,
both languages have wh-movement (topicalization in Chinese), but only English
has a gerund form and only Chinese allows argument drop, as indicated by the row
for syntactic variation descriptions. The bottom part of the table shows that with a
small set of specifications, a fairly large number of templates were produced; and in
the case of the English grammar, we were able to specify a grammar with a coverage

Developiﬁg Tree-Adjoining Grammars with Lexica] Déécriptions - R 101

. comparable to that of the then current version of XTAG LexOrg s Enghsh grammar,

covered more than 90% of the templates for verbs that were found in XTAG. 9 To

maintain the grammars, only these specifications need to be modified, and all the

' elementary trees will be updated automatically. -

We are encouraged by the utility of our tool and the ease with which both
English and Chinese grammars were developed. We believe that, beginning with a =
preexisting linguistic analysis and grammar design experience, a prototype grammar

for a new language can be easily and rapidly developed in a few weeks. Furthermore,
we see this approach as much more than just an engineering tool. Provably

. consistent abstract specifications for different languages offer unique opportunities.
to investigate how languages relate to themselves and to each other. For instance,

' the impact. of a linguistic structure such ag wh-movement can be traced from its
specification to the descrlptlons that it combines with, to its actual reahzatlon in .

trees."

3. 9 Comparlson with Other Work

- Systems such as Becker s HyTAG system (Becker 1994) the one by Evans Gazdar |

and Weir (1995) implemented in . DATR (Evans and Gazdar, 1989), and Candito’s
system (Candito, 1996) have all been based on the same observation that motivated
LexOrg; namely that the templates in an LTAG grammar are related to one another
and could be organized in'a compact way for efficient development and maintenance.
This section briefly compares LexOrg to these other systems.20

In a lexical hierarchy, a class inherits attributes fromits superclasses as
illustrated by figure 3.21. (For a detailed example of a verb subcategorization frame

hierarchy adhering to strict inheritance properties, see Copestake and Sanfilippo

(1993) and Briscoe et al. (1994).) Although the hierarchy seems intuitive, it is
difficult to build manually. Grammar designers first have to decide between a true
hieararchy and a network. If a network is chosen, then conflicts between multiple
superclasses must be resolved. The individual nodes also all need to be explicitly
defined. For instance, could the nodes in figure 3.21 for TRANSITIVE, SIMPLE-

TRANS, and NP-IOBJ be merged, or do they need to be distinct?-

One major difference between LexOrg and the other three approaches is that
LexOrg does not depend on a predefined hierarchy. The inheritance relations
between tree families are implicit. For instance, the description set selected by
LexOrg for the ditransitive verb family is a superset of the descriptions selected
for the transitive verb family. Therefore, the ditransitive family implicitly “inherits”
all the information from the transitive family w1thout needing to refer directly to
. an explicit hierarchy or to the transitive family. 2

3.9.1 Becker’s HyTAG

A metarule in general consists of an input pattern and an output pattern. When
the input pattern matches an elementary structure in a grammar, the application

102 ' . Fei Xia, Martha Palmer, and K. Vijay—SIJanker‘
(VERB '

(I0BI) (TRANSITIVE) [BOUD = (INIRANSITIVE

PP-IOBJ.

NP-IOBJ

(DITRANS-1) DITRANS-2) OBJBQUI) (SIMPLE-TRANS]

give donate eat

FIGURE 3.21 The lexical hierarchy given in Vijay-Shanker and Schabes (1992)

of the metarule to the structure creates a new elementary structure. Metarules were
first introduced in Generalized Phrase Structure Grammar (GPSG) (Gazdar et al.,
1985). Later, Becker modified the definition of metarules in order to use them for
LTAG in his HyTAG system (Becker, 1994). In addition to metarules, Becker’s
HyTAG system also uses a handcrafted inheritance hierarchy such as the one just
discussed.

In HyTAG, the input-pattern and the output-pattern of a metarule are
elementary trees with the exception that any node may be a metavariable. A
metavariable describes part of a template that is not affected if the metarule is
applied. If a template matches the input-pattern, the application of the metarule
creates a new template which could be added to the grammar.

A major difference between HyTAG and LexOrg is that HyTAG uses metarules
to describe both lexical and syntactic rules, whereas LexOrg uses two mechanisms:
lexical subcategorization rules and descriptions. Aside from the linguistic debate
that argues for different treatments of lexical and syntactic rules, using different
mechanisms results in LexOrg having a small number of lexical subcategorization
rules which are simpler than metarules because they do not contain metavariables.
This makes it easier to ensure the termination of the application process. It also
allows for more modular encoding of constraints such as feature agreements.

3.9.2 - The DATR system

Evans, Gazdar and Weir (1995) discuss & method for organizing the trees in a TAG
hierarchically, using an existing lexical knowledge representation language called
DATR (Evans and Gazdar, 1989). In the DATR system, an elementary tree is
described from its lexical anchor upwards as a feature structure using three tree
relations: the left, right, and parent relations. Like HyTAG, the DATR system uses
an inheritance hierarchy to relate verb classes. For instance, the VERB-+NP class
inherits the structure from the VERB class and adds a right NP complement as the
sister of the anchor.

‘ ‘Developmg ’I‘ree-AdJommg Grammars W1t11 Lexma] Descr1pt1ons © 103

The system uses lexical rules to capture the relationships between elementary
trees. A lexical rule defines a derived output tree structure in terms of an input
tree structure. Since the lexical rules in this system relate elementary trees rather
~ than subcategorization frames, they are more similar to metarules in HyTAG than
to lexical subcategorization rules in LexOrg. In addition to topicalization and wh-
" -movement, lexical rules in the DATR, system are also used for passive, dative-shift,’

‘subJect—aumhary inversion, ‘and relative clauses. In the passive rules, instead of
stating that the first object of the input tree.is the subject of the output tree,
" the lexical rule simply discards the object. As a result, the relationship between
the obJect in an active sentence and the subJect in the corresponding passivized
sentence is lost. »

~ Similarly to HyTAG, the DATR system requires a hand-crafted hierarchy and
does not distinguish between syntactic rules and lexical rules, in contrast with -
" LexOrg which can generate its hierarchy automatically and which clearly separates
syntactic rules ahd lexical subcategorization rules. There are two other major
. differences: (1) the descriptions-used-by LexOrg are constrained to be strictly

monotonic, ‘whereas the DATR system allows nonmonotonicity in its application -
of rules; (2) the- DATR system-can capture only direct relations between nodes in
a tree (such as the parent-child relationship or precedence), and must use -feature-
equations to simulate other tree relations (such as dominance relation). This means
that in their system, an abstract concept such as dominance must be specified by
spelling out explicitly all of the different p0351ble path lengths for every possible

"dominance relationship.

3.9.3 Candito’s system

Like LexOrg, Candito’s system (Candito, 1996) is built upon the basic ideas
" expressed in Vijay-Shanker and Schabes (1992) for the use of descriptions to
encode tree structures shared by several elementary trees. Her system uses a
handwritten hierarchy that has three dimensions. In the first dimension, canonical
subcategorization frames are put into a hierarchy similar to the ones in HyTAG
and the DATR system. The second dimension includes all possible redistributions
of syntactic functions. The third dimension lists syntactic realizations of the
functions. It expresses the way that the different syntactic functions are positioned
at the phrase-structure level. The definitions of classes in these dimensions include

descriptions and meta-equations.

A terminal class is formed in two steps. First, it inherits a canonical
subcategorization from dimension 1 and a compatible redistribution from dimension
2. This pair of superclasses defines an actual -subcategorization frame. Second,
the terminal class inherits exactly one type of realization for each function of
the actual subcategorization from dimension 3. A terminal class is actually a
description. Elementary trees are the minimal trees that satisfy the description. For
instance, a terminal class inherits the ditransitive frame (NPy V NP, NP) from
dimension 1 and the passive redistribution from dimension 2; this yields the actual

104 . Fei Xia, Martha Palmer, and K. Vijay-Shanker

subcategorization frame (NP; V' NPs). It then inherits subject-in-wh-question and
object-in-canonical-position realizations from dimension 3. The resulting elementary
. tree is anchored by a passivized ditransitive verb whose surface subject (i.e., the
indirect object in the active voice). undergoes Wh—movement such as given in who
was given a book?

A terminal class inherits one class from dimension 1, one from dimension 2, and
one or more from dimension 3. These superclasses may be incompatible. To ensure
that all the superclasses of a terminal class are compatible, the system provides
several ways for its users to explicitly express compatibility constraints.

These are not needed in LexOrg, which automatlcally ensures that illegal
combinations are ruled out. :

There are many similarities between Candito’s system and LexOrg as
both use descriptions to encode tree structures shared by several elementary
trees, and there is a separation of lexical rules and syntactic rules. There
is an obvious parallel between Candito’s subcategorization dimension and our
subcategorization descriptions, between her redistribution dimension and our
lexical subcategorization rules, and between her realization dimension and our
syntactic variation/modification descriptions. However, there are also several major
differences.

First, Candito’s system requires a handwritten hierarchy, whereas LexOrg does
not. It also requires that each terminal class should select exactly one class from
dimension 2. This means that if two lexical subcategorization rules can be applied
in a series (such as passive and causative) to a subcategorization frame, a node
that represents that sequence must be manually created and added to dimension
2. In other words, dimension 2 should have a node for every rule sequence that is
applicable to some subcategorization frame. LexOrg does not need users to build
this dimension manually because the Frame Generator in LexOrg automatically
tries all the rule sequences when given a subcategorization frame.

The two systems also differ in the way that syntactic variations are represented.
In Candito’s third dimension, each argument/function in a subcategorization frame
requires an explicit representation for each possible syntactic realization. For
example, the subject of a ditransitive verb has a different representation for the
canonical position, for wh-extraction, and so on. So do the direct object and indirect
object. To generate templates for wh-questions of ditransitive verbs, Candito’s
system needs to build three separate terminal classes. In contrast, LexOrg does
not need descriptions for the various positions that each argument/function can
be in. To generate the template for wh-questions, LexOrg only needs one wh-
movement description. Combining this description with the set of subcategorization
descriptions will yield all the templates for wh-questions.

<‘Develop1"n’g Tree-Adjoining Grammars with Lexical Descriptions - 105
3.10 Summary " : |

In LTAG, there is a clear distinction made between a grammar and the grammajuical

principles that go into developing this grammar. Arguments have been made on -

linguistic and computational grounds that the use of a suitably enlarged domain of
~ locality provided by the elementary trees and the operations of substitutions and
. adjoining provide many advantages. But it is clear that these elementary trees,

especially given that they have an enlarged domain of locality, are themselves)

not atomic but rather encapsulate several individual independent grammatical

~ principles. Although this fact is widely understood in the LTAG context, most of -

the large-scale grammar development efforts have directly produced the elementary
. trees, thereby in essence manually compiling out subsets of independent principles

~ into elementary trees. Of course, as with similar hand-crafted grammars, the larger
" the grammar, the more prone to errors it becomes, and the harder it is to maintain. -

‘LexOrg is a computational tool that alleviates these problems in grammar design -

for LTAGs. It takes three types of abstract specifications (i.e., subcategorization
frames, lexical subcategorization rules, and descriptions) as input and produces

. LTAG grammars as .output. -Descriptions are further divided into. four classes .

according to the information that they provide. In grammar development and

maintenance, only the abstract specifications need to. be edited, and any changes or

corrections will automatically be proliferated throughout the grammar. - -

" - Given a preexisting linguistic analysis, a new grammar can be developed with
LexOrg in a few weeks, and easily maintained and revised. This provides valuable
time savings to grammar designers, but, perhaps even more importantly, the reuse
of descriptions encourages a comprehensive and holistic perspective on the grammar
development process that highlights linguistic generalizations. The users of LexOrg

_are encouraged to create elegant, consistent, Well—motivaﬁed grammars by defining

structures that are shared across elementary trees and tree families.

In addition to greatly shortening grammar development time and lightening
the more tedious aspects of grammar maintenance, this approach also allows a
unique perspective on the general characteristics of a language.- The abstract
level of representation for the grammar both necessitates and facilitates an
examination of the linguistic analyses. The more clearly the grammar designer
understands the underlying linguistic generalizations of the language, the simpler
it will be to generate a grammar using LexOrg. In using LexOrg to create an
English LTAG, we demonstrated that this process is very useful for gaining an
overview of the theory that is being implemented and exposing gaps that remain
‘unmotivated and need to be investigated. The type.of gaps that can be exposed
include a missing subcategorization frame that might arise from the automatic

combination of subcategorization descriptions and that would correspond to an -

entire tree family, a missing tree which would represent a particular type of
syntactic variation for a subcategorization frame, and trees with inconsistent feature
equations. The comparison of the LexOrg English grammar with the preexisting
XTAG grammar led to extensive revisions of XTAG, resulting in a more elegant

106 | - Fei Xia, Martha Palmer, and K. Vijay-Shanker

and more comprehensive grammar. Provably consistent abstract specifications for
different languages offer unique opportunities to investigate how languages relate
to themsélves and to each other. For instance, the impact of a linguistic structure
such as wh-movement can be traced from its specification to the descriptions that it-
combines with, to its actual realization in trees. By focusing on syntactic properties
at a higher level, our approach allowed a unique comparison of our English and -
Chinese grammars.

3.11 Acknowledgments

Joseph -Rosenzweig is acknowledged for his original implementation of “tree
descriptions in Prolog which demonstrated the feasibility of this endeavor. Aravind
Joshi has provided continued guidance and support and Marie Candito participated
in several lengthy discussions with the authors during her visit to the University of
Pennsylvania. This work has been supported by DARPA N66001-00-1-8915, DOD
MDA904-97-C-0307, NSF SBR-89-20230-15 and NSF 9800658. A longer version of
this chapter was published in the Journal of Computational Intelligence, and we
~would also like to thank the journal and Blackwell Pubhshlng for grantmg us the
permission to include this chapter in the book.

Notes

1. A tree family is a set of elementary trees that have the same subcategorization
frame.

2. The XTAG gramrﬁar (XTAG-Group, 1998, 2001) is a large-scale LTAG
grammar for English, which has been manually created and maintained by a group
of linguists and computer scientists at the University of Pennsylvania since the early
1990s.

3. Note we use the term “subcategorizatioh” here to mean what the designer
intends to be localized with the lexical head. Lexical items with the same
subcategorization frames can thus be understood to share the same tree family.

4. As auser of LexOrg, a grammar designer has the freedom to choose the linguistic
theory to be incorporated in an LTAG grammar. In the examples given in this
chapter (such as in figure 3.7), we do not strictly follow the X-bar theory or the GB
theory. We name some nodes as HeadBar and HeadP only for the sake of convenience.

5. In the sentence “John brought a stone to break the window”, the infinitival
clause “to break the window” modifies the VP “brought a stone.” One may choose the
analysis where the infinitival clause modifies the whole main clause “John brought
a stone”, instead of just the VP “brought a stone.” To account for this analysis, we
only have to change the categories of ModRoot and ModFoot from VPs to Ss.

’ Deve]oping Tree-Adjoining Grammars with Lexical Descfiptions o ‘107, :

. 6. Notice that in ﬁgure 3. 10b the pos1t10n of ExtSite Wlth respect to Subj and
HeadBar is not specified. : v

7. Recall that the number of possible rooted, ordered trees with n nodes is the
(n—1)*" Catalan Number, where the nt* Catalan Number b, satisfies the followmg

equation:

P S C AN).
'b"_n+1x<n>_ﬁxn3/2X<1+O(]ﬁ/n))'

~ As the notion of tree in LexOrg is more complicated than the notion of rooted,
-ordered trees, the numbér of T'S(n) is much larger than b,_;. Furthermore, most. "

trees in T°S(n) do not satisfy ¢, and therefore are not in TreeS’etmm(q’))

8 In first-order loglc two formulas are equwalent if any model that satlsﬁes)

_one formula also satisfies the other formula and vice versa. ¢ .and ¢ are not

necessarily equivalent because we require only that the sets of trees (not models)

that satisfy these two formulae are identical. Recall that trees are structures with
special properties. For instance, given two symbols a and b in a tree, the formula
(a <b)V(b=<a)V(a<*b)V(b<a)is always true; therefore, a rewrite rule that
replaces =(a < b) with (b < a) V (@ <* b) V (b < a) will not change the set of trees
that satisfy a formula. The idea of using such rewrite rules originates from Rogers
and Vijay-Shanker (1994). However, our goal of applying rewrite rules in this step
is to get rid of negative connectives, rather than to find trees that satisfy each .

- Therefore, we use fewer numbers of rewrite rules and the b created by our algorithm
can be inconsistent; that is, it is possible that no trees satisfy 9151

9. When two nodes z and y are merged, in the graphic representatlon they become

the same node after merging; in the logic representation, let ¢ be the description

- before the merging, after the merging the new description is ¢ A (z =y).

10. A node may appear in more than one compatible set. If a graph has two
compatible sets, it is possible that after merging the nodes in one set, the other
set is no longer. compatible in the new graph. Therefore, if a graph has more than
one compatible set merging these sets in different orders may result in different

graphs.

11. A subcategorization frame is different from other descriptions in that it cannot
refer to any node other than the head and its arguments. For instance, it cannot
refer to the VP which is the parent of the verb head. Another difference is that
the categories of the nodes in a subcategorization frame must be specified. The
reason for these differences is simply because we want to adopt the same definition
of subcategorization frame as the one commonly used in the literature; namely, a
subcategorization frame specifies the categories of the head and its arguments.

108 Fei Xia, Martha Palmer, and K. Vijay-Shanker

12. The number of description sets produced by the Description Selector is
9lSynvarl » (| Mod | 41). We can actually reduce this number by not producing some
description sets that are obviously unproductive. A description set is unproductive if
there exists no templates that satisfy all the descriptions in thé set; as a result, the
Tree Generator will produce nothing when it takes the set as the input. For instance,
if in a head-projection description the head is a verb and its highest projection is
a clause, the Description Selector will select a modification description only if the
modifiee in that descrlptlon is a clause.

13. In our previous papers-on LexOrg, we called these rules lezical rules. However,
the term lexical rule is heavily overloaded. For instance, lexical rules as defined
in Evans et al. (1995) can manipulate tree structures. They are used to account
for wh-movement, topicalization, and so on. In contrast, the rules in LexOrg can
manipulate only subcategorization frames. To avoid the confusion, in this chapter we
rename the rules in LexOrg as lexical subcategorization rules, following a suggestion
from one of the anonymous reviewers.

14. In our current implementation, a lexical subcategorizationrule fr; = frs has to
specify the numbers of arguments in fr; and frg. This requirement will be relaxed in
the future to allow a more general version of the passive rule (NP, V NP, X P*) =
(NP, V XP*), where * indicates that the argument X P is optional.

15. An arguable exception to this claim is the double causative construction in
languages such as Hungarian (Shibatani, 1976). But in this construction it is not
clear whether the second causativization is done in morphology or in syntax. Even
if it is done at the morphological level, the two causativizations are not exactly the
same and they will be represented as two distinct lexical subcategorization rules in

LexOrg.

16. In the two sets of specifications that we created for English and Chinese, we
added the feature equation Vit :< agr >= VP.b :< agr > to the description in
figure 3.7a, and the equation VPt :< agr >= NPy.t :< agr > to the one in figure
3.7Db.

17. All the other alternations contain some components that are considered to be
adjuncts in the XTAG grammar. For instance, in the spray/load alternation, both
the PP “on the wall’ in the first sentence and the PP “with paint” in' the second
sentence are considered adjuncts in the XTAG grammar. As a result, no lexical
subcategorization rule was created for this alternation, and the spray verbs are
treated as normal transitive verbs.

18. The descriptions for relative clause in English and Portuguese look the same -
as in figure 3.18a and 3.18b but they differ in one aspect: when the ExtSite is not
the subject, in English, both COMP and NewSite are optional, but in Portuguese,
one of them must be present. The difference is captured by features which are not
shown in the figure.

‘ References ‘ : o ,) ‘ . . | S 1_09

19. The remaining 10% of the templates are hke o in ﬁgure 3:19.in that they- ,
require some abstract specifications which do not quite fit- with the rest of the -
‘grammar. For example, as explained before, & in figure 3.19 would require a head-
- argument description which is very different from the one used for transitive verbs or

" prepositions. In order to keep our set of specifications for English elegant and well-

" motivated, we did not include such specification, although adding such specification

'will guarantee that the resultlng new English grammar would cover all the templates

'for verbs that were found in XTAG

20. For more details of these systems and the comparlsons see X1a et al (2005) or

Chapter 4 of X1a (2001).

21. If one wishes to make exphclt th1s 1mp11c1t inheritance h1erarchy, it can be

~built by adding an inheritance link between every tree family pair that satisfies the °
. following condition: the subcategorization description set selected for one family is.
. a superset of the subcategorization description set selected for.the other family.

.‘ References '

-

“Becker T. (1994) Pa,tterns in Meta,rules In Proc. of the 37‘cl Intematzonal Workshop on

TAG and Related Frameworks (TAG+3), Paris, France.

Briscoe, E. J., Copestake, A., and de Paiva, V. (1994). Inheritance, ‘Defaﬁlts and the
Lezicon. Cambndge Umversﬁ:y Press.

Candito, M.-H. (1996). A Prmcxple-Based Hierarchical Representation of LTAGs. In Proc.
of the 16th International Conference on Computational Linguistics (COLING-1996),
Copenhagen, Denmark.

Chomsky; N. (1981). Lectures on Government and Binding. Foris.

Copestake, A. and Sanfilippo, A. (1993). Multilingual Lexical Representation. In Proc.

of the AAAI Spring Symposmm Building Lemcons for Machine Translation, Stanford, .

California.

Evans, R. and Gazdar, G. (1989). Inference in DATR In Proc. of the 4th Conference of
the European Chapter of the Association for Computational Linguistics (EACL-1989),
Manchester, England. ‘)

Evans, R., Gazdar, G., and Weir, D. J. (1995). Encoding Lexicalized Tree Adjoining
Grammars with a Nonmonotonic Inheritance Hierarchy. In Proc. of the 33rd Annual
Meeting of the Association for C’omputatzonal nguzstzcs (ACL-1995), Cambridge,
Massachusetts, USA.

Gazdar, G., Klein, E., Pullum, G., and Sag, I. A. (1985). Generalized Phrase Structure
Gmmmar Basil Blackwell

Jackendoff, R. S. (1977). X-bar Syntaz: A Study of Phrase Structure MIT Press.

Levin, B. (1993). English Verb Classes and Alternations: A Prelzmmary Investigation. The
University of Chicago Press, Chicago, USA.

Pollard, C. and Sag, 1. A. (1994). Head-Driven Phrase Structure Grammar. University of
Chicago Press.

Rogers, J. and Vijay-Shanker, K. (1994) Obtaining Trees from Their Descriptiorns:
An Application to Tree Adjoining Grammars. Journal of Computational Intelligence,
10(4):401-421.

110 Fei Xia, Martha Palmer, and K. Vijay-Shanker -

Shibatani, M., ed. (1976). The Grammar of Causative Constructions. Academic Press.

Vijay-Shanker, K. and Schabes, Y. (1992). Structure Sharing in Lexicalized Tree Adjoining
‘Grammar. In Proc. of the 14th International-Conference on Computational Linguistics
(COLING-1992), Nantes, France.

Xla, F. (2001). Automatic Grammar Genemtzon Sfrom Two Dzﬂerent Perspectwes PhD
' thesis, University of Pennsylvania. s

-Xia, F., Palmer, M., and. Vijay-Shanker, K. (2005). =Automatically Generating Tree.
AdJommg Gram.ma,rs from Abstract Spec1ﬁcat10ns Computational Intelligence,
21(3):246-287.

XTAG-Group (1998). A Lexicalized Tree Adjoining Gramma.r for Erglish. Technical
Report IRCS 98-18, University of Pennsylvania.

XTAG-Group (2001). A Lexicalized Tree Adjoining Grammar for Enghsh Technical
Report IRCS 01-03, University of Pennsylvania.

