
Evaluating the Coverage of LTAGs on Annotated Corpora

Fei Xia and Martha Palmer

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104, USAffxia,mpalmerg@linc.cis.upenn.edu
Abstract

Lexicalized Tree Adjoining Grammars (LTAGs) have been applied to many NLP applications. Evaluating the
coverage of s LTAG is important for both its developers and its users. In this paper, we describe a method, which
estimates a grammar’s coverage on annotated corpora by firstautomatically extracting a Treebank grammar from
the corpus and then calculating the overlap between the two grammars. We used the method to test the coverage
of the XTAG grammar, which is a large-scale hand-crafted grammar for English, on the English Penn Treebank,
and the result shows that the grammar can cover at least 97.2%of template tokens in the Treebank. This method
has several advantages: first, the whole process is semi-automatic and requires little human effort; second, the
coverage can be calculated at sentence level or more fine-grained levels, third, the method provides a set of new
templates that can be added to the grammar to improve its coverage. Fourth, there is no need to parse the corpus.

1. Introduction

A Lexicalized Tree Adjoining Grammar
(LTAG) consists of a finite set of lexicalized trees
(elementary trees) and composition operations of
substitution and adjunction. LTAGs have been
applied to many NLP applications. Evaluating
the coverage of a LTAG is important for both its
developers and its users.

Previous evaluations (Doran et al., 1994;
Srinivas et al., 1998) of LTAGs used unannotated
data (i.e. a set of sentences without syntactic
bracketing). The data are first parsed by a LTAG
parser and the coverage of the grammar is mea-
sured as the percentage of sentences in the data
that get at least one parse. For more discussion
on this approach, see (Prasad and Sarkar, 2000).

In this paper, we propose a new evaluation
method that takes advantage of large annotated
corpora (i.e. Treebanks) and a grammar extrac-
tion tool (Xia, 1999). The tool extracts LTAGs
from Treebanks automatically. Using the tool, the
coverage of a hand-crafted grammar can be mea-
sured by the overlap of the grammar and the Tree-
bank grammar. This method has several advan-
tages. First, the whole process is semi-automatic
and requires little human effort; Second, the cov-
erage can be calculated at either sentence level or
elementary tree level, which is more fine-grained.

Third, the method provides a list of elementary
trees that can be added to the grammar to improve
its coverage. Fourth, there is no need to parse the
whole corpus, which could have been very time-
consuming.

2. LTAG formalism
LTAGs are based on the Tree Adjoining Gram-

mar formalism developed by Joshi, Levy, and
Takahashi (Joshi et al., 1975; Joshi and Schabes,
1997). The primitive elements of the LTAG for-
malism are elementary trees (etreesfor short).
Eachetreeis associated with at least one lexical
item (calledthe anchorof the tree) on its fron-
tier, and the tree provides extended locality over
which the syntactic and semantic constraints can
be specified. There are two types ofetrees: initial
trees and auxiliary trees. Each auxiliary tree has a
unique leaf node, called thefoot node, which has
the same label as the root. Leaf nodes other than
anchors and foot nodes are substitution nodes.

Etreesare combined by two operations: sub-
stitution and adjunction. In the substitution op-
eration (Figure 1), a substitution node in anetree
is replaced by anotheretreewhose root has the
same label as the substitution node. In an adjunc-
tion operation (Figure 2), an auxiliary tree is in-
serted into an initial tree. The root and the foot

nodes of the auxiliary tree must match the node
label at which the auxiliary tree adjoins. The re-
sulting structure of the combinedetreesis called
aderived tree.

=>

X

Y

Y X

Y

Figure 1: The substitution operation

=>
Y

Y

X

Y

X

Y

Y

Figure 2: The adjunction operation

VP

S

N

who

VP

VP PP

about

the

S

NP

T

(γ1)

NP

V
P

NP

D NP

N

flood

worried

* PP

VP

about

NP

NP

the

DT NP*

(β2)(α3)(β1)(α2)(α1)

worried

VP

S

who flood
P

NP

N

S

V

N

NPNP

NP

T

Figure 3:Etreesand the derived tree for the sen-
tencewho worried about the flood

In Figure 3, the top five structures are the
etreesanchored by words in a wh-questionwho
worried about the flood. Foot and substitution
nodes are marked by�, and# respectively. The
arrows between the trees illustrate the combining
process, and
1 is the derived tree.

3. The XTAG grammar and the
English Penn Treebank

In this paper, we will report our experiments
on evaluating the coverage of the XTAG grammar
on the English Penn Treebank. The XTAG gram-
mar (XTAG-Group, 1998) is a large-scale Tree
Adjoining Grammar for English, which has been
developed at University of Pennsylvania since the

early 1990s. The current XTAG grammar has
about 1.8 millionetreesand has 1004 tree tem-
plates.1

The English Penn Treebank (Marcus et al.,
1994) has about 1 million words from the Wall
Street Journal. The sentences in the Treebank are
bracketed with syntactic structures. The average
sentence length is 23 words.

4. Methodology
The main idea of our evaluation method is as

follows: given a TreebankT and a grammarGh,
if we use the grammar extraction tool to extract
a Treebank grammar,Gt, fromT , then the cover-
age ofGh can be measured as the percentage ofT
which are covered by theintersectionof Gt andGh. The Treebank andGh may choose different
analyses for certain syntactic constructions. As
a result, although some constructions are covered
by both grammars, the corresponding elementary
trees in these grammars would look very differ-
ent. To account for this, our method has several
steps:

1. Extract a Treebank grammar fromT . LetGt
be the set of templates in the Treebank gram-
mar.

2. Put intoG0t all the templates inGt which
matchsome templates inGh.

3. Check each template inGt � G0t and decide
whether the construction represented by the
template is handled differently inGh. If so,
put the template inG00t .

The coverage ofGh on T is measured ascount(G0t [G00t)=count(Gt). The templates inGt � G0t � G00t are the ones that are truly missing
fromGh. They should be checked and the plausi-
ble ones can be added toGh to improveGh’s cov-
erage. In this paper, we are focusing on general
syntactic structures in two grammars, not on the
completeness of lexicons. Therefore, for gram-
mar coverage we usetemplates, instead ofetrees.
The method can be easily extended to compare
etrees. The next three sections will describe each
step of the evaluation method.

1If we remove the anchor from eachetree, we get
tree templates. Eachetreecan be seen as a (word,
template) pair.

5. LexTract and a Treebank
grammar

We have built a grammar development tool,
called LexTract, for grammar extraction. The ar-
chitecture of LexTract is shown in Figure 4, with
the components relevant to the grammar evalua-
tion task in boldface.

Supertaggers
parsers and
train LR LTAG

parsers
train CFG

etrees
rules off

context-free
read

Treebanks

information
Treebank-specific

mapping between
nodes andttree

etree nodes

derivation
trees

extract
LTAGs

Treebanks

from

annotation errors
detect Treebank

tree sets
build MC

hypothesis
test tree-locality

implausible

MC tree sets

build
derivation

trees

trees
derivation

etrees
filter out

etrees
implausible

LTAGs

CFGs

LTAG parsers
train statistical

LexTract System

LTAGs

two
compare

LTAGs

another LTAG and improve
coverage

estimatematched
subgrammar

Figure 4: Architecture of LexTract

By design all theetreesextracted from the
Treebank by LexTract fall into one of three types
according to the relations between the anchor of
theetreeand other nodes in the tree, as in Figure
5.

*

X

X

X Z

W

W

X

Y

lexical item

m-1

1

p

q

q

m

k

0

CC

X

X

m

m
X *m

Y X

X

X Z

m-1

1

p

k

0

lexical item

X

X

X Z

lexical item

X

Y m-1

1

p

m

k

0

(a) spine-etree (c) conj-etree
(coordination relation)(modification relation)

(b) mod-etree
(pred-arg relation)

Figure 5: Forms of extractedetrees

We will use an example to illustrate the main
steps of the extraction algorithm. The input to the
algorithm is a bracketed sentence from the Penn
Treebank (we call it attree), as in Figure 6(a).

The ttree is partially bracketed in that argu-
ments and modifiers for the same head are sib-
lings of the head. In LTAG, arguments appear
in spine-etrees and modifiers in mod-etrees, and
each mod-etree takes exactly one modifier. To ac-
count for this difference, the algorithm first fully
brackets thettreesby adding intermediate nodes
so that at each level the siblings have one of three

(SBAR (WHNP-1 (WP who))
(S (NP-SBJ (-NONE- *T*-1))

(VP (VBD worried)
(PP-CLR (IN about)

(NP (DT the)
(NN flood)))))))

(S (NP-1 (N who))
(S (NP-SBJ (-NONE- *T*-1))

(VP (VP (V worried))
(PP-CLR (P about)

(NP (D the)
(NP (N flood))))))))

(a) an example from Penn Treebank (b) fully bracketed tree with xtag tagset

Figure 6: An example from the Treebank and the
fully bracketed tree

relations: predicate-argument relation, modifica-
tion relation, or coordination relation. The fully
bracketed sentence is shown in Figure 6(b). The
nodes inserted by the algorithm are circled. We
map the Treebank tagset to the XTAG tagset to
compare the Treebank grammar with the XTAG.

The next step builds anetreesetE from each
fully bracketedttree. Recursive structures be-
come mod-etrees or conj-etrees, and the remain-
ing structures become spine-etrees. If we treat
each node in attree as a (top, bottom) pair,E
in fact forms a decomposition of thettree. The
ttree in Figure 7 is the same as the one in Figure
6(b) and as
1 in Figure 3 except that in the for-
mer some nodes are split into (top, bottom) pairs.2

The ttree yields fiveetrees, the same ones as in
Figure 3. Notice that the two subtrees of�2 are
separated by the auxiliary tree�1.

We ran the algorithm on the Penn English
Treebank II and extracted 2890 templates.

6. Matching templates in the two
grammars

To calculate the coverage of the XTAG gram-
mar, we need to find out how many templates
in the Treebank grammarmatchsome templates
in the XTAG grammar. We define two types of
matching : t-matchandc-match. From now on,
we use XTAG and ExtG to stand for the XTAG
grammar and the extracted grammar respectively.

2Recall that when a pair ofetreesare combined
during parsing, the root of oneetree is merged with
a node in the otheretree. Splitting nodes into top
and bottom pairs during the decomposition of a fully
bracketedttreeis the reverse process of merging nodes
during parsing. For the sake of simplicity, we show the
top and the bottom parts of a nodeX, denoted asX:t
andX:b respectively, only when the two parts will end
up in differentetrees.

NP.t

NP.b

VP2.b

NP2.t
NP2.b

who

T

about

PP

the

food

worried

(α2)

(α3)

(β2)

(β1)

(α1)

VP2.t

VP1.b
VP1.t

NP1.b

NP1.t

V

N

P

D

S

S

N

NP

Figure 7: Theetreeset is a decomposition of the
ttree.

6.1. t-match

We call two treest-match(t for tree) if they are
identical barring the type of information present
only in one grammar, such as feature structures
and subscripts in XTAG and frequency informa-
tion in ExtG. In Figure 8, XTAG trees in 8(a) and
8(b) t-matchthe ExtG tree in 8(c).

S

NP VP

V

S

NP VP

V

S

NP VP

V

0 1

break sleep/break

(a) pure intransitive verbs (b) ergative verbs (c) intransitive verbs
in XTAG in XTAG

sleep

in ExtG

Figure 8: An example oft-match

XTAG also differs from ExtG in that XTAG in-
cludes multi-anchor trees to handle idioms (Fig-
ure 9(a)), light verbs (Figure 9(b)) and so on. In
each of these cases, the multi-anchors form the
predicate. These trees are the same as the spine-
etree in Figure 5(a) except that some nodes of
the XTAG trees (e.g.NP1 in Figure 9(a) and
its counterpartZp in Figure 5) are expanded. By
having multi-anchors, each tree can be associated
with semantic representations directly (as shown
in Figure 9), which is an advantage of LTAG for-
malism. ExtG does not have multi-anchor trees
because semantics is not marked in the Treebank
and consequently the extraction algorithm can
not distinguish idiomatic meanings from literal
meanings. Since expanded subtrees are present
only in XTAG, we disregard them when compar-
ing templates.

sem: die(NP) 0 0 1

1

0

1

0

1

0

sem: kick(NP , NP)sem: walk(NP)0

the bucket

S

NP

kick/take

VP

V

NP VP

NP

Ntake

walk

kick

S

N

V

(a) idioms (c) transitive verbs
in XTAG in XTAG

(b) light verbs
in ExtG

D

NPV

VPNP

S

NP

Figure 9: Templates in XTAG with expanded sub-
treest-matchthe one in ExtG when the expanded
subtrees are disregarded

6.2. c-match

t-matchrequires two trees to have exactly the
same structure barring expanded subtrees, there-
fore, it does not tolerate minor annotation differ-
ences between the two grammars. For instance,
in XTAG, relative pronouns such aswhichand the
complementizerthat occupy distinct positions in
the etree for relative clauses, whereas the Penn
Treebank treats both as pronouns and therefore
they occupy the same position in ExtG, as shown
in Figure 10. Because the circled subtrees will
occur in every tree for relative clauses and wh-
movement, all these trees will nott-matchtheir
counterparts in the other grammar. Neverthe-
less, the two trees share the same subcategoriza-
tion frame(NP V NP), the same subcategoriza-
tion chain3 S ! V P ! V and the same mod-
ification pair (NP; S). To capture this kind of
similarity, we decompose a mod-etree into a tu-
ple of (subcat frame, subcat chain, modification
pair). Similarly, a spine-etree is decomposed into
a (subcat frame, subcat chain) pair, and a conj-
etree into (subcat frame, subcat chain, coordina-
tion sequence). Twoetreesare said toc-match(c
for component) if they are decomposed into the
same tuples. According to this definition, in Fig-
ure 10 the two templatesc-match.

3A subcategorization chainis a subsequence of the
spine in a spine-etree where each node on the chain
is a parent of some argument(s) in the subcategoriza-
tion frame. The nodes on a subcategorization chain
roughly correspond to variouslexical projectionsin
GB-theory.

t-match c-match matched unmatched total
subtotal subtotal

XTAG 162 314 476 528 1004
ExtG 54 133 187 2703 2890

frequency 54.6% 5.3% 59.9% 40.1% 100%

Table 1: Matched templates and their frequencies

t-match c-match matched unmatched total
subtotal subtotal

XTAG 173 324 497 507 1004
ExtG 81 134 215 2675 2890

frequency 78.6% 3.5% 82.1% 17.9% 100%

Table 2: Matched templates when certain annotation differences are disregarded

NP

NP

S NP

NP

* *

1

1

NP S

NP VP

S

NP*T*

S

NP VP

S

NP*T* V@

V@

(a) in XTAG

extroot

bar

lexroot

ext

Comp

NPnew

extroot

ext

new
lexroot

(b) in ExtG

Figure 10: An example ofc-match

6.3. Matching results

So far, we have defined two types of match-
ing. Notice that both types of matching are not
one-to-one. Table 1 lists the numbers of matched
templates in two grammars. The last row lists the
frequencies of the matched ExtG templates in the
Treebank. For instance, the second column says
162 templates in XTAGt-match54 templates in
ExtG, and these 54 templates account for 54.6%
of the template tokens in the Penn Treebank.

One of the major differences between the
XTAG and the Treebank annotation is that an
adjective modifies a noun directly in the former
whereas in the latter an adjective projects to an
AP which in turn modifies an NP, as shown in
Figure 11. Similarly, in XTAG an adverb mod-
ifies a VP directly, whereas in the Treebank an
adverb sometimes projects to an ADVP first. If
we disregard these annotation differences, the
percentage of matched template tokens increases
from 59.9% to 82.1%, as shown in Table 2. The
magnitude of the increase is due to the high fre-

quency of templates with nouns, adjectives and
adverbs.

N*

N

A@

NP

NP*

(a) in XTAG

AP

A@

(b) in ExtG

Figure 11: Templates for adjectives modifying
nouns

7. Classifying unmatched templates
The previous section shows that 17.9% of the

template tokens do not match any template in the
XTAG grammar. This is due to several reasons:

T1: incorrect templates in ExtG These templates
result from Treebank annotation errors, and
therefore, are not in XTAG.

T2: coordination in XTAG the templates for coordi-
nations in XTAG are generated on-the-fly while
parsing (Sarkar and Joshi, 1996), and are not part
of the 1004 templates. Therefore, theconj-etrees
in ExtG, which account for 3.4% of the template
tokens in the Treebank, do not match any tem-
plates in XTAG.

T3: alternative analyses XTAG and ExtG often
choose different analyses for the same phe-
nomenon. For example, the two grammars treat
reduced relative clauses differently. As a result,
the templates used to handle those phenomena
do notmatcheach other by our definition.

T4: constructions not covered by XTAG Some of
such constructions are the unlike coordination
phrase (UCP), parenthetical (PRN), fragment
(FRAG) and ellipsis.

For the first three types, the XTAG grammar
can handle the corresponding constructions al-
though the templates used in two grammars look
very different and do notmatchaccording to our
definition.

To find out what constructions are not cov-
ered by XTAG, we manually classify 289 of the
most frequent unmatched templates in ExtG ac-
cording to the reason why they are absent from
XTAG. These 289 templates account for 93.9%
of all the unmatched template tokens in the Tree-
bank. The results are shown in Table 3, where the
percentage is with respect to all the tokens in the
Treebank. From the table, it is clear that most
unmatched template tokens are due to alterna-
tive analyses (T3) adopted in the two grammars.
Combining the results in Table 2 and 3, we con-
clude that 97.2% of template tokens in the Tree-
bank are covered by XTAG, while another 1.7%
are not. Because the remaining 2386 unmatched
templates in ExtG have not been checked, it is not
clear how many of the remaining 1.1% template
tokens are covered by XTAG.4

T1 T2 T3 T4 total
type 51 52 93 93 289
freq 1.1% 3.4% 10.6% 1.7% 16.8%

Table 3: Classifications of 289 unmatched tem-
plates

8. Conclusion
We have presented a method for evaluating the

coverage of a LTAG grammar on an annotated
corpus. It first uses LexTract to automatically
extract a Treebank grammar, then the templates
in the Treebank grammar are matched with the
ones in the grammar to be evaluated, next the un-
matched templates in the Treebank grammar are

4The number 97.2% is the sum of two numbers:
the first one is the percentage of matched template to-
kens (82.1% from Table 2). The second number is the
percentage of template tokens which cover construc-
tions where the two grammars give different analyses
(16.8%-1.7%=15.1% from Table 3).

classified so that we can determine how many of
them are due to missing constructions in the lat-
ter grammar. We have tested the method with the
XTAG grammar and the English Penn Treebank
and the result shows that the XTAG grammar can
cover at least 97.2% of the template tokens in the
Treebank.

This method has several advantages: first, the
whole process is semi-automatic and requires lit-
tle human effort; second, the coverage can be cal-
culated at sentence level, template level and sub-
structure level; third, the method provides a list
of templates that can be added to the grammar to
improve its coverage; fourth, there is no need to
parse the whole corpus, which could have been
very time-consuming.

9. References
Doran, C., D. Egedi, B. A. Hockey, B. Srinivas, and

M. Zaidel, 1994. XTAG System - A Wide Cover-
age Grammar for English. InProc. of COLING’94.
Kyoto, Japan.

Joshi, Aravind and Yves Schabes, 1997. Tree ad-
joining grammars. In A. Salomma and G. Rosen-
berg (eds.),Handbook of Formal Languages and
Automata. Springer-Verlas, Herdelberg.

Joshi, Aravind K., L. Levy, and M. Takahashi, 1975.
Tree Adjunct Grammars.Journal of Computer and
System Sciences.

Marcus, Mitchell, Grace Kim, Mary Ann
Marcinkiewicz, et al., 1994. The Penn Tree-
bank: annotating predicate argument structure.
In Proc of ARPA speech and Natural language
workshop.

Prasad, Rashmi and Anoop Sarkar, 2000. Comparing
test-suite based evaluation and corpus-based evalu-
ation of a wide-coverage grammar for English. In
In this volumn. Athen, Greece.

Sarkar, Anoop and Aravind Joshi, 1996. Coordination
in Tree Adjoining Grammars: Formalization and
Implementation. InProceedings of the 18th COL-
ING. Copenhagen, Denmark.

XTAG-Group, The, 1998. A Lexicalized Tree Ad-
joining Grammar for English. Technical Report
IRCS 98-18, University of Pennsylvania.

Srinivas, B., A. Sarkar, C. Doran, and B. A. Hockey,
1998. Grammar and Parser Evaluation in the
XTAG Project. InWorkshop on Evaluation of Pars-
ing Systems. Granada, Spain.

Xia, Fei, 1999. Extracting tree adjoining grammars
from bracketed corpora. InProc. of NLPRS-99.
Beijing, China.

