Evolution of the XTAG System

Christine Doran Beth Ann Hockey Anoop Sarkar
B. Srinivas and Fei Xia*
Institute for Research in Cognitive Science

University of Pennsylvania
Philadelphia, PA 19104-6228, USA
{cdoran, beth, anoop, srini, fxia}@unagi.cis.upenn.edu

1 Introduction

The XTAG Project has been ongoing at Penn in some form or another since
1987. It began with a toy grammar run on LISP machines, and has since
developed into a full-scale system with a large English grammar, small
grammars for several other languages, a sophisticated X-windows based
grammar development environment and numerous satellite tools. Approx-
imately 35 people have worked extensively on the system, and at least that
many have worked more peripherally. Thus, while it is not a geographically
distributed project, it has been temporally distributed. At any given time,
there is no single person who is completely familiar with all aspects of either
the grammar or the tool kit. As a result, careful documentation has proven
to be invaluable. Historically, this has taken the form of distinct papers on
individual components; this is still the case for the tools. For the grammar,
however, there is now a single document, available as a (frozen) technical
report (XTAG-Group, 1995) or a constantly updated HTML document.!
The technical report has been useful not only for the people working on the
project at Penn, but also for those outside of Penn who are either interested
in Tree Adjoining Grammar specifically, or simply interested in seeing how
we handled some particular aspect of the grammar.

The system has language independent components such as the LTAG
parser, the X-windows development environment, and the maintenance
tools. It also has language dependent components such as lexical and tree
structures for several languages, and the morphological database and part
of speech tagger for English. The rest of this section will discuss some of
the major system components in greater detail. The remainder of the paper
will focus on the English grammar. We also have a large French grammar
(started at Penn and expanded at Paris 7, by Anne Abeillé) and others,

*Thanks to Aravind Joshi for his support of the XTAG project and his assistance on
this paper, and to the other members of the project, past and present, whose work has
contributed to the XTAG System. This work was partially supported by ARO grant
DAAHO04-94-G-0426, ARPA grant N66001-94-C-6043, and NSF STC grant DIR-8920230.

1Both are freely available from the project’s web page, at
http://www.cis.upenn.edu/ xtag.

EvoLUTION OF THE XTAG SYSTEM / 2

Input ?entence

v I

Morph Analyzer Tagger

Morph DB Lex Prob DB
P.O.S Blender

| Tree Selection |<—
*
1 Parser

| Tree Grafting

Derivation Structure
FIGURE 1 Overview of XTAG system

and small grammars for Korean, Chinese and Hindi. The X-windows in-
terface is completely modular and can be (and has been) used with any of
these grammars.

1.1 Formalism

The XTAG system uses a feature-based, lexicalized TAG (and everywhere
we say LTAG, read “FB-LTAG”). For more detailed discussion about the
formalism the reader is directed to the following references: (Joshi, 1987)
gives an introduction to the TAG formalism, (Vijay-Shanker and Joshi, 1991)
describes the use of unification features in a TAG, the advantages of lex-
icalization are discussed in (Schabes and Joshi, 1991). We do not use
multi-component trees (Weir, 1988), although we simulate tree-local multi-
component adjunction using features for auxiliary inversion

(Hockey and Srinivas, 1993).

1.2 System Description

Figure 1 shows the overall flow of the system when parsing a sentence;
a summary of each component is presented in Table 1. At the heart
of the system is a parser for lexicalized TAGs (Schabes and Joshi, 1988,
Schabes, 1990) which produces all legitimate parses for the sentence. The
parser has two phases: Tree Selection and Tree Grafting.

EvoLuTION OF THE XTAG SYSTEM / 3

Component Details
Morphological Consists of approximately 317,000 inflected items
Analyzer and derived from over 90000 stems.

Morph Database | Entries are indexed on the inflected form and return
the root form, POS, and inflectional information.

POS Tagger Wall Street Journal-trained trigram tagger (Church, 1988)
and Lex Prob extended to output N-best POS sequences
Database (Soong and Huang, 1990). Decreases the time to parse
a sentence by an average of 93% .
Syntactic More than 105,000 entries.
Database Each entry consists of: the uninflected form of the word,

its POS, the list of trees or tree-families associated with
the word, and a list of feature equations that capture
lexical idiosyncrasies.

Tree Database 886 trees, divided into 48 tree families and 187 individual
trees. Tree families represent subcategorization frames;
the trees in a tree family would be related to each other
transformationally in a movement-based approach.

X-Interface Menu-based facility for creating and modifying tree files.
User controlled parser parameters: parser’s start category,
enable/disable/retry on failure for POS tagger.
Storage/retrieval facilities for elementary and parsed trees.
Graphical displays of tree and feature data structures.
Hand combination of trees by adjunction or substitution
for grammar development.

Ability to manually assign POS tag

and/or Supertag before parsing

TABLE 1 System Summary

1.3 Tree Selection

Since we are working with lexicalized TAGs, each word in the sentence
selects at least one tree. The advantage of a lexicalized formalism like
LTAGs is that rather than parsing with all the trees in the grammar, we
can parse with only the trees selected by the words in the input sentence.

In the XTAG system, the selection of trees by the words is done in
several steps. Each step attempts to reduce ambiguity, i.e. reduce the
number of trees selected by the words in the sentence.

Morphological Analysis and POS Tagging The input sentence is first
submitted to the Morphological Analyzer and the Tagger. The
morphological analyzer (Karp et al., 1992) consists of a disk-based
database (a compiled version of the derivational rules) which is used
to map an inflected word into its stem, part of speech and feature
equations corresponding to inflectional information. These features
are inserted at the anchor node of the tree eventually selected by the

EvoLuTION OF THE XTAG SYSTEM / 4

stem. The POS Tagger can be disabled in which case only informa-
tion from the morphological analyzer is used.

POS Blender The output from the morphological analyzer and the POS
tagger go into the POS Blender which uses the output of the POS
tagger as a filter on the output of the morphological analyzer. Any
words that are not found in the morphological database are assigned
the POS given by the tagger.

Syntactic Database The syntactic database contains the mapping be-
tween particular stem(s) and the tree templates or tree-families stored
in the Tree Database (see Table 1). The syntactic database also
contains a list of feature equations that capture lexical idiosyncrasies.
The output of the POS Blender is used to search the Syntactic
Database to produce a set of lexicalized trees with the feature equa-
tions associated with the word(s) in the syntactic database unified
with the feature equations associated with the trees. Note that the
features in the syntactic database can be assigned to any node in the
tree and not just to the anchor node.

Default Assignment For words that are not found in the syntactic
database, default trees and tree-families are assigned based on their
POS tag.

Filters Some of the lexicalized trees chosen in previous stages can be elim-
inated in order to reduce ambiguity. Two methods are currently
used: structural filters which eliminates trees which have impossible
spans over the input sentence and a statistical filter based on uni-
gram probabilities of non-lexicalized trees (from a hand corrected set
of approximately 6000 parsed sentences).

The Tree Database contains the tree templates that are lexicalized
by following the various steps given above. The lexical items are inserted
into distinguished nodes in the tree template called the anchor nodes. The
part of speech of each word in the sentence corresponds to the label of
the anchor node of the trees. Hence the tagset used by the POS Tagger
corresponds exactly to the labels of the anchor nodes in the trees. The
tagset used in the XTAG system is given in Table 2. The tree templates
are subdivided into tree families (for verbs and other predicates), and tree
files which are simply collections of trees for lexical items like prepositions,
determiners, etc?.

1.4 Tree Grafting

Once a particular set of lexicalized trees for the sentence have been selected,
XTAG uses an Earley-style predictive left-to-right parsing algorithm for
LTAGs (Schabes and Joshi, 1988, Schabes, 1990) to find all derivations for

2The nonterminals in the tree database are A, AP, Ad, AdvP, Comp, Conj, D, N, NP,
P, PP, Punct, S, V, VP.

EvoLuTION OF THE XTAG SYSTEM / 5

the sentence. The derivation trees and the associated derived trees can be
viewed using the X-interface (see Table 1). The X-interface can also be
used to save particular derivations to disk.

Part of Speech | Description

A Adjective

Ad Adverb

Comp Complementizer
D Determiner

G Genitive Noun
I Interjection

N Noun

P Preposition
PL Particle

Punct Punctuation
\% Verb

TABLE 2 XTAG tagset

1.5 The Grammar Development Environment

Working with and developing a large grammar is a challenging process,
and the importance of having good visualization tools cannot be over-
emphasized. Currently the XTAG system has X-windows based tools for
viewing and updating the morphological and syntactic databases

(Karp et al., 1992, Egedi and Martin, 1994). These are available in both
ASCII and binary-encoded database format. The ASCII format is well-
suited for various UNIX utilities (awk, sed, grep) while the database format
is used for fast access during program execution. However even the ASCII
formatted representation is not well-suited for human readability. An X-
windows interface® for the databases allows users to easily examine them.
Searching for specific information on certain fields of the syntactic database
is also available. Also, the interface allows a user to insert, delete and
update any information in the databases. Figure 2(a) shows the interface
for the morphology database and Figure 2(b) shows the interface for the
syntactic database.

XTAG also has a sophisticated parsing and grammar development in-
terface (Paroubek et al., 1992). This interface includes a tree editor, the
ability to vary parameters in the parser, work with multiple grammars
and/or parsers, and use metarules for more efficient tree editing and con-
struction (Becker, 1994). The interface is shown in Figure 3.

3The interface uses the MIT Athena Toolkit, which is distributed with the standard
MIT X release.

EvoLuTION OF THE XTAG SYSTEM / 6

X XMDB M'amunanu (vl.A’l)) awynbin
File; Lookup Modify Add Delete [Clear][Done]t 551e]ptions| Search odify[adDelete| [Clear
#% Look-up **
Key: e comay
Entry: company
POS: N Part of Speech List
Families: 71 Tnx0dxN1 Add Family to List
Tree TS0 Delete Family from List
— _TnyfN1
Features: #_refl- Add Feature to List]
_sh- Delete Feature from List]
Exatiples: Add Example to List
Key: company Delete Example from List
Entries: company N 3sg
company V INF Record # 1 of 2
Key: being conpany
Entries: being N 3sg
be V PROG
Key: acquired
Entries: acquire V PPART WK
acquire V PAST WK
(a) Morphology database (b) Syntactic database

FIGURE 2 Interfaces to the database maintenance tools

2 Development Methodologies

Extending the English Grammar requires expansion of two different types
of data: associations of lexical items with syntactic frames and the trees
encoding those syntactic frames. Section 2.1 describes extension of the
former and Section 2.2 the later.

2.1 Lexicon Development

There have been two major expansions of the lexicon from the original
toy grammar. The first expansion used automatic extraction/translation
from online dictionaries to produce syntactic entries for the lexicon. This
effort had mixed success due to two problems with using dictionaries for
lexical information. One problem is that dictionaries often do not supply
enough of the right type of information, and the resulting lexical entries
can be grossly under-specified. A more serious problem is that dictionaries
can misclassify lexical items as to subcategorization. We had a very trying
instance of this second type of problem with the particle verbs. Many of
the transitive particle verb entries generated by the automatic procedure
were for items that did not undergo particle movement (e.g. put off the
paper, put the paper off) or show any other signs of being particle verbs.
Consequently, the particle verb portion of the lexicon had to be completely
redone by hand.

The second large scale expansion of the lexicon was executed by com-

EvoLuTION OF THE XTAG SYSTEM / 7

Exits Buffers Grammar Parsers Parsing Tools

substitution- adjunctions - results
C lexicon
C lex.trees
C advs-—adjs.trees
C prepositions.trees
C determiners.trees
C conjunctions.trees
C modifiers.trees
C anxs. trees
C neg.tress
C punct.trees
F C Tnx0V.trees
F C Tnx0Vnxl.trees
F C Tnx0Vdnl.trees
F C Tnx0Vnxdnx2.trees
F C Tnx0Vnxl pnx2.trees

FIGURE 3 Interface to the XTAG system

paring the XTAG lexicon to COMLEX (COMLEX is an English lexicon
developed at New York University under Linguistic Data Consortium spon-
sorship (Grishman et al., 1994)). A separate lexicon was created containing
the subset of COMLEX items that were in not in the XTAG lexicon. The
XTAG lexicon and the COMLEX subset lexicon can be used together to
provide the lexical coverage of both.*

In addition to these two large expansions of the lexicon, additional en-
tries are added as part of the implementation of new syntactic analyses.
We use a variety of sources to compile lists of items to be added. For exam-
ple, the subordinating conjunctions were taken from a descriptive grammar
(Quirk et al., 1985) and the lists of nouns that anchor partitive construc-
tions was compiled from the same descriptive grammar, a thesaurus, and
from online corpora.

2.2 Tree Building

In the early days of the project, when the system was running on LISP
machines, the graphical interface was quite unstable necessitating hand
editing of trees in LISP as text files, particularly for large scale changes.
Since the development of the X-windows interface, trees have been more
easily constructed by hand using its tree editing tools. Even with the im-
proved interface, we have found that we still needed a more “batch process”

41t was necessary to maintain separation between the COMLEX-based lexicon and the
XTAG lexicon because we are not able to distribute COMLEX.

EvoLuTION OF THE XTAG SYSTEM / 8

method to perform major changes across tree families, enforce consistency
across the grammar and to create substantial numbers of new trees. We
have, in the past, resorted to emacs macros or PERL scripts but recently we
have incorporated two automatic methods for producing trees which are
described in Section 4.

New syntactic analyses can require new tree structure in addition to
new lexical items. Adding a new subcategorization frame to the gram-
mar requires adding both new lexical entries and the corresponding trees.
The question of whether something is an argument (and hence part of
the subcategorization frame) or an adjunct is usually resolved by checking
whether it is optional. If omission leads to ungrammaticality, it is treated
as an argument®. For example, in digesting the COMLEX data, if there
was a subcategorization in COMLEX for which there was no correspond-
ing tree family in XTAG, the appropriate tree family was added. In other
cases we add new trees to cover a syntactic phenomenon not handled by
the grammar. In the early days of the grammar, phenomena were often
added based on linguistic interest. Now the grammar is extensive enough
that it handles most interesting and well known constructions. Table 2.2
lists the linguistic phenomena we currently cover. Phenomena which we are
aware the grammar does not cover, some of which we are currently work-
ing on, are: predicate and non-constituent coordination; idioms; binding;
semantic features (other than those on determiners); extraposition; and
comparatives with gaps.

While we still add some analyses based on linguistic interest, for ex-
ample “tough-movement” (e.g. [The artichoke]; was easy to cook t;), we
primarily use corpus analysis to direct our grammar extension efforts.

2.3 Using Corpora to Expand the Grammar

In order to continue to improve the coverage of XTAG, we periodically
parse a batch of sentences from some corpus, and perform an error analysis
on those which are rejected. Based on the results of this analysis, we
prioritize upcoming grammar development efforts. The results of a recent
error analysis are shown in Table 4. The table does not show errors in
parsing due to mistakes made by the POS tagger which contributed the
largest number of errors: 32. At this point, we have added a treatment of
punctuation to handle #1, an analysis of time NPs (#2), a large number
of multi-word prepositions (part of #3), gapless relative clauses (#7), bare
infinitives (#14) and have added the missing subcategorization (#3) and
missing lexical entry (#12). We are in the process of extending the parser
to handle VP coordination (#9) (Sarkar and Joshi, 1996). We find that
this method of error analysis is very useful in focusing our research efforts
in a productive direction.

5Cases where something considered to be an adjunct is subject to movement are han-
dled by an approximation to multi-component adjunction.

EvoLuTION OF THE XTAG SYSTEM / 9

adjuncts infinitives

appositives inversion

auxiliaries it-clefts

auxiliary contractions multi-word prepositions and adverbs
bare infinitives negation

clausal adjuncts noun-noun modification
control constructions noun-verb contraction
copular constructions particle movement
determiner sequencing passives

ECM punctuation

ergatives quoted speech

genitives raising

gerunds relative clauses
imperatives small clauses

infinitives time NPs

inversion topicalization

it-clefts wh- questions

TABLE 3 Phenomena Covered by the XTAG English Grammar

2.3.1 TSNLP

We also ran the English Grammar on the Test Suites for Natural Language
Processing (TSNLP) English corpus (Lehmann et al., 1996). The corpus is
intended to be a systematic collection of English grammatical phenomena,
including complementation, agreement, modification, diathesis, modality,
tense and aspect, sentence and clause types, coordination, and negation. It
contains 1409 grammatical sentences and phrases and 3036 ungrammatical
ones.

Before parsing the grammatical subset of the TSNLP data, we made a
few tokenization changes: we changed contractions from two tokens to one,
downcased the first words of sentences, changed a pair of square brackets
to parentheses and changed quotes to pairs of opens and closes. There
were 42 examples which we judged ungrammatical, and removed from the
test corpus. These were sentences with conjoined subject pronouns, where
one or both were accusative, e.g. Her and him succeed. Overall, we parsed
61.4% of the 1367 remaining sentences and phrases. The errors were of
various types, broken down in Table 5.

The missing lexical items are obviously the easiest of these to remedy,
and we have added them. This class also highlighted the fact that our
grammar is heavily slanted toward American English—our grammar did
not handle dare or need as auxiliary verbs, and there were a number of very
British particle constructions, e.g. She misses him out. The missing trees
are slightly harder to address, but the data obtained here is very useful in
helping us fill gaps in our grammar. Based on these results an analysis of the

EvoLuTION OF THE XTAG SYSTEM / 10

Rank | No of errors | Category of error

#1 11 Parentheticals and appositives

#2 8 Time NP

#3 8 Missing subcat

#4 7 Multi-word construction

#5 6 Ellipsis

#6 6 Not sentences

#7 3 Relative clause with no gap

#8 2 Funny coordination

#9 2 VP coordination

#10 | 2 Inverted predication

#11 | 2 Who knows

#12 1 Missing entry

#13 |1 Comparative?

#14 |1 Bare infinitive

TABLE 4 Results of Corpus Based Error Analysis

Error Class % Example
POS Tag 19.7% | She adds to/V it , He noises/N him abroad
Missing lex item | 43.3% used as an auxiliary V, calm NP down
Missing tree 21.2% | should’ve, bet NP NP S, regard NP as Adj
Feature clashes 3% My every firm, All money
Rest 12.8% approz, e.g.

TABLE 5 Breakdown of TSNLP Errors

modal+ ‘ve contractions was added to the grammar, along with a treatment
of ‘semi-modals’ like used. The feature clashes are mostly in sequences of
determiners, and would need to be looked at more closely to see whether
the changes needed to correct them would do more harm than good. One
general problem with the corpus is that, because it uses a very restricted
lexicon, if there is one problematic lexical item it is likely to appear a large
number of times and cause a disproportionate amount of grief. Used to
appears 33 times and we got all 33 wrong. However, it must be noted
that the XTAG grammar has analyses for syntactic phenomena that were
not represented in the TSNLP test suite such as sentential subjects and
subordinating clauses among others.

2.4 Where Do Analyses Come From

When we encounter a phenomenon that the English grammar does not
handle, there are three basic approaches to building an LTAG analysis. If
there is an existing analysis in some other formalism like GB or HPSG that
is compatible with LTAG, we can borrow it directly. If there is no pre-
existing analysis, we can invent our own. But the more common scenario

EvoLuTION OF THE XTAG SYSTEM / 11

is that there are analyses, possibly conflicting, which are not completely
compatible with LTAG, and we merge the existing analysis with our LTAG
specific constraints. Each of these three scenarios is illustrated below.

2.4.1 Borrowed: Relative Clauses

Relative clauses have some uncontroversial features—an element is ex-
tracted from a clause, and a nominal modifier results; the extracted el-
ement is co-indexed with its trace—and some controversial ones—are they
NP or N modifiers? Where in CP is the moved element?

Our analyses of relative clauses has changed twice over the course of
the project. (Based on examples like The teachers and the students who
attended the party we have chosen to make our relative clauses NP modi-
fiers.) The basic elements have remained unchanged: the trees are adjunc-
tion structures anchored by a verb, with NP foot and root nodes, and there
is a separate tree for each possible extraction site inside the clause.

(1) The artichoke which; Max cooked t;.
(2)
(3) A person [with whom]; Max cooked artichokes t;.
(4) The artichoke that;/0; Max cooked t;.

The first analysis had two sets of relative clause trees. One had a
substitution site for a relative pronoun (e.g. who,which, ex. (1)), extracted
NP (e.g. whose mother, ex. (2)) or pied-piped PP (e.g. at whose house,
ex. 3)), and the other allowed a complementizer to adjoin, handling the
that/nil alternation (ex. 4). These trees are shown in Figure 4(a) and
Figure 4(b), respectively.

However, the distinction between complementizers and relative pro-
nouns seemed to us in retrospect to be an artificial one, so we collapsed the
trees into a single set, with all relativizing elements adjoining (as in Figure
4(b)). This had the unfortunate consequence of disallowing extracted full
NPs and PPs, and we also realized that both the past and current anal-
yses had no consistent mechanism for co-indexing the extracted NP and
its trace, since the extracted item was often adjoined. Neither analysis
handled adjunct relative clauses.

The current analysis, developed and implement by Rajesh Bhatt, again
has two sets of trees and is virtually identical to the GB analysis. Unlike the
first analysis, nothing adjoins. There are two substitution positions,one for
relative pronouns, full NPs or PPs (labelled NP or PP) and one for comple-
mentizers (overt or null, labelled Comp). In each tree, one of these positions
is already filled by an empty element. The two are illustrated in Figure
4(c) and (d). Trees like 4(c) handle examples such as (1)-(3), while 4(d)
handles the alternation exemplified in (4). This allows us to co-index the
extraction site with its trace, since the extracted NP is always represented
in the initial tree, while capturing the doubly-filled comp restriction. We

A person [whose mother]; t; cooks artichokes.

N

Comp S

NA
| A
€ NP VP
VAN
|
€ Vi

o NPyt

(c)

EvoLuTION OF THE XTAG SYSTEM / 12

NP,

NP S

€ Vo NP

(d)

FIGURE 4 Three versions of transitive subject relative clauses

EvoLuTIiON OF THE XTAG SYSTEM / 13

also now have gap-less adjunct relative clauses. A more detailed descrip-
tion of the analysis is given in the on-line version of the XTAG technical
report, (XTAG-Group, 1995):Chapter 14.

2.4.2 Invented: Determiner Sequencing

While there is a vast quantity of literature on determiners, it has focused on
aspects other than determiner sequencing, which was the issue of concern to
us. Examples of possible and impossible orderings of determiners are shown
below. Consequently, while we derived some inspiration from the literature,
we had to develop an entirely new analysis for determiner sequencing.

The semantic properties of determiners as quantifiers has been a very
active area of research in linguisitics. The starting point of our analysis of
determiner sequencing was the realization that the semantic properties dis-
cussed in such research (e.g. (Keenan and Stavi, 1986, Barwise and Cooper, 1981))
when taken as features in our grammar would provide many of the nec-
essary constraints for determiner sequencing. Our first implementation,
the trees from which are shown in Figure 5, used several features from
(Keenan and Stavi, 1986) plus agreement, genitive, and the wh- value of
a word. The Wall Street Journal and Brown Corpus, online dictionaries,
a descriptive grammar of English (Quirk et al., 1985), and native speaker
judgements were used as sources for developing a list of individual determin-
ers to be accounted for, and for determining what sequences of determiners
were possible. In this first implementation singular count nouns were dif-
ferentiated from mass nouns in the grammar and the count nouns anchored
an NP tree structure that contained a DetP node. One determiner anchor-
ing a non-branching DetP substituted into the DetP position in the noun
phrase. Additional determiners anchored an auxilliary tree that adjoined
onto DetP.

While this first implementation handled the actual determiner sequenc-
ing well, there were other aspects of the analysis which were not satisfac-
tory. There were problems both of linguistic and implementational ele-
gance. The required division of nouns into count and mass seemed fairly
unmotivated and in practice it was often difficult to make the assignment
to one or the other category. The acceptability of a mass or count inter-
pretation of a noun phrase seems to depend much more on context than
on the particular noun involved, which argues for treating this as a prob-
lem of semantic interpretation rather than a syntactic problem. On the
implementational front, the mass/count distinction forced us into the un-
pleasant situation of needing a count and non-count version of every tree
in the grammar with a noun anchor.

Another problem with the first analysis was that it created an NP struc-
ture in which a functional category, the determiner, was selected by the
noun. In the rest of the LTAG grammar, anchors select for their comple-
ments and functional categories adjoin. In addition, there has been debate

EvoLuTIiON OF THE XTAG SYSTEM / 14

DetP [] DetP ([] NP []

wh : <1> conj : <8> compl : <1>
decreas : <2> wh : <1> gen : <2
gen @ <3> decreas @ <2>| definite : <3>
card : <d> gen : <3> decreas @ <4>
quan : <5> card : <4> quan : <5>
definite : <6> quan @ <5> const : <6>
predet : <7> definite : <6> card : <7>
agr : <8> predet : <7> conj : <8>
agr : <9>
pron : <9>
NP [case : nom/acc} wh : <10>
case : <11>
o <1>
Wh' 1 refl : <12>
conj : <3> agr : <13>
case @ <4>
agr : <2>
Do |wh : <1>[]
decreas : <2> [] Do fwh : <1>[] DetP * [conj : <8>[]
gen : <3>[] decreas 1 <2>[] agr : <9>[]
card : <4>[] gen : <3>[] [
quan : <5>[] card : <4>[]
definite : <6> [] quan : <5>[]
predet : <7>[] definite : <6> []
agr : <8>[] predet : <7>[] DetP

wh : <1> []} No
(]

1 agr : <2>

No
FIGURE 5 Trees for Constructing Simple NPs Under Substitution
Analysis of Determiners (old analysis)

about the structure of NPs in the linguistics literature fueled by the ob-
servations that both nouns and determiners exhibit selectional restrictions
on each other and that different types of NPs (e.g. with and without de-
terminers, pronouns, proper nouns) have somwhat different distributions.
One influential approach to accounting for these observations was the DP
hypothesis (Abney, 1987), which takes the head of what has traditionally
been called an NP to be the determiner. While we wished to retain nouns
as heads of NPs, it was clear that our first determiner sequencing analysis
did not allow us to capture any of the insights of the DP-hypothesis.

Changing to an analysis in which determiners adjoined to NP, as illus-
trated in Figure 6, made the treatment of nouns uniform, eliminated many
trees, allowed us to capture the insights of the DP hypothesis with respect
to selection of determiners toward nouns, and gave the determiners a treat-
ment that was consistent with other functional categories in our grammar.
The features that had done well on the determiner sequencing in the first
implementation transferred to the new adjunction analysis without a prob-
lem. In the course of changing the analysis we had an opportunity to fine
tune and improve the features, which we took advantage of by reevaluating
some of the features, adding further lexical items, and adding an additional
feature to improve coverage. The current analysis is presented in the paper
by (Hockey and Mateyek, in this volume).

EvoLuTION OF THE XTAG SYSTEM / 15

NPy (] NP []

wh : <1>

decreas : <2> compl : <1>

compl : <3> gen @ <2>

gen : <4 definite : <3>

cord : <> decreas : <4>

iquan : <6>

definite : <7> quan : <5>

const 1 <g> const : <6>

<o card : <7>

case : <10> <

conj : <11> conj : <8

displ-const : <12> pron : <9>
wh : <10>
case @ <11>
refl : <12>
agr : <13>

Do [wh : <1>[] NP
decreas : <2>[] NA

compl @ <3>[]
gen : <4>[]
card : <5>]
quan : <6>[]
definite : <7>[]
const : <8>[]

No

FIGURE 6 Trees for Constructing Simple NPs
Under Adjunction Analysis of Determiners (current analysis)

2.4.3 Merged: PRO Distribution

In the English XTAG grammar, we require that every clausal tree project
all of the arguments of its head. This means that we do not allow VP
trees in clausal complementation, as CCG and HPSG do. It also makes it
natural to adopt the PRO mechanism along with other notions of case and
the case filtering from GB theory.

Object case is treated as structural and is built into all transtive trees.
The case assigned to the subject position varies with verb form. Since the
XTAG grammar treats the inflected verb as a single unit rather than di-
viding it into INFL and V nodes, case, along with tense and agreement,
is expressed in the features of verbs, and must be passed in the appropri-
ate manner. The morphological form of the verb determines the value of
the <assign-case> feature. Figures 7(a) and 7(b) show the same tree®
anchored by different morphological forms of the verb sing, which give dif-
ferent values for the <assign-case> feature.

Inflected (indicative or imperative) verbs assign nominative case, and
the remaining forms—infinitival, past participial, etc.—assign case none,
as shown for the progressive form of the verb sing in Figure 7(b). The
distinction between case none and no case is indicative of a divergence
from the standard GB theory. In GB theory, the absence of case on an

6 Again, the feature structures shown have been restricted to those that pertain to the
V/NP interaction.

EvoLuTION OF THE XTAG SYSTEM / 16

NPo: [wh: -] VP [assign-case : <3>
[case : <35 agr : <4>[]
aor + <>

—E NPy [wh: - | VP[agres T<5]
[case : <3| lagr : <4>[]
/\ lagr : <4> | lassign-case : <1 }
v fisigvcase O] NPy [case: acd oo <2>
agr : <2>[]
agr: |pers: 3 /\
num : sing V lassign-case : <1>T] NPy [case: acd
3rdsing: 4 agr : <2>1]
fassign-case : nom| [assign-case : nond
mode: ind mode : ger
sings singing

(a) (b)

FIGURE 7 Assigning case according to verb form

NP position means that only PRO can fill that position. However, with
feature unification as it is used in the XTAG grammar, the absence of
case on an NP means that any NP can appear there, regardless of its
case. This is due to the mechanism of unification, in which if something is
unspecified, it can unify with anything. Thus we must have a specific case
none to handle verb forms that in standard GB would not assign case.
PRO is the only NP with case none. Note that although we developed
this treatment to allow our grammar to use PRO in a feature unification
environment, our treatment is very similar to the assignment of null case
to PRO in (Chomsky and Lasnik, 1993). (Watanabe, 1993) also proposes
a very similar approach within Chomsky’s Minimalist framework.

3 Translating the XTAG Grammar into Other Frame-
works

The utility of the XTAG English Grammar extends beyond the XTAG
project. It has been used as a resource for other “constituent-based” frame-
works. There have been a number of efforts to use either the XTAG lexicon
or just the trees to construct grammars in other formalisms. (Doran and
Srinivas, in this volume), discuss building a large Combinatory Categorial
Grammar by translating the trees into CCG categories and then translat-
ing the lexical associations with the categories as well. Yuka Tateisi of
the University of Tokyo is working on converting a smaller version of the

EvoLuTION OoF THE XTAG SYSTEM / 17

English grammar into HPSG, and has gotten very promising parsing speed-
ups over other HPSG parsers. (Evans et al., 1995) encode the XTAG trees
in DATR as lexical rules in a non-monotonic inheritance hierarchy.

4 Grammar Development Tools

As noted above, when a grammar reaches the size the XTAG English Gram-
mar has, it is a challenge to maintain consistency across the grammar, and
to make wide-ranging changes efficiently. Consistency suffers when changes
are made to some trees of a certain type, but not to others. Making changes
by hand to large numbers of trees is time-consuming, tedious, and risks in-
troducing errors into the grammar. We have explored two automatic tools
for constructing and maintaining an LTAG, which are described in the next
sections.

4.1 Metarule implementation

In the XTAG English grammar, the trees for a class of verbs (which have
the same subcategorization frame) are grouped into a tree family. Tree
families include variations such as wh-questions, relative clauses, topical-
ized, and passive sentences. Metarules can be used to generate the trees
in the tree family from the basic declarative tree. Becker’s article in this
volume describes metarules in more detail. By using metarules, the number
of trees that have to be stated in an LTAG can be reduced considerably.
Ideally, for every tree family only one representative tree, which could be
called the base tree, has to be given; all the other trees can be derived by
the application of metarules. Although one could do this at run time, our
assumption is that it would be more practical to do it at compile time.

Becker’s implementation of metarules has been incorporated into the
XTAG system and is accessed via the X-interface, and has recently been
used to perform the major change in our analysis of relative clauses de-
scribed in Section 2.4.1. It is also currently being used by Carlos Prolo to
generate the entire XTAG English grammar from base trees for each tree
family. First, Prolo is checking for consistency within the existing gram-
mar. The second phase will be to compare the metarule-produced grammar
with that produced by the lexical organization tool described below, and
to evaluate the relative strengths of the two approaches.

4.2 Lexical Organization

The XTAG English grammar currently consists of 886 tree templates, so
grammar maintenance is no small task. One source of redundancy is the
reuse of tree substructures in many different tree templates. This redun-
dancy poses a problem for grammar maintenance and revision. For exam-
ple, in every wh-question tree, there is a node under S which dominates
a trace and is coindexed with wh-constituent at the sentence-initial po-
sition. If some changes are made in this substructure, all the trees that

EvoLuTIiON OF THE XTAG SYSTEM / 18

use this substructure must be inspected and edited. Furthermore, one can
only manually verify that such an update does not conflict with any other
principle already instantiated. As the grammar grows, this difficulty of this
task grows with it.

The main idea of the lexical organization is that instead of building ele-
mentary trees manually, we define blocks.” Each block abstractly describes
all trees incorporating the partial structure it represents. Elementary trees
are generated automatically from different combinations of the blocks. In
maintaining the grammar, only the blocks need ever be manipulated; the
larger sets of actual trees which they subsume are computed automatically
from these high-level descriptions.

Similar approaches have been pursued for a large French LTAG by
(Candito, 1996) and for the XTAG English grammar by (Becker, 1994).
Following the ideas set forth in (Vijay-Shanker and Schabes, 1992), Can-
dito constructs a description hierarchy in much the same way as the present
work. Becker’s meta-rules can also been seen as partial descriptions,
wherein the inputs and outputs of the meta-rules are sisters in a descrip-
tion hierarchy and the parent is the common structure shared by both.
However, there is still redundancy across meta-rules whose inputs apply to
the same partial descriptions. For instance, the subject wh- extraction and
subject relative metarules would be specified independently and both refer
to an NP in subject position of a clause.

Root
Root AnchorP

/ \ Subjjct \\/P,AnchorP - TN

Subject(NP) VP Anchor Complement(’ NP’)
V,Anchor("V")

(1) Subject_is NP (2) Main_anchor_is Verb (3)Complement_is NP

FIGURE 8 Subcategorization quasi-trees

4.2.1 Hierarchical Organization of the Current English Gram-
mar

Lexical organization is used to build the tree templates for the English
Grammar. We decompose an elementary tree into a conjunction of blocks
which will be reused in the description of many other tree templates else-
where in the grammar. The blocks are of two types: the subcategorization
blocks and the ones for “transformations” such as wh-question formation.
The former is further divided into four fairly orthogonal subtypes: (1) the

"Blocks are partial descriptions of trees specified in a logical language patterned after
Rogers and Vijay-Shanker (1994). Since we are using a feature-based LTAG, our lan-
guage has also been equipped with descriptive predicates allowing us to specify a tree’s
feature-structure equations, in addition to its structural characteristics.

EvoLuTIiON OF THE XTAG SYSTEM / 19

ExtractionRoot(' NP’) ExtractionRoot(' NP')
E@ Sit 'NF’\ R
ractionSite(’ NP’) Ro0I('S) ExtractionSite(’NP') Rool('S')
Subject,ExtractionTrace('NP') Vp(i\\lp)
) Subject,ExtractionTrace(’ NP') VPAnchorP(VP)

‘ V(V") \\AnchorP

¢ /anhor s‘ V,Anchor(V’) ~ Complement('NP')
(1) quasi-tree for relative clause (2) tree generated from the four quasi-trees

FIGURE 9 Quasi-tree for subject extraction in relative clause, and tree generated

by combining it with the 3 quasi-trees in Figure 8

set of blocks describing the syntactic subject, (2) those for the main an-
chor(s), (3) those describing objects and (4) those for structure below a
subject or object.

Consider, for example, the description of the relative clause tree for
transitive verbs which contains four blocks: one specifying that its subject
is extracted, one that the subject is an NP, one that the main anchor is a
verb, and one that the complement is an NP. These blocks correspond to
the quasi-trees (partially specified trees) shown in Figure 8, and 9(1), and
when combined will generate the quasi-tree in Figure 9(2). For the sake of
simplicity, feature equations are not shown. In these figures, solid lines and
dashed lines denote the parent and dominance relations respectively; each
node has a label, enclosed in parentheses, and at least one name. Multiple
names for the same node are separated by commas such as VP, AnchorP
in Figure 8(2). The arc in Figure 9(1) indicates that the precedence order
of V and AnchorP is unspecified. (In small clauses, the main anchor is
a preposition, adjective or noun, not a verb, so AnchorP and VP are not
always the same node.)

Our system uses a logical tree description language implemented in
Prolog to represent blocks, tree well-formedness constraints® and a node-
minimality constraint (to reject trees which are consistent with set of de-
scriptions, but has non-minimal number of nodes). There is also an in-
terface to the Prolog module, written in Perl, and a visualization tool for
displaying pieces of the description lattice, implemented in C and using the
X-window graphical utility package. The system has been used to generate
about 90% of tree families in the English grammar.

4.2.2 A tool for grammar examination

Being able to specify the grammar in a high-level description language has
obvious advantages for maintenance and updating of the grammar, in that
changes need only be made in one place and are automatically percolated

8e.g. the children of every node must be totally ordered with respect to precedence, a
tree must have a unique node which has no parent, while all other nodes have exactly
one parent, etc.

EvoLuTION OF THE XTAG SYSTEM / 20

appropriately throughout the grammar. We expect to reap additional ben-
efits from this approach when developing a grammar for another language.
Beyond these issues of efficiency and consistency, this approach also gives
us a unique perspective on the existing grammar as a whole. Defining
blocks for the grammar both necessitates and facilitates an examination
of the linguistic assumptions that have been made with regard to feature
specification and tree-family definition. This can be very useful for gaining
a overview of the theory that is being implemented and exposing gaps that
have not yet been explained. Because of the organic way in which the gram-
mar was built over the years, we have always suspected that there might
exist a fair amount of inconsistency either within the feature structures,
or within the tree families. The effort in organizing the lexicon has so far
turned up very few non-linguistically motivated inconsistencies, which is a
gratifying validation of the constraints imposed by the LTAG formalism.

Our work in tree organization has allowed us to characterize three prin-
cipal types of exceptions in the XTAG English grammar: (1) a class of trees
is missing from the grammar, though this class would be expected from al-
lowing the descriptive blocks to combine freely (for example, a sentential
subject with a verb anchor and a PP complement); (2) within a class of
trees, some member is missing, though an analogous member is present
in another class (extraction of the clausal complement of a noun-anchored
predicative); (3) one tree in a class can be generated by combining quite
general descriptions, but there is an exceptional piece of structure or feature
equation (the ergative alternation of certain transitive verbs). While these
may sometimes reflect known syntactic generalizations (e.g. extraction is-
lands, as with the example in (2)), they may also reflect inconsistencies
which have arisen over the lengthy time-course of grammar development
and need to be corrected. As previously noted, the latter have so far been
quite limited in number and significance.

Our approach makes it incumbent on us to seek principled explana-
tions for these irregularities, since they must be explicitly encoded in the
description hierarchy. Without the description hierarchy, there would be no
need to reconcile these differences, since they would be entirely independent
pieces of a flat grammar.

5 Grammar Evaluation

Performance evaluation of a grammar system can be distinguished into
three kinds depending on the purpose it serves. ? First, intrinsic evaluation,
measures the performance of a system in the context of the framework
it is developed in. This kind of evaluation helps system developers and
maintainers to measure the performance of successive generations of the

9These evaluation methodologies are applicable to general purpose speech and natural
language processing systems (Cole et al., 1996, Jones and Galliers, 1995).

EvoLuTION OF THE XTAG SYSTEM / 21

system and identify the shortcomings and weaknesses in the grammar, thus
providing a direction for productive development of the grammar. We
have discussed examples of such an evaluation for the XTAG system in
Section 2.3.

A second method of evaluation is comparative evaluation. The objective
here is to directly compare the performance of different grammar systems
that use different grammar formalisms (and possibly different statistical
models). Comparative evaluation helps in identifying the strengths and
weaknesses of different systems and suggests possibilities for combining dif-
ferent approaches. However, this evaluation scheme requires a metric that
is insensitive to the representational differences in the output produced by
different parsers. For this purpose, the metric may have to be sufficiently
abstracted away from individual representations so as to reach a level of
agreement among the different representations produced by parsers. How-
ever, as a result of the abstraction process, the strengths of representations
of certain parsers might be lost completely.

We have compared the performance of the XTAG system against other
systems in the past. Using the crossing bracket accuracy as a metric, we
have compared the performance of XTAG against the IBM statistical pars-
ing system on the IBM manual sentences, against the Alvey Natural Lan-
guage Tools Parser on the LDOCE Noun Phrases and against the CLARE
parser on similar corpus. The results of these evaluations are reported in
(Srinivas et al., 1996). Although XTAG performed comparably with each
of these systems, we feel that a metric that measures the accuracy of the
derivation structures (dependency structures) would be a more suitable
metric to measure the performance of the XTAG system.

A third method of evaluation of a parsing system is extrinsic evaluation.
Extrinsic evaluation is meaningful when a parsing system is embedded in
an application and it refers to the evaluation of the parsing system’s contri-
bution to the overall performance of the application. Extrinsic evaluation
could be used as an indirect method of comparing parsing systems even
if they produce different representations for their outputs as long as the
output can be converted into a form usable by the application that the
parser is embedded in.

6 Improving Parsing Efficiency
There are a number of stages where syntactic ambiguity—both lexical and
structural-—can be reduced in parsing. We will discuss:

1. part-of-speech tagging prior to parsing and,

2. tree/subcat filtering and weighting techniques

The first is a general technique which is applicable to all kinds of gram-

mars; tree filtering and tree weighting take advantage of the particular
properties of lexicalized grammars. The combination of these three tech-

EvoLuTION OF THE XTAG SYSTEM / 22

niques has proven extremely effective in attacking the problem of ambiguity
while simultaneously improving the efficiency of the parser in the XTAG
system.

6.1 Part of Speech disambiguation

It is well known that lexical ambiguity with regard to the part-of-speech
(POS) of a word is one of the greatest sources of overall ambiguity. This
is particularly important in a lexicalized grammar, where each word is
associated with multiple structures for each POS it may have. In our
grammar, for example, the word try selects 59 verb trees and 17 noun
trees; simply by identifying its POS we substantially reduce the number
of trees it contributes to the parsing process. When this is done for each
word in a sentence, the reduction in number of trees finally considered by
the parser is enormous. Consider two examples: the NP the act of allowing
fresh air into a room receives 26 parses untagged, and POS tagging reduces
that number to 4; the sentence the second part is the name of your personal
computer receives 32 parses without POS tagging, and only 8 parses with
tagging.'0

6.2 Supertag disambiguation

The elementary trees of LTAG localize dependencies, including long dis-
tance dependencies, by requiring that all and only the dependent elements
be present within the same tree. As a result of this localization, a lexical
item may be (and almost always is) associated with more than one elemen-
tary tree. Figure 10 illustrates the set of elementary trees assigned to each
word of the sentence the purchase price includes two ancillary companies.
We call these elementary trees supertags, since they contain more informa-
tion (such as subcategorization and agreement information) than standard
part-of-speech tags. Supertags for recursive and non-recursive constructs
are labeled with Os and as respectively.

Although each word is initially associated with many supertags, in a
complete parse each word is associated with just one supertag (assuming
there is no global ambiguity). The task of a lexicalized grammar parser can
be viewed as a two step process. The first step is to select the appropriate
supertags for each word of the input and the second step is to combine the
selected supertags with substitution and adjunction operations. We call the
first step as Supertagging. Figure 11 illustrates the initial set of supertags
assigned to each word of the sentence the purchase price includes two ancil-
lary companies. It also shows the final supertag sequence associated with
the words in a complete parse of the sentence.

Note that, as in standard part-of-speech disambiguation, supertagging
could have been done by a parser. However, just as carrying out part-of-

10The first example is from the Alvey test sentences and the second from the IBM
Manual Corpus.

EvoLuTION OF THE XTAG SYSTEM / 23

speech disambiguation prior to parsing makes the job of the parser much
easier and therefore faster, supertagging reduces the work of the parser
even further. The result of supertagging is an almost parse in the sense
that the parser need ‘only’ link the individual structures to arrive at a
complete parse. The almost parsing method can also be used to parse
sentence fragments where it may not be possible to link the disambiguated
supertag sequence into a single structure.

6.2.1 Reducing supertag ambiguity using
structural information

The structure of the supertag can be best seen as providing admissibility
constraints on syntactic environments in which it may be used. Some of
these constraints can be checked locally. The following are a few constraints
that can be used to determine the admissibility of a syntactic environment
for a supertag.'!

e Span of the supertag : Span of a supertag is the minimum number of
lexical items that the supertag can cover. Each substitution site of a
supertag will cover at least one lexical item in the input. A simple
rule can be used to eliminate supertags based on the span constraint:
if the span of a supertag is larger than the input string, then the
supertag cannot be used in any parse of the input string.

e Left (Right) span constraint: If the span of the supertag to the left
(right) of the anchor is larger than the length of the string to the
left (right) of the word that anchors the supertag, then the supertag
cannot be used in any parse of the input string.

e Lexical items in the supertag: A supertag can be eliminated if the

terminals appearing on the frontier of the supertag do not appear in
the input string. Supertags with the built-in lexical item by, that
represent passive constructions are typically eliminated from being
considered during the parse of an active sentence.
More generally, these constraints can be used to eliminate supertags
that cannot have their features satisfied in the context of the input
string. An example of this is the elimination of supertag that requires
a wh+ NP when the input string does not contain wh-words.

Table 6 indicates the decrease in supertag ambiguity for 2012 WSJ
sentences (48,763 words)!? by using the structural constraints relative to
the supertag ambiguity without the structural constraints.

These filters prove to be very effective in reducing supertag ambiguity.
The graph in Figure 12 plots the number of supertags at the sentence level
for sentences of length 2 to 50 words with and without the filters. As can

Hprof. Mitch Marcus pointed out that these tests are similar to the generalized shaper
tests used in the Harvard Predictive Analyzer (Kuno, 1966).
12ysj-20 of the Penn Treebank

/N

NPo. VP

N

N

Sr

1

" —<

—z—3

purchase

aq

NP
A :
D NP+ N

the purchase

b1 B2

N

NP

purchase

Gy

the purchase

z
°c—3a

—z—3

price

price

EvoLuTION OF THE XTAG SYSTEM / 24

includes ¢

ag

V. NPy
includes

a11

includes

ancillary

Qq

ancillary

a2

two ancillary

NP

N

companies

Qs

—=—3

companies

companies

a13

companies.

FIGURE 10 A selection of the supertags associated with each word of the sentence
the purchase price includes two ancillary companies

EvoLuTION OF THE XTAG SYSTEM / 25

Sent: the purchase price includes two ancillary companies.
Initial aq Qs Qa3 Qy Qas
Assig. b1 B2 ag ar B3 B as

Ay Q10 a1 12 a3
Final Assig. [B2 Qs Qi B3 Ba Qi3

FIGURE 11 Supertag disambiguation for the sentence
the purchase price includes two ancillary companies

System Total # of words | Av. # of S'tags/word
Without struct. constraints 48,783 47.0
With struct. constraints 48,783 25.0

TABLE 6 Supertag ambiguity with and without the use of structural constraints

be seen from the graph, the supertag ambiguity is significantly lower when
the filters are used. The average reduction in supertag ambiguity is about
50%. This means that given a sentence, close to 50% of the supertags can be
eliminated even before parsing begins by just using structural constraints of
the supertags. This reduction in supertag ambiguity speeds up the parser
significantly. In fact, the supertag ambiguity in XTAG system is so large
that the parser is prohibitively slow without the use of these filters.

Even though structural constraints are effective in reducing supertag
ambiguity, the search space for the parser is still sufficiently large. We use
a trigram model in order to reduce the ambiguity further.

6.2.2 Trigram Model

The task of supertagging is to select the appropriate supertag for each
word from the initial set of supertags it is assigned, given the context of
the sentence. Thus the task of a supertagger is very similar to a part-of-
speech tagger. A trigram disambiguation model has proved very successful
in part-of-speech tagging. Owing to the similarity of supertagging to part-
of-speech tagging, we use a trigram model to disambiguate supertags. A
detailed discussion of the model can be found in (Srinivas, 1997a). Table 7
shows the performance of the trigram supertagger. Trained on 1,000,000
word /supertag pairs '3 and tested on 47,000 words'# the supertagger as-
signed the correct supertag to 92% of the words. A total of 300 different
supertags were used in these experiments.

13Sentences in wsj_00 through wsj_24, except wsj_20 of Penn Treebank.
14Sentences in wsj_20 of Penn Treebank.

EvoLuTION OF THE XTAG SYSTEM / 26

of Supertgas x 103

2.80 Without Filters

2.60

2.40

2.20

2.00

1.80

1.60

140

120

1.00

0.80

0.60

0.40 / /_‘ —
0.20 ﬂj/
000 ="

0.00 10.00 20.00 30.00 40.00 50.00

Sentence Length

FIGURE 12 Comparison of number of supertags with and without filtering
for sentences of length 2 to 50 words.

Once the supertagger selects the appropriate supertag for each word,
the second stage of the parser is needed ‘only’ to combine the individual
supertags to arrive at the parse of the input. Tested on about 1300 WSJ
sentences with each word in the sentence correctly supertagged, the XTAG
parser took approximately 4 seconds per sentence to yield a parse (combine
the supertags and perform feature unification). In contrast, the same 1300
WSJ sentences without the supertag annotation took nearly 120 seconds
per sentence to yield a parse. Thus the parsing speed-up gained by this
integration is a factor of about 30.

6.3 Trade-offs in ambiguity resolution

The techniques used to reduce ambiguity and improve parser efficiency
such as POS tagging (see Section 6.1) and Supertagging (see Section 6.2)
although highly accurate are not infallible. Relying on ambiguity resolu-
tion before parsing the sentence means that when either the POS Tagger
or the Supertagger assigns an incorrect POS tag or supertag, parsing fails.

EvoLuTION OoF THE XTAG SYSTEM / 27

Size of Model Size of | % Correct
training set test set
(words) (words)

1,000,000 (Baseline) | 47,000 77.2%
Trigram 47,000 92.2%
TABLE 7 Performance of the supertagger on the WSJ corpus

The sentence is then parsed without the POS tagger or the Supertagger,
increasing the overall time needed to parse that particular sentence. De-
spite this tradeoff, techniques such as POS tagging and Supertagging still
reduce the overall time needed to parse a set of sentences. Performance
can be increased further by exploiting n-best techniques in the ambiguity
resolution stages.

7 Applications

The trees developed as part of the XTAG system have been put to use with
the help of the supertagger in many application areas including information
filtering, information extraction and language modeling. A detailed list of
these applications is given in (Srinivas, 1997b). The XTAG system also
has an extension to Synchronous TAGs (Shieber and Schabes, 1990) which
is being used for applications in Machine Translation (Egedi et al., 1994,
Han et al., 1996, Palmer and Rosenzweig, 1996).

8 Other efforts
The following are few of the efforts currently underway:

e The large grammar (database) version of XTAG has recently been
ported to CLISP, contemporary public-domain software, with the
specific goal of permitting XTAG to run under the (public-domain)
Linux operating system.

o Grammars for other languages such as Chinese, Hindi and Korean
are currently being developed.

e There is also work underway to improve the lexical organization’s
tree-generation algorithm and the user interface to enable easier spec-
ification of grammars.

e We are checking for consistency of the grammar using metarules and
the lexical organization tool. We also intend to compare the grammar
produced using metarules with that produced by the lexical organiza-
tion tool, and to evaluate the relative strengths of the two approaches.

References

Steven Abney. The English Noun Phrase in its Sentential Aspects. PhD thesis,
MIT, 1987.

REFERENCES / 28

John Barwise and Robin Cooper. Generalized Quantifiers and Natural Language.
Linguistics and Philosophy, 4, 1981.

Tilman Becker. Patterns in metarules. In Proceedings of the 8rd TAG+ Confer-
ence, Paris, France, 1994.

Marie-Helene Candito. A Principle-Based Hierarchical Representation of LTAGs.
In Proceedings of COLING-96, Copenhagen, Denmark, 1996.

Noam Chomsky and Howard Lasnik. The minimalist program. ms., 1993.

Kenneth Ward Church. A Stochastic Parts Program and Noun Phrase Parser for
Unrestricted Text. In 2nd Applied Natural Language Processing Conference,
Austin, Texas, 1988.

Ronald A. Cole, Joseph Mariani, Hans Uszkoreit, Annie Zaenen, and Victor
Zue. Survey of the state of the art in human language technology, 1996.
http://www.cse.ogi.edu/CSLU/HLTsurvey/.

Dania Egedi and Patrick Martin. A Freely Available Syntactic Lexicon for En-
glish. In Proceedings of the International Workshop on Sharable Natural Lan-
guage Resources, Nara, Japan, August 1994.

D. Egedi, M. Palmer, H.S. Park, and A. Joshi. Korean to english translation
using synchronous tags. In First Conference of the Association for Machine
Translation in the Americas, Columbus, MD, October 1994.

Roger Evans, Gerald Gazdar, and David Weir. Encoding Lexicalized Tree Adjoin-
ing Grammars with a Nonmonotonic Inheritance Hierarchy. In Proceedings
of the 83rd Annual Meeting of the Association for Computational Linguistics,
Cambridge, MA, 1995.

Ralph Grishman, Catherine Macleod, and Adam Meyers. Comlex Syntax: Build-
ing a Computational Lexicon. In Proc. 15th Int’l Conf. Computational Lin-
guistics (COLING 94), Kyoto, Japan, August 1994.

Chunghye Han, Fei Xia, Martha Palmer, and Joseph Rosenzweig. Capturing
language specific constraints on lexical selection with feature-based lexical-
ized tree-adjoining grammar. In Proceedings of International Conference on
Chinese Computing(ICCC’96), 1996.

Beth Ann Hockey and B. Srinivas. Feature-Based TAG in Place of Multi-
component Adjunction: Computational Implications. In Proceedings of the
Natural Language Processing Pacific Rim Symposium (NLPRS), Fukuoka,
Japan, December 1993.

Karen Sparck Jones and Julia R. Galliers. Evaluating natural language processing
systems : an analysis and review. Number 1083 in Lecture notes in computer
science. Lecture notes in artificial intelligence. Springer, Berlin ; New York,
1995.

A. K. Joshi. An introduction to tree adjoining grammars. In A. Manaster-Ramer,
editor, Mathematics of Language. John Benjamins, Amsterdam, 1987.

Daniel Karp, Yves Schabes, Martin Zaidel, and Dania Egedi. A Freely Available
Wide Coverage Morphological Analyzer for English. In Proceedings of the
15" International Conference on Computational Linguistics (COLING 92),
Nantes, France, August 1992.

E. L. Keenan and J. Stavi. A Semantic Characterization of Natural Language
Determiners. Linguistics and Philosophy, 9, August 1986.

REFERENCES / 29

S. Kuno. Harvard predictive analyzer. In David G.Hays, editor, Readings in
automatic language processing. American Elsevier Pub. Co., New York, 1966.

Sabine Lehmann, Stephan Oepen, Sylvie Regnier-Prost, Klaus Netter, Veronika
Lux, Judith Klein, Kirsten Falkedal, Frederik Fouvry, Dominique Estival, Eva
Dauphin, Hervé Compagnion, Judith Baur, Lorna Balkan, and Doug Arnold.
TSNLP — Test Suites for Natural Language Processing. In Proceedings of
COLING 1996, Kopenhagen, 1996.

Martha Palmer and Joseph Rosenzweig. Capturing motion verb generalizations
with synchronous tags. In Proceedings of AMTA-96, Montreal, Quebec, Oc-
tober 1996.

Patrick Paroubek, Yves Schabes, and Aravind K. Joshi. Xtag — a graphical
workbench for developing tree-adjoining grammars. In Third Conference on
Applied Natural Language Processing, Trento, Italy, 1992.

Randolph Quirk, Sidney Greenbaum, Geoffrey Leech, and Jan Svartvik. A Com-
prehensive Grammar of the English Language. Longman, London, 1985.
James Rogers and K. Vijay-Shankar. Obtaining Trees from their Descriptions:
An Application to Tree Adjoining Grammars. Computational Intelligence,

10(4), 1994.

Anoop Sarkar and Aravind Joshi. Coordination in Tree Adjoining Grammars:
Formalization and Implementation. In Proceedings of the 18" International
Conference on Computational Linguistics (COLING ’94), Copenhagen, Den-
mark, August 1996.

Yves Schabes and Aravind K. Joshi. An Early-Type Parsing Algorithm for Tree
Adjoining Grammars. In Proceedings of the 26" Meeting of the Association
for Computational Linguistics, Buffalo, June 1988.

Yves Schabes and Aravind K. Joshi. Parsing with Lexicalized Tree Adjoining
Grammar. In M. Tomita, editor, Current Issues in Parsing Technologies.
Kluwer Academic Publishers, 1991.

Yves Schabes. Mathematical and Computational Aspects of Lexicalized Gram-
mars. PhD thesis, Computer Science Department, University of Pennsylva-
nia, 1990.

Stuart Shieber and Yves Schabes. Synchronous Tree Adjoining Grammars. In
Proceedings of the 13'" International Conference on Computational Linguis-
tics (COLING’90), Helsinki, Finland, 1990.

Frank K. Soong and Eng-Fong Huang. Fast Tree-Trellis Search for Finding the
N-Best Sentence Hypothesis in Continuous Speech Recognition. Journal of
Acoustic Society, AM., May 1990.

B. Srinivas, Christine Doran, Beth Ann Hockey, and Aravind Joshi. An approach
to robust partial parsing and evaluation metrics. In Proceedings of the Work-
shop on Robust Parsing at European Summer School in Logic, Language and
Information, Prague, August 1996.

B. Srinivas. Complexity of Lexical Descriptions and its Relevance to Partial
Parsing. PhD thesis, University of Pennsylvania, Philadelphia, PA, August
1997.

B. Srinivas. Performance evaluation of supertagging for partial parsing. Submit-
ted for publication., January 1997.

REFERENCES / 30

K. Vijay-Shanker and Aravind K. Joshi. Unification Based Tree Adjoining Gram-
mars. In J. Wedekind, editor, Unification-based Grammars. MIT Press, Cam-
bridge, Massachusetts, 1991.

K. Vijay-Shanker and Yves Schabes. Structure sharing in lexicalized tree ad-
joining grammar. In Proceedings of the 15" International Conference on
Computational Linguistics (COLING ’92), Nantes, France, August 1992.

Akira Watanabe. The Notion of Finite Clauses in AGR-Based Case Theory. MIT
Working Papers in Linguistics, 18:281-296, 1993.

D. Weir. Characterizing mildly context-sensitive grammar formalisms. PhD the-
sis, University of Pennsylvania, Philadelphia, PA | August 1988.

The XTAG-Group. A Lexicalized Tree Adjoining Grammar for English. Tech-
nical Report IRCS 95-03, University of Pennsylvania, 1995. Updated version
available at http://www.cis.upenn.edu/ xtag/tr/tech-report.html.

