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Abstract

In this paper, we identify syntactic lexical ambi-
guity and sentence complexity as factors that con-
tribute to parsing complexity in fully lexicalized
grammar formalisms such as Lexicalized Tree Ad-
joining Grammars. We also report on experiments
that explore the effects of these factors on parsing
complexity. We discuss how these constraints can
be exploited in improving efficiency of parsers for
such grammar formalisms.

1 Introduction

The time taken by a parser to produce derivations
for input sentences is typically associated with the
length of those sentences. The longer the sentence,
the more time the parser is expected to take. How-
ever, complex algorithms like parsers are typically
affected by several factors. A common experience
is that parsing algorithms differ in the number of
edges inserted into the chart while parsing. In this
paper, we explore some of these constraints from
the perspective of lexicalized grammars and explore
how these constraints might be exploited to improve
parser efficiency.

We concentrate on the problem of parsing using
fully lexicalized grammars by looking at parsers for
Lexicalized Tree Adjoining Grammar (LTAG). By
a fully lexicalized grammar we mean a grammar
in which there are one or more syntactic structures
associated with each lexical item. In the case of
LTAG each structure is a tree (or, in general, a di-
rected acyclic graph). For each structure there is an
explicit structural slot for each of the arguments of
the lexical item. The various advantages of defin-
ing a lexicalized grammar formalism in this way are
discussed in (Joshi and Schabes, 1991).

An example LTAG is shown in Figure 1. To
parse the sentenceMs. Haag plays Elianti the parser
has to combine the trees selected by each word in
the sentence by using the operations of substitution
and adjunction (the two composition operations in
LTAG) producing a valid derivation for the sen-
tence.

Notice that as a consequence of this kind of lexi-

calized grammatical description there might be sev-
eral different factors that affect parsing complex-
ity. Each word can select many different trees; for
example, the wordplays in Figure 1 might select
several trees for each syntactic context in which it
can occur. The verbplays can be used in a rela-
tive clause, a wh-extraction clause, among others.
While grammatical notions of argument structure
and syntax can be processed in abstract terms just
as in other kinds of formalisms, the crucial differ-
ence in LTAG is that all of this information is com-
piled into a finite set of treesbefore parsing. Each
of these separate lexicalized trees is now considered
by the parser. This compilation is repeated for other
argument structures, e.g. the verbplays could also
select trees which are intransitive thus increasing the
set of lexicalized trees it can select. The set of trees
selected by different lexical items is what we term
in this paper aslexical syntactic ambiguity.

The importance of this compilation into a set
of lexicalized trees is that each predicate-argument
structure across each syntactic context has its own
lexicalized tree. Most grammar formalisms use
feature structures to capture the same grammatical
and predicate-argument information. In LTAG, this
larger set of lexicalized trees directly corresponds
to the fact that recursive feature structures are not
needed for linguistic description. Feature struc-
tures are typically atomic with a few instances of
re-entrant features.

Thus, in contrast with LTAG parsing, parsing
for formalisms like HPSG or LFG concentrates on
efficiently managing the unification of large fea-
ture structures and also the packing of ambiguities
when these feature structures subsume each other
(see (Oepen and Carroll, 2000) and references cited
there). We argue in this paper that the result of hav-
ing compiled out abstract grammatical descriptions
into a set of lexicalized trees allows us to predict the
number of edges that will be proposed by the parser
even before parsing begins. This allows us to ex-
plore novel methods of dealing with parsing com-
plexity that are difficult to consider in formalisms
that are not fully lexicalized.
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Figure 1: Example lexicalized elementary trees. They are shown in the usual notation:� = anchor; #=
substitution node; � = footnode;na = null-adjunction constraint. These trees can be combined using sub-
stitution and adjunction to parse the sentenceMs. Haag plays Elianti.

Furthermore, as the sentence length increases, the
number of lexicalized trees increase proportionally
increasing the attachment ambiguity. Each sentence
is composed of several clauses. In a lexicalized
grammar, each clause can be seen as headed by a
single predicate tree with its arguments and asso-
ciated adjuncts. We shall see that empirically the
number of clauses grow with increasing sentence
length only up to a certain point. For sentences
greater than a certain length the number of clauses
do not keep increasing.

Based on these intuitions we identify the follow-
ing factors that affect parsing complexity for lexi-
calized grammars:

Syntactic Lexical Ambiguity The number of trees
selected by the words in the sentence being
parsed. We show that this is a better indica-
tor of parsing time than sentence length. This
is also a predictor of the number of edges that
will be proposed by a parser, allowing us to
better handle difficult casesbefore parsing.

Sentence Complexity The clausal complexity in
the sentences to be parsed. We observe that the
number of clauses in a sentence stops grow-
ing in proportion to the sentence length after a
point. We show that before this point parsing
complexity is related to attachment of adjuncts
rather than attachment of arguments.

2 LTAG Treebank Grammar
The grammar we used for our experiments was a
LTAG Treebank Grammar which was automatically
extracted from Sections 02–21 of the Wall Street
Journal Penn Treebank II corpus (Marcus et al.,

1993). The extraction tool (Xia, 1999) converted the
derived trees of the Treebank intoderivation trees in
LTAG which represent the attachments of lexical-
ized elementary trees. There are6789 tree templates
in the grammar with47; 752 tree nodes. Each word
in the corpus selects some set of tree templates. The
total number of lexicalized trees is123; 039. The
total number of word types in the lexicon is44; 215.
The average number of trees per word type is2:78.
However, this average is misleading since it does
not consider the frequency with which words that
select a large number of trees occur in the corpus.
In Figure 2 we see that many frequently seen words
can select a large number of trees.
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Figure 2: Number of trees selected plotted against
words with a particular frequency. (x-axis: words of
frequencyx; y-axis: number of trees selected, error
bars indicate least and most ambiguous word of a
particular frequencyx)

Another objection that can be raised against a



Treebank grammar which has been automatically
extracted is that any parsing results using such a
grammar might not be indicative of parsing us-
ing a hand-crafted linguistically sophisticated gram-
mar. To address this point (Xia and Palmer, 2000),
compares this Treebank grammar with the XTAG
grammar (XTAG-Group, 1998), a large-scale hand-
crafted LTAG grammar for English. The experiment
shows that 82.1% of template tokens in the Tree-
bank grammar matches with a corresponding tem-
plate in the XTAG grammar; 14.0% are covered by
the XTAG grammar but the templates in two gram-
mars look different because the Treebank and the
XTAG grammar have adopted different analyses for
the corresponding constructions; 1.1% of template
tokens in the Treebank grammar are not linguisti-
cally sound due to annotation errors in the original
Treebank; and the remaining 2.8% are not currently
covered by the XTAG grammar. Thus, a total of
96.1% of the structures in the Treebank grammar
match up with structures in the XTAG grammar.

3 Syntactic Lexical Ambiguity
In a fully lexicalized grammar such as LTAG the
combinations of trees (by substitution and adjunc-
tion) can be thought of asattachments. It is this per-
spective that allows us to define the parsing problem
in two steps (Joshi and Schabes, 1991):

1. Assigning a set of lexicalized structures to each
word in the input sentence.

2. Finding the correct attachments between these
structures to get all parses for the sentence.

In this section we will try to find which of these
factors determines parsing complexity when finding
all parses in an LTAG parser.

To test the performance of LTAG parsing on a
realistic corpus using a large grammar (described
above) we parsed2250 sentences from the Wall
Street Journal using the lexicalized grammar de-
scribed in Section 2.1 All of these sentences were
of length 21 words or less. These sentences were
taken from the same sections (02-21) of the Tree-
bank from which the original grammar was ex-
tracted. This was done to avoid the complication
of using default rules for unknown words.

In all of the experiments reported here, the parser
produces all parses for each sentence. It produces
a shared derivation forest for each sentence which
stores, in compact form, all derivations for each sen-
tence.

1Some of these results appear in (Sarkar, 2000). In this sec-
tion we present some additional data on the previous resultsand
also the results of some new experiments that do not appear in
the earlier work.

We found that the observed complexity of pars-
ing for LTAG is dominated by factors other than
sentence length.2 Figure 3 shows the time taken
in seconds by the parser plotted against sentence
length. We see a great deal of variation in timing
for the same sentence length, especially for longer
sentences.

We wanted to find the relevant variable other than
sentence length which would be the right predictor
of parsing time complexity. There can be a large
variation in syntactic lexical ambiguity which might
be a relevant factor in parsing time complexity. To
draw this out, in Figure 4 we plotted the number of
trees selected by a sentence against the time taken
to parse that sentence. By examining this graph we
can visually infer that the number of trees selected is
a better predictor of increase in parsing complexity
than sentence length. We can also compare numer-
ically the two hypotheses by computing the coeffi-
cient of determination (R2) for the two graphs. We
get aR2 value of0:65 for Figure 3 and a value of0:82 for Figure 4. Thus, we infer that it is the syn-
tactic lexical ambiguity of the words in the sentence
which is the major contributor to parsing time com-
plexity.
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Figure 3: Parse times plotted against sentence
length. Coefficient of determination:R2 = 0:65.
(x-axis: Sentence length; y-axis: log(time in sec-
onds))

Since we can easily determine the number of
trees selected by a sentence before we start parsing,
we can use this number to predict the number of
edges that will be proposed by a parser when pars-
ing this sentence, allowing us to better handle diffi-
cult casesbefore parsing.

2Note that the precise number of edges proposed by the
parser and other common indicators of complexity can be ob-
tained only while or after parsing. We are interested inpredict-
ing parsing complexity.



0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000

lo
g(

T
im

e 
ta

ke
n)

 in
 s

ec
on

ds

Total num of trees selected by a sentence

Figure 4: The impact of syntactic lexical ambigu-
ity on parsing times. Log of the time taken to parse
a sentence plotted against the total number of trees
selected by the sentence. Coefficient of determina-
tion: R2 = 0:82. (x-axis: Total number of trees se-
lected by a sentence; y-axis: log(time) in seconds).

We test the above hypothesis further by parsing
the same set of sentences as above but this time us-
ing an oracle which tells us the correct elementary
lexicalized structure for each word in the sentence.
This eliminates lexical syntactic ambiguity but does
not eliminate attachment ambiguity for the parser.
The graph comparing the parsing times is shown in
Figure 5. As the comparison shows, the elimina-
tion of lexical ambiguity leads to a drastic increase
in parsing efficiency. The total time taken to parse
all 2250 sentences went from 548K seconds to 31.2
seconds.

Figure 5 shows us that a model which disam-
biguates syntactic lexical ambiguity can potentially
be extremely useful in terms of parsing efficiency.
Thus disambiguation of tree assignment or Su-
perTagging (Srinivas, 1997) of a sentence before
parsing it might be a way of improving parsing ef-
ficiency. This gives us a way to reduce the pars-
ing complexity for precisely the sentences which
were problematic: the ones which selected too many
trees. To test whether parsing times are reduced af-
ter SuperTagging we conducted an experiment in
which the output of ann-best SuperTagger was
taken as input to the parser. In our experiment we
setn to be60.3 The time taken to parse the same set
of sentences was again dramatically reduced (the to-
tal time taken was 21K seconds). However, the dis-
advantage of this method was that the coverage of

3(Chen et al., 1999) shows that to get greater than 97% ac-
curacy using SuperTagging the value ofn must be quite high
(n > 40). They use a different set of SuperTags and so we used
their result simply to get an approximate estimate of the value
of n.

the parser was reduced: 926 sentences (out of the
2250) did not get any parse. This was because some
crucial tree was missing in then-best output. The
results are graphed in Figure 6. The total number of
derivations for all sentences went down to 1.01e+10
(the original total number was 1.4e+18) indicating
(not surprisingly) that some attachment ambiguities
persist although the number of trees are reduced.
We are experimenting with techniques where the
output of then-best SuperTagger is combined with
other pieces of evidence to improve the coverage of
the parser while retaining the speedup.
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Figure 5: Parse times when the parser gets the cor-
rect tree for each word in the sentence (eliminating
any syntactic lexical ambiguity). The parsing times
for all the2250 sentences for all lengths never goes
above1 second. (x-axis: Sentence length; y-axis:
log(time) in seconds)
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Figure 6: Time taken by the parser aftern-best Su-
perTagging (n = 60). (x-axis: Sentence length; y-
axis: log(time) in seconds)

4 Sentence Complexity
There are many ways of describing sentence com-
plexity, which are not necessarily independent of



each other. In the context of lexicalized tree-
adjoining grammar (and in other lexical frame-
works, perhaps with some modifications) the com-
plexity of syntactic and semantic processing is re-
lated to the number of predicate-argument structures
being computed for a given sentence.

In this section, we explore the possibility of char-
acterizing sentence complexity in terms of the num-
ber of clauses which is used as an approximation to
the number of predicate-argument structures to be
found in a sentence.

The number of clauses of a given sentence in
the Penn Treebank is counted using the bracketing
tags. The count is computed to be the number of
S/SINV/SQ/RRC nodes which have a VP child or a
child with -PRD function tag. In principle number
of clauses can grow continuously as the sentence
length increases. However it is interesting to note
that 99.1% of sentences in the Penn Treebank con-
tain 6 or fewer clauses.

Figure 7 shows the average number of clauses
plotted against sentence length. For sentences with
no more than 50 words, which accounts for 98.2%
of the corpus, we see a linear increase in the av-
erage number of clauses with respect to sentence
length. But from that point on, increasing the sen-
tence length does not lead to a proportional increase
in the number of clauses. Thus, empirically, the
number of clauses is bounded by a constant. For
some very long sentences, the number of clauses
actually decreases because these sentences include
long but flat coordinated phrases.

Figure 8 shows the standard deviation of the
clause number plotted against sentence length.
There is an increase in deviation for sentences
longer than 50 words. This is due to two reasons:
first, quite often, long sentences either have many
embedded clauses or are flat with long coordinated
phrases; second, the data become sparse as the sen-
tence length grows, resulting in high deviation.4

In Figure 9 and Figure 10 we show how parsing
time varies as a function of the number of clauses
present in the sentence being parsed. The figures
are analogous to the earlier graphs relating parsing
time with other factors (see Figure 3 and Figure 4).
Surprisingly, in both graphs we see that when the
number of clauses is small (in this case less than5), an increase in the number of clauses has no ef-
fect on the parsing complexity. Even when the num-
ber of clauses is1 we find the same pattern of time
complexity that we have seen in the earlier graphs
when we ignored clause complexity. Thus, when
the number of clauses is small parsing complexity

4For some sentence lengths (e.g., length= 250), there is
only one sentence with that length in the whole corpus, result-
ing in zero deviation.
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Figure 7: Average number of clause plotted against
sentence length
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Figure 8: Standard deviation of clause number plot-
ted against sentence length

is related to attachment of adjuncts rather than argu-
ments. It would be interesting to continue increas-
ing the number of clauses and the sentence length
and then compare the differences in parsing times.5

We have seen that beyond a certain sentence
length, the number of clauses do not increase pro-
portionally. We conjecture that a parser can ex-
ploit this observed constraint on clause complexity
in sentences to improve its efficiency. In a way sim-
ilar to methods that account for low attachment of
adjuncts while parsing, we can introduce constraints
on how many clauses a particular node can domi-
nate in a parse. By making the parser sensitive to
this measure, we can prune out unlikely derivations
previously considered to be plausible by the parser.
There is also an independent reason for pursuing
this measure of clausal complexity. It can be ex-
tended to a notion of syntactic and semantic com-
plexity as they relate to both the representational

5We plan to conduct this experiment and present the results
during the workshop.
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Figure 9: Variation in times for parsing plotted
against length of each sentence while identifying the
number of clauses.
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Figure 10: Variation in times for parsing plotted
against the number of trees selected by each sen-
tence while identifying the number of clauses.

and processing aspects (Joshi, 2000). The empirical
study of clausal complexity described in this section
might shed some light on the general issue of syn-
tactic and semantic complexity.

5 Conclusion

In this paper, we identified syntactic lexical ambi-
guity and sentence complexity as factors that con-
tribute to parsing complexity in fully lexicalized
grammars.

We showed that lexical syntactic ambiguity has a
strong effect on parsing time and that a model which
disambiguates syntactic lexical ambiguity can po-
tentially be extremely useful in terms of parsing ef-
ficiency. By assigning each word in the sentence
with the correct elementary tree showed that parsing
times were reduced by several orders of magnitude
(the total time taken to parse2250 sentences went
from 548K seconds to 31.2 seconds).

We conducted an experiment in which the out-
put of ann-best SuperTagger was taken as input to
the parser. The time taken to parse the same set of
sentences was again dramatically reduced (the total
time taken was 21K seconds). The disadvantage of
this approach was that 926 out of the original 2250
sentences did not get any parse.

We showed that even as sentence length increases
the number of clauses is empirically bounded by a
constant. The number of clauses in 99.1% of sen-
tences in the Penn Treebank was bounded by 6. We
discussed how this finding affects parsing efficiency
and showed that for when the number of clauses
is smaller than4, parsing efficiency is dominated
by adjunct attachments rather than argument attach-
ments.
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