
Enriching, Editing, and Representing

Interlinear Glossed Text

Fei Xia1, Michael Wayne Goodman1, Ryan Georgi1,
Glenn Slayden1, and William D. Lewis2

1 Linguistics Department, University of Washington, Seattle, WA 98195, USA
{fxia, goodmami, rgeorgi, gslayden}@uw.edu

2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
wilewis@microsoft.com

Abstract. The majority of the world’s languages have little to no NLP
resources or tools. This is due to a lack of training data (“resources”)
over which tools, such as taggers or parsers, can be trained. In recent
years, there have been increasing efforts to apply NLP methods to a
much broader swathe of the worlds languages. In many cases this involves
bootstrapping the learning process with enriched or partially enriched
resources. One promising line of research involves the use of Interlinear
Glossed Text (IGT), a very common form of annotated data used in
the field of linguistics. Although IGT is generally very richly annotated,
and can be enriched even further (e.g., through structural projection),
much of the content is not easily consumable by machines since it remains
“trapped” in linguistic scholarly documents and in human readable form.
In this paper, we introduce several tools that make IGT more accessible
and consumable by NLP researchers.

1 Introduction

Of the world’s 7,000+ spoken languages, only a very small fraction have text re-
sources substantial enough to allow for the training of NLP tools, such as part-of-
speech (POS) taggers and parsers. Developing enriched resources, e.g., treebanks
and POS-tagged corpora, which allow supervised training of such tools, is ex-
pensive and time-consuming. In recent years, work has been done to bootstrap
the development of such resources for resource-poor languages by tapping the
enriched content of a better resourced language and, through some form of align-
ment, “projecting” annotations onto data for the resource-poor language. Some
studies have focused on the typological similarity of languages, using cognates
and similar word forms in typologically similar languages, to bridge between lan-
guages and to build tools and resources [1,2]. Other work has relied on parallel
corpora, where one language of a corpus is highly resourced, and annotations are
projected onto the lesser resourced language(s) [3,4]. A third line of work is to use
linguistically annotated data, specifically Interlinear Glossed Text (IGT), a data
format very commonly used in the field of linguistics, to project annotations

from a highly resourced language to one or more under-resourced languages,
potentially hundreds at a time [5,6].

Building upon the previous studies on IGT, we see the potential for boot-
strapping or training up tools for a larger number of the world’s languages. Since
IGT is common in the field of linguistics, and because linguists study thousands
of the world’s languages, the possibility exists to build resources for a sizable
percentage of the world’s languages. The problem is that IGT is typically locked
away in scholarly linguistic papers, and not easily accessible to NLP researchers
who might otherwise want access to the data. The Online Database of Interlin-
ear text (ODIN) [7], a database of over 200,000 instances of IGT for more than
1,500 languages, tackles the issue of extracting IGT from scholarly resources,
but focuses more on presenting the captured content for human consumption
and query. By taking the content of ODIN, enriching it (e.g., through projected
annotations), and reformatting it into a machine readable form, enriched IGT
becomes a much more useful resource for bootstrapping NLP tools.

In this paper, we first describe the raw (or original) IGT used by linguists
and the enriched IGT which is more relevant to the NLP field. Then we outline
a data format for representing enriched called Xigt. Next, we introduce two
packages that we have developed for processing IGT: the first one enriches raw
IGT automatically, and the second one is a graphic editor which the annotators
can use to edit enrich IGT in the Xigt format. By making these tools, and the
resulting data, available to the NLP community, we open the door to a much
wider panoply of the world’s languages for NLP research.

2 Interlinear Glossed Text

IGT is a common format that linguists use to present language data relevant to a
particular analysis. It is most commonly presented in a three-line canonical form,
a sample of which is shown in (1). The first line, the language line, gives data
for the language in question, and is either phonetically encoded or transcribed
in the language’s native orthography. The second line, the gloss line, contains
a morpheme-by-morpheme or word-by-word gloss for the data on the language
line. The third line, the translation line, contains a translation of the first line,
often into a resource-rich language such as English. There could be additional
lines showing other information such as a citation and a language name and/or
code. In Ex (1), (Bailyn, 2001) is the source of the IGT instance, referring to
[8]; cym is the language code for Welsh.

(1) Rhoddodd yr athro lyfr i’r bachgen ddoe
gave-3sg the teacher book to-the boy yesterday
“The teacher gave a book to the boy yesterday” (Bailyn, 2001) [cym]

2.1 Collecting IGT

In linguistics, the practice of presenting language data in interlinear form has a
long history, going back at least to the time of the structuralists. IGT is often

used to present data and analysis on a language that the reader may not know
much about, and is frequently included in scholarly linguistic documents. ODIN,
the Online Database of INterlinear text, is the result of an effort to collect IGT
instances in scholarly documents posted to the Web [9,7]. It currently contains
approximately 200,000 IGT instances from over 1500 languages.

2.2 Enriching IGT

The unique structure of IGT makes it an extremely rich source of information for
resource-poor languages: Implicit in an IGT instance is not only a short bitext
between that language and a language of wider communication (almost univer-
sally English, but instances of Spanish and German have been discovered as well),
but also information encoded in the so-called gloss line about the grammatical
morphemes in the source language and word-by-word translations to lemmas of
the translation language. Thus even small quantities of IGT could be used to
bootstrap tools for resource-poor languages through structural projection [3,10].
However, bootstrapping tools often require the raw IGT to be enriched first. The
enrichment process normally contains the following two steps.

Cleaning and normalizing IGT instances: The process of collecting IGT
from linguistic document may introduce noise. For instance, ODIN uses an off-
the-shelf converter to convert pdf documents into text format, and the converter
sometimes wrongly splits a language line into two lines. One such an example
is Ex (2) from [11], where the language line is incorrectly split into two lines by
the converter.

(2) Haitian CF (Lefebvre 1998:165)

ak

Jani pale lii/j

John speak with he

(a) ’John speaks with him’ (b) ’John

speaks with himself’

Furthermore, the raw IGT is often not in the three-line canonical form. For
instance, an IGT instance often contains other information such as a language
name, a citation, and so on. In Ex (2), the first line contains the language name
and citation,1 the third line includes coindexes i and i/j, and the last two lines
show two possible translations of the sentence.

The cleaning and normalization step aims at fixing errors that were intro-
duced when IGT was extracted from the linguistic documents, separating out
various fields in an IGT, normalizing each field, and storing the results in a uni-
form data structure. Ex (3) shows the resulting IGT after this step. Noticing that
coindexes i and j are removed from the language line and stored in a separate
field, and the wrongly split language lines are merged back.

1
CF here stands for French-lexified creole.

(3) Language: Haitian CF

Citation: (Lefebvre 1998:165)

L: Jan pale ak li

Coindx: (Jan, i), (li, i/j)

G: John speak with he

T1: John speaks with him

T2: John speaks with himself

Adding word alignment and syntactic structure: After IGT has been
cleaned and normalized, the next step is to add word alignment and syntactic
structure. For word alignment, if the IGT instance is clean, the alignment be-
tween the language line and the gloss line is implicit from the layout (i.e., the
i-th tokens in the two lines align to each other). The alignment between the
gloss line and the translation line can be obtained by running automatic word
aligner such as GIZA++ [12] or using some heuristics (e.g., aligning words with
the same spelling or stem). The common way for getting syntactic structure is
to parse the translation line with an English parser, and then project that parse
tree to the language line via the word alignment [10]. Given the IGT in Ex (1),
the algorithm will produce the word alignment in Fig 1, the syntactic structures
in Fig 2.

Rhoddod yr athro lyfr i’r bachgen ddoeLanguage:

Gloss: gave-3sg the teacher book to-the boy yesterday

Translation: The teacher gave a book to yesterdaythe boy

Fig. 1. Aligning the three lines in an IGT instance

2.3 Using Enriched IGT

Enriched IGT can help linguistic studies and NLP in many ways. For instance,
linguists can search an IGT database for sentences with certain linguistic con-
structions (e.g., passives, conditionals, double object structures). Enriched IGT
also allows discovery of computationally relevant typological features (e.g., word
order or the presence or absence of particular grammatical markers), and does
so with high accuracy [13,14]. Furthermore, enriched IGT can also be used to
bootstrap NLP tools for resource-poor languages; for instance, adding features
extracted from projected syntactic structures to a statistical parser provided a
significant boost to parser performance [5].

gave

teacher

the

book to yesterday

boya

the

Rhoddodd

athro lyfr i’r ddoe

yr bachgen

S

NP1

DT NN

VP

VBD NP2 PP NP4

DT NN NNIN NP3

DT NN

The Teacher gave

a book to

the boy

yesterday

S

VBD NP

DT NN

NP VP NP

PPNN NN

IN+DT NN
yr

(the)

athro

(teacher)

rhoddodd

(gave)
lyfr

(book)

i’r

(to-the)

bachgen

(boy)

ddoe

(yesterday)

Fig. 2. Projecting dependency and phrase structure from the translation line to
the language line

3 Xigt: an XML Representation of the Enriched IGT

A human can read a textual IGT from ODIN and understand the structure
of annotations, but a computer only sees strings of characters and spaces. We
can—and do, for the enrichment process—write code to interpret the spacing
as delimiters for groups of related tokens, but this is unreliable in noisy data,
and moreover cannot handle alignments that do not arrange vertically. Once
we have initially analyzed the space-delimited structure of a textual IGT, we
store the information in a structured data format so a computer can more easily
understand the structure for later tasks.

Goodman et al. [15] introduced a new data model for IGT, called Xigt, that
allows for complex annotation alignments, which is useful for encoding the en-
riched IGT.2 Key features of Xigt include a relatively flat structure (tiers are
represented side-by-side, not nested) and the use of IDs and references for anno-
tations. There are only four structural elements: <xigt-corpus>, <igt>, <tier>,
and <item>. Xigt also introduces a new referencing system called “alignment ex-
pressions” that allows annotations to have multiple targets, or to select sub-spans
(e.g., character spans) from targets. These features allow for novel or complex
annotation types, alternative analyses, and the ability to add new annotations
without changing the structure of previous ones.

Xigt’s generality and expressiveness allow for rich representations of many
kinds of annotations, but at the same time the lack of hard constraints allows
the same data to be represented in multiple ways. For example, words may be

2 While Xigt itself is the data model, it has a canonical XML serialization format
called XigtXML. For the sake of simplicity, in this paper we will not make such a
distinction and instead use the same name for both.

specified as segments of a phrase (i.e. a kind of annotation of the phrase) or as
primary data (unaligned and explicitly specifying the form of the word); glosses
may align to morphemes, words, or phrases, depending on the availability of
these tiers. Our IGT enrichment package (INTENT) and IGT editor (XigtEdit)
need more specifications in order to efficiently process Xigt-encoded corpora, so
we establish a set of conventions on top of Xigt that our data abide by.

In this section we outline the conventions for our data. The Xigt project
includes an API for programmatically interacting with corpora, so we also cover
the API functions that are useful for our purposes.

3.1 Representing Enriched IGT in Xigt

To represent the enriched IGT, as described in Section 2.2, in Xigt, we need to
extend Xigt in several ways. Figure 3 shows an enriched IGT in this extended
format. First, we define some new tier types and constrain how the default
ones are used. Collectively, the tiers can be divided into three groups according
to the source of information: (1) Original text, (2) Inferred structure, and (3)
Additional enrichment.

Group (1): Stores the original text from ODIN IGT so that structural informa-
tion is encoded as stand-off annotation of it. This is useful, in part, in case the
process of enriching IGT changes and we need to regenerate the IGT in Xigt.
This group has only one tier type, called odin, and each <item> on such a tier
contains a line from the original IGT. In Figure 3, lines 7–11 encode the raw
text, while lines 12–16 encode the text after normalization. The odin tier is also
used for storing cleaned text (not shown here as it is identical to the raw IGT
for this particularly clean example). The state attribute specifies the level of
processing undergone by each odin tier.

Group (2): Encodes the structural annotations that are implicit in the textual
IGT. This group only uses the default tier types in Xigt, although we specify
some constraints on their usage to aid INTENT and XigtEdit in their processing,
and includes:

– phrases: representing the language line (lines 17–19)
– words: showing the segmentation of the language or translation line (lines

20–25 and 41–45)
– morphemes: marking the morpheme boundary within a word (lines 26–32)
– glosses: providing word-to-word or morpheme-to-morpheme glosses (lines 33–

37)
– translations: providing the translation of the language line (lines 38–40)

The structural annotations in Group (2) can be inferred by examining tokens
in the tiers from word segmentation (i.e., by spaces) or morpheme segmentation
(i.e., first by spaces, then by hyphens or other morpheme delimiters). By defi-
nition, in a clean IGT the i

th token from a morpheme-segmented gloss line will
align to the i

th token of a morpheme-segmented language line. In a less clean

1 <?xml version ="1.0" encoding ="utf -8"?>
2 <xigt -corpus alignment -method="auto" xml:lang="en">
3 <metadata xmlns:olac="http://www.language -archives .org/OLAC/1.1/" ...>

4 ...
5 </metadata >

6 <igt id="i1" doc-id="397" line -range="959 961" tag -types="L G T">
7 <tier type="odin" state="raw" id="r">

8 <item id="r1" line="959" tag="L"
>(1) Nay -ka ai-eykey pap-ul mek-i-ess-ta</item>

9 <item id="r2" line="960" tag="G"

> I-Nom child -Dat rice -Acc eat-Caus -Pst-Dec</item>
10 <item id="r3" line="961" tag="T"

> ‘I made the child eat rice.’</item>
11 </tier>
12 <tier type="odin" state="normalized" id="n" alignment="r">

13 <item id="n1" alignment="r1" line="959" tag="L"
>Nay-ka ai-eykey pap-ul mek -i-ess-ta</item>

14 <item id="n2" alignment="r2" line="960" tag="G"
>I-Nom child -Dat rice -Acc eat-Caus -Pst-Dec</item>

15 <item id="n3" alignment="r3" line="961" tag="T"
>I made the child eat rice.</item>

16 </tier>

17 <tier type="phrases " id="p" content ="n" xml:lang="ko">
18 <item id="p1" content ="n1"/>

19 </tier>
20 <tier type="words" id="w" segmentation="p" xml:lang="ko">
21 <item id="w1" segmentation="p1[0:6]"/>

22 <item id="w2" segmentation="p1[7:15]"/>
23 <item id="w3" segmentation="p1[16:22] "/>

24 <item id="w4" segmentation="p1[23:35] "/>
25 </tier>

26 <tier type="morphemes" id="m" segmentation="w" xml:lang="ko">
27 <item id="m1.1" segmentation="w1[0:3]"/>
28 <item id="m1.2" segmentation="w1[4:6]"/>

29 <item id="m2.1" segmentation="w2[0:2]"/>
30 <item id="m2.2" segmentation="w2[3:8]"/>

31 ...
32 </tier>
33 <tier type="glosses " id="g" alignment="m" content ="n">

34 <item id="g1.1" alignment="m1.1" content ="n2[0:1]"/>
35 <item id="g1.2" alignment="m1.2" content ="n2[2:5]"/>

36 ...
37 </tier>

38 <tier type="translations" id="t" alignment="p" content ="n">
39 <item id="t1" alignment="p1" content ="n3"/>
40 </tier>

41 <tier type="words" id="tw" segmentation="t">
42 <item id="tw1" segmentation="t1[0:1]"/>

43 <item id="tw2" segmentation="t1[2:6]"/>
44 ...
45 </tier>

46 <tier type="bilingual -alignments" id="a" source="tw" target="g">
47 <item id="a1" source="tw1" target="g1.1"/>

48 <item id="a2" source="tw2" target="g4.2,g4.3"/>
49 ...

50 </tier>
51 <tier type="dependencies" id="dt" dep="tw" head="tw">
52 <item id="dt1" dep="tw1" head="tw2">nsubj</item>

53 <item id="dt2" dep="tw2">root</item>
54 <item id="dt3" dep="tw3" head="tw4">det</item>

55 ...
56 </tier>
57 ...

58 </igt>
59 ...

60 </xigt -corpus >

Fig. 3. The Xigt representation of an enriched IGT example

IGT, these lines may not have the same number of tokens, in which case we back
off to aligning word-segmented gloss and language lines. Again, in the case that
this doesn’t work, we align the unsegmented gloss line to the language line.

Group (3): Encodes new information (i.e., information not present in the orig-
inal IGT) obtained through manual annotation or by running the IGT through
NLP systems. If needed, a tier can appear multiple times in an IGT, representing
alternative analyses.3 This group includes:

– bilingual-alignments: showing word alignment between the gloss line and the
translation line (lines 46–50)

– dependencies: showing syntactic dependencies (lines 51–56)
– phrase-structure: showing the syntactic phrase structure
– pos: providing POS tags for the words in a words tier

Group (3) can be extended further if new tier types are needed to present
new type of information (e.g., co-reference for the words in the language line as
in Ex (2)).

Other extensions: Besides defining three groups of tiers, we extend Xigt in
other ways. Most importantly, we provide a detailed specification about what
information should be represented in which tier and how. For instance, the word
alignment between the language line and the gloss line is represented in the
alignment field in the glosses tier, whereas the alignment between the gloss line
and the translation line is shown in the bilingual-alignments tier. We distinguish
these two types of alignment because it is more likely that users would want to
store alternative analyses for the second type than the first type. In that case,
they can simply include multiple bilingual-alignments tiers without repeating the
segmentation of the gloss or translation line. We also define the conventions for
naming tier IDs and item IDs so that those IDs can be generated automatically
and systematically. Furthermore, we conventionalize a partial order between tiers
so that a tier can only refer to itself or tiers that precedes it. This partial order
is crucial when XigtEdit determines how editing in one tier affects other tiers
(see Section 5.2).

3.2 Processing Documents with the Xigt API

To make it easier for the researchers to access IGT data in the Xigt format, Xigt
provides an application-program interface (API), with a reference implementa-
tion in Python, for interacting with Xigt-encoded corpora computationally. The
API provides the following functionalities:

– Serialize/deserialize Xigt documents to in-memory data structures
– Iterate over data collections (corpora, IGT, tiers)

3 It is worth noting that multiple tiers for alternative analyses can be used on the tiers
in Groups (1) and (2) as well.

– Retrieve object attributes, metadata, and content
– Retrieve the parent (i.e. container) of some object, such as a tier from an

item
– Resolve the content, or the targeted items/tiers, of alignment expressions
– Construct new in-memory data structures

These functions allow users to easily build more complicated functions for
their data, such as for counting statistics (e.g., finding the most frequent word),
forming complex queries of data (e.g., “what are all the morphemes appearing
on words marked as verbs?”), or augmenting a corpus with new analyses (e.g.,
creating a word-sense tier by looking up each word and its context in an external
ontology and aligning the result to the word it came from). The API also enables
users to construct new corpora in-memory (e.g., by converting or analyzing some
other data) which can then be serialized to disk.

We make use of this API for serializing the ODIN textual data into Xigt and
for the subsequent enrichment of the data, as described in Section 4.

4 INTENT: a Package for Creating Enriched IGT

In the previous sections, we described what type of information is in enriched
IGT and how it is represented in Xigt. Because manually creating enriched IGT is
time consuming and error-prone, we have developed a package, the INterlinear
Text ENrichment Toolkit (INTENT), which takes an original IGT file as the
input, and produces the enriched IGT in the Xigt format as the output. This
output can then be corrected by a human annotator using XigtEdit, or be used
to train an NLP system such as a POS tagger or a parser.

4.1 Toolkit Components

Figure 4 shows a typical enrichment workflow in INTENT. The input to INTENT
is a file with the original IGT in either plain text format or in Xigt. INTENT first
cleans and normalizes the IGT by some simple heuristic rules. It then generates
the second group of tiers including words,morphemes (if the morpheme boundary
is present in the IGT), glosses, and the like. After that, the third group of tiers
are created by running the following modules.

Word Alignment: In our previous study [10], we proposed two methods for
aligning the gloss line and the translation line. The first method ran a morpho-
logical analyzer on the translation line, and then aligned the words in the two
lines if they had the same stems. The second method used GIZA++ [12], a sta-
tistical word aligner. Experimental results showed that the performances of the
two methods were similar and combining them yielded a small boost. INTENT
currently re-implemented those methods, showing F1 scores of around 0.84 for
the heuristic approach and 0.86 for the statistical approach [16]. We are enhanc-
ing the heuristic method by taking advantage of the POS tags in the enriched
IGT.

XIGT
Document

Cleaning &
Normalization

Word
Alignment

Part-of-Speech
Tagging

Dependency
Parsing

Enriched
XIGT Document

Fig. 4. A typical enrichment workflow in INTENT

Part-of-Speech Tagging: INTENT tags the translation line by running Stan-
ford’s English POS tagger [17], trained on the English Penn Treebank [18].4 As
for the language line, while one can simply project the POS tags from the trans-
lation line, the quality of the resulting tags is often low due to word alignment
errors and translation divergence [19]. Instead, INTENT takes advantage of the
annotation on the gloss line; for instance, grammatical markers such as -Nom
(nominative case marker) and -Dec (declarative marker) are good cues for pre-
dicting the POS tags of the corresponding words in the language line. We can
also find the POS tags of most morphemes in the gloss line using an English dic-
tionary even if those morphemes are not aligned to the words in the translation
line. We built a classifier using those features and trained it with a small amount
of labeled gloss line data from multiple languages.5 Evaluation of the classifier
yielded a 90% POS tagging accuracy for the gloss line tokens in IGT, compared
with 69.5% for the heuristic projection-based approach [16].

Dependency Parsing: The dependency structure for the translation line is
produced in three steps. First, the dependency structure for the language line
is produced by running the Stanford Parser [20,21].6 Second, INTENT projects
the dependency structure to the language line following the heuristic algorithm

4 http://nlp.stanford.edu/software/tagger.shtml
5 We use a classifier, not a sequence labeller, because the word order in the gloss line
will be language-dependent, and the training and test data of our POS tagger can
come from different languages.

6 http://nlp.stanford.edu/software/lex-parser.shtml

in [10]. Third, from a small amount of dependency tree pairs, INTENT learns
common divergence patterns automatically and applies them to the dependency
structure produced in the second step. Our experiment shows that adding the
third step results in an average of 25% error reduction over using the heuristic
projection algorithm alone, when tested on eight different languages [5].

While the workflow in Figure 4 shows a pipeline approach, we are expanding
the package to allow feedback loops among the modules. For instance, INTENT
runs the word aligner first to get the initial alignment, which will be used by the
classifier-based POS tagger. The output of that POS tagger can then be fed back
to the word aligner to improve word alignment; for instance, two words unaligned
during the first pass of word alignment is more likely to be linked together in the
second pass if they have the same POS tags after POS tagging. The improved
word alignment can in turn improve the next round of POS tagging.

4.2 Implementation of INTENT

INTENT is written in Python 3 and uses the Xigt API to interface with the
serialized documents. INTENT also supplements the Xigt API’s internal repre-
sentations with a number of convenience subclasses for performing tasks such as
tokenization and word alignment. Each type of enrichment can be run individ-
ually or in sequence.

5 XigtEdit: a GUI Editor for Enriched IGT

As Xigt is an XML-based format, it is nominally human-readable and thus ed-
itable with any text editor which is compatible with the desired or appropriate
text encodings. However, using existing text editors to edit enriched IGT in the
Xigt format is not convenient due to the special properties of Xigt:

– Xigt standoff annotation requires each tier and each tier item to have a
unique ID, which is used for cross-reference within an IGT instance. Assign-
ing unique IDs manually is tedious and error-prone.

– Some alignment expressions (e.g., segmentation and alignment fields in many
tiers) require precise computation of string offsets, which are tedious to man-
ually derive.

– Phrase-structure and dependency-structure views are inherently graphical
views that do not lend themselves to convenient text-based editing.

– Because tiers can refer to one another, editing one tier could affect the va-
lidity of annotation in its cross-referenced tiers. Manually keeping track of
the ripple effect of such editing is challenging.

In order to address these issues, we developed a graphical Xigt editor, XigtE-
dit, which facilitates the creation, editing and manipulation of Xigt files.

Fig. 5. Main editing interface screen from the XigtEdit application

5.1 Main Functionality of XigtEdit

The fundamental user interface of XigtEdit is a hierarchical structure which
closely follows the Xigt abstract data model. Figure 5 shows a screen capture of
the XigtEdit application.7 There are three resizable panels:

– The leftmost panel is a list of the Xigt files that have been loaded. If there
are more than one file, exactly one file is currently selected.

– The next panel, in the second column, lists the IGT instances which are in
the selected file. Again, if the file contains multiple IGT instances, exactly
one instance is currently selected.

– The rightmost panel is the editing area for the selected IGT instance. Tiers
are arranged vertically in this area. For some tiers, items in the tiers are
arranged vertically (line-oriented data such as in the odin tier) while others
have items displayed horizontally (word-oriented data such as in the words,
morphemes, and glosses tiers).

At any time during editing, individual Xigt files can be opened, edited, saved,
closed (added or removed from the files list), or reverted. Files are read and saved
directly in the Xigt format. To enhance annotator productivity, XigtEdit assigns
unique IDs to new tiers and tier items based on predefined naming conventions
(see Section 3.1). To address the inconvenience of computing and maintaining
Xigt alignment expressions (e.g., the segmentation field in the words tier), XigtE-
dit allows the text spans for dependent items to be defined automatically. This
can be achieved either through automatic tools for segmenting text based on
whitespace or other criteria, or manually via intuitive user interfaces for ma-
nipulating text ranges. Furthermore, XigtEdit displays dependency or phrase
structure tiers as graphical trees which the user can edit with mouse clicks. To
support efficient annotation, XigtEdit provides keyboard alternatives to the use
of the mouse for most application navigation and editing operations.

5.2 Editing Parent Tiers

As mentioned in Section 3, tiers can refer to other tiers and we define a partial
order among tiers such that any tier can only refer to preceding tiers or itself.
If a tier C refers to another tier P, we call P a parent of C. A tier can have
multiple parents (e.g., a bilingual-alignments tier refers to two words tiers). Thus,
this parent relation among tiers can be represented as a directed acyclic graph,
where each node represents a tier, and each link goes from the parent tier to its
child tier.

XigtEdit supports the propagation of editing changes from parent to child
tiers in an IGT. Consider how editing tier P would affect another tier C that
refers to it. The behavior depends on the relation between P and C, and whether
other tiers refer to the text region in P that was edited. XigtEdit keeps track

7 To make Figure 5 more readable, certain attributes (e.g., tier IDs, item IDs, align-
ment between tiers) are not displayed in the screen capture.

of these relationships and analyzes whether the change would invalidate other
tiers. In cases where XigtEdit determines that a change has a deterministic effect
on its dependent tiers (and where the edit-propagation feature has been enabled
in the software), the change can be propagated from the parent tier to its child
tiers automatically. Alternatively, if the change has ambiguous effects on other
tiers, XigtEdit will prompt the user to choose what action should be taken for
dependent tiers.

5.3 Implementation of XigtEdit

XigtEdit is a Windows Presentation Foundation (WPF) application which runs
on the .NET Application Framework version 4.5.8 It will run on any modern
version of Microsoft Windows (Vista or later) without requiring any additional
software or libraries. We chose to develop XigtEdit in WPF primarily because
of the developer productivity benefits that WPF offers, such as the ability to
implement the software using a declarative markup notation known as Exten-
sible Application Markup Language (XAML). Also compelling in WPF is the
”retained mode” graphics subsystem, which, for example, allows persistent data-
bindings to be established between entities in the (abstract) Xigt data model and
their on-screen representations. These two-way bindings automatically keep the
data model and user-interface in-sync without the need for any procedural code.
XigtEdit is open source and licensed under the MIT license.

6 Conclusion

The majority of the world’s languages lack large-scale annotated resources over
which NLP tools such as POS taggers or parsers can be trained. In recent years,
there have been increasing efforts in bootstrapping NLP systems for resource-
poor languages. One line of research uses linguistically annotated data, IGT in
particular, to project annotations from resource-rich languages to resource-poor
ones.

In this paper, we first provide an overview of enriched IGT and outline several
ways that enriched IGT can help linguistic studies and NLP research. Second, we
extend Xigt, an XML representation for enriched IGT, and provide an API for
it. Third, we introduce INTENT, a package that enriches raw IGT automatically
by adding word alignment, POS tags, and syntactic structures to IGT. Finally,
we describe XigtEdit, a graphic editor for annotating IGT, which overcomes
limitations of existing, general-purpose text editors. By making those tools freely
available to the public,9 we hope that NLP researchers will have easier access
to the enriched IGT data and can then focus on exploring new methods for
bootstrapping NLP tools for thousands of resource-poor languages by taking
advantage of rich annotation in IGT.

8 http://msdn.microsoft.com/en-us/library/aa970268(v=vs.110).aspx
9 http://depts.washington.edu/uwcl/packages/

As for future work, we are working on improving the performance of IN-
TENT by allowing feedback loops in the workflow. In addition, we plan to cre-
ate enriched IGT data sets for a dozen resource-poor languages, by first running
INTENT on the raw IGTs coming from ODIN and then using XigtEdit for man-
ual correction. The data sets will be released to the public and can be used as
training and test data for evaluating NLP systems.

Acknowledgments The work is supported by the National Science Foundation
under Grant No. BCS-1160274 and BCS-0748919. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the au-
thors and do not necessarily reflect the views of the National Science Foundation.
We would also like to thank two anonymous reviewers for helpful comments.

References

1. Hana, J., Feldman, A., Amaral, L., Brew, C.: Tagging portuguese with a spanish
tagger using cognates. In: Proc. of the Workshop on Cross-language Knowledge
Induction, in conjunction with the 11th Conference of the European Chapter of
the Association for Computational Linguistics (EACL-2006), Trento, Italy (2006)

2. Feldman, A., Hana, J., Brew, C.: A cross-language approach to rapid creation of
new morpho-syntactically annotated resources. In: Proc. of the 5th international
conference on Language Resources and Evaluation (LREC 2006), Genoa, Italy
(2006)

3. Yarowsky, D., Ngai, G.: Inducing Multilingual POS Taggers and NP Bracketers
via Robust Projection across Aligned Corpora. In: Proc. of the 2001 Meeting
of the North American chapter of the Association for Computational Linguistics
(NAACL-2001). (2001) 200–207

4. Hwa, R., Resnik, P., Weinberg, A., Cabezas, C., Kolak, O.: Bootstrapping Parsers
via Syntactic Projection across Parallel Texts. Special Issue of the Journal of
Natural Language Engineering on Parallel Texts (2005) 311–325

5. Georgi, R., Xia, F., Lewis, W.D.: Enhanced and portable dependency projection
algorithms using interlinear glossed text. In: Proceedings of ACL 2013 (Volume 2:
Short Papers), Sofia, Bulgaria (2013) 306–311

6. Georgi, R., Xia, F., Lewis, W.D.: Capturing divergence in dependency trees to
improve syntactic projection. Language Resources and Evaluation 48 (2014) 709–
739

7. Lewis, W., Xia, F.: Developing odin: A multilingual repository of annotated lan-
guage data for hundreds of the world’s languages. Journal of Literary and Linguistic
Computing (LLC) 25 (2010) 303–319

8. Bailyn, J.F.: Inversion, Dislocation and Optionality in Russian. In Zybatow, G.,
ed.: Current Issues in Formal Slavic Linguistics. (2001)

9. Lewis, W.D.: Mining and migrating interlinear glossed text. Technical report,
Workshop on Digitizing and Annotating Texts and Field Recordings, LSA Institute
(2003) http://emeld.org/workshop/2003/papers03.html.

10. Xia, F., Lewis, W.D.: Multilingual structural projection across interlinear text. In:
Proc. of the Conference on Human Language Technologies (HLT/NAACL 2007),
Rochester, New York (2007) 452–459

11. Lefebvre, C.: Creole Genesis and the Acquisition of Grammar: The case of Haitian
Creole. Cambridge University Press, Cambridge, England (1998)

12. Och, F.J., Ney, H.: A systematic comparison of various statistical alignment mod-
els. Computational Linguistics 29 (2003) 19–51

13. Lewis, W.D., Xia, F.: Automatically Identifying Computationally Relevant Typo-
logical Features. In: Proc. of the Third International Joint Conference on Natural
Language Processing (IJCNLP-2008), Hyderabad, India (2008)

14. Bender, E.M., Goodman, M.W., Crowgey, J., Xia, F.: Towards creating precision
grammars from interlinear glossed text: Inferring large-scale typological proper-
ties. In: Proceedings of the 7th Workshop on Language Technology for Cultural
Heritage, Social Sciences, and Humanities, Sofia, Bulgaria (2013) 74–83

15. Goodman, M.W., Crowgey, J., Xia, F., Bender, E.M.: Xigt: extensible interlinear
glossed text for natural language processing. Language Resources and Evaluation
(2014) 1–31

16. Georgi, R., Xia, F., Lewis, W.D.: Training part-of-speech taggers using interlinear
text (2015) Manuscript.

17. Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech
tagging with a cyclic dependency network. In: Proceedings of HLT-NAACL 2003.
(2003) 252–259

18. Marcus, M., Marcinkiewicz, M.A., Santorini, B.: Building a large annotated corpus
of English: the Penn Treebank. Computational Linguistics 19 (1993) 313–330

19. Dorr, B.J.: Machine translation divergences: a formal description and proposed
solution. Computational Linguistics 20 (1994) 597–635

20. Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: Proceedings of the
41st Annual Meeting of the Association for Computational Linguistics (ACL-2003).
(2003)

21. de Marneffe, M.C., MacCartney, B., Manning, C.D.: Generating typed dependency
parses from phrase structure parses. In: Proc. of LREC 2006. (2006)

	Enriching, Editing, and Representing Interlinear Glossed Text
	Fei Xia1, Michael Wayne Goodman1, Ryan Georgi1, Glenn Slayden1, and William D. Lewis2

