
Language Resources and Evaluation manuscript No.
(will be inserted by the editor)

Xigt: Extensible Interlinear Glossed Text
for Natural Language Processing

Michael Wayne Goodman ·
Joshua Crowgey · Fei Xia ·
Emily M. Bender

Received: date / Accepted: date

Abstract This paper presents Xigt, an extensible storage format for interlin-
ear glossed text (IGT). We review design desiderata for such a format based
on our own use cases as well as general best practices, and then explore exist-
ing representations of IGT through the lens of those desiderata. We give an
overview of the data model and XML serialization of Xigt, and then describe
its application to the use case of representing a large, noisy, heterogeneous set
of IGT.

Keywords Interlinear glossed text (IGT) · Annotation · Storage format

1 Introduction

In this paper, we propose a new model for representing a distinctive datatype
of linguistics, Interlinear Glossed Text (IGT), and its extension enriched IGT
which consists of the original IGT plus additional layers of annotation (e.g.
word alignment and parse trees). IGT is a datatype that emerged from linguis-
tic research as a way of compactly displaying a range of annotations which are
of interest to linguists working in a variety of subfields, including structural
subfields (most notably syntax, but also others), typology, and descriptive
and documentary linguistics. As a display format, IGT serves to make linguis-

This material is based upon work supported by the National Science Foundation under
Grant No. BCS-1160274 and BCS-0748919. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

University of Washington
Dept. of Linguistics
Box 352425
Seattle WA 98195-2425
E-mail: {goodmami,jcrowgey,fxia,ebender}@uw.edu



2 Michael Wayne Goodman et al.

tic examples more comprehensible by pairing source language strings1 with
translations into a language of wider communication and word-by-word (of-
ten morpheme-by-morpheme) annotations of the source language string. This
helps other linguists reading the discussion of the example understand how the
language under study is expressing the meaning indicated in the translation
line. A simple example from Shona (adapted from Toews (2009)) is shown in
(1):

(1) Ndakanga
Ndi-aka-nga
sbj.1sg-rp-aux

ndakatenga
ndi-aka-teng-a
sbj.1sg-rp-buy-fv

muchero
mu-chero
cl3-fruit

‘I had bought fruit.’ [sna]

We will refer to the first line of this example as the source language line, the
second as the morpheme-segmented line, the third as the gloss line, and the
fourth as the translation.2

Recent years have seen much interest in the standardization of storage for-
mats (in contrast to display formats) for IGT. This interest has been driven
in large part by the needs and goals of the documentary linguistics commu-
nity. In particular, the representations proposed so far have been developed
in the context of either tools supporting the production of large collections of
IGT (such as are produced in many documentary linguistics projects) or the
long-term preservation of such collections. Our focus, somewhat in contrast, is
on the reuse of IGT through automated processing and accommodating addi-
tional layers of annotation in the enriched IGT. §2 below provides some further
background on IGT as a datatype and on enriched IGT. In §3, we describe our
use cases and the desiderata they motivate regarding the design of a represen-
tation format for IGT. In §4, we review existing IGT representation formats
through the lens of these desiderata. We then present our new format, Xigt,
in §5 and discuss a case study of importing a large, heterogeneous collection
of IGT to Xigt in §6. Finally, §7 concludes with a discussion of future work.

2 Interlinear Glossed Text and Enriched IGT

In order to support the following discussion, we draw a distinction between
the display formats and storage formats of IGT. A display format specifies
conventions of lay-out on a (virtual) page for human consumption. The IGT
example in (1) conforms to a common display format for IGT, where the order
of lines and the white space between items serve as cues to human readers as
to the import of each symbol in the representation. A storage format is meant
for machine consumption and typically uses devices other than lay-out to
make the role of each part of the IGT explicit. The representation we propose

1 Languages that have non-Roman scripts will frequently be transliterated, but sometimes
IGT will include both the original orthography and the transliteration as separate tiers.

2 It is in fact more typical to find three-line IGT in linguistics papers, with only one of
either the source or morpheme-segmented lines.



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 3

here, Xigt, is intended as a storage format. In our use cases (see §3 below)
we translate IGT from other storage formats (those of tools presently used by
documentary linguists developing IGT collections) or in fact display formats
(the IGT collected from PDFs by the ODIN project (Lewis and Xia, 2010))
to Xigt for the purposes of further processing.

From a formal point of view, IGT involves aligned tiers of hierarchically
nested structure: The sentence consists of words, and words of morphemes
(and in some cases clitics). When the source and morpheme-segmented lines
are both present, there is an implicit alignment between them. Likewise, there
is an implicit alignment between the gloss line and the source and morpheme-
segmented lines.

The de facto standard for the content of IGT is the Leipzig Glossing Rules
(LGR; Bickel et al, 2008), which specify conventions on the representation of
morpheme boundaries in the morpheme-segmented and gloss lines as well as
the representation of grammatical information (‘grams’) in the gloss line. A
complete and well-annotated IGT instance contains information about aspects
of the string not directly under discussion. Therefore, the Leipzig Glossing
Rules serve to improve both scientific accountability and productivity. For the
former, LGR-compliance allows readers and reviewers to potentially notice
correlations among linguistic facts and suggest possible alternative analyses,
even if they do not know the language in question. For the latter, standard-
ized representations make examples more amenable to reuse by facilitating
comparison across descriptions of the same language and across languages.

As it is used as a display format, IGT generally contains only the infor-
mation discussed above. The most typical departures from the format illus-
trated in (1) are the addition of brackets to show partial constituent structure
and/or the incorporation of symbols displaying the putative position of empty
elements. If IGT data are to be used for further automated processing, how-
ever, enriching the representation can increase its value for NLP tasks (Xia
and Lewis, 2009; Georgi et al, 2012). In particular, enriched IGT can include
both explicit representations of the implicit alignments, as well as further in-
formation gleaned by parsing the translation line (Lewis and Xia, 2008). The
desiderata explored in the next section are meant to apply to both ‘standard’
and enriched IGT.

3 Motivation/Desiderata

The Xigt format has been developed in the context of the AGGREGATION
project,3 a project whose goal is to combine two sources of linguistic knowl-
edge to create precision implemented grammars. The knowledge sources are the
LinGO Grammar Matrix (Bender et al, 2002, 2010), a language-independent
resource which maps relatively simple linguistic descriptions to working gram-
mar fragments, on the one hand, and IGT on the other. We aim to infer these

3 http://depts.washington.edu/uwcl/aggregation/



4 Michael Wayne Goodman et al.

kinds of linguistic descriptions by applying and extending the methodology
of Lewis and Xia (2008), who glean information about the structure of the
source languages by parsing the translation line and projecting the informa-
tion through the gloss line to the source line.

The purpose of creating the implemented grammars is to assist in the
development of further documentary linguistic resources, including such am-
bitious goals as creating grammar-derived treebanks (in the style of Oepen
et al 2004, see also Bender et al 2012) and using the implemented grammars
to comb through collected texts to identify as-yet unaccounted for phenomena
(see Baldwin et al, 2005). In order to fulfill this purpose, the system we build
must be able to work with IGT collections as actually produced by current
and future language documentation projects.

To this end, we need an internal representation format and associated im-
port facilities that can map from the representations produced by various IGT
production (and collection) systems to our internal representation. Similarly,
as the results of our processing are meant to eventually enrich the documen-
tary resources, we should be able to map from our internal representation to
standard display formats at the very least.

Thus our primary use case involves the processing of collections of IGT,
looking at both properties of individual items and comparing/aggregating
across items, in order to extract hypotheses about linguistic properties of both
individual items and whole languages. This use case also raises considerations
of import and export: even if we are not using all of the information encoded
in a particular collection of IGT, we should be able to translate formats in a
lossless fashion.

A second use case involves the aggregation and enrichment of IGT for use
in processing by others. In particular, we take the data curated by the ODIN
project (Lewis and Xia, 2010) as a specific test case. The ODIN project collects
IGT from linguistics papers available as PDFs on the web, and then puts the
IGT through several cleaning and enriching steps. The enriched IGT includes
1) word alignment among source language line, morpheme line, gloss line, and
English translation; 2) a parse tree for the English translation; 3) a projected
parse tree for the source language line; 4) the alignment between nodes in the
two parse trees; and so on. The result is a resource that is accessible through
a web page4 with a search interface, but also one that users might want to
download in bulk for processing akin to what we describe above. This use
case shares with the primary one the focus on amenability to processing, but
also adds considerations of encoding provenance of individual annotations.
Xia et al (2013) introduce the new ODIN corpus5 that has been encoded in
Xigt, and detail how the original and cleaned IGT are stored with enriched
annotations as stand-off to the cleaned form. The initial release includes the
original and cleaned text data, basic structural alignments (e.g. aligning the
gloss line to the original language line), and metadata for source-document

4 http://odin.linguistlist.org
5 Available for download at: http://uakari.ling.washington.edu/corpus/odin/.



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 5

provenance and language names. Further annotations, such as more detailed
structural alignments, bilingual word alignments (between the translation line
and original language or gloss tokens), syntax trees, and dependency structures
are left to future work and will be distributed as additional annotation layers.
A brief description of the way this data is encoded is given in §6.

These use cases have lead us to identify seven characteristics that we would
like to see in a representation of IGT.

Stand-off: Ide et al (2003) underscore the importance of the ability to deploy
an annotation without doing violence to the original. This promotes reuse of
linguistic data and constitutes a best practice. In this case, we want to keep the
original IGT lines unchanged, while adding the results produced by subsequent
processing steps as additional tiers.

Incrementality: Ide et al (2003) also note that representations of annotations
must allow for incremental development of analyses. This is equally true of an-
notations in the form of IGT: On the one hand, documentary linguists develop
analyses of data over time, and on the other hand, automatic processing of ex-
isting data of the kind done in the ODIN project provides further annotations
to existing records. Furthermore, we wish to accommodate IGT instances that
may include errors or omissions of various sorts, as these still may be useful
for linguistic studies.6 For instance, morpheme and gloss lines in some items
in the ODIN database are not alignable but the grams in the gloss lines may
still be informative for studies of the case system or inflection of a language.

Extensibility: The format should not be so rigorous as to disallow annotation
beyond that envisioned by the Leipzig Glossing Rules. While it should be
possible to encode (and perhaps validate compliance with) any convention
defined by the LGR, the LGR rules do not cover every possible variation among
the world’s languages, particularly with regard to grammatical category labels.
But we don’t just anticipate extensions for basic interlinear annotation. Indeed,
as discussed in our use cases, we envision alignment of syntactic trees to IGT,
bilingual word alignments, and more, so we require our IGT representation to
allow this and other extensions beyond the common analytical levels.

Complex Alignments: Related to the need for an extensible format is our desire
to represent complex alignments between annotation tiers. Some examples
of complex alignments are many-to-one (as a series of elements on one tier
may align to a single one on another, such as morphemes to a word), one-
to-zero (e.g. a case marker in the gloss line may not align to anything in
the translation line), and mapping to several discontiguous text spans (e.g. a
gloss of an Arabic templatic radical aligns to discontiguous text spans in the

6 In the case of the ODIN collection, the error could stem from the data entry on the part
of the linguist who wrote the paper the item was harvested from, from noise introduced in
the process of conversion from PDF to the text format, or from noise introduced by the
automatic methods used in the enrichment process.



6 Michael Wayne Goodman et al.

source language line). Representing syntactic structure also requires a type of
complex alignment in which items on a phrase structure tier have overlapping
alignments to items on a tier of syntactic elements. Similarly, semantic notions
such as coreference structure require complex alignments.

ID-Reference Annotations: In many linguistic theories, certain levels of analy-
sis are nested in a tree-like structure within others (morphemes within words,
for example). In some of the existing formats for IGT (e.g. Hughes et al, 2003),
this constraint is captured by XML nesting of elements, and in others, such
as Toolbox (discussed in §4.2), it is captured by the vertical alignment of tex-
tual columns. We choose to use an ID-reference method of annotation instead,
where alignable tokens are first assigned an identifier, then annotations can
refer to the identifiers in order to establish alignments. Palmer and Erk (2007)
point out that the nested XML technique leads to difficulty modifying and
extending the analysis. If a new annotation tier is to be added, all elements
on the tier which contains the new tier must have their structure modified.
The vertically aligned text technique has its own drawbacks: the tiers that are
aligned must be specified separately, as presumably not every tier vertically
aligns to the one above it; complex alignments are very difficult to capture;
and so on. In contrast, the ID-reference technique do not suffer these draw-
backs at the cost of some additional verbosity (the assignment and referencing
of identifiers). We therefore echo Palmer and Erk (2007) in calling for a refer-
ential annotation scheme. This scheme allows a new tier to be added alongside
existing tiers without their modification, and it simplifies the representation
of complex alignments between tiers.

Applicability to Automatic Processing: Because our use cases are dedicated to
mining and enriching large collections of IGT, a Xigt corpus should be easy
to query and manipulate with automatic methods. For us, this means that
IGT instances in the corpus can be inspected or modified independently, i.e.
without requiring or affecting other IGT instances, and that suitable methods
exist to retrieve the information contained within an IGT. This desideratum
also implies reasonably efficient methods to iterate over IGT instances and
extract information from tiers. Much of this efficiency depends on the software
used to process Xigt, which is outside the scope of this paper, but the data
format itself can have an effect, too. For example, IGT-XML (Palmer and
Erk, 2007), described in more detail below, uses a tier-focused model, where
the same tiers for all IGT (e.g. all morpheme tiers) are grouped together and
separate from groupings of other tiers. While this is adequate if you wish to
retrieve or modify all tiers of the same type without the context of the IGT
they come from, reassembling an IGT instance requires the computer to read
the entire corpus. Similarly, Annotation Graphs (Bird and Liberman, 2001),
also defined in more detail below, list the source signals (audio segment, text
span, etc.) for all IGT together at the beginning of a corpus and then list the
annotations later, so in order to reassemble an IGT from its source signal and
aligned annotations, the computer must either read through the entire corpus



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 7

or hold the signals for all IGT in memory while later reading the annotations.
In contrast to these two methods, Xigt groups all information specific to an
IGT within the same structure. Within this IGT structure, tiers of annotation
are not nested, but flat, and annotation alignments are notated through ID-
reference. This approach provides a balance between expressive power and
computational processability. Furthermore, for the XML serializations of Xigt,
we use a small inventory of element names with variation expressed as the value
of a “type” attribute. The flat structure and element naming scheme helps tools
in the XML ecosystem like XPath (Berglund et al, 2007) and XSLT (Kay et al,
2007) to be flexible and efficient in processing the IGT data.7

Predictable Representation of Tiers: Many of the existing formats (e.g. Maeda
and Bird, 2000) provide a generalized framework which is expressive enough
in principle to accommodate extremely complex annotation schemes on text
and audio/video. However, the greater generality of these models presents a
trade-off which limits the range of assumptions that can be made about input
data, limiting in turn the ability to automatically process that data. This is
true both for computational linguists looking for new data sources and for
software-tool makers who want to render and visualize data. Therefore, we
suggest that a storage format for IGT should have a standard representation
for at least those levels of analysis formalized in the Leipzig Glossing Rules
plus the common levels of annotation in enriched IGT (e.g. word alignment
and parse trees).

In this section, we have identified seven desiderata for a representation of
IGT given our use cases. While some of these are in fact very general, per-
taining to any kind of linguistic annotation (Stand-off, Incrementality, Exten-
sibility), others are more specific to IGT (Complex Alignments, ID-Reference
Annotations) and yet others specific to the processing of IGT in bulk (Appli-
cability to Automatic Processing, Predictable Representation of Tiers). In the
next section, we will review existing data models for linguistic annotation in
general IGT through the lens of these specific desiderata.

4 Previous Work

In reviewing previous work on representations of IGT (and other annotations),
we find it helpful to distinguish between data models and serialization formats.
A data model, in this context, is a specification of which entities exist in
the annotations and underlying data and the relationships they can stand
in with each other. A serialization format, on the other hand, is a means of
representing data encoded according to a data model in terms of strings. Some
previous work is focused on data models (and may or may not describe possible

7 If we had specialized element names for tiers, the XPath query or XSLT selector may
need to be modified for any newly defined tiers, especially if there are non-tier elements at
the same level.



8 Michael Wayne Goodman et al.

serialization formats for their proposed models). Other work is focused on
formats or on tools (with associated input/output formats) leaving the data
models implicit. When the data models are implicit, they can be relatively
strictly defined and inferable from the discussed formats—or relatively loosely
defined (allowing more or less ad-hoc user extensions) and/or non-inferable
but nominally encoded in the associated software. In this review, we focus
on data models and group them into two relevant classes: those proposed
for generalized annotation (linguistic or nonlinguistic features of potentially
multimodal data artifacts) and those specific to the representation of IGT.

4.1 Data models for general annotation

Annotation Graphs/Sets: Bird and Liberman (2001) introduce Annotation
Graph (AG) as a general formalism for providing annotations on any one-
dimensional, serialized data. In this model, the original data to be annotated
is termed a ‘signal’. This generalized definition of signal allows text or audio
to be annotated within the same formalism. An AG consists of a set of nodes
(N), a collection of arcs (A), and a function (τ) that maps nodes to timepoints.
The arcs in A are labeled with linguistic annotations which provide informa-
tion about features of the signal occurring between the two time points. The
example in Figure 1 illustrates this formalism for a Portuguese O Pedro baixou
a bola “Pedro calmed down” (lit. “Pedro lowered the ball”). Here, the signal
is the textual representation of the sentence.8 N is a set of names that refer to
character offsets and the mapping from the names to the offsets are specified
in τ . The arcs in A mark various sections of the signal as morph or word.9

Signal: O P e d r o b a i x o u a b o l a
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N =
{
α, β, γ, δ, ε, η, θ, ι, κ, λ

}
A =


< α,morph, β >, < α,word, β >,
< γ,morph, δ >, < γ,word, δ >,
< ε,morph, ζ >, < ζ,morph, η >, < ε,word, η >,
< θmorphι >, < θwordι >,
< κmorphλ >, < κwordλ >


τ =


α→ 0, β → 1,
γ → 2, δ → 7,
ε→ 8, ζ → 12, η → 14,
θ → 15, ι→ 16,
κ→ 17, λ→ 21


Fig. 1 Formal representation of Annotation Graphs for the Portuguese sentence O Pedro
baixou a bola “Pedro calmed down” (lit. “Pedro lowered the ball”)

8 The indices 0–21 are the offsets of the characters in the sentence and they are not part
of the signal.

9 This example is offered for illustration; the AG formalism does not restrict the possible
units of time referred to in the range of τ .



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 9

In Bird et al (2000), the Annotation Graph formalism is used as the core of
a three-layer database platform: ATLAS (Architecture and Tools for Linguis-
tic Analysis Systems). Within the ATLAS project, the notion of annotation
graphs is generalized to annotation sets. This extension adds the ability to
annotate multidimensional signals instead of just linear ones (i.e. video and
image data).

Maeda and Bird (2000) apply the Annotation Graph format as a basis
for IGT representation. In order to capture the hierarchical layers of annota-
tions which are characteristic of IGT (i.e. words within sentences, morphemes
within words, etc.) as well as the alignments which hold between certain layers
(e.g. alignment between morphemes and glosses), they introduce the notions
of annotation groups and subgroups (within an annotation graph). With this
extension, AG provides an elegant way to represent legacy IGT. However, its
application to our goal of enriching IGT structures with nonlinear structures
is less straightforward. Although the AG formalism generally captures the fun-
damental properties of annotation, one of our goals is to provide a straight-
forward way to represent complex alignments with potentially overlapping or
non-contiguous spans; it is not clear how AG can be used to represent those
layers.

Abstract Corpus Model (ACM): ACM provides the underlying model for the
ELAN annotation tools (Brugman and Russel, 2004). While the ACM model
can in principle be used for annotated text, the focus is on audio and video
annotation. ACM defines tier objects which can contain two types of annota-
tions: alignable annotations and reference annotations. Alignable annotations
refer directly to two “time slots” of the media being annotated while reference
annotations inherit their alignment information indirectly from an ancestor
annotation. Constraints placed upon tiers include that annotations on a given
tier cannot overlap in the timespan they refer to and that a mix of alignable
and reference annotations on the same tier is not allowed.

Tiers can also be constrained such that the annotations they contain are
required to fall into specific relationships with the annotations on a parent
tier. For example, in ‘symbolic subdivision’ annotations referring to the same
parent are ordered. This sort of tier constraint is appropriate for capturing the
hierarchical relationships found in IGT such as the decomposition of words
into morphemes. Another relevant type of tier constraint is called ‘symbolic
association’, where a one-to-one association exists with a parent annotation.
This constraint type is appropriate whenever items in the parent tier are being
tagged according to some attribute, such as POS tags on words, or glosses on
morphemes.

The ACM model provides a powerful framework for capturing many other
annotation relationships beyond the ones mentioned here. Because any tier
can be independent or constrained in several predefined ways, the format pro-
vides flexibility. As future work, Brugman and Russel (2004) describe a tier
constraint type which allows annotations on a dependent tier to reference an-
notations on a specific parent tier in order to allow construction of syntactic



10 Michael Wayne Goodman et al.

trees, so in principle the model does support complex annotations. However,
the model enforces constraints against overlapping time spans which we do
not want for our purposes. For example, with manual languages there may
be overlapping gestures, such as with gaze and hand signs, and these become
very difficult to annotate with non-overlapping time spans.

LAF/GrAF: Graph Annotation Framework (GrAF; Ide and Suderman, 2007),
extending Linguistic Annotation Format (LAF; Ide et al, 2003), provides an
abstract data model which aims to be universal in its scope of linguistic anno-
tations. The format relies on annotations being translatable to a generalized
feature structure model.

Within the LAF model, two types of annotations are defined: segmentation
and linguistic. The former type provides reference points to which the latter
type refer. Like ATLAS, LAF aims to provide an ecosystem around which
application services can be developed and with the extension to GrAF, the
model’s export format can be processed by generic graph processing tools.

Both the ACM and LAF/GrAF model provide an expressive framework
which could in principle be used to represent enriched IGT, but for our pur-
poses these models are too general. That is, we seek a data model that is more
tailored to IGT and our use cases (while still being extensible). It should be
possible to create a translation between Xigt and LAF/GrAF, such that Xigt
annotations can be translated into a common format with other annotations
that can be mapped to GrAF, and thus gain the interoperability benefits of
that more general model.10 We intend to explore this in future work.

4.2 Data models specific to IGT

Shoebox/Toolbox: Shoebox/Toolbox is both a tool to aid linguists in the cre-
ation of an IGT corpus and an eponymous storage format.11,12 This format
serves as the basis for linguistic databases of IGT examples and other materials
such as lexica and dictionaries. The format specifies database items expressed
as blocks of labeled lines in text files, as in Figure 2. Line names are preceded
by a backslash. These ad-hoc identifiers are not fixed by the software, but
rather freely defined by the linguist (user).

The Shoebox software does provide the ability to define types of tiers and
relationships between them in additional files. However, the storage format
doesn’t support this directly; the ability is a property of the software and not
made explicit in the storage of the IGT.

The Shoebox format provides simplicity and flexibility, which explains its
popularity and longevity. But the open-ended set of possible line names and
lack of predefined semantics or predefined tiers means that no assumptions can

10 Mapping from LAF/GrAF to Xigt would necessarily be limited to the kinds of annota-
tions that Xigt is designed to handle.
11 Also called SIL Standard Format
12 http://www-01.sil.org/computing/shoebox/



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 11

\id 1

\tx O Pedro baixou a bola

\me O Pedro baix -ou a bola

\gl the.M.SG Pedro lower -PST.IND.3.SG the.F.SG ball.F.SG

\tr Pedro calmed down.

\lt Pedro lowered the ball.

Fig. 2 Example of the Toolbox format for the Portuguese sentence O Pedro baixou a bola
“Pedro calmed down” (lit. “Pedro lowered the ball”)

be made about alignment of tokens from line to line in a given Shoebox corpus
without consulting metadata about the corpus’ construction. This restricts
automatic processing of alignment between tiers because which tiers are to
be aligned is unknown. For example, if a user wants to add a new tier of
annotation (say syntactic structure), she could use the label name “phs” and
an ad-hoc system to indicate alignment spans on the “wds” tier, as shown in
Figure 3. Another user with the same goal could choose a different label name
and a different system. Without the knowledge of the meanings of those label
names or the workings of the ad-hoc systems, the ability to combine IGT data
from different Shoebox corpora is lost.

\wds i saw a car

\phs np=0,1 vp=1,4 np=2,4

Fig. 3 Ad-hoc encoding of syntactic structure in the Toolbox format

EMELD/BHB: Hughes et al (2003), in the context of EMELD (Electronic
Metastructure for Endangered Languages Data13), introduce an XML format
specifically for capturing IGT. They provide a four-level XML containment
structure to capture hierarchical nesting of standard annotations. That is, the
four levels of the model: interlinear-text, phrase, word and morpheme
are represented as elements which are contained within the value of an XML
element at the level above. Figure 4 shows our Portuguese example in this
format.

This model generalizes content to a single element type item, which allows
for general processing rules to be written to access content from an arbitrary
level of annotation. However, as discussed above, direct nesting of hierarchical
levels leads to difficulty adding new tiers of annotations beyond the four pro-
posed in this model. Furthermore, the direct nesting of elements rather than
the use of ID-reference means that complex alignments are not supported.

IGT-XML: Palmer and Erk (2007) point out that the use of XML contain-
ment in annotation elements leaves little flexibility to add or remove layers.
Thus the representation they propose, IGT-XML, provides a similar model to

13 http://emeld.org



12 Michael Wayne Goodman et al.

<interlinear -text>

<phrases >

<phrase >

<item type="number">1</item>

<item type="gls">Pedro calmed down.</item>

<words>

<word>

<item type="txt">O</item>

<morphemes >

<morph><item type="gls">the.M.SG</item></morph>

</morphemes >

</word>

<word>

<item type="txt">Pedro</item>

<morphemes >

<morph><item type="gls">Pedro </item></morph >

</morphemes >

</word>

<word>

<morphemes >

<morph>

<item type="txt">baix</item>

<item type="gls">lower</item>

</morph >

<morph>

<item type="txt">ou</item>

<item type="gls">PST.IND.3.SG</item>

</morph >

</morphemes >

</word>

<word>

<item type="txt">a</item>

<morphemes >

<morph><item type="gls">the.F.SG</item></morph>

</morphemes >

</word>

<word>

<item type="txt">bola</item>

<morphemes >

<morph><item type="gls">ball.F.SG</item></morph>

</morphemes >

</word>

</words>

</phrase >

</phrases >

</interlinear -text>

Fig. 4 Example of the EMELD/BHB format for the Portuguese sentence O Pedro baixou
a bola “Pedro calmed down” (lit. “Pedro lowered the ball”).

BHB/EMELD, but uses ID-reference between annotations rather than direct
containment. This is a useful step forward, but IGT-XML also focuses on tiers;
it groups all similar tiers in a document under one XML element, leading to
processing inefficiency when operating on IGT instances instead of solitary



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 13

tiers. For example, consider using an XSLT transformation to visualize the
IGT instances on a webpage. If the IGT-XML data is sent by a stream (e.g.
over an internet connection), the viewer would have to wait until the most
of the document is transferred before seeing the first IGT instance. Further-
more, IGT-XML only allows one-to-one alignments, and not sub-segmental
(e.g. character spans) or one-to-many (e.g. for discontiguous selections) align-
ments, although it does allow for many-to-one alignments (e.g. for portman-
teau morphemes). In order to define segmentation, multiple annotations can
refer to the same identifier (e.g. multiple morphemes refer to the same word
identifier), which gives an implicit segmentation as it is not explicit where one
segment ends and another begins.

4.3 Discussion

In the preceding review of the existing data models for IGT, we find that they
are either too general or too specific. On the one hand, there are models that
are designed to be flexible enough to handle any type of linguistic annotation,
but aren’t really tailored to IGT. On the other hand, there are models built
around legacy IGT that don’t readily extend to the use cases we have in mind.
In designing Xigt we have endeavored to combine the features of the various
previous proposals that respond to our desiderata, creating a model that is
specific to automatic processing of IGT, extensible in the ways we require, and
(in principle) interoperable—via translation—with more general annotation
storage formats.

5 The Xigt Specification

We aim for Xigt to be expressively adequate for both coarse- and fine-grained
annotation, while keeping IGT as the core interest. A coarse-grained IGT
annotation might align an entire tier of morphemes—as an atomic string—to
a sentence. A fine-grained annotation might align words to sub-spans of the
sentence, and then morphemes to sub-spans of the words. We consider an IGT
to be multiple tiers of linear data with hierarchical relationships among the
tiers. With this conception in mind, we give an overview of the Xigt data model
in §5.1, and an XML serialization format in §5.2.14 We chose XML to make
use of tools in the XML ecosystem (XPath; Berglund et al 2007, XSLT; Kay
et al 2007, etc.), and for its general familiarity. The Xigt data model could
be serialized into other formats, such as JSON, or even used for describing
and populating a relational database, but in this paper we only describe XML
serialization.

14 For more information on the project and to download code and resources, please refer
to the project website at http://depts.washington.edu/uwcl/xigt.



14 Michael Wayne Goodman et al.

<text id="T1" lg="por">

<metadata idref="T1">

<!-- OLAC metadata here -->

</metadata >

<body>

<phrases >

<phrase id="T1.P1">

<plaintext >O Pedro baixou a bola</plaintext >

<word id="T1.P1.W1" text="O" />

<word id="T1.P1.W2" text="Pedro" />

<word id="T1.P1.W3" text="baixou" />

<word id="T1.P1.W4" text="a" />

<word id="T1.P1.W5" text="bola" />

</phrase >

</phrases >

<morphemes >

<phrase idref="T1.P1">

<morph idref="T1.P1.W1" id="T1.P1.W1.M1" text="O" />

<morph idref="T1.P1.W2" id="T1.P1.W2.M1" text="Pedro" />

<morph idref="T1.P1.W3" id="T1.P1.W3.M1" text="baix" />

<morph idref="T1.P1.W3" id="T1.P1.W3.M2" text="ou">

<type l="suf" />

</morph >

<morph idref="T1.P1.W4" id="T1.P1.W4.M1" text="a" />

<morph idref="T1.P1.W5" id="T1.P1.W5.M1" text="bola" />

</phrase >

</morphemes >

<gloss>

<phrase idref="T1.P1">

<gls idref="T1.P1.W1.M1" text="the.M.SG" />

<gls idref="T1.P1.W2.M1" text="Pedro" />

<gls idref="T1.P1.W3.M1" text="lower" />

<gls idref="T1.P1.W3.M2" text="PST.IND .3.SG" />

<gls idref="T1.P1.W4.M1" text="the.F.SG" />

<gls idref="T1.P1.W5.M1" text="ball.F.SG" />

</phrase >

</gloss>

<translations >

<phrase idref="T1.P1">

<trans id="T1.P1.Tr1" lg="en">Pedro calmed down.</trans>

<trans id="T1.P1.Tr2" lg="en">Pedro lowered the ball.</trans>

</phrase >

</translations >

</body>

</text>

Fig. 5 Example of the IGT-XML format for the Portuguese sentence O Pedro baixou a
bola “Pedro calmed down” (lit. “Pedro lowered the ball”).

5.1 The Xigt Data Model

Here we explain the basics of the data model, including the structures involved
and the methods of aligning them. The manifestation of the conceptual data
model is the open-source, core code library of the Xigt project.15

15 The public repository is available from the project website.



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 15

5.1.1 Structures

The Xigt data model uses just four structures to encode a corpus of IGT
data and annotations: 1) a xigt-corpus groups IGT instances and metadata
relevant to all items, 2) an igt contains all of the tiers represented by an
IGT instance, 3) a tier groups data or annotations of the same type, and
4) an item contains the actual data or annotations. This organization keeps
the overall structure mostly flat; a new type of annotation would not require
another level of nested structure, but just a new tier appended to the list of
tiers on an igt. This core model is kept simple and predictable so processing
tools can reliably parse—even if they cannot accurately interpret—new types
of information added to a Xigtcorpus via extensions. A fifth, optional structure
called metadata may appear under xigt-corpus, igt, or tier, and is used
to describe the properties of the data encoded by IGT instances, such as the
language or author. (2) is a sample IGT for Icelandic,16 and a visualization of
the primary data structures involved in modeling it is given in Figure 6.

(2) Ég
1sg.nom

hjálpa-d-i
help-past-1sg

peim.
3pl.dat

‘I helped them.’ [isl]

xigt-corpus

metadata

language meta: name="Icelandic" iso-639-3="isl"

source meta: value="Zaenen et al. 1985"

...

igt

phrases
tier(p)

item(p1)
Ég hjalpa-ð-i þeim.

words
tier(w)

item(w1)
Ég

item(w2)
hjalpa-ð-i

item(w3)
þeim

glosses
tier(g)

item(g1)
1SG

item(g2)
N O M

item(g3)
help

item(g4)
PAST

item(g5)
1SG

item(g6)
3PL

item(g7)
DAT

translations
tier(t)

item(t1)
I helped them.

...

Fig. 6 Example structures used for modeling (2)

16 The example in Figure 2 is from Zaenen et al (1985) via Bakker and Siewierska (2007)
in ODIN.



16 Michael Wayne Goodman et al.

5.1.2 Alignments

To represent the relationships (i.e. alignments) encoded in IGT, Xigt allows
any structure (but most interestingly tier and item) to declare an id that
can be referenced. There are two ways to draw references: basic alignments
and alignment expressions. Basic alignments are one-to-one references from
an object to a single id. In Figure 6, a basic alignment would align tier w

to tier p. Basic alignments are also used for referring to metadata, such as
for stating that an IGT comes from a book that has been described in the
corpus-level metadata (thus preventing the need to redefine the book for every
IGT). Alignment expressions are one-to-many references used solely by item

objects. They are able to select sub-spans of the content of a referenced item.
In Figure 6, an alignment expression would align item w1 to a sub-span (the
first two characters) of item p1.

Alignment expressions Alignment expressions, which both unify and extend
the methods of alignment from previous models, are a novel contribution of
the Xigt model. Annotation Graphs, for example, segment data by specifying
anchor points in a signal (text, audio, etc.), possibly with offsets (characters,
milliseconds, etc.), and annotations select spans by specifying start and end
anchor points. In Xigt, data segmentation and annotation alignment (i.e. span
selection) are both accomplished by alignment expressions.17 There are advan-
tages and disadvantages to each approach. The anchor points for Annotation
Graphs are useful when later adjustments are necessary, for example when
one reanalyzes a speech signal and wants to change the endpoints of a word
or morpheme, because all tiers that use the anchor will refer to the new se-
lection without needing to be changed. Alignment expressions, however, are
more suited to our goals because of their ability to select discontiguous spans
and how they can readily select from different tiers.

Alignment expressions are designed to be compact and expressive. We de-
fine a small grammar for alignment expressions in Figure 7. A single selection
is an item identifier (e.g. w2) with an optional content range (e.g. [0:6]). The
range specifies spans of content (e.g. 0:6 selects characters between positions
0 and 6) to select from the referenced item. Identifiers are strings beginning
with a letter, and in general they must be unique within an igt.18 Spans on
text data use 0-indexed pivot points, as shown in Figure 8, and are similar to
slicing operations in common programming languages like Perl or Python. If
the range is omitted from a selection, it is interpreted as selecting the entire
content of the referenced item. The alignment expressions, with their resolved

17 As we are mostly concerned with textual data, this paper only discusses the segmentation
and alignment of character spans. Xigt is capable of representing annotations of audio data,
but explicit support for such annotations is relegated to future work. Support for non-linear
data (such as images) is beyond the current scope of the project.
18 As the scope of alignment is a single IGT, tier and item identifiers do not need to be

unique within a xigt-corpus.



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 17

content, for each item in the glosses tier of Figure 6 are given in Table 1. Some
more illustrative examples of alignment expressions are given later in Figure 9.

〈AlgnExpr〉 := 〈Selection〉 | 〈Selection〉 〈Delim〉 〈AlgnExpr〉
〈Selection〉 := 〈identifier〉 〈Range〉
〈Delim〉 := ‘,’ | ‘+’
〈Range〉 := ‘[’ 〈Spans〉 ‘]’ | ε
〈Spans〉 := 〈Span〉 | 〈Span〉 〈Delim〉 〈Spans〉
〈Span〉 := 〈integer〉 ‘:’ 〈integer〉
Fig. 7 A grammar for alignment expressions

É g h j a l p a - d - i p e i m .
p1| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
w1| 0 1 2
w2| 0 1 2 3 4 5 6 7 8 9 10
w3| 0 1 2 3 4

Fig. 8 Character pivot positions for items p1 and w1–w3 of Figure 6

Item Alignment expression Resolution

w1 p1[0:2] Ég
w2 p1[3:13] hjálpadi
w3 p1[14:18] peim

g1 w1 Ég

g2 w1 Ég
g3 w2[0:6] hjálpa
g4 w2[7:8] d
g5 w2[9:10] i
g6 w3 peim
g7 w3 peim

Table 1 Alignment expressions for the words and glosses tier of (2) as represented in
Figure 6.

Multiple selections or multiple spans may be combined with one of two
delimiters: “+” or “,”. By default, “+” adjoins them directly, and “,” joins them
with an intervening separator. These are useful when selecting discontiguous
elements. For example, consider the English sentence Pick the book up with a
words tier where item w1 is “Pick”, item w2 is “the”, and so on. Now consider
creating a word-senses tier where “pick up” should be given a single, unique
sense. In order to select the words to align to the sense, an alignment expression
of w1,w4 would yield “Pick up”, which maintains the separation between the
two words, but groups them as a single unit to be annotated. If, instead, w1+w4
were used, it would yield “Pickup”; a word for a kind of vehicle instead of the
intended verbal sense.

We recognize that different kinds of data may require idiosyncratic separa-
tors, such as a space character, a zero-width space character (Unicode U+200B;



18 Michael Wayne Goodman et al.

for languages in which a space is not defined as a word-separator, like Chinese,
Japanese, or Thai), or gaps of silence (for audio data). Because alignments are
likely to occur on annotation tiers rather than tiers with native orthography or
audio data, “,” joins selections with a space character as a convenient default.
Both “+” and “,” may be redefined in an extension.

Some example alignment expressions with their resolved strings are given
in Figure 9. Note that different alignment expressions can resolve to the same
string. The invalidity of the final expression is explained below.

p1 → Ég hjalpa-d-i peim.

p1[0:2] → Ég
p1[3:13] → hjalpa-d-i

w2 → hjalpa-d-i
w2[0:6+7:8+9:10] → hjalpadi

w2[0:6]+w2[7:8]+w2[9:10] → hjalpadi

w1,w2,w3 → Ég hjalpa-d-i peim
w1,g1 → (invalid)

Fig. 9 Example alignment expressions and their resolutions using items from Figure 6

Constraints on alignment expressions There is a structural constraint for align-
ment expressions: an item may only refer to an item within the tier its own
tier refers to. That is, a tier first draws a relationship to another tier, then
items in the first tier may annotate those in the second, but no others. Looking
back at Figure 6, if the glosses tier g refers to the words tier w, this constraint
would ensure that gloss items (g1–g7) may refer only to word items (w1–w3),
and not to items on the phrases tier or translations tier. This constraint is
artificial, but—we think—well motivated, as it would be strange for some an-
notation to apply to multiple tiers (i.e. different kinds of data) simultaneously.

There are times when a tier must refer to more than one other tier, albeit
in different ways. For example, in order to capture bilingual word alignments
between the translation and original language lines, we need a way to select
multiple words on either the translation line or original language line, since
words don’t always translate one-to-one. If we just put the alignments on
one of these tiers (say, on the translation tier, selecting the original language
words), we could not get alignments involving more than one translation word.
Instead, we create a third tier with items having two alignment expressions
each: a source and a target. With this new tier, we can capture many-to-many
alignments. In order for this configuration to still be valid with respect to
the constraint given above, we give references names, and the constraint only
applies to references with the same name. In XML these names are those of the
attributes that specify the references. Figure 10 illustrates what the bilingual
word alignment tier would look like if added to Figure 6, where the references
are shown in angle brackets.



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 19

bilingual-alignments

tier(b)

<source=t>

<target=w>

item(b1)

<source=t1[0:1]>

<target=w1>

item(b2)

<source=t1[2:8]>

<target=w2>

item(b3)

<source=t1[9:13]>

<target=w3>

Fig. 10 Example tier for bilingual word alignment)

Floating alignments If multiple items share the same alignment, they have
floating alignments. This is useful for phenomena like portmanteau mor-
phemes, but also for relaxed (i.e. less granular) annotation where the user
does not want to be specific about the alignments. In Figure 6, glosses g1 and
g2 are portmanteau morphs and would be in a floating alignment with word
w1. Even though g1 and g2 both align to w1, they maintain their relative order,
so if one were to (re-)serialize them as a string, the result would be “I.nom”
and not “nom.I”.

5.1.3 Items and Annotation Content

Most items will have some content associated with them, whether it is source
data, annotations, or something else. Xigt does not make any distinction be-
tween source data (such as sentences or words) and subsequent annotations,
although in practice the source data do not often align to anything else. For
all items, content can be specified in two ways: it can be specified directly on
the item, or it can be selected with a special alignment. Content selected via
alignments is dynamic—it will update when the source data changes—but the
ranges of sub-span selections may need to be adjusted.

It is also possible to both select existing content and introduce new content.
In this case, the content introduced directly on the item shadows the selected
content, meaning that the selected content is not used. The purpose is to trace
where data comes from; the alignment for the selection points to the source
of the data, but the actual content is overridden with the introduced data.
This technique is useful for smoothing over OCR or ASR errors (so annota-
tions target the clean form and not the erroneous one), or for providing the
underlying form of morphemes rather than the overt phonological realization
(as in (1), where “Ndakanga” is aligned to the underlying morphemes “Ndi”,
“aka”, and “nga”).

5.1.4 Primary Tier Types and Alignment Types

Different kinds of data are encoded in subtypes of the primary data struc-
tures. Xigt’s core model provides five basic tier subtypes: phrases, words,
morphemes, glosses, and translations. Xigt also provides several item sub-
types, such as clitic and affix to distinguish multiple kinds of morpheme
elements, or transliteration to distinguish phrases in the source language or-
thography from a transliteration in another script.



20 Michael Wayne Goodman et al.

All tiers and items have three basic kinds of references: alignment, content,
and segmentation. The alignment reference selects the target of the anno-
tation, while the content reference is used for selecting item content. The
segmentation reference is the combination of the other two (it both specifies
the target of the annotation and uses that target as the content of the annota-
tion), and is convenient for specifying subparts of other items, such as selecting
words from phrases and morphemes from words. As such, the segmentation

reference is incompatible with the other two.

5.2 The Xigt XML Data Format

The XML serialization format for Xigt closely resembles the data model. It
was designed to optimize predictability of the data without sacrificing ex-
pressibility or extensibility. We therefore have a basic, fixed core format, and
extensions can add information but not remove or alter the core format. The
implementation of this format consists of two parts: 1) a RelaxNG (Clark and
Murata, 2001) schema for validating the XML documents, and 2) code for the
serialization of XML from virtual data structures.19

Data Structure The XML format follows the data model naming conventions:
a <xigt-corpus> root element contains <igt> elements, which in turn contain
all <tier> elements relevant to an IGT. The <tier> elements then contain the
primary or annotation data, which are encapsulated in <item> elements. All
four of these kinds of elements are ID-bearing (via an id attribute), meaning
they may establish an ID that other elements can reference. The <igt>, <tier>,
and <item> elements may specify subtypes with a type attribute. These sub-
types can place constraints on their child elements’ subtypes and attributes.
<xigt-corpus>, <igt>, and <tier> elements may have zero or more <metadata> chil-
dren, which describe the data contained in any <item> elements under them,
such as the language or script used, author of the IGT, grammaticality of
the example, etc. References appear as attributes on the referencing object.
To specify these references, an <item> may have an alignment or a content at-
tribute, or both, or it may have a segmentation attribute.

Figure 11 is a simple example of the Xigt XML format based on the IGT
in (3) that showcases some of Xigt’s features, such as alignment expressions,
reference-based content selection, floating alignments, and data shadowing. In
this example, alignment expressions segment the Spanish word cocinas ‘you
cook’ into two morphemes, cocin and as. The glosses tier then annotates these
morphemes. The four glosses (2nd person, singular number, present tense,
and indicative mood) are all in a floating alignment with the same morpheme,
as, meaning they all simultaneously annotate it. Because the glosses tier in-
troduces annotation content (cook, 2, etc.), the contents shadow the aligned
content in the morphemes tier, such that if another tier annotates on top of

19 These, too, are available at the project’s public repository.



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 21

the glosses, it will annotate the glosses and not the morphemes the glosses
align to.

(3) cocinas
cocin-as
cook-2.sg.prs.ind

‘(You) cook’ [spa]

<?xml version ="1.0" encoding ="utf -8"?>

<xigt -corpus >

<igt id="i1">

<tier type="words" id="w">

<item id="w1">cocinas </item>

</tier>

<tier type="morphemes" id="m" alignment="w">

<item id="m1" alignment="w1[0:5]"/>

<item id="m2" alignment="w1[5:7]"/>

<tier type="glosses" id="g" alignment="m">

<item id="g1" alignment="m1">cook</item>

<item id="g2" alignment="m2">2</item>

<item id="g3" alignment="m2">SG</item>

<item id="g4" alignment="m2">PRS</item>

<item id="g5" alignment="m2">IND</item>

</tier>

<tier type="translations" id="t" alignment="w">

<item id="t1" alignment="w1">(You) cook</item>

</tier>

</igt>

</xigt -corpus >

Fig. 11 Simple example of the Xigt format for (3)

5.3 Extensions

While the core Xigt framework is likely sufficient for encoding and operating
on IGT data, some users may need specialized logic for certain applications.
As mentioned, the data model has a small, fixed inventory of structures and
the XML format similarly fixes the element names. These constraints allow
for extensions that are predictable in structure and thus easy for processors
to handle. Simple extensions, such as adding a required attribute or a new
basic tier type, only need an updated schema for validation, because the code
can handle an unknown attribute or tier type as long as it doesn’t need new
logic for interpreting the new data. Structural extensions, such as adding a
new reference attribute for additional kinds of annotation alignment, require
changes to the serialization code. This code needs to be aware that the new
attribute is indeed a reference and not merely a descriptive attribute (e.g.



22 Michael Wayne Goodman et al.

one that says whether the content is manually transcribed or automatically
generated).

In either case, we make both the schema and the code easy to extend.
Symbols can be redefined so only the changes need to be added, and the
default behavior is used everywhere else. We provide some example extensions
at the project’s website, and explain one such extension in §6.

6 Case Study: Importing ODIN to Xigt

In developing Xigt, one key use case has been the importing of IGT from
ODIN (Lewis and Xia, 2010) for processing in the AGGREGATION project20

(Bender et al, 2013). As the ODIN data is initially text extracted from PDFs,
an important sub-task is the conversion of the ODIN textual data into the Xigt
XML format. Our motivations for doing this are twofold: On the one hand,
we want to encode the raw ODIN text data into a format that is easier for a
computer to interpret and process, and on the other hand, we want to enable
the enrichment of IGT with bilingual word alignments and syntax trees. In
this section, we will describe the extensions for storing ODIN data, and briefly
cover those for enriching the IGT.

6.1 ODIN Textual Data

ODIN researchers have identified and extracted myriad IGT examples from
PDF documents found on the web. The lines are annotated with the line
number they came from in the initial PDF extraction, and tags that explain
their content, such as “L” for the source text (or “language line”), “G” for
glosses, “T” for translation, and occasionally metadata from the example (like
the language name or author). Each block of lines representing an IGT instance
is preceded by generated metadata, such as the language—which has been
identified automatically from the source line—and the ID of the document the
example came from. The result of this preprocessing, shown in Figure 12,21 is
what we work with in converting to the Xigt XML format.

doc_id =397 959 961 L G T

language: korean (kor)

line =959 tag=L: 1 Nay -ka ai-eykey pap -ul mek -i-ess -ta

line =960 tag=G: I-Nom child -Dat rice -Acc eat -Caus -Pst -Dec

line =961 tag=T: ‘I made the child eat rice.’

Fig. 12 Example ODIN text data for Korean

20 http://depts.washington.edu/uwcl/aggregation/
21 The example in Figure 12 is from Bratt (1996).



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 23

Figure 12 is a particularly clean example. Note that even this clean exam-
ple has some extraneous data, such as the example number on the language
line, the quotes on the translation line, and leading spaces on all three lines.
Some more challenging examples may have PDF extraction errors (e.g. diacrit-
ics not appearing on their respective glyphs); OCR errors; two-column IGT;
long, wrapped lines; multiple (i.e. alternate) gloss lines or translations; differ-
ing numbers of tokens on the language and gloss lines (which makes alignment
difficult); and so on. For example, Figure 1322 has PDF extraction errors (the
language line is split into two; the final word should be “sıkıyor”), which causes
a difference in token counts in the language and gloss lines, and inline alter-
nations (“O” ideally aligns to both “He” and “It” as alternates, but “He/It”
is treated as a single token).

doc_id =3645 10753 10756 L+CR L+CR G T

language: turkish (tur)

line =10753 tag=L+CR: 21) O ben -i si i o r

line =10754 tag=L+CR: ky

line =10755 tag=G: He/It me-ACC bores

line =10756 tag=T: ‘He/It bores/frustrates me’

Fig. 13 Example of noisy ODIN text data for Turkish

We perform some cleaning steps to try and account for predictable kinds of
noise, but we are unable to get a clean representation of every example. For this
reason, Xigt’s ability to annotate at different levels of granularity (related to
our desideratum of incrementality) helps us encode as much information as is
available in each case. For example, the IGT in Figure 12 has the same number
of space-separated tokens in the language and gloss lines, and each token
has the same number of hyphen-separated morphemes. We can, therefore,
fairly confidently align individual gloss tokens to words, and even gloss grams
to morphemes. The IGT in Figure 13, however, has an unequal number of
gloss and word tokens (assuming we cannot automatically recover the word
with PDF extraction errors), so we cannot confidently align glosses to words.
Instead, we align the entire gloss line to the language line, without segmenting
tokens.

The algorithms we deploy for cleanup and interpretation of the textual
ODIN data are potentially lossy. To prevent any actual loss of information, we
include the original text lines in a tier,23 and the cleaned text lines in a second
tier. The contents of the first tier remain unchanged as much as possible, but
occasionally we had to replace control characters—introduced during PDF

22 The example in Figure 13 is from Cagri (2005).
23 Not a tier in the traditional sense, but rather a container of data related to the IGT. We

could alternatively put these lines in a <metadata> element, but then getting alignments to
work would require a more complicated extension, as Xigt is already set up to align tiers to
one another, but not tiers to metadata. Thus it is a practical decision to put the information
in a tier.



24 Michael Wayne Goodman et al.

extraction—that are invalid in XML, such as the form feed character. We do
not directly use the original text data in the AGGREGATION project, but
we keep it for the sake of storing and distributing the Xigt-formatted ODIN
corpus as stand-off annotation, for which the second tier of cleaned text is the
target.24

6.2 Xigt Extensions

The ODIN extension to Xigt consists of several changes to the schema, but no
special serialization code is necessary. We define two new tiers, odin-raw and
odin-clean, both with optional attributes for the line number and tag. These
ODIN text tiers are only used for establishing a link to the original data so
the structural annotations are stand-off, and do not affect the actual IGT
structure at all. In other words, the extension is a monotonic addition and can
be ignored entirely without disrupting the relationships in the IGT extracted
from the text. Removing the extension (i.e. encoding the data without the
stand-off tiers), however, would result in a non-stand-off, potentially lossy
representation of the ODIN textual IGT.

Figure 14 shows an XML-formatted25 Xigt corpus with the textual Korean
IGT from Figure 12. The odin-raw tier contains the original text from ODIN,
and the odin-clean tier has the cleaned version (with the example number,
quotes, and extraneous spaces removed). The IGT annotations (specification of
words, glosses, relationships between them, etc.) follow, selecting their content
with the content attribute, which makes them stand-off annotations, rather
than introducing it themselves. In the interest of space, the tier for morphemes
is not shown, but for this example it is possible to confidently align sub-glosses
to morphemes. Note that only one tier needs to select a unique line from the
ODIN text; derivative tiers can simply segment the first one, as is done with the
words tier from phrases. Annotation alignments, via the alignment attribute,
target only the IGT structures, and not the ODIN text tiers. This separation
of concerns makes it easy to compare IGT utilizing stand-off or stand-alone
annotations, and also makes it easy to convert to stand-alone annotation by
resolving the content selections and removing the ODIN tiers.

Figure 15 is an example using the noisy Turkish data from Figure 13. We
are less confident about how to segment the data, so instead we align the
glosses tier directly to the phrases tier without an intervening words tier, and

24 Regarding stand-off annotation, we could have similarly pointed to character offsets in
an external file, but as the textual data is extracted from PDFs and not stable, we chose to
copy the relevant lines into the XML file.
25 Regarding the strange line wrapping; the > character of the opening <item> tags on the

ODIN text tiers are on a new line to help show the initial spaces on each line (or absence
thereof).



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 25

<?xml version ="1.0" encoding ="utf -8"?>

<xigt -corpus alignment -method="auto">

<metadata type="xigt -meta">

<meta type="language" name="korean" iso -639 -3="kor"

tiers="phrases words"/>

</metadata >

<igt id="i1" doc -id="397" line -range="959 961" line -types="L G T">

<tier type="odin -raw" id="o">

<item id="o1" line="959" tag="L"

> 1 Nay -ka ai -eykey pap -ul mek -i-ess -ta</item>

<item id="o2" line="960" tag="G"

> I-Nom child -Dat rice -Acc eat -Caus -Pst -Dec</item>

<item id="o3" line="961" tag="T"

> ‘I made the child eat rice.’</item>

</tier>

<tier type="odin -clean" id="c">

<item id="c1" line="959" tag="L"

>Nay -ka ai -eykey pap -ul mek -i-ess -ta</item>

<item id="c2" line="960" tag="G"

>I-Nom child -Dat rice -Acc eat -Caus -Pst -Dec</item>

<item id="c3" line="961" tag="T"

>I made the child eat rice.</item>

<tier type="phrases" id="p" content="c">

<item id="p1" content="c1 [5:40]"/>

</tier>

<tier type="words" id="w" segmentation="p">

<item id="w1" segmentation="p1 [0:6]"/>

<item id="w2" segmentation="p1 [7:15]"/>

<item id="w3" segmentation="p1 [16:22]"/>

<item id="w4" segmentation="p1 [23:35]"/>

</tier>

<tier type="glosses" id="g" alignment="w" content="c">

<item id="g1" alignment="w1" content="c2 [5:10]"/>

<item id="g2" alignment="w2" content="c2 [11:20]"/>

<item id="g3" alignment="w3" content="c2 [21:29]"/>

<item id="g4" alignment="w4" content="c2 [30:46]"/>

</tier>

<tier type="translations" id="t" alignment="p" content="c">

<item id="t1" alignment="p1" content="c3 [6:32]"/>

</tier>

</igt>

</xigt -corpus >

Fig. 14 Example of the Xigt XML format with an extension for stand-off alignment to a
clean textual representation

further we align the entire line as one string instead of segmenting it into
separate gloss grams.26

Whether we get fine-grained alignments from clean data or coarse-grained
alignments from noisy data, the alignments are all generated automatically
and are not vetted by a human. Because of this situation, we set the corpus-

26 The glosses line on its own is fairly clean, so we could alternatively segment it and align
each gloss to the phrase in a floating alignment, but we don’t do that here for the sake of
illustrating coarse-grained annotation.



26 Michael Wayne Goodman et al.

<?xml version ="1.0" encoding ="utf -8"?>

<xigt -corpus alignment -method="auto">

<metadata type="xigt -meta">

<meta type="language" name="turkish" iso -639 -3="tur"

tiers="phrases words"/>

</metadata >

<igt id="i1" doc -id="3645" line -range="10753 10756"

line -types="L+CR L+CR G T">

<tier type="odin -raw" id="o">

<item id="o1" line="10753" tag="L+CR"

> 21) O ben -i si i o r</item>

<item id="o2" line="10754" tag="L+CR"

> ky</item>

<item id="o3" line="10755" tag="G"

> He/It me -ACC bores </item>

<item id="o4" line="10756" tag="T"

> ‘He/It bores/frustrates me ’</item>

</tier>

<tier type="odin -clean" id="c">

<item id="c1" line="10753 10754" tag="L+CR"

>O ben -i sikyi o r</item>

<item id="c2" line="10755" tag="G"

>He/It me -ACC bores </item>

<item id="c3" line="10756" tag="T"

>He/It bores/frustrates me</item>

<tier type="phrases" id="p" content="c">

<item id="p1" content="c1 [0:25]"/>

</tier>

<tier type="glosses" id="g" alignment="p" content="c">

<item id="g1" alignment="p1" content="c2 [0:18]"/>

</tier>

<tier type="translations" id="t" alignment="p" content="c">

<item id="t1" alignment="p1" content="c3 [0:25]"/>

</tier>

</igt>

</xigt -corpus >

Fig. 15 Example of the Xigt XML format with an extension for stand-off alignment to a
noisy textual representation

level attribute alignment-method to auto so users of the corpus can be aware
of the quality of the alignments. Other possible values for this attribute are:
gold for manually-created annotations, and vetted for automatically created
annotations that have been checked by a human.

6.3 Statistics for the Basic Corpus

The first step of creating the Xigt-formatted ODIN corpus is just conversion
from the textual corpus, so here we will present some statistics of the re-
sults. The basic corpus has the odin-raw and odin-clean tiers; coarse, line-based
alignments between phrases, glosses, and translations tiers, where they exist;
and basic metadata for the language and source document of each IGT. Fine-



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 27

grained alignments from tokenization of the phrases and glosses tiers will be
distributed as an extension to the basic corpus, as will the enriched tiers for
syntax trees and bilingual alignments (described in §6.4). The basic corpus is
a truer representation27 of the original ODIN data than it would be with the
advanced tiers, because the advanced tiers introduce information not explicitly
present in the textual corpus, and moreover because the advanced tiers, being
automatically created, are more likely to have errors than the coarse-grained
alignments.

In the basic corpus, there are 157,144 IGT instances representing 1,493
languages,28 and 2,025 source documents. Of the 157,144 instances, 146,128
have a phrases tier created from the language (“L”) line, 138,547 have a glosses

tier created from the glosses (“G”) line, and 126,253 have a translations tier
created from the translation (“T”) line. Table 2 shows the distribution of IGT
instances by the tier types that were present. Each row represents a mutually
exclusive set; e.g. the first row represents instances that have an “L” line,
but no “G” or “T” lines. Other line types, such as metadata lines, are not
considered. The last row, “Other”, represents items that either had none of
“L”, “G”, or “T” lines, or had them in a form that we cannot currently detect,
such as when two line types share a single line (e.g. “L”/“T” lines are common
when an author provides a small inline glossary).

IGT instance count (%) Tiers present
749 0.5% L
611 0.4% G
155 0.1% T

19750 12.6% LG
7912 5.0% LT
469 0.3% GT

117717 74.9% LGT
9751 6.2% Other

157114 100.0% Total

Table 2 Counts of IGT instances according to the tiers present.

6.4 Enriching IGT

Above we have described how we are encoding ODIN IGT into Xigt, but for
the AGGREGATION project we also need to process the IGT and enrich them
with bilingual word alignments and parse trees. This work is ongoing, and the
decisions of how to best encode such information are left to future work, but
we present here possible solutions based on the capabilities of Xigt.

27 But not a perfect representation, because even the basic corpus can be improved with
better cleaning steps and more accurate extraction of complex IGTs, such as those with line
wrapping or inline alternations.
28 The number of languages is calculated by the assigned ISO-639-3 code.



28 Michael Wayne Goodman et al.

For bilingual word alignments, we need a way to do many-to-many align-
ments, as it may be possible for multiple translation words to map to a single
original-language word, vice-versa, or even multiple translation words to mul-
tiple original words. We accomplish this with a tier that utilizes two alignment
expressions. As the alignment itself is the annotation, the items on this tier do
not need content. For the AGGREGATION project, we actually align trans-
lation words to gloss tokens rather than to original words, as the gloss tokens
share a similar form to translation words and thus make a better (i.e. easier)
target for an automatic aligner. Moreover, they share the same word order as
the original words, so it’s possible to project the alignments. Therefore, we
obtain the raw alignments by extracting the gloss line and translation line
from an IGT and processing them with an external word aligner, then encode
the results into Xigt in a bilingual-alignments tier with the source alignment
expression aligned to the translation tier and the target alignment expression
to the glosses tier. An example is given in Figure 16 with data taken from
Figure 14. For clarity, we only show the relevant tiers and we’ve resolved the
content alignments. We see that the aligner covered most words, but some oth-
ers (made and the) were left unaligned (a more sophisticated aligner might
relate made to the ‘Caus’ gram in the glosses tier).

...

<tier type="glosses" id="g" alignment="w">

<item id="g1" alignment="w1">I-Nom</item

<item id="g2" alignment="w2">child -Dat</item

<item id="g3" alignment="w3">rice -Acc</item>

<item id="g4" alignment="w4">eat -Caus -Pst -Dec</item>

</tier>

<tier type="translations" id="t" alignment="p">

<item id="t1" alignment="p1">I made the child eat rice.</item>

</tier>

<tier type="bilingual -alignments" id="a" source="t" target="g">

<item id="a1" source="t1[0:1]" target="g1"/>

<item id="a2" source="t1 [11:16]" target="g2"/>

<item id="a3" source="t1 [17:20]" target="g4"/>

<item id="a4" source="t1 [21:25]" target="g3"/>

</tier>

...

Fig. 16 Example of word-alignment with Xigt

Syntax trees require entities not present in the original IGT, namely nodes
on the parse tree, so this extension also requires a second alignment expression.
To get the raw parse tree, we extract the translation line from the IGT and
process it with an external parser, then encode the results into Xigt. There
are some precedents for XML-based encodings of syntax trees (Mengel and
Lezius, 2000; Brants et al, 2002), and one possibility for us is to integrate
their basic structure with our alignment expressions. An example of such an
encoding is given in Figure 18, which represents the tree in Figure 17. Again,



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 29

for clarity we only show the relevant tiers, and resolve content alignments.
The syntax tier has two alignment expressions, lex and node, which may not
both appear on the same item. Items with lex select the lexical unit(s) at the
leaves of the tree. Items with node represent non-terminal (i.e. phrasal) nodes
in the tree, and select items (either lex or node) from the same tier.29 The item
contents are the node labels of the syntax tree. Encoding syntax trees in this
way allows us to easily give only partial tree structures, which would be useful
when creators of IGT annotate syntactic structure for only a portion of the
sentence, or when an automatic parser fails to give a full representation. It
can also handle packed-representations of multiple parses (e.g. with an item
attribute that specifies for which parses a node is used) for when there is
syntactic ambiguity. Furthermore, it is straightforward to refer to any node in
the tree, since they can all have identifiers, thus allowing annotation on top of
the syntax tree.

S

VP

S

VP

NP

NN

rice

VB

eat

NP

NN

child

DT

the

VBD

made

NP

PRP

I

Fig. 17 Syntax tree for sentence from Figure 14

6.5 Summary

In this section we have described our process for importing data from ODIN
to Xigt, including the Xigt extensions required for this dataset. We also de-
scribed our tentative plans for encoding bilingual word alignments and syntax
trees. The ODIN use case illustrates how Xigt satisfies our design desider-
ata, including especially Stand-Off, Incrementality, Extensibility and Complex
Alignments.

29 The extension may need some validation code to ensure there are no cycles.



30 Michael Wayne Goodman et al.

...

<tier type="translations" id="t" alignment="p">

<item id="t1" alignment="p1">I made the child eat rice.</item>

</tier>

<tier type="syntax" id="x" lex="t" node="x">

<item id="x1" lex="t1 [0:1]">PRP</item>

<item id="x2" lex="t1 [2:6]">VBD</item>

<item id="x3" lex="t1 [7:10]">DT</item>

<item id="x4" lex="t1 [11:16]">NN</item>

<item id="x5" lex="t1 [17:20]">VB</item>

<item id="x6" lex="t1 [21:25]">NN</item>

<item id="x7" node="x1">NP</item>

<item id="x8" node="x3 ,x4">NP</item>

<item id="x9" node="x6">NP</item>

<item id="x10" node="x5 ,x9">VP</item>

<item id="x11" node="x8 ,x10">S</item>

<item id="x12" node="x2 ,x11">VP</item>

<item id="x13" node="x7 ,x12">S</item>

</tier>

...

Fig. 18 Example of representing the syntax tree in Figure 17 in Xigt

7 Conclusion and Future Work

This paper has presented Xigt, an extensible representation for interlinear
glossed text. The schema, code, examples, and documentation are all open-
source and available from the project website:

http://depts.washington.edu/uwcl/xigt

Our motivation for creating Xigt stems from work repurposing IGT data
collected from various sources for NLP applications, including specifically ap-
plications of NLP to language documentation. We reviewed existing formats
before creating Xigt but found that they did not answer to our specific needs.
In particular, the formats that came closest were either not optimized for ef-
ficient processing or too general. We defined Xigt with automatic processing
as its primary purpose, and such that it answers to our design desiderata:

1. Stand-off: Through ids and references (including alignment expressions), it
can be as stand-off as one needs.

2. Incrementality: There is no fixed nesting of types, which allows flexibility
in the presence and order of tiers of annotation. Moreover, as shown in
§6, enriched IGT do not structurally change the core IGT—that is, an
extension generally does not alter the original IGT, but monotonically
adds to it.

3. Extensibility: The core of Xigt is designed to be simple, and to support
extensions which are also simple.

4. Complex alignments: Xigt’s alignment expressions allow for one-to-many
relationships, and floating alignments allow for many-to-one relationships.



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 31

5. ID-reference annotations: IDs and references allow complex relationships
in a flat structure (i.e. a list of tiers and items), and make it easy to add
new information.

6. Applicability to Automatic Processing: Our data model groups all relevant
data for an IGT under a single element, which helps with streaming or
piped processing, such that a processor can operate on each IGT without
having to read the whole corpus first.

7. Predictable representation: We use a relatively flat structure of elements
and fixed element names following the constraints of the data model to
help ensure forward-compatibility with processors. Variation in the kinds
of data is represented as subtypes of these elements.

We present as a test case the import of ODIN data into Xigt. The ODIN
data is of interest as a test case because it encompasses wide variation in the
quality and quantity of annotation as well as additional sources of noise (PDF
extraction and OCR errors). This test case illustrates how Xigt allows us to
flexibly represent as much information as is available on an item-by-item basis.

Work is currently underway to import Abui (a Papuan language of East-
ern Indonesia) data from Toolbox for the purpose of automatically discovering
phenomena and linguistic patterns. Frantǐsek Kratochv́ıl, the linguist who cre-
ated and maintains the Toolbox corpus, is closely supervising our efforts at
conversion, and can verify when our methods are accurate. Once we have suc-
cessfully converted the Abui Toolbox data into Xigt, the next step (for Xigt’s
purposes) is to make a language-independent conversion routine for Toolbox
data.

Our future goals for Xigt itself include adding to the ODIN extension to
represent parse trees, developing a translation layer between Xigt and LAF/-
GrAF, and further extensions relating to content standards in the general IGT
space (e.g. the Leipzig Glossing Rules and OLAC metadata). We are also in-
terested in importing to Xigt from sources beyond ODIN, and in particular
from tools that support the creation of IGT including Shoebox/Toolbox and
TypeCraft (Beermann and Mihaylov, 2009).

Acknowledgment We would like to thank Glenn Slayden and Ryan Georgi
for general discussion; Lúıs Morgado da Costa for the example Portuguese
IGT; and Francis Bond, Frantǐsek Kratochv́ıl, and anonymous reviewers for
helpful feedback.

References

Bakker D, Siewierska A (2007) Another take on the notion subject. In: Hannay
M, Steen G (eds) Structural-Functional Studies in English Grammar: In
Honour of Lachlan Mackenzie, Studies in Language, vol 84, John Benjamins
Publishing Company, pp 141–158

Baldwin T, Beavers J, Bender EM, Flickinger D, Kim A, Oepen S (2005)
Beauty and the beast: What running a broad-coverage precision grammar



32 Michael Wayne Goodman et al.

over the BNC taught us about the grammar — and the corpus. In: Kepser
S, Reis M (eds) Linguistic Evidence: Empirical, Theoretical, and Computa-
tional Perspectives, Mouton de Gruyter, Berlin, pp 49–69

Beermann D, Mihaylov P (2009) TypeCraft: Linguistic data and knowledge
sharing, open access and linguistic methodology, paper presented at the
Workshop on Small Tools in Cross-linguistic Research, University of Utrecht.
The Netherlands

Bender EM, Flickinger D, Oepen S (2002) The grammar matrix: An open-
source starter-kit for the rapid development of cross-linguistically consistent
broad-coverage precision grammars. In: Carroll J, Oostdijk N, Sutcliffe R
(eds) Proceedings of the Workshop on Grammar Engineering and Evaluation
at the 19th International Conference on Computational Linguistics, Taipei,
Taiwan, pp 8–14

Bender EM, Drellishak S, Fokkens A, Poulson L, Saleem S (2010) Grammar
customization. Research on Language & Computation pp 1–50, URL http:

//dx.doi.org/10.1007/s11168-010-9070-1, 10.1007/s11168-010-9070-1
Bender EM, Ghodke S, Baldwin T, Dridan R (2012) From database to tree-

bank: Enhancing hypertext grammars with grammar engineering and tree-
bank search. In: Nordhoff S, Poggeman KLG (eds) Electronic Grammaticog-
raphy, University of Hawaii Press, Honolulu, pp 179–206

Bender EM, Goodman MW, Crowgey J, Xia F (2013) Towards creating
precision grammars from interlinear glossed text: Inferring large-scale ty-
pological properties. In: Proceedings of the 7th Workshop on Language
Technology for Cultural Heritage, Social Sciences, and Humanities, As-
sociation for Computational Linguistics, Sofia, Bulgaria, pp 74–83, URL
http://www.aclweb.org/anthology/W13-2710

Berglund A, Boag S, Chamberlin D, Fernandez MF, Kay M, Robie J, Siméon
J (2007) XML path language (XPath) 2.0. W3C recommendation 23

Bickel B, Comrie B, Haspelmath M (2008) The Leipzig glossing rules: Con-
ventions for interlinear morpheme-by-morpheme glosses, URL http://www.

eva.mpg.de/lingua/resources/glossing-rules.php, max Planck Insti-
tute for Evolutionary Anthropology and Department of Linguistics, Univer-
sity of Leipzig

Bird S, Liberman M (2001) A formal framework for linguistic annotation.
Speech communication 33(1):23–60

Bird S, Day D, Garofolo J, Henderson J, Laprun C, Liberman M (2000) At-
las: A flexible and extensible architecture for linguistic annotation. In: In
Proceedings of the Second International Conference on Language Resources
and Evaluation. Paris: European Language Resources Association

Brants S, Dipper S, Hansen S, Lezius W, Smith G (2002) The TIGER tree-
bank. In: Proceedings of the Workshop on Treebanks and Linguistic Theo-
ries, pp 24–41

Bratt EO (1996) Argument composition and the lexicon: Lexical and pe-
riphrastic causatives in Korean. PhD thesis, Stanford University

Brugman H, Russel A (2004) Annotating multi-media/multi-modal resources
with ELAN. In: Proceedings of the Fourth International Conference on Lan-



Xigt: Extensible Interlinear Glossed Text for Natural Language Processing 33

guage Resources and Evaluation
Cagri I (2005) Minimality and turkish relative clauses. PhD thesis, University

of Maryland
Clark J, Murata M (2001) {Relax NG} specification. Tech. rep., The Organi-

zation for the Advancement of Structured Information Standards (OASIS)
Georgi R, Xia F, Lewis W (2012) Improving dependency parsing with interlin-

ear glossed text and syntactic projection. In: Proceedings of COLING 2012:
Posters, Mumbai, India, pp 371–380

Hughes B, Bird S, Bow C (2003) Encoding and presenting interlinear text using
XML technologies. In: Proceedings of the Australasian Language Technology
Workshop 2003, Melbourne, Australia, pp 61–69

Ide N, Suderman K (2007) GrAF: A graph-based format for linguistic annota-
tions. In: Proceedings of the Linguistic Annotation Workshop, Prague, pp
1–8

Ide N, Romary L, de la Clergerie E (2003) International standard for a linguis-
tic annotation framework. In: Proceedings of the HLT-NAACL Workshop
on Software Engineering and Architecture of Language Technology Systems
(SEALTS)

Kay M, et al (2007) XSL transformations (XSLT) version 2.0. W3C Recom-
mendation 23

Lewis W, Xia F (2010) Developing odin: A multilingual repository of annotated
language data for hundreds of the world’s languages. Journal of Literary and
Linguistic Computing (LLC) 25(3):303–319

Lewis WD, Xia F (2008) Automatically identifying computationally relevant
typological features. In: Proceedings of the Third International Joint Con-
ference on Natural Language Processing, Hyderabad, India, pp 685–690

Maeda K, Bird S (2000) A formal framework for interlinear text. In: Proceed-
ings of the Workshop on Web-Based Language Documentation and Descrip-
tion, URL http://www.ldc.upenn.edu/exploration/expl2000/papers/

Mengel A, Lezius W (2000) An XML-based representation format for syntac-
tically annotated corpora. In: LREC

Oepen S, Flickinger D, Toutanova K, Manning CD (2004) LinGO Redwoods.
A rich and dynamic treebank for HPSG. Journal of Research on Language
and Computation 2(4):575 – 596

Palmer A, Erk K (2007) IGT-XML: An XML format for interlinearized glossed
text. In: Proceedings of the Linguistic Annotation Workshop, Association
for Computational Linguistics, Prague, Czech Republic, pp 176–183, URL
http://www.aclweb.org/anthology/W/W07/W07-1528

Toews C (2009) The expression of tense and aspect in Shona. Selected Pro-
ceedings of the 39th Annual Converence on African Linguistics pp 32–41

Xia F, Lewis W (2009) Applying NLP technologies to the collection and en-
richment of language data on the web to aid linguistic research. In: Proceed-
ings of the EACL 2009 Workshop on Language Technology and Resources
for Cultural Heritage, Social Sciences, Humanities, and Education (LaT-
eCH – SHELT&R 2009), Association for Computational Linguistics, Athens,
Greece, pp 51–59, URL http://www.aclweb.org/anthology/W09-0307



34 Michael Wayne Goodman et al.

Xia F, Lewis W, Goodman MW, Crowgey J, Bender EM (2013) Enriching
ODIN. In: Proceedings of LREC 2014, Reykjavik, Iceland, to appear

Zaenen A, Maling J, Thráinsson H (1985) Case and grammatical functions:
The icelandic passive. Natural Language & Linguistic Theory 3(4):441–483


