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ABSTRACT
Training data selection is a common method for domain adaptation, the goal of which is to
choose a subset of training data that works well for a given test set. It has been shown to be
effective for tasks such as machine translation and parsing. In this paper, we propose sev-
eral entropy-based measures for training data selection and test their effectiveness on two
tasks: Chinese word segmentation and part-of-speech tagging. The experimental results
on the Chinese Penn Treebank indicate that some of the measures provide a statistically
significant improvement over random selection for both tasks.
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1 Introduction

The performance of Natural Language Processing (NLP) systems often degrades signifi-
cantly when training and testing data come from different domains. There has been
extensive research on methods for domain adaptation including training data selection
(e.g.,(Moore and Lewis, 2010; Plank and van Noord, 2011)), model combination (e.g.,
(McClosky et al., 2010)), feature copying (Daume III, 2007), semi-supervised learning
(e.g., (McClosky et al., 2006)), and many more.

The goal of training data selection is to choose a subset of training data that was similar to
a given test data set. The challenge is to find a good measure for calculating the similarity
between training sentences and the test data set. Moore and Lewis (2010) calculated the
difference of the cross entropy values for a given sentence, based on language models from
the source domain and the target domain. Axelrod et al. (2011) adopted the idea of cross
entropy measurement for training data selection for machine translation, in three different
ways: the first directly measured cross entropy for the source side of the text; the second
is similar to (Moore and Lewis, 2010) and ranked the data using cross entropy difference;
and the third, took into account the bilingual data on both the source and target side of
translations. Both studies showed that the selected subset of training data worked better
than the entire training corpus for machine translation. Plank and van Noord (2011) inves-
tigated several different training data selection methods aimed at enhancing dependency
parsing and part-of-speech (POS) tagging. These methods were classified into two cate-
gories, probabilistically-motivated and geometrically-motivated. Their work proved again
that models trained on data selected by data selection methods outperform those trained
on randomly selected data.

In this paper, we explore the use of entropy-based methods for training data selection and
evaluate their effect on the tasks of Chinese word segmentation (CWS) and POS tagging.

2 Methodology

In this study, we first test whether there is a strong correlation between system performance
and cross entropy of two probability distributions estimated from the training data and the
test data. If that is the case, it implies that entropy-based measures could be effective for
training data selection. We then propose several new entropy-based measures and test
their effects on two NLP tasks: CWS and POS tagging. For evaluation, we use the Chinese
Penn Treebank as described below.

2.1 Data

The Chinese Penn Treebank (CTB) was developed in the late 1990s (Xia et al., 2000) and
each sentence is word segmented, part-of-speech tagged, and bracketed with a scheme
similar to the English Penn Treebank (Marcus et al., 1993). Its latest release is version 7.0
1, which contains more than one million words from five genres: Broadcast Conversation
(BC), Broadcast News (BN), Magazine (MZ), Newswire (NW), and Weblog (WB). Some
statistics of CTB7 are given in Table 1.

We have used CTB 7.0 for multiple experiments, some of them not directly related to this
study. To prepare the data for all of our experiments, we divide the data in each genre into

1Linguistic Data Consortium No. LDC2010T07



Genre # of
chars

# of
words

# of
files

Source

Broadcast Conver-
sation (BC)

275,289 184,161 86 China Central TV, CNN,
MSNBC, Phoenix TV, etc.

Broadcast News
(BN)

482,667 287,442 1,146 China Broadcasting Sys-
tem, China Central TV,
China National Radio,
Voice of America, etc.

Magazine (MZ) 402,979 256,305 137 Sinaroma
Newswire (NW) 442,993 260,164 790 Xinhua News, Guangming

Daily, People’s Daily, etc.
Weblog (WB) 342,116 208,257 214 Newsgroups, Weblogs
Total 1,946,044 1,196,329 2,373

Table 1: Statistics of the CTB 7.0.

ten folds based on character counts, and use the first eight folds for training, the next fold
for development, and the last fold for testing. In order to study the effect of genre variation
on system performance, we want the size of the training data for each genre to be the same,
so we set the training size to be the size of the training folds in the BC genre (the smallest
genre in the CTB 7.0). We do the same for the development data. For testing, we use
the whole test fold for each genre. The sizes of the data sets used in the experiments are
shown in Table 2. Although we are not using the development fold for the experiments in
this study, we chose to use the same data split for training and test to facilitate comparison
with our other experiments.

BC BN MZ NW WB
Training 211,795 211,826 211,834 211,853 211,796

Development 30,678 30,760 30,708 30,726 30,746
Test 32,816 48,317 37,531 44,543 33,623

Table 2: CTB 7.0 Genre character counts for data splitting.

2.2 System performance and cross entropy

In order to determine whether entropy-based measures are helpful in training data selec-
tion, we first check whether cross entropy correlates with system performance. For this,
we first trained and tested the Stanford POS Tagger2 (Toutanova et al., 2003) on the CTB
7.0. The results are in Table 3, in which the training and testing genres are indicated by
row labels and column labels, respectively.

In the top part of the table, each cell (i, j) has two numbers, where i is the row and j is
the column. The first number is the tagging accuracy, when the tagger is trained on the
training data of the genre i, and tested on the test data of the genre j. The second number
is cross entropy of the test data, estimated by a trigram language model built from the
training data using the CMU-Cambridge LM Toolkit3. The final row in the table lists the

2http://nlp.stanford.edu/software/tagger.shtml
3http://www.speech.cs.cmu.edu/SLM/toolkit.html



Pearson Correlation Coefficient (PCC) between tagging accuracy and the cross-entropy for
each column.

BC BN MZ NW WB
BC 91.90/8.09 89.11/9.82 82.39/9.79 85.98/10.50 87.45/9.06
BN 88.42/9.04 91.42/9.28 84.90/9.62 89.71/9.88 87.48/9.38
MZ 85.34/9.01 85.91/9.84 91.64/9.31 87.43/10.09 84.68/9.35
NW 83.83/9.86 88.87/9.60 85.38/9.94 91.26/8.89 83.71/9.68
WB 90.38/8.75 88.07/9.78 86.93/9.78 88.40/10.10 89.24/9.10
PCC -0.9023 -0.8344 -0.7594 -0.9252 -0.8178

Table 3: Results of Stanford POS Tagger on CTB 7.0 genre sub corpora with trigram cross
entropy calculated on training and test and Pearson Correlation Coefficient on columns.

Table 3 indicates there is a strong inverse correlation between cross entropy and perfor-
mance for POS tagging. Based on this result, we propose to use entropy-based measures
for training data selection and test their effect on the tasks of Chinese word segmentation
and POS tagging.

3 Entropy-based Measures
In this section, we propose several new entropy-based measures for training data selection.

3.1 Difference of Entropy (DE)
Eq 1 shows the standard definition of entropy in information theory, where X is a discrete
random variable with m possible outcomes {x1, ..., xm} and p is a probability distribution
of X .

H(X ) =−
m∑

i=1

p(x i) log p(x i) (1)

Given a sentence s, we represent s as a set of information units {x1, ..., xn}, where an
information unit can be a word/character unigram or a bigram.4 Let p be the probability
distribution over all the information units collected from a data set C . Instead of calculating
the entropy of the random variable X as in Eq 1 which uses all the possible x i in C , we
want to focus only on the x i in s; therefore, we define a new function H(s, p) as in Eq 2.

H(s, p) =−
n∑

i=1

p(x i) log p(x i) (2)

Now let p and q be the probability distributions estimated from the training data and the
test data, respectively. Let s be a sentence in the training data. We define the difference of
sentence entropy, DE(s, p, q), as in Eq 3. Intuitively, choosing sentences with low DE values
means we prefer sentences whose information units x i have similar values with respect to
p and q.

DE(s, p, q) =| H(s, p)−H(s, q) | (3)
4We use character ngrams for CWS and word ngrams for POS tagging.



3.2 Cross Entropy (CE)
Similar to the difference between Eq 1 and 2, one could use a variation of cross entropy
(CE) to calculate the cross entropy for a sentence s over two discrete probability distribu-
tions p and q, where p and q are estimated from the training and test data, respectively.

C E(s, p, q) =−
n∑

i=1

p(x i) log q(x i) (4)

3.3 Average Entropy Gain (AEG)
Let C be the test corpus and s be a sentence. The third measure, entropy gain (EG), is
defined as in Eq 5, where q is a probability distribution estimated from C and q1 is one
estimated from C + s, a new corpus formed by adding s to C . Intuitively, if s is similar to C ,
q1 will be very similar to q and EG(s, c) will be small.

EG(s, C) =| H(C + s, q1)−H(C , q) | (5)

The measures in Eq 3-5 can all be normalized by sentence length. For instance, Eq 6 shows
the normalized entropy gain. We call it Average Entropy Gain (AEG).

AEG(s, C) =
EG(s, C)

leng th(s)
(6)

3.4 Descriptive Length Gain (DLG)
Description length gain (DLG) is a goodness measure proposed by (Kit and Wilks, 1999) as
an unsupervised learning approach to lexical acquisition (Kit, 2005; Kit and Zhao, 2007).
Intuitively, the DLG of a string str w.r.t. a corpus C, DLG(str, C), indicates the reduction
of description length of C when the characters in str are treated as a unit and all the
occurrences of str in C are replaced by the index of the unit. Therefore, the more frequent
str is in C and the longer str is, the higher DLG(str,C) is. The DLG calculation resorts to a
re-implementation of the suffix array approach to counting n-grams (Kit and Wilks, 1998).

Based on this property, we define a similarity measure, Sim(s, C), between a training sen-
tence s and the test corpus C as the average of DLG scores of substrings in s, as shown in
Eq 7. Here, Subst r(s) is the set of substrings in s, and n is the size of the set. High Sim(s, C)
scores indicate that s is closer to C in the sense that the substrings in s tend to have high
DLG scores with respect to C .

Sim(s, C) =
1

n

∑
st r∈Subst r(s)

DLG(st r, C) (7)

4 Experiments
In the previous section, we defined four entropy-based measures: difference of entropy
(DE), cross entropy (CE), average entropy gain (AEG), and a DLG-based similarity mea-
sure. For DE, the information unit can be a unigram (DE-1), a bigram with joint probability



P(wi−1, wi) (DE-2J), a bigram with conditional probability P(wi | wi−1) (DE-2C), or other
ngrams. The same is true for CE and AEG. We use each measure to rank training sentences
(in ascending order for DE, CE, and AEG and in descending order for the DLG-based mea-
sures), choose the top x% of the training data, train a word segmenter or a POS tagger
(as described below), and compare the results with the system trained on x% of randomly
selected training data (RDM).

The results of our experiments were tested for significance using a ten-partition two-tailed
paired Student t-test, comparing each entropy-based measure with the average of three
random experiments. To be more specific, the t-test was conducted in the following steps:
(1) split the test data into N chunks (N is set to 10 in these experiments). (2) calculate
the system performance on each chunk when using random selection vs. a particular
selection method (e.g., DLG). That gives us 10 pairs of scores. (3) compute t-test scores
to determine whether the difference between random selection and a particular selection
method is statistically significant. In Tables 4 and 5, 95% confidence for significance is
indicated by a single asterisk and 99% confidence by two asterisks.

Of the five genres in the CTB 7.0, we use BC as the test genre and BN, MZ, NW, WB as
training genres. 5 The test data is the test portion of BC; the training data is the union of
the training portions of the other four genres.

4.1 Chinese Word Segmentation
For word segmentation, we used a Conditional Random Fields word segmenter as de-
scribed in (Song and Xia, 2012), which uses similar character tags and features as in
(Zhao and Kit, 2011). We train the segmenter with a fixed percentage of training data
and test the segmenter on the test data. The results are in Table 4.6 The table shows that
the performances of these entropy-based measures vary a lot: while some measures (e.g.,
DE-2J) are not better than random selection, others (e.g., DLG) provide a modest gain. For
instance, seven of the ten results for DLG are statistically significant better than random
selection at p=0.05, and four of these seven are significant at p=0.01.

4.2 POS Tagging
For POS tagging, we used the Stanford POS Tagger (Toutanova et al., 2003). The training
and test data are the same as in word segmentation. The results are in Table 5. They show
similar patterns as the ones for word segmentation: while measures such as DE-2J are not
better than random selection, other measures such as DLG and AEG-2J often provide a
small, but statistically significant gain.

5 Discussion
In the previous section, we use four entropy-based measures to select training data and
show their performance on two tasks: Chinese word segmentation and POS tagging. Some

5BC was randomly selected as the test genre. Results for other genres are not included due to the page limit.
6We have experimented with other measure variants such as normalized DE-2J and normalized CE-2J, whose

results are similar to their non-normalized counterparts. We also used DCE-2J, where DCE stands for difference
of cross entropy, as defined in (Moore and Lewis, 2010). The f-scores when using DCE-2J to select x% of training
data (x=5, 10, ..., 90) are 84.24, 87.54, 89.57,90.47, 92.44, 92.75, 93.22, 93.63, and 93.89%, respectively, and
these results are not as good as DLG for most x’s. We did not include these numbers due to the space limit.



AEG-
1

AEG-
2J

AEG-
2C

CE-1 CE-
2J

CE-
2C

DE-1 DE-
2J

DE-
2C

DLG RDM

5% 88.41* 89.28**87.28 87.12 86.11 88.43* 88.41* 84.74 86.28 88.98**85.56
10% 90.03 90.82**89.42 89.89* 88.35 90.66**90.13 87.64 89.52 91.29**89.12
20% 91.60 92.08* 91.95**91.00 90.97 91.87**91.49 89.74 90.91 92.49**91.19
30% 92.29 92.55* 92.52**92.11* 91.74 92.65**92.23 90.86 92.06 92.79**91.71
40% 92.35 92.53 92.88**92.40 92.37 93.01* 93.08**91.17 92.54 92.80* 92.21
50% 92.76 93.22 93.10 93.09 92.71 93.16 92.23 91.58 93.15 93.31 93.01
60% 92.84 93.42 93.36 93.34 93.01 93.31* 93.43 91.92 93.61* 93.47**93.12
70% 93.45* 93.43**93.32 93.43 93.33 93.30 93.56**92.12 93.47 93.56* 93.21
80% 93.50 93.54 93.66 93.51 93.51 93.40 93.58 92.58 93.59 93.66 93.59
90% 93.57 93.44 93.96* 93.84* 93.58 93.73 93.74 93.33 93.68 93.80 93.68

100% 93.83 93.83 93.83 93.83 93.83 93.83 93.83 93.83 93.83 93.83 93.83

Table 4: Word segmentation results (in f-score): tested on BC and trained on the other four
genres. * and ** indicate significance at 0.05 and 0.01, respectively. The highest score in
each row is in bold.

AEG-
1

AEG-
2J

AEG-
2C

CE-1 CE-
2J

CE-
2C

DE-1 DE-
2J

DE-
2C

DLG RDM

5% 86.44 88.38**86.73 87.11 86.80 86.70 86.23 84.06 86.78 86.80 87.02
10% 88.25 89.61**88.90 88.84 88.52 88.89 88.24 86.09 88.66 89.18* 88.60
20% 90.71**91.01**90.61**90.00 89.85 90.23 89.46 88.23 89.93 90.70**89.74
30% 91.37**91.40**91.28**90.80 90.80 90.85**90.94**88.98 90.81* 91.49**90.59
40% 91.64**91.67 91.61**91.36 91.45 91.60* 91.28 89.70 91.37 91.79* 91.25
50% 91.86 91.94**91.91* 91.68 91.58 91.81 91.69 89.96 91.57 92.06**91.37
60% 91.96 92.31**92.25* 91.73 91.63 92.20* 92.12 91.40 91.75 92.19* 91.84
70% 92.10 92.53**92.19 91.94 91.89 92.15 92.35* 91.64 91.97 92.30 91.84
80% 92.37 92.41 92.51* 92.22 92.24 92.30 92.47* 91.89 92.24 92.43 92.11
90% 92.46 92.45 92.35 92.14 92.43* 92.38 92.47* 92.40 92.18 92.26 92.22

100% 92.30 92.30 92.30 92.30 92.30 92.30 92.30 92.30 92.30 92.30 92.30

Table 5: POS tagging results (in tagging accuracy): tested on BC and trained on the other
four genres. * and ** indicate significance at 0.05 and 0.01, respectively. The highest score
in each row is in bold.

measures (e.g., AEG and DLG) provide a small, but statistically significant, improvement
over random selection, while others do not. The question is why are some methods better
than random selection and others are not.

While it requires more study to provide an adequate answer to the question, a few points
are worth noting. First, there are several variants for each of the first three measures (i.e.,
CE, DE, and EG): the measures can be normalized by sentence length or not normalized;
the information unit can a unigram, a bigram, or a higher ngram; probability distribution
can be a joint probability or a conditional probability. All these could affect the system
performance. Due to the space limit, Tables 4 and 5 list the results of only some of the
variants. Second, while all the four measures use the test data to select training sentences,
CE and DE also use the entire training data to calculate the scores (see Eq 3 and 4 where
p is estimated from the training data). If the training data consists of data from multiple
genres, as in our experiments, p would be a mixture of the distributions for several genres
in the training data. If p is similar to the distribution q estimated from the test data,



CE and DE would not be very effective in training data selection, even when individual
training sentences are very different with respect to their similarity to the test data. Third,
as mentioned above, the t-test results are based on the scores from ten chunks of the test
data; therefore, the variance of the scores for the ten chunks would affect the significant
test results. That means, when we compare two measures, we should consider not only the
overall evaluation scores on a test set, but also whether the system performance is stable
across different subsets of the test data.

Finally, it is quite possible that the effectiveness of a domain adaptation technology in
general (and a training data selection measure in particular) would vary depending on
NLP tasks, languages, and training/test data sets, because those factors lead to different
causes of low system performance when the training and test data come from different
domains. For example, in Chinese word segmentation, the out-of-vocabulary word (OOV)
problem is usually the main cause of low performance when training and test data come
from different domains; whereas in machine translation different word senses could be one
factor. All these imply that it is unlikely that one measure is always better than another, for
all the tasks, all the languages, and all the data sets.

6 Conclusion and future work

Training data selection is a common approach to domain adaptation. The challenge is to
find a good measure for calculating the similarity between training sentences and the test
data to improve selection. In this paper, we propose four entropy-based measures for train-
ing data selection and test their effectiveness on two tasks: Chinese word segmentation
and POS tagging. The experiments show that some measures such as AEG-2J and DLG
often provide statistically significant improvement over random selection for both tasks,
especially when a small percentage of training data is used.

As illustrated in our experiments, not all the measures we used outperform random selec-
tion with statistical significance. This is not surprising given that we know the effectiveness
of a domain adaptation method can be influenced by many factors such as the NLP task
itself, language, and the differences between the training and the test data. For our future
work, we want to study the link between these factors and the behavior of our entropy-
based measures and determine whether it is possible to predict what measures work well
in particular settings.
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