
Challenges in Converting between Treebanks:
a Case Study from the HUTB

Rajesh Bhatt∗ and Fei Xia†

∗Univ. of Massachusetts
Amherst, MA 01003, USA

bhatt@linguist.umass.edu

†Univ. of Washington
Seattle, WA 98195, USA

fxia@uw.edu

Abstract
An important question for treebank development is whether high-quality conversion from one representation (e.g., dependency structure)
to another representation (e.g., phrase structure) is possible, assuming that annotation guidelines exist for both representations. In this
study, we demonstrate that the conversion is possible only under certain conditions, and even when the conditions are met, the conversion
is complex as we need to examine the two sets of guidelines on aphenomenon-by-phenomenon basis and provide an intermediate
representation for phenomena with incompatible analysis.

1. Introduction

There has been much interest in converting tree-
banks from one representation to another; for instance,
from phrase structure to dependency structure or from
phrase structure to other grammatical frameworks such
as LTAG, HPSG, CCG, or LFG. While there have been
many studies on converting between treebank repre-
sentations (Collins et al., 1999; Xia and Palmer, 2001;
Cahill et al., 2002; Nivre, 2003; Hockenmaier and
Steedman, 2007), it is not clear how well the proposed
conversion algorithms work because, for the treebanks
used in those studies, annotation guidelines are avail-
able only for one of the two representations.

Compared to other existing treebanks, the
Hindi/Urdu Treebank (HUTB) (Palmer et al.,
2009) is unusual in that it contains three layers: de-
pendency structure (DS), PropBank-style annotation
(PB) (Kingsbury et al., 2002) for predicate-argument
structure, and an independently motivated phrase-
structure (PS) annotation which is automatically
derived from the DS plus the PB. Because the tree-
bank has detailed guidelines for all three layers and
hundreds of guideline sentences with all three layers
manually annotated, the treebank is a good resource
for evaluating the performance of conversion algo-
rithms. More importantly, the DS guidelines and the
PS guidelines are based on different linguistic theories
and the DS and the PS, as two representations, have
different properties. While the idea of automatically
creating PS trees from the DS and PB is appealing as
it reduces the amount of human annotation, it raises
many interesting questions:

• Does ageneral-purpose, high-quality DS-to-PS
conversion algorithm exist? That is, an algorithm
that performs well for any given sets of DS and
PS guidelines?

• How much “freedom” do the designers of the DS
and PS guidelines have in choosing analyses for
linguistic phenomena?

• What kind of information should be included in
the DS and PB in order to make the automatic
conversion possible?

These questions are difficult to answer in the ab-
stract. In this paper, we discuss them in the context
of our experiences with the construction of the multi-
representational Hindi-Urdu Treebank which involves
automatic generation of the PS from the DS and PB.

2. An Overview of the HUTB
The HUTB (Palmer et al., 2009) has been developed by
our colleagues and us since 2008. It has three layers,
as explained below.

2.1. Dependency Structure (DS)

The HUTB chose the Paninian grammatical model
(Bharati et al., 1995; Begum et al., 2008) as the ba-
sis of the DS analysis. The sentence is treated as a se-
ries of modifier-modified relations which has a primary
modified (generally the main verb). The relations are
of two types: karaka (roles of various participants in
an action, i.e., arguments, notated as k1-k6) and others
(roles such as purpose and location, i.e. adjuncts).

2.2. Propbank (PB)

PropBanking is a semantic layer of annotation that
adds predicate argument structures to syntactic repre-
sentations (Palmer et al., 2005). For each verb, Prop-
Bank represents the information about the arguments
that appear with the verb in its corresponding frame
file. The arguments of the verbs are labeled using a
small set of numbered arguments, e.g. Arg0, Arg1,



Arg2, etc. Additionally, verb modifiers are annotated
using functional tags such as ArgM-LOC, ArgM-TMP,
ArgM-MNR.

2.3. Phrase Structure (PS)

The PS guidelines are inspired by the Principles-and-
Parameters methodology of Chomsky (1981). PS as-
sumes a binary branching representation, where a min-
imal clause distinguishes at most two positions struc-
turally (the core arguments). Displacement of core ar-
guments from their canonical positions is represented
via traces.

2.4. Overall Process

The treebank has three sets of annotation guidelines,
one for each layer. The treebank is created in three
steps. The first step is the manual annotation of DS.
The second step is PropBanking, which focuses on
adding the lexical predicate-argument structure on the
top of DS. The third step is the automatic creation of
PS, which is done by a DS-to-PS conversion process
that takes DS and PropBank as input and generates PS
as output. Figure 1 shows the three layers for a simple
sentence. For the sake of saving space and readability
for non-Hindi speakers, Hindi sentences in this paper
are written as English words in Hindi word order.

(1) a. Ram liquor drank (’Ram drank liquor’)

b. DS tree:
drank

k1
Ram

k2
liquor

c. PB annotation:
Predicate: drank
Frame id: drink.1
Arg0: Ram
Arg1: liquor

d. PS tree:
VP

NP1

N1

Ram

VP-Pred

NP2

N2

liquor

V
drank

3. DS-to-PS Conversion
While the input to the process includes DS and PB, for
the sake of simplicity, in the rest of the paper we will
simply call the processDS-to-PS conversion, with the
understanding that theDS in this context also includes
information from the PB.

3.1. Previous work on DS-to-PS conversion

The common setting of a DS-to-PS conversion pro-
cess is given in Figure 1, which has three stages. In

the training stage, the input is a set of (DS, PS) pairs,
{(DSi, PSi)}; the output is a model, a set of conver-
sion rules, or something else depending on the conver-
sion algorithm. In the test stage, a DS tree,DSt, is sent
to the test module, along with the output of the training
stage; the test module produces a PS tree,PS

(0)
t . In the

evaluation stage, the output of the test stage is com-
pared with the gold standard,PSt, and some scores
(e.g., labeled F-score) are produced as a measure for
the overall performance of the conversion algorithm.

 DS

 Training

 PS

t
 PS

t DS

t

i

 PS i

(o)
 model

 score
 Eval Test

Figure 1: DS-to-PS conversion and evaluation

The previous DS-to-PS conversion algorithms can
be divided into two types depending on whether there
is an explicit training stage. In (Collins et al., 1999;
Xia and Palmer, 2001), the conversion algorithms were
purely rule-based: the rules were created by hand and
used to buildPS

(0)
t givenDSt; there was no training

stage. Xia et al. (2009) automated the conversion pro-
cess by introducing the concept ofconsistencybetween
a DS and a PS and proposing a process that extracts
conversion rules from consistent (DS, PS) pairs in the
training stage; in the test stage, the extracted rules were
applied to an inputDSt to generatePS

(0)
t . One lim-

itation of these previous studies is that they evaluated
their conversion algorithms on treebanks for which an-
notation guidelines and manual annotation exist only
for one of the two representations, and, therefore, it is
not clear how well the algorithms truly performed.

Bhatt et al. (2011) proposed an analytical frame-
work for determining how difficult it would be to con-
vert one representation to another representation (DS
and PS in this case) when each representation has its
own annotation guidelines. They demonstrated that the
conversion procedure must examine guidelines on a
phenomenon-by-phenomenon basis, and for each phe-
nomenon, there are three possible scenarios: (1) the
two guidelines havecompatibleanalyses; (2) they have
incompatible analyses; and (3) one represents the phe-
nomenon but the other does not. In the first case, au-
tomatic conversion is fairly direct; in the second case,
one needs to study the DS and PS analyses for the phe-
nomenon and provide an intermediate representation to
bring the gap; in the third case, additional information
is required to achieve the conversion.

Bhatt et al. (2011) definedcompatibilityof analyses
based onconsistencyof (DS,PS) pairs. As defined in
(Xia et al., 2009), a PS and a DS are calledconsistent
if and only if there exists an assignment of head words
for the internal nodes in PS such that after the flatten
operation and the label replacement operation, the new
PS is identical to the DS once we ignore the depen-



dency types in the DS.1 For instance, the DS and the
PS in Ex (1) are consistent because when we chooseV
as the head child ofVP-Pred, andVP-Predas the head
child of VP, we will merge these three nodes in the
flatten operation and relabel the merged node with the
head worddrank; similarly, N1 andNP1 are merged
and relabeled asRam, andN2 andNP2 are merged
and relabeled asliquor. The resulting tree is identical
to the DS tree if we ignore the dependency types.

Given a linguistic phenomenon, letD be the set of
(DS, PS) pairs for the sentences in the guidelines for
that phenomenon. The analyses in the DS and PS
guidelines are calledcompatibleif and only if every
(DS, PS) pair inD is consistent.

3.2. Our conversion process
Before we get into the details of our conversion pro-
cess, it is important to address the first question raised
in Section 1.: does a general-purpose DS-to-PS con-
version algorithm exist that works well for any given
sets of DS and PS guidelines? Referring to the
flowchart in Figure 1, a conversion algorithm would
correspond to the training and test modules; the DS and
PS guidelines would correspond to(DSi/k, PSi/k)
pairs; ageneral-purpose, high-qualityalgorithm would
be one that producesPS

(0)
t that is very similar toPSt

and therefore leads to a high evaluation score, no mat-
ter what(DSi/k, PSi/k) pairs look like.

Note that the flowchart shows the same setting as
any machine learning (ML) system if we just replace
DSwith the input of a ML task (e.g.,sentencefor the
parsing task) and replacePSwith the output of an ML
task (e.g.,parse treefor the parsing task); therefore,
in theory, it is possible that one can build a general-
purpose, high-quality conversion algorithm, just like
one can build a good statistical parser. On the other
hand, while it is likely that a small number of (DS,
PS) pairs exist for the language of our interest (e.g.,
trees for sentences in the annotation guidelines), we
cannot assume that the number of pairs would be very
large (say tens or hundreds of thousand pairs) because
if there are so many (DS, PS) pairs available, DS-to-
PS conversion is no longer important as one can easily
create a PS treebank from these pairs. Just like there
does not exist a general-purpose parser that performs
well when trained on a few hundreds of (sentence,
parse tree) pairs, we doubt that there exists a general-
purpose DS-to-PS conversion algorithm that performs
well whentrained on a few hundreds (DS, PS) pairs,
because, in the worst scenario, the analyses chosen by
the DS and PS guidelines for linguistic phenomena can
be so different that building PS from a given DS is not
much easier than building a parse tree from a sentence.

Instead, we believe that high-quality DS-to-PS con-
version is possible only if all of the following con-

1Theflattenoperation merges all the internal nodes in the
PS with their head child; thelabel replacementoperation re-
places the label of an internal node with its head word.

ditions hold: (1) the analyses chosen by DS and PS
guidelines for most linguistic phenomena are compati-
ble; (2) for the phenomena with incompatible analyses,
the incompatibility can be resolved by simple transfor-
mations; and (3) for phenomena that are represented
in the PS but not in the DS, the additional information
needed to build PS is available from the PB or other
sources.

If these conditions hold, high-quality DS-to-PS con-
version is possible. Our conversion process for creat-
ing a PS from DS plus PB is illustrated in Figure 2.2 It
has two main modules: the first module handles phe-
nomena with incompatible DS/PS analyses or phenom-
ena represented only in the PS analyses. The input are
DS and PB, and the output is a new, “extended” depen-
dency structure calledDS+. DS+ should be consistent
with the desired PS according to the PS guidelines.

create
rules
apply

 DS+

 DS+
 DS

 PB
 PS

 conversion rules

Figure 2: Building PS from DS and PB

The second module creates the PS fromDS+ by ap-
plying conversion rules. Theconversion ruleis a (DS-
pattern, PS-pattern) pair, which says the DS pattern in
a DS would correspond to the PS pattern in a PS tree.
Figure 3 shows two conversion rules that will be used
to create the PS in (1d) from the DS in (1b). The first
rule says that when a verb in a DS has a leftk1 depen-
dent whose head is a noun, the corresponding PS will
have aVP node, which has anNP child followed by
a VP-Predchild. The second rule is interpreted simi-
larly. The conversion rules can be created by hand or
extracted from consistent (DS, PS) pairs. The formal
definition of conversion rules and the algorithms for
extracting rules from (DS,PS) pairs and applying rules
to generate a PS were discussed in (Xia et al., 2009).

V

N NP

VP V

N VNP

(a) (b) 

k1

VP-Pred

k2
VP-Pred

Figure 3: Two conversion rules

4. Handling incompatibility
As discussed in the previous section, we propose to use
DS+ to handle phenomena with incompatible DS and
PS analyses. The question is what DS+ should look
like and how it can be created from the input DS and
PB. In order to answer the question, we first need to
understand the main sources of incompatibility. We
will then go over seven linguistic phenomena that have

2This corresponds to the test stage in Figure 1.



incompatible analyses in the HUTB and show the cor-
responding DS+.

4.1. Main sources of incompatibility

Given that DS and PS guidelines are often based on
different linguistic theories, there can be many reasons
for incompatibility between the DS and PS analyses.
Some instances of incompatibility could be acciden-
tal in that the DS and the PS might just choose dis-
tinct analyses even though in principle they could have
picked the same analysis. Since we have developed the
DS and PS guidelines in tandem, we have attempted to
minimize the accidental incompatibilities. That leaves
us with the more deep-seated sources of incompatibil-
ity. Here, we discuss three main reasons that cover the
majority of such incompatibility in the HUTB.

The first reason is that one side chooses to represent
certain relationships or distinctions, but the other does
not. One example is the unaccusative vs. unergative
distinction, which is represented in PS, not in DS. In
order to create the desired PS, the list of unaccusative
verbs has to be available from other sources, and in the
HUTB that information comes from the PB.

The second reason is due to different representa-
tional vehicles that are available in DS and PS. In
the HUTB, DS represents information through struc-
tural means, dependency labels (e.g., k1 and k2), or
attributes in the nodes. PS represents information
through structural means, syntactic labels (e.g.,NP),
and coindexation (e.g., between a trace and its an-
tecedent). Consequently, the DS and the PS could rep-
resent the same information, but through different ve-
hicles. The corresponding DS and PS trees could end
up being inconsistent, because the definitions of con-
sistency and compatibility look at tree structure only.
In the HUTB, the analyses for passive, small clause,
support verb, and causative fall into this category.

The third reason is due to the differences in han-
dling word order by the DS and the PS.3 The DS in the
HUTB allows for non-projective trees and it does not
have a notion of canonical word order. In contrast, the
PS tree in the HUTB must be projective and it assumes
that the core arguments are generated in distinguished
structural positions which implies that there is an in-
herent notion of canonical word order. Consequently
any DS trees that are non-projective or in which core
arguments appear in non-canonical word order would
be inconsistent with the corresponding PS trees.

4.2. Unaccusatives vs. Unergatives

In the HUTB, the DS treats all intransitives alike while
the PS makes a structural distinction between unerga-
tives and unaccusatives: the PS treats the subject of an
unaccusative as originating in the object position, as

3This can be seen as a special case of the first reason; that
is, the PS represents word order, whereas DS does not. But
because word order is so salient and common, we treat this
as a separate case.

indicated by the empty categoryCASEand the coin-
dexation between the subject and the object positions;
the PS treats the subject of an unergative as originat-
ing in the subject position and there is no movement
involved. Two examples are given in Ex (2) and (3).

(2) unaccusative: The door opened.

a. DS tree:
opened

k1
the-door

b. PS Tree:

VP

NP1

the-door

VP-Pred

NP

CASE1

V
opened

c. DS+ tree:

opened

k11

the-door
k2

CASE1

(3) Unergative: John laughed.

a. DS tree:
laughed

k1
John

b. PS Tree:

VP

NP

John

VP-Pred

V
laughed

For automatic conversion to be a possibility, infor-
mation about whether a given verb is unergative or un-
accusative needs to be available. In the HUTB, that
information is provided in the PB. The next question is
what DS+ looks like. One intuition is that DS+ should
include all the empty categories (ECs) appearing in the
PS. In this case, we need to insertCASEto the DS+.
Based on the DS and PS trees in Ex (2),V is the head
child of VP-Pred; therefore,CASEshould depend on
openedin the DS+. As for its dependency type,CASE
is in the canonical object position in the PS, and the
dependency type for that position isk2 in general, as
shown in the second rule in Figure 3. Therefore, we
will insert CASEas a dependent ofopenedwith the
typek2, and we use coindexation to link the EC and its
antecedent. The resulting tree is in Ex (2c). In contrast,
unergatives do not require DS+ (that is, its DS+ is the
same as DS).



4.3. Passive

In the HUTB, both DS and PS indicate that the sub-
ject of the passive is related to the object position: the
DS uses dependency typek2, and the PS uses the EC
CASEand the coindexation between the subject and
the object positions, as shown in Ex (4).4

(4) The apple eaten was (’The apple was eaten’)

a. DS tree:
eaten

k2
the-apple

lwg-aux
was

b. PS Tree:
VP

VP

NP1

the-apple

VP-Pred

NP

CASE1

V
eaten

V
was

c. DS+ Tree:
eaten

k11

the-apple
k2

CASE1

lwg-aux
was

To detect passive is easy because a passive verb in the
DS has a featurepassive=’+’. The DS+ for passive
is similar to the one for unaccusative except that we
change the dependency type ofthe applefrom k2 to k1
because the phrase is in the canonical subject position
in the PS, not the canonical object position.

4.4. Small clause and support verb

The two phenomena we have discussed so far involve
only one predicate (the unaccusative verb or the pas-
sivized verb) in both DS and PS. Small clauses are dif-
ferent in that they involve two predicates, as shown in
Ex (5): considerand smart. John is related to both
predicates: it gets case fromconsiderand semantically
it is an argument ofsmart.

Both the DS and the PS represent these relations,
but they do so in different ways. The DS represents
the first relation by makingJohna dependent ofcon-
sider; it represents the second relation by using the de-
pendency typek2s for smart, andk2sencodes the in-
formation that its semantic argument has the labelk2.
The PS represents the two relations by inserting an EC
CASEand coindexing it withJohn, and thus represents
both relations structurally. Creating DS+ is simple; we
just need to insert an ECCASEas ak1 dependent of
smartand coindex it withJohn.

4The dependency typelwg-aux indicates thatwas is an
auxiliary verb, and the word and its headeatenform a local
word group (lwg)

(5) I John smart consider (’I consider John smart’)

a. DS tree:
consider

k1
I

k2
John

k2s
smart

b. PS tree:
VP

NP

I

VP-Pred

NP1

John

V’

SC-A

NP

CASE1

AP

smart

V
consider

c. DS+ tree:
consider

k1
I

k21

John
k2s

smart

k1
CASE1

In the support verb construction, a verb and a noun
form a complex predicate. An example isJohn bicycle
theft did (’John stole a bicyle’), wheredid and theft
form a complex predicate. Our treatment of support
verb is similar to that of small clauses.

4.5. Causatives

Causative is another example where DS and PS rep-
resent the same information through different means.
An example is given in Ex (6). The DS analyzes the
causativized verb as a single head, but it labels the
causerJohn as pk1 (not k1), indicating thatJohn is
not really an argument ofcut, but an argument of the
causative part ofcut-CAUSE. The PS represents the
causativized verb as two independent heads: an EC,
CAUSE, as the head of the higher clause, and the orig-
inal verb as the head of the lower clause. In addition,
the PS indicates the implicit intermediate agent explic-
itly as an EC,IMP-ARG(implicit argument).

(6) John the-tree cut-CAUSE (’John caused the
tree to be cut’.)

a. DS tree:
cut-CAUSE

pk1
John

k2
the-tree

b. PS tree:



VP

NP

John

VP-Pred

VP

NP

IMP-ARG

VP-Pred

NP

the-tree

V
cut-cause

V
CAUSE

c. DS+ tree:

CAUSE

k1
John

k2
cut-CAUSE

k1
IMP-ARG

k2
the-tree

To create DS+, we insert two ECs:CAUSE, as the head
of the higher clause, and another EC,IMP-ARGas a
k1 dependent of the lower clause. Furthermore, the
causee becomes a dependent ofCAUSEand its label is
changed frompk1to k1.

4.6. Movement

The last type of divergences involve the treatment of
movement. In HUTB, the DS is not concerned about
non-canonical word order; sentences with different
word orders will have the same DS if we treat the DS
as an unordered tree. In contrast, the PS assumes that
the dependents of a head have a canonical order and if
they are not in the canonical order, that is due to syn-
tactic movement which is represented by an EC in the
base position and a coindex between the base position
and the surface position. An example is in Ex (7).

(7) apple John ate (’John ate an apple’)

a. DS tree:
ate

k2
apple

k1
John

b. PS tree:

VP

NP1

apple

VP

NP

John

VP-Pred

NP

SCR1

V

ate

c. DS+

ate

Suf-SCR1
apple

k1
John

k2
SCR1

To create DS+ for this example, we need to know
the canonical order of arguments of a verb. In Hindi,
the order isk1, k4, k2, verb. By checking the word or-
der in the sentence, we can detect the predicates whose
dependents are not in the canonical order. We then
use simple heuristics to determine which dependent is
moved(in this case, it isk2). Next, we insert an EC
SCRto DS+ as ak2 dependent of the verb, replace the
label ofapplefrom k2 to a new dependency typeSuf-
SCR(for the surface position of a scrambled element),
and coindex the EC withapple.

Movement in Ex (7) does not cause non-projectivity,
because it does not cross the boundary of the clause.
When movement crosses a clause boundary, its DS tree
will be non-projective, see Ex (8).

(8) apple, John eat want (’John wants to eat an ap-
ple’)

a. DS tree:5

want

k1
John

k2
eat

k1
PRO

k2
apple

b. PS tree:
VP

NP1

apple

VP

NP

John

VP-Pred

V

wants

VP

NP

PRO

VP-Pred

V

eat

NP

SCR1

c. DS+ tree:
want

Suf-SCR1
apple

k1
John

k2
eat

k1
PRO

k2
SCR1

Detecting non-projectivity is trivial given the original
sentence and the DS. The creation of DS+ is similar
to the process for the local movement, except that the

5The EC, PRO, is actually added by the PB.



moved element (applein this example) will be moved
up along the path from its parent to the root of the DS
until its new position resolves the non-projectivity. In
this example,applebecomes a child ofwant in DS+.
Its dependency relation toeat is implicit as its trace
SCRdepends oneat.

Most movement in Hindi is to the left, as in Ex (7)
and (8). But movement to the right is possible. The
creation of DS+ for rightward movement is not dis-
cussed here due to the limitation of space.

4.7. Combinations

So far we have discussed seven phenomena where DS+
is needed to bridge the differences between DS and PS
analyses. For each phenomenon, we have created a
rule (i.e., a piece of code) that detects the phenomenon
in a given DS plus PB and builds the DS+ accordingly.

Some of these phenomena can co-occur to the same
predicate and its dependents in a DS; for instance, the
arguments of a causative verb can undergo leftward
or rightward movement (’a book John caused Mary to
be given’); the main verb in a small clause construc-
tion can be passivized (e.g., ‘John is considered intel-
ligent’). We call themcombinationsof phenomena.
The question is whether we can handle such combi-
nations without writing more rules. In other words, (1)
what combinations of phenomena are possible? (2) For
these combinations, can the correct DS+ be created by
applying the rules for individual phenomena in a cer-
tain order? (3) If so, what should the order be?

For the first question, some combinations are im-
possible. For instance, an unaccusative verb (e.g.,
break in ’window broke’) lacks an external argument
and cannot be passivized, so unaccusative + passive
does not exist. Based on our observations on gram-
maticality of various combinations, we group the seven
phenomena into five groups so that all the possible
combinations consist of at most one phenomenon from
each group:

• Group 1: unaccusative, passive
• Group 2: small clause, support verb
• Group 3: causative
• Group 4: rightward movement
• Group 5: leftward movement

We show that the answer to the second question is
yesby using the ordering based on the five groups; that
is, applying the two rules in Group 1 first, followed by
the rules for Group 2, 3, 4, and 5. This is the same
order if we sort the rules based on the size of the re-
gion affected by the rules: Rules in Group 1 only af-
fect a simple clause; rules in Group 2 affect a clause
that contains a small clause; the rule in Group 3 affects
a higher clause and a lower clause; the rules in Groups
4 and 5 can affect multiple clauses as movement can
cross clause boundaries.6

6Note that not all the orderings would yield the desired
PS. For instance, leftward movement (group 5) should be

Now that we have fixed the ordering of the rules, we
test whether applying rules in that order would produce
the desired DS+. It turns out that the answer is indeed
affirmative. Due to the limitation of space, we will just
show an example. In (9), (b) and (c) are the input DS
and the desired PS, respectively; (d) is the resulting
DS+ after applying the rule for causative to (b); (e) is
the resulting DS+ after applying the rule for leftward
movement to (d), and it is indeed the DS+ that we want
to create and it is consistent with the PS.

(9) a. tree John cut-CAUS (’John caused the tree
to be cut’)

b. DS:
cut-CAUS

k2
tree

pk1
John

c. PS:

VP

NP1

tree

VP

NP

John

VP-Pred

VP

NP

IMPARG

VP-Pred

NP

SCR1

V

cut-CAUS

V

CAUS

d. DS+ after applying the causative rule to (b):
CAUS

k1
John

k2
cut-CAUS

k1
IMPARG

k2
tree

e. DS+ after applying the leftward movement rule
to (d):

CAUS

Suf-SCRi
tree

k1
John

k2
cut-CAUS

k1
IMPARG

k2
SCRi

handled after rightward movement (group 4) because in the
DS+ for rightward movement, a trace for the moved element
needs to be immediately before the verb, which might not be
the canonical position for that element and this can trigger
leftward movement.



5. Discussion

The previous section went over seven phenomena for
which DS and PS analyses are incompatible. Due to
the limit of space, we used very simple examples and
did not explain all the details. These details mean that
the step of creating DS+ can be very complex; it re-
quires manually going through all the phenomena with
incompatible DS and PS analyses, and for each phe-
nomenon determining what are the diagnostic tests for
detecting the phenomenon and what DS+ should look
like, and then writing rules to build the DS+. Further-
more, one needs to check whether or not the combina-
tions of phenomena can be handled by applying rules
in a particular order. Now we are ready to address the
questions raised in Section 1.

First, a general-purpose, high-quality DS-to-PS con-
version algorithm is unlikely to exist, because the num-
ber of (DS, PS) pairs is too small for building a statisti-
cal system; consequently, any high-quality conversion
would require manual comparison of DS and PS anal-
yses for each linguistic phenomenon; this process is
time consuming and cannot be fully automated.

Second, the DS and PS guideline designers have
some freedom in choosing analyses for linguistic phe-
nomena, because DS+ serves as a vehicle to bridge
the gap between the DS and PS analyses. However,
the bigger the gap is, the more complex the module
for creating DS+ will be. Therefore, when DS and PS
guideline designers choose incompatible analyses, the
decisions should be well-motivated.

Third, as shown in Figure 2, the input to the conver-
sion process are (1) a set of sentences with three layers
of annotation, which is used for extracting conversion
rules, (2) the sentences with DS and PB annotation for
which PS will be created, (3) rules manually-crafted
for creating DS+. In order to create the desired PS, any
information needed to form the PS has to be available
in (1), (2), or (3).

6. Conclusion

An important question for treebank development is
whether high-quality conversion from one representa-
tion to another representation (e.g., PS) is possible, as-
suming that annotation guidelines exist for both repre-
sentations. In this study, we focus on DS-to-PS conver-
sion, and demonstrate that conversion is possible only
when certain conditions are met. We propose to use
DS+ as a vehicle to bridge the gap between DS and
PS analyses. When these conditions are met, PS can
be created in two steps: creating DS+ from the input
DS plus PB and generating PS from DS+. We then go
over seven phenomena in the HUTB for which DS+
is needed, and show that creating DS+ is complex and
cannot be fully automated. For future work, we will
test our conversion process on the HUTB and evaluate
the system performance on a small portion of the tree-
bank where all three layers are manually annotated.

Acknowledgments This work is supported by NSF
grants CNS-0751171 and CNS-0751213. We would
like to thank the anonymous reviewers for helpful com-
ments and our colleagues on the Hindi-Urdu Treebank
Project for their support. Special thanks go to Annahita
Farudi and Michael Tepper.

7. References
Rafiya Begum, Samar Husain, Arun Dhwaj,

Dipti Misra Sharma, Lakshmi Bai, and Rajeev
Sangal. 2008. Dependency annotation scheme
for indian languages. InProceedingsof IJCNLP,
Hyderabad, India.

Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal.
1995. Natural LanguageProcessing– A Paninian
Perspective. Prentice-Hall of India.

Rajesh Bhatt, Owen Rambow, and Fei Xia. 2011. Lin-
guistic phenomena, analyses, and representations:
Understanding conversion between treebanks. In
Proceedingsof IJCNLP, pages 1234–1242, Chiang
Mai, Thailand.

Aoife Cahill, Mairead McCarthy, Josef van Genabith,
and Andy Way. 2002. Automatic Annotation of the
Penn-Treebank with LFG F-Structure Information.
In LREC 2002Workshopon Linguistic Knowledge
Acquisition and Representation- Bootstrapping
AnnotatedLanguageData.

Noam Chomsky. 1981.Lectureson Governmentand
Binding. Dordrecht: Foris.

Michael Collins, Jan Hajič, Lance Ramshaw, and
Christoph Tillmann. 1999. A statistical parser for
czech. InProceedingsof ACL, pages 505–512.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A Corpus of CCG Derivations and Depen-
dency Structures Extracted from the Penn Treebank.
ComputationalLinguistics, 33(3):355–396.

Paul Kingsbury, Martha Palmer, and Mitch Marcus.
2002. Adding semantic annotation to the Penn Tree-
Bank. InProceedingsof HLT, San Diego, CA.

Joakim Nivre. 2003. Theory-supporting treebanks. In
In Proceedingsof theTLT 2003Workshop.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles.ComputationalLinguistics,
31(1):71–106.

Martha Palmer, Rajesh Bhatt, Bhuvana Narasimhan,
Owen Rambow, Dipti Misra Sharma, and Fei Xia.
2009. Hindi Syntax: Annotating Dependency, Lexi-
cal Predicate-Argument Structure, and Phrase Struc-
ture. InProceedingsof ICON, Hyderabad.

Fei Xia and Martha Palmer. 2001. Converting
Dependency Structures to Phrase Structures. In
Proceedingsof HLT, San Diego, CA.

Fei Xia, Owen Rambow, Rajesh Bhatt, Martha Palmer,
and Dipti Misra Sharma. 2009. Towards a multi-
representational treebank. InThe 7th International
Workshop on Treebanksand Linguistic Theories
(TLT-7), Groningen, Netherlands.


