
Hindi Syntax: Annotating Dependency, Lexical Predicate-Argument
Structure, and Phrase Structure

Martha Palmer
U. of Colorado

Boulder, CO 80309, USA
mpalmer@colorado.edu

Owen Rambow
Columbia University

New York, NY 10115, USA
rambow@ccls.columbia.edu

Rajesh Bhatt
U. of Massachusetts

Amherst, MA 01003, USA
bhatt@linguist.umass.edu

Dipti Misra Sharma
Int’l Institute of Info. Technology

Hyderabad 500019, India
dipti@iiit.ac.in

Bhuvana Narasimhan
U. of Colorado

Boulder, CO 80309, USA
narasimb@colorado.edu

Fei Xia
University of Washington
Seattle, WA 98195, USA
fxia@u.washington.edu

Abstract

This paper describes a treebanking project
for Hindi/Urdu. We are annotating depen-
dency syntax, lexical predicate-argument
structure, and phrase structure syntax in a
coordinated and partly automated manner.
The paper focuses on choices in syntac-
tic representation, and the stages we think
are most appropriate for annotating dif-
fernt types of information.

1 Introduction

This paper concerns the creation of a Hindi/Urdu
multi-representationalandmulti-layeredtreebank.
“Multi-representational” means that we use both
dependency and phrase structure for syntactic rep-
resentation. “Multi-layered” means that we have
different layers of representation: we represent
both syntax and lexical predicate-argument struc-
ture. While multi-layered representations have be-
come common, they are usually the effect of dif-
ferent projects at different points in time, each of
which adds information to an existing resource;
for instance, the English PropBank (Kingsbury et
al., 2002) adds information to the existing Penn
Treebank for English (Marcus et al., 1994). More
coherent multi-layered approaches are also found
in the Prague Dependency Treebank (Hajič et al.,
2001), or in treebanks based on LFG (King et al.,
2003) or HPSG (Oepen et al., 2002). Knowing
the target layers in advance facilitates coordinated
annotation design that can minimize the manual
annotation effort while maximizing the linguistic
information that is being represented. This paper
will illustrate this process of coordinated annota-
tion among several levels using examples.

Multi-representational treebanks are less com-
mon. While phrase structure treebanks are often
converted to dependency in order to train depen-
dency parsers (and occasionallyvice versa), the
process usually results in a treebank which itself
is undocumented. The meaning of the dependency
representation can only be inferred from the algo-
rithm which was used to derive it from the phrase
structure representation; there is no independent
linguistic motivation and documentation of the de-
pendency representation (as there is for the phrase-
structure representation).

Having both dependency structure and phrase
structure treebank for the same data enhances the
utility of the resource. For example, in the de-
velopment of parsers, it is becoming increasingly
clear that the proper choice of representation of
the syntax of a language is itself a question of
parsing research. A prototypical example is the
application of the Collins parser (Collins, 1997)
to the Prague Dependency Treebank (Collins et
al., 1999). The automatic mapping from depen-
dency to phrase-structure was the major area of re-
search in this effort, with important differences in
parser performance resulting from changes in the
mapping. Similarly, automatically changing the
representation in a phrase structure treebank can
also improve parsing results ((Klein and Manning,
2003) for English, (Levy and Manning, 2003) for
Chinese, (Kulick et al., 2006) for Arabic). And
finally, there is increasing interest in the use of de-
pendency parses in NLP applications, as they are
considered to be simpler structures which can be
computed more rapidly and are closer to the kinds
of semantic representations that applications can
make immediate use of (e.g., (McDonald et al.,
2005) and the CoNLL 2006 Shared Task). We will

“Proceedings of ICON-2009: 7th International Conference on Natural Language Processing, Macmillan
Publishers, India. Also accessible from http://ltrc.iiit.ac.in/proceedings/ICON-2009”



illustrate several syntactic analyses using depen-
dency and phrase structure, and describe the pro-
cess of producing these annotations.

We will also have two types of semantic role an-
notation: karaka (see Section 3.1) and PropBank
(Section 3.2). The natural semantic role annota-
tion for Hindi is, of course, karaka, with its strong
basis in Paninian tradition. However, by mapping
it to PropBank as well, we will facilitate align-
ment to parallel data with PropBank annotations,
and support machine translation efforts based on
parallel PropBanks (Choi et al., 2009).

2 Two Kinds of Syntactic Structure

Two different approaches to describing syntactic
structure, dependency structure (DS) and phrase
structure (PS), have in a sense divided the field
in two, with parallel efforts on both sides. For-
mally, in a PS tree, all and only the leaf nodes are
labeled with words from the sentence (or empty
categories), while the interior nodes are labeled
with nonterminal labels. In a dependency tree, all
nodes are labeled with words from the sentence (or
with empty categories that stand for words which
are phonologically null for various reasons). Lin-
guistically, a PS groups consecutive words hierar-
chically into phrases (or constituents), where each
phrase is marked with a phrase marker. In a DS,
syntactic dependency (i.e., the relation between a
syntactic head and its arguments and adjuncts) is
the primary syntactic relation represented. The no-
tion of constituent is only derived.

In a dependency representation, a node stands
for itself, for the lexical category (orpreterminal)
spanning only the word itself (e.g., N), and for
its maximal projection spanning the node and all
words in the subtree it anchors (e.g., NP). Thus,
the types of intermediate projections that are com-
mon in phrase structure, which cover only some of
the dependents of a word (such as an N’ as a pro-
jection between N and NP), do not directly corre-
spond to anything in a dependency representation.
Attachments at the different levels of projection
are therefore not distinguished in a dependency
tree. This has certain ramifications for annotation,
though in practice very few syntactically relevant
distinctions are made by choosing attachments at
different levels of projection. The most prominent
one involves scope in conjunctions, so that the two
readings ofyoung men and womencan be distin-
guished (are the women young as well or not?). If

a dependency representation chooses to represent
conjunction by treating the conjunction as a de-
pendent to the first conjunct, then the two readings
do not receive different syntactic representations,
unless a specific scope feature is introduced for the
adjective. It is worth noting that most scope dis-
tinctions are to our knowledge never represented
in syntactic treebanks, such as scope of negation,
modals, and quantified NPs.

A key element of our approach is a commit-
ment to automatic conversion from the manual de-
pendency structure treebank to our phrase struc-
ture treebank. Bringing these two major threads
together, with clear principles and general tools
for mapping back and forth between them, makes
the results of each side immediately available to
the other, with a major boost in productivity for
both. Conversion from PS to DS is well under-
stood, and consists primarily of identifying the
heads of the phrases and preserving their depen-
dency relations as reflected in the phrase struc-
ture tree. Conversion going in the opposite direc-
tion, DS-to-PS, is usually considered more diffi-
cult, since it requires making explicit information
that is not typically represented in the dependency
structure (Xia and Palmer, 2001). We have chosen
the more challening DS-to-PS direction since de-
pendency is a natural choice for Hindi because of
the rich Paninian tradition and the relatively free
word order of Hindi. We also believe that anno-
tating Hindi with DS is faster than annotating PS,
and we can build on existing work (Sharma et al.,
2006). Given this choice, we must ensure any ad-
ditional information that phrase structure requires
is available at the time of the conversion process
(see Section 3 for more details). In addition, we
plan to manually check a portion of the output of
the automatic DS-to-PS conversion to ensure the
high quality of the conversion.

In order to ensure successful conversion from
DS to PS, we are simultaneously developing three
sets of guidelines for Hindi: one for dependency
structure, one for phrase structure, and one for
PropBank (PB). While allowing DS and PS guide-
lines to be based on different, independently mo-
tivated principles (see Section 4), we have been
going through a comprehensive list of construc-
tions in Hindi as a team, carefully exploring any
issues that might impact the conversion process,
such as at which stage information needed by PS
should be added. In particular, during the guide-



line design phase, we make sure that DS and PB
contain sufficient information to ensure successful
conversion; that is, if PS makes a distinction that
neither DS nor PB make, and the distinction is not
systematic enough and therefore cannot be auto-
matically learned reliably by the conversion pro-
cess, then the conversion would not be success-
ful. Therefore these distinctions must be manually
annotated. For instance, the distinction between
unergative intransitive verbs and unaccusative in-
transitive verbs must be marked by either DS or
PB for the conversion process to produce a PS that
captures this distinction (see Section 4.2). Further-
more, we coordinate the guidelines for DS and PS
with respect to the examples chosen to support the
conversion process. These examples form a con-
version test suite.

We have developed an automatic DS-to-PS
conversion algorithm, which we discuss in Sec-
tion 5.1. We test the algorithm on the test suite of
examples taken from the guidelines. This ensures:
1) that the PS and DS guidelines are consistent;
and 2) that sufficient information (e.g., a rich set of
dependency types) is included in the input DS to
allow high-quality conversion. The manual anno-
tation has two stages: 1) we first manually create
DS’s for the sentences; and 2) then add additional
lexical information, including many empty argu-
ments, at the PropBank stage. The correspond-
ing PS annotations will be generated automatically
from the DS + PB annotation by applying our con-
version algorithm.

3 Syntactic Annotation Choices: The
Basics

This section provides more details about the anno-
tation guidelines at the three different levels.

3.1 Dependency Structure Guidelines

The Paninian grammatical model (Bharati et al.,
1995; Begum et al., 2008) has been chosen as the
basis of our dependency structure analysis. The
Paninian perspective views a sentence as a basis
of communication and aims at interpreting mean-
ing through its realization in a sentence. The
model offers a syntactico-semantic level of lin-
guistic knowledge with an especially transparent
relationship between the syntax and the seman-
tics. The sentence is treated as a series of modifier-
modified relations which has a primary modified
(generally the main verb). The appropriate syn-

tactic cues (relation markers) help in identifying
various relations. The relations are of two types:
karaka and others.Karakasare the roles of var-
ious participants in an action (arguments). For
a noun to hold a karaka relation with a verb, it
is important that they (noun and verb) have a di-
rect syntactic relation. Panini has spelled out six
karakas. Relations other than karakas are cap-
tured using the relational concepts of the model
(adjuncts). For example, relations such as pur-
pose, reason, and possession are marked within
this scheme. These argument labels are very sim-
ilar in spirit to the verb-specific semantic role la-
bels used by PropBank, which have already been
successfully mapped to richer semantic role labels
from VerbNet and FrameNet (Loper et al., 2007;
Yi et al., 2007). This suggests that much of the
task of PropBanking can be done via a determinis-
tic karaka-PropBank mapping based on the depen-
dency annotation.

3.2 PropBank Guidelines

PropBanking involves a semantic layer of an-
notation that adds predicate argument structures
to syntactic representations (Palmer et al., 2005;
Babko-Malaya, 2005). The semantic roles of
predicates are described at two levels of granu-
larity. For the purposes of annotating the tree-
banked structures, the arguments of the verbs are
labeled using a small set of numbered arguments,
e.g. “Arg0”, “Arg1”, “Arg2”, etc. In the frame
files that are associated with each verb, the num-
bered argument labels for each verb are associ-
ated with fine-grained verb-specific descriptions.
For instance, the verbsseeandeatboth have two
semantic roles, an “Arg0” and an “Arg1”. But
the verb-specific roles associated with the two ar-
guments are quite different. In the case of the
verb see, “Arg0” is specified as the viewer, and
“Arg1” as the thing viewed. In the case of the verb
eat, “Arg0” is the eater and “Arg1” is the meal.
An analogy can be drawn to Dowty’s Prototypi-
cal Agent (Arg0) and Prototypical Patient (Arg1)
(Dowty, 1991). Additionally, verb modifiers are
annotated using functional tags such as ArgM-
LOC, ArgM-TMP, ArgM-MNR to represent loca-
tive, manner, and temporal adjuncts respectively.
The PropBank Framesets for Hindi will include
mappings to the karaka, k1, k2, etc., many of
which can be made deterministically. Finally, the
Hindi PropBank (PB) also annotates (or adds) null



elements (empty arguments such as dropped sub-
jects and objects) in the syntactic representation
using the information about lexical subcategoriza-
tion provided in the frame files. The null ele-
ments provide critical information that the conver-
sion process uses to produce the PS structure.

3.3 Phrase Structure Guidelines

The Phrase Structure guidelines are inspired by
the Principles-and-Parameters methodology, as in-
stantiated by the theoretical developments start-
ing with Government and Binding Theory (Chom-
sky, 1981). A binary branching representation
is consistently assumed. We make three theoret-
ical commitments/design considerations that un-
derlie the guidelines. The first is that any minimal
clause distinguishes at most two positions struc-
turally (the core arguments). These positions can
be identified as the specifier of VP and the com-
plement of V. With a transitive predicate, these
positions are occupied by distinct NPs while with
an unaccusative or passive, the same NP occupies
both positions. All other NPs are represented as
adjuncts. Secondly, we represent any displace-
ment of core arguments from their canonical po-
sitions, irrespective of whether it crosses a clause
boundary, via traces. The displacement of other
arguments is only represented if it crosses a clause
boundary. A third assumption that inspires the
phrase structure decisions is the idea that syntactic
relationships such as agreement and case always
require c-command but do not necessarily require
a [specifier, head] configuration. Within these con-
straints, we always choose the simplest structure
compatible with the word order. We work with a
very limited set of category labels (NP, AP, AdvP,
VP, CP) assuming that finer distinctions between
different kinds of verbal functional heads can be
made via features.

3.4 Ensuring Consistency

In the next section we discuss in detail several ex-
amples, many of which could have quite different
analyses in DS and PS. We show how we are co-
ordinating the syntactic analysis between the two
different frameworks to facilitate the conversion.
We also discuss additional information, such as
traces of displaced arguments and other null ele-
ments, that is only required by PS. We describe at
what point in the annotation process the null el-
ements are added, either manually during DS or
PB, or automatically during conversion.

4 Hindi Syntax

In this section, we discuss a few common con-
structions in Hindi and show how they are repre-
sented in DS, PB, and PS. We point out theoretical
issues that could potentially cause difficulties for
the conversion process, and how we have chosen
to address them.

4.1 Basic Clause Structure

In any Hindi clause, there are at most two argu-
ments which can agree with the verb. Instead of
talking about “subject” and “object”, we will call
these arguments the “first argument” and the “sec-
ond argument”, respectively, because they do not
behave exactly like, say, English subject and ob-
ject. The higher argument can be nominative (null
case marker/postposition) or dative (ko; in this
case there is an obligative meaning), and for tran-
sitive verbs, ergative (ne). The lower argument can
be nominative or dative. The realization of case
on these two arguments is not lexically dependent.
The verb agrees (in gender and number) with a
nominative argument (first or second). If both the
first and the second argument are nominative, then
agreement is with the first; if neither argument is
nominative, then the verb shows default masculine
singular agreement. Here are some transitive ex-
amples showing different case markings (and thus
different agreement on the verb).1

(1) Transitive verb with no case markers:

Atif
Atif.M

kitaab
book.F

paRh-egaa
read-Fut.3MSg

‘Atif will read (a/the) book.’

(2) Transitive verb with the first argument in
ergative:

Atif
Atif.M

ne
Erg

kitaab
book.F

paRh-ii
read-Pfv.FSg

‘Atif read (a/the) book.’

(3) Transitive verb with the first argument in
ergative and the second argument withko
marker:

1The meanings of grammatical markers used in the exam-
ples are as follows: 1,2,3 (1/2/3 person), Acc (Accusative),
Dat (Dative), Erg (Ergative), F (Feminine), Fut (Future),
Gen (Genitive), Inf (Infinitive), M (Masculine), Pl (Plural),
Pfv (Perfective), Prog (Progressive), Prs (Present), and Sg
(Singular).



Atif
Atif.M

ne
Erg

kitaab
book.F

ko
Dat

paRh-aa
read-Pfv

‘Atif read the book.’

4.1.1 Dependency

The two main arguments of the transitive verb in
the DS attach to the verb with dependency types
k1 and k2. Figure 1 shows the DS for Ex (3).
For the sake of simplicity, in DS the case marker
is conjoined to the preceding noun (as indicated
by the underscore); the noun and its case marker
form a word group, which is represented as a sin-
gle node in the DS. The other two transitive verb
examples have different case markers for k1 and
k2, but the dependency types remain the same;
therefore, the DS’s for them are identical to the
DS in Figure 1, barring the different case markers
and the inflected form of the verb.

paRhaa

Atif_ne kitaab_ko

k1 k2

Figure 1: DS for the transitive example in (3)

4.1.2 PropBank

The arguments of the verb in the transitive struc-
ture receive semantic role labels specified in the
frame file associated with the verb. The annota-
tion and the frame for Ex (3) are below; those for
Ex (1) and (2) are identical except for the different
case markers and the inflected form of the verb.
Note that the Arg0 and the Arg1 line up exactly
with k1 and k2 for all three examples.

(3-PB) Semantic labeling for the transitive exam-
ple in (3):

rel: paRh-aa
Arg0: Atif ne
Arg1: kitaab ko

Roleset id: paRh.01 (’to read’)
Arg0: reader
Arg1: what is read

4.1.3 Phrase Structure

The first and second arguments are structurally
distinguished using node labels (V, VP-Pred, VP),
and thus no functional tags are needed to identify
these two arguments (just like in the English PTB
the syntactic object is not marked with functional

tags). Unlike DS, each word has its own node in
the phrase structure representation. This can be
seen in the PS trees in Figures 2-4, which differ
primarily in the presence or absence of postposi-
tional markers. In contrast, postpositions do not
create additional structure in the DS representa-
tion, where a noun and its postposition are put to-
gether and correspond to a single node. DS and PS
differ in this aspect because words in a word group
in DS are not always siblings in PS. For instance,
while auxiliaries and main verbs form a verb group
in DS (see Figure 5), they attach to different levels
in PS (see Figure 6).

VP

�
��

H
HH

NP

N
Atif

VP-Pred

�
�

H
H

NP

N
kitaab

V
paRhegaa

Figure 2: PS for the transitive example in Ex (1)

VP

�
��

H
HH

NP-P
��HH

NP

N
Atif

P
ne

VP-Pred

�� HH

NP

N
kitaab

V
paRhii

Figure 3: PS for the transitive example in Ex (2)

VP

�
�

��

H
H

HH

NP-P
��HH

NP

N
Atif

P
ne

VP-Pred

�
�

H
H

NP-P
�� HH

NP

N
kitaab

P
ko

V
paRhaa

Figure 4: PS for the transitive example in Ex (3)

4.2 Unaccusative Verbs

Unaccusative verbs are intransitive verbs (verbs
with only one argument) in which, roughly speak-
ing, the first argument has semantic properties
usually associated with lower arguments (such as
the second argument). In the examples immedi-
ately below, the first object is the object under-
going opening, not the agent bringing about the
opening (as is usually the case with first argu-
ments). Ergative case is not an option with unac-



k1

darwaazaa

khul_rahaa_hai

Figure 5: DS for the unaccusative example in Ex
(4)

cusatives, but nominative and obligational dative
cases are possible.

(4) Unaccusatives: nominative (zero marker)

darwaazaa
door.M

khul
open

rahaa
Prog.MSg

hai
be.Prs.Sg

‘The door is opening.’

(5) Unaccusatives: dative

darwaaze
door.M

ko
Dat

khul-naa
open-Inf

hai
be.Prs

‘The door has to open.’

In fact, the issue of unaccusativity in Hindi is
far more complex and a more detailed discussion
is outside the scope of the paper. In this paper,
we accept the generalization about unaccusativity
as presented here, which correctly characterizes a
significant set of verbs.

4.2.1 Dependency

The DS treats unaccusatives like other intransi-
tive verbs and the first argument of the verb is an-
notated ask1. Like the word group for a noun and
its case marker, in the DS we also group auxiliary
verbs and main verbs into a verb group. Figure 5
shows the DS for Ex (4), and the DS for Ex (5) is
similar.

4.2.2 PropBank

PropBank assigns the label ”Arg0” for the
first argument of intransitive unergative verbs and
”Arg1” for unaccusative verbs. The verbkhul
(’open’) is unaccusative by a number of diagnos-
tics, as reflected in the frame file for this verb. Be-
low is the PB annotation for Ex (4), and the anal-
ysis for the unaccusative verb in Ex (5) is similar.

(4-PB) Semantic labeling for the unaccusative ex-
ample in (4):

rel: khul rahaa hai
Arg1: darwaazaa

Roleset id: khul.01 (’to open’)
Arg1: the thing opening

The unusual mismatch between thekarakalabel
and the PB label constitutes explicit marking of
the unaccusative verb, and therefore provides nec-
essary guidance that allows the conversion process
to correctly produce the PS given below.

4.2.3 Phrase Structure

For PS, we insert a special trace in the second
position (*CASE*), representing the fact that se-
mantically, the constituent in first position comes
from somewhere below. This can be interpreted as
follows: the constituent gets its semantic (lexical-
semantic) interpretation in the second position,
then moves, and behaves syntactically like any
other first position constituent. Our analysis fol-
lows the standard analysis of unaccusativity as ar-
ticulated in (Burzio, 1986).

VP

�
�

�

H
H

H

VP

�
�

�
�

H
H

H
H

VP

�
�

�

H
H

H

NP1

N
darwaazaa

VP-Pred

�
�

H
H

NP

*CASE*1

V
khul

V
rahaa

V
hai

Figure 6: PS for the unaccusative example in (4)

4.3 Support Verb Constructions

Hindi-Urdu productively allows eventive noun
phrases to combine with a number of verbs (most
prominentlyho ‘be’ and kar ‘do’) to form transi-
tive and intransitive verbal structures. There are
two kinds of constructions: in one, an argument
appears with genitive case (suggesting case mark-
ing happens within the NP), while in the other, all
arguments have verbal case marking. Note that
some nouns allow only the genitive, others do not
allow the genitive at all, and some allow both con-
structions. Note that there are also support verb
constructions with dative arguments, which we do
not have space to discuss.

Type 1: the argument of the eventive noun has
genitive case. The verb agrees with the eventive
noun.



(6) NP + be:

gehenoN
jewels.MPl

kii
Gen.F

kal
yesterday

chorii
theft.F

huii
be.Pfv.FSg

‘The jewels were stolen yesterday’

(7) NP + do:

Atif
Atif

ne
Erg

gehenoN
jewels.MPl

kii
Gen.F

kal
yesterday

chorii
theft.F

kii
do.Pfv.FSg

‘Atif stole the jewels yesterday.’

Type 2: the argument of the eventive noun has
verbal case marking. In this case, the verb agrees
with the argument of the eventive noun if it is nom-
inative.

(8) NP + be: no genitive, no external argu-
ment:

geheneN
jewels.MPl

kal
yesterday

chorii
theft.F

ho
be

gaye
GO.Pfv.MPl

‘Yesterday the jewels got stolen.’

(9) NP +kar: no genitive, external argument:

Atif
Atif.M

ne
Erg

kal
yesterday

geheneN
jewels.MPl

chorii
theft.F

kiye
do.Pfv.MPl

‘Atif stole the jewels yesterday.’

4.3.1 Dependency

The DS interprets the event nominalchorii and
the verbalizer (support verb)huii/kii as a unit, rep-
resented by thepof label. This unit inherits its ar-
guments from the event nominal. Support verbs of
Type 1 and Type 2 are handled differently in the
DS. For Type 1,gehenoNdepends onchorii be-
cause the genitive case indicates thatsyntactically
the former is closely related to the latter; As a re-
sult, the DS attachesgehenoNto chorii (the event
nominal) with a r6-k1 label (Figure 7) or r6-k2 la-
bel (Figure 8). In Type 2, there are no genitive
case markers to linkgeheneNandchorii syntacti-
cally, so bothgeheneNandchorii are attached to

k7t pof

r6−k1

huii

kal chorii

gehenoN_kii

Figure 7: DS for the type 1 example in Ex (6)

pof

kii

Atif_ne

k7t
k1

r6−k2

gehenoN_kii

choriikal

Figure 8: DS for the type 1 example in Ex (7)

the verbho gaye/kiyeas shown in Figures 9-10.
The pof label for chorii indicates thatchorii and
ho gaye/kiyetogether represent the predicate rela-
tion of the clause.

4.3.2 PropBank

Annotation of support verb constructions is es-
pecially challenging for PropBanking, since some
of the arguments are clearly determined by the
nominal predicate rather than the verbal predi-
cate. We prefer to think of them as complex predi-
cates, whose argument structure can only be deter-
mined by considering the influence of both the ver-
bal and nominal predicate. Our current approach
is to identify the verb as appearing in a support
verb construction and do minimal annotation be-
fore passing it along for nominal predicate argu-
ment annotation. In this paper we present the final
argument labels that would be arrived at after the
two-pass annotation.

In Ex (8) and (9), the object nominalchorii
(’theft’) can be viewed as constituting an argument
of the verb as well as part of a complex predi-
cate that includes the verb. This situation is re-
inforced by selecting the verb frame file associ-
ated with the “support verb” senses of the verbsho
(’be’) andkar (’do’). The object nominal is a pred-

pof

ho_gaye

choriikal

k1 k7t

geheneN

Figure 9: DS for the type 2 example in Ex (8)



kiye

k1
k7t k2

pof

Atif_ne kal geheneN chorii

Figure 10: DS for the type 2 example in Ex (9)

icate that itself takes its own arguments and has a
frame file of its own. The final annotation com-
bines the arguments from the support verb and the
noun to create a single annotation for the phrase as
a whole, as shown in (8-PB) and (9-PB). The con-
structions with genitive case-marking shown in Ex
(6) and (7) receive a similar analysis. The exact
form of the frame files for the support verbs and
object nominals are still under discussion and are
not included here.

(8-PB) Semantic labeling for the example in (8):

rel: chorii ho gaye
Arg1: geheneN
ArgM-TMP: kal

(9-PB) Semantic labeling for the example in (9):

rel: chorii kiye
Arg0: Atif ne
Arg1: geheneN
ArgM-TMP: kal

4.3.3 Phrase Structure

In both Type 1 and Type 2, the eventive NP
headed bychorii ‘theft’ takes geheneN‘jewels’
as its internal argument. Type 1 and Type 2 dif-
fer with respect to whether the eventive NP is a
proper argument (first or second) of the verb. In
Type 1, the eventive NP is a proper argument as
can be seen by the fact that it triggers agreement.
Its internal argument receives genitive case within
the NP and any further movement of the internal
argument is an optional scrambling movement as
indicated by the *SCR* trace. The PS’s for Ex (6)
and (7) are shown in Figures 11 and 12, respec-
tively.

The analysis for Type 2 is quite different as
shown in Figures 13-14: the eventive NP headed
by chorii ‘theft’ is not in the second position;
rather, it is a sister to the verb, in a non-case and
non-agreement position. InsteadgeheneN‘jew-
els’, the internal argument ofchorii ‘theft’, moves
to the second position out of the eventive NP. This
movement is for case reasons as indicated by the
*CASE* trace and is obligatory.

VP

�
�

�
�

H
H

H
H

NP-P2
�� HH

NP

N
gehenoN

P
kii

VP

�
�

�
��

H
H

H
HH

AdvP

Adv
kal

VP

�
�

��

H
H

HH

NP1

�
�

H
H

NP
*SCR*2

N
chorii

VP-Pred

�
�

H
H

NP
*CASE*1

V
huii

Figure 11: PS for the support verb construction
example in (6)

VP

�
�

�
��

H
H

H
HH

NP-P
��HH

NP

N
Atif

P
ne

VP-Pred

�
�

�
�

H
H

H
H

NP-P1
�� HH

NP

N
gehenoN

P
kii

VP-Pred

�
�

��

H
H

HH

AdvP

Adv
kal

VP-Pred

�
�

H
H

NP

�
�

H
H

NP
*SCR*1

N
chorii

V
kii

Figure 12: PS for the support verb construction
example in (7)

5 A Note on the Overall Process

The first step in our pipeline is the manual an-
notation of DS. Traditionally, DS annotation at-
taches arguments to the relevant predicating ex-
pression without worrying about canonical word
order or missing predicates/arguments. We fol-
low the tradition with the exception of inserting
missing predicates (e.g., in the gapping construc-
tion) to DS so that their arguments can attach to
them. We briefly considered asking the DS tree-

VP

�
�

��

H
H

HH

NP1

N
geheneN

VP-Pred

�
�

�
�

H
H

H
H

AdvP

Adv
kal

VP-Pred

�
�

�
��

H
H

H
HH

NP
*CASE*1

V’

�
�
�

H
H

H

NP

�
�

H
H

NP
*CASE*1

N
chorii

V
��HH

V
ho

V
gaye

Figure 13: PS for the Type 2 example in (8)



VP

�
�

��

H
H

HH

NP-P
��HH

NP

N
Atif

P
ne

VP-Pred

�
�

�
�

H
H

H
H

AdvP

Adv
kal

VP-Pred

�
�

�
�

H
H

H
H

NP1

N
geheneN

V’

�
��

H
HH

NP

�
�

H
H

NP
*CASE*1

N
chorii

V
kiye

Figure 14: PS for the Type 2 example in (9)

bankers to mark missing arguments during the an-
notation process, but this proved to be a major
additional burden for these annotators. Since the
main focus of the PropBank annotation is the lex-
ical predicate-argument structure, it was decided
that this would be a more appropriate stage for
taking into account missing arguments. Displaced
arguments are marked in PS only; the conversion
process will insert traces and coindex them with
the antecedents automatically. This process is pos-
sible because the displaced arguments can be eas-
ily detected by looking at the word order.

We have developed a table that covers a wide
range of empty categories, and specifies at what
stage in the process they will be added. Some
are added manually during the DS annotation if
their addition creates a node that is essential to
the DS tree structure. Many more are now being
added during the PropBanking annotation. There-
fore, the conversion process will take as input the
original DS structure augmented with the PB argu-
ment labels and empty arguments. The close cor-
respondence between the Paninian karaka and the
PropBank labels will simplify the labeling aspect
of the PB annotation, allowing additional time for
the empty arguments. Finally, traces for displaced
arguments can be added automatically during the
conversion process.

Our goal is to manually treebank 400K words
of naturally occurring Hindi newswire, and, using
similar guidelines, 200K words of naturally oc-
curring Urdu newswire, with DS structure. The
assumption is that a high precision transliteration
process will allow us to effectively merge the two
treebanks for both languages. This data will then
be PropBanked, and finally converted to PS. All of
the levels of annotation as well as the original text
will be made freely available. A long term goal

is a larger treebank, which will allow us to add
other genres and create a more balanced corpus.
We have already successfully trained a parser on
a pilot version of the DS treebank (Bharati et al.,
2008), and will retrain it as soon as a new 100K-
word treebank is available.

We use standard inter-tagger agreement (ITA)
as a first step towards evaluating the consistency
and accuracy of our annotation. The subsequent
layers provide additional quality control and of-
ten higlight inconsistencies or inaccuracies. The
conversion process is the most stringent test of the
annotation, since it requires perfect formatting and
consistency for the conversion to succeed.

5.1 Conversion

The DS-to-PS conversion process (assuming DS
plus PB) has three steps. First, for each (DS,
PS) pair appearing in the conversion test suite,
we run a consistency checking algorithm to deter-
mine whether the DS and the PS are consistent.
The inconsistent cases are studied manually and
if the inconsistency cannot be resolved by chang-
ing the analyses used in the guidelines, a new DS
that is consistent with the PS is proposed. We call
this new dependency structure ”DScons” (”cons”
for ”consistency”; DScons is the same as DS for
the consistent cases). Because the DS and PS
guidelines are carefully coordinated, we expect the
inconsistent cases to be rare and well-motivated.
Second, conversion rules are extracted automati-
cally from these (DScons, PS) pairs. Last, given
a new DS, a PS is created by applying conversion
rules. Note that non-projective DS’s will be con-
verted to projective DScons. A preliminary study
on the English Penn Treebank showed promising
results. Error analyses indicated that most conver-
sion errors were caused by ambiguous DS patterns
in the conversion rules. This implies that includ-
ing sufficient information in the input DS (plus
PB) could reduce ambiguity, significantly improv-
ing the performance of the conversion algorithm.
The details of the conversion algorithm, definition
of consistency, and the experimental results are de-
scribed in (Xia et al., 2009).

6 Conclusion

We have presented our approach to producing
Hindi and Urdu treebanks that are both multi-
representational, i.e., DS and PS for the same data,
and multi-layered, i.e., with layers for both syntac-



tic structure and semantic structure (both karaka
and PB). This approach requires careful coordina-
tion of the guidelines for DS, PS and PB. Current
versions of these guidelines can all be found on
our project Wiki.2

Since our plan is to manually annotate DS and
PB and then automatically produce PS from DS +
PB, we have had to carefully (1) coordinate syn-
tactic analyses between the guidelines, and (2)
consider any information that PS might require
which DS would not traditionally supply. We have
chosen to add many explicit empty arguments de-
sired by PS at the PropBank annotation stage, and
will therefore take the manual annotation of both
DS and PB as input to our conversion process. The
conversion process will itself be able to determin-
istically add traces for displaced arguments. In this
paper we have provided details of the representa-
tions of several different types of syntactic con-
structions to illustrate the impact of our choices.

Acknowledgments This work is supported by
NSF grants CNS-0751089, CNS-0751171, CNS-
0751202, and CNS-0751213.

References
O. Babko-Malaya. 2005. Propbank 1 annotation guidelines.

Rafiya Begum, Samar Husain, Arun Dhwaj, Dipti Misra
Sharma, Lakshmi Bai, and Rajeev Sangal. 2008. Depen-
dency annotation scheme for indian languages. InPro-
ceedings of IJCNLP-2008, Hyderabad, India.

Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal. 1995.
Natural Language Processing – A Paninian Perspective.
Prentice-Hall of India.

Akshar Bharati, Samar Husain, Bharat Ambati, Sambhav
Jain, Dipti M Sharma, and Rajeev Sangal. 2008. Two
semantic features make all the difference in parsing accu-
racy. InProceedings of ICON-2008, CDAC Pune, India.

Luigi Burzio. 1986. Italian syntax: a government-binding
approach. Studies in natural language and linguistic the-
ory. Kluwer, Dordrecht.

Jinho Choi, Martha Palmer, and Nianwen Xue. 2009. Using
parallel propbanks to enhance word-alignments. InPro-
ceedings of the Third Linguistic Annotation Workshop.

Noam Chomsky. 1981.Lectures on Government and Bind-
ing. Dordrecht: Foris.

Michael Collins, Jan Hajič, Lance Ramshaw, and Christoph
Tillmann. 1999. A statistical parser for czech. InPro-
ceedings of ACL-1999.

Michael Collins. 1997. Three Generative, Lexicalised Mod-
els for Statistical Parsing. InProceedings of ACL-1997.

2https://verbs.colorado.edu/hindiwiki/index.php/MainPage

David Dowty. 1991. Thematic proto-roles and argument se-
lection. Language, 67(3):547–619.

J. Hajič, E. Hajicova, M. Holub, P. Pajas, P. Sgall, B. Vidova-
Hladka, and V. Reznickova. 2001. The Current Status
of the Prague Dependency Treebank. InLecture Notes in
Artificial Intelligence (LNAI), volume 2166, pages 11–20.

T. H. King, R. Crouch, S. Riezler, M. Dalrymple, and R. Ka-
plan. 2003. The PARC700 Dependency Bank. InProc.
of the 4th International Workshop on Linguistically Inter-
preted Corpora (LINC-2003), Budapest, Hungary.

Paul Kingsbury, Martha Palmer, and Mitch Marcus. 2002.
Adding semantic annotation to the Penn TreeBank. In
Proceedings of HLT-2002, San Diego, CA.

Dan Klein and Christopher D. Manning. 2003. Accurate
Unlexicalized Parsing. InProceedings of ACL-2003.

Seth Kulick, Ryan Gabbard, and Mitch Marcus. 2006. Pars-
ing the Arabic Treebank: Analysis and Improvements. In
Proceedings of the 5th Conference on Treebanks and Lin-
guistics Theories (TLT-2006), pages 31–32.

R. Levy and C. D. Manning. 2003. Is it Harder to Parse
Chinese, or the Chinese Treebank? InProceedings of
ACL-2003, Sapparo, Japan.

Edward Loper, Szu-Ting Yi, and Martha Palmer. 2007.
Combining Lexical Resources: Mapping between Prop-
Bank and VerbNet. InProc. of the 7th International Work-
shop on Computational Linguistics, Tilburg, the Nether-
lands.

M. Marcus, G. Kim, M. Marcinkiewicz, R. MacIntyre,
A. Bies, M. Ferguson, K. Katz, and B. Schasberger. 1994.
The Penn Treebank: Annotating predicate argument struc-
ture. InProceedings of the ARPA Human Language Tech-
nology Workshop.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan
Hajič. 2005. Non-projective dependency parsing using
spanning tree algorithms. InProc. of HLT/EMNLP 2005.

S. Oepen, K. Toutanova, S. M. Shieber, C. D. Manning,
D. Flickinger, and T. Brants. 2002. The LinGO Red-
woods Treebank: Motivation and Preliminary Applica-
tions. InProc. of COLING, Taipei, Taiwan.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005.
The proposition bank: An annotated corpus of semantic
roles.Computational Linguistics, 31(1):71–106.

Dipti Misra Sharma, Rajeev Sangal, Lakshmi Bai, and Rafiya
Begam. 2006. Anncorra: Treebanks for indian languages
(version - 1.9). Technical report, Language Technologies
Research Center IIIT, Hyderabad, India.

Fei Xia and Martha Palmer. 2001. Converting Dependency
Structures to Phrase Structures. InProceedings of HLT-
2001, San Diego, CA.

Fei Xia, Owen Rambow, Rajesh Bhatt, Martha Palmer,
and Dipti Misra Sharma. 2009. Towards a multi-
representational treebank. InThe 7th International
Workshop on Treebanks and Linguistic Theories (TLT-7),
Groningen, Netherlands.

Szu-Ting Yi, Edwarwd Loper, and Martha Palmer. 2007.
Can semantic roles generalize across genres? InProceed-
ings of HLT/NAACL-2007.


