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Abstract

We presenta joint probability model for
statisticalmachinetranslation,which au-
tomaticallylearnswordandphraseequiv-
alents from bilingual corpora. Transla-
tionsproducedwith parametersestimated
using the joint model are more accu-
ratethantranslationsproducedusingIBM
Model4.

1 Motivation

Most of the noisy-channel-based models used in
statisticalmachinetranslation(MT) (Brown et al.,
1993) are conditional probability models. In the
noisy-channelframework, eachsourcesentencee in
a parallel corpusis assumedto “generate”a target
sentencef by meansof a stochasticprocess,whose
parametersareestimatedusingtraditionalEM tech-
niques (Dempsteret al., 1977). The generative
modelexplainshow sourcewordsaremappedinto
target words and how target words are re-ordered
to yield well-formed target sentences. A variety
of methodsareusedto accountfor the re-ordering
stage: word-based(Brown et al., 1993), template-
based(Ochet al., 1999),andsyntax-based(Yamada
and Knight, 2001), to namejust a few. Although
thesemodelsusedifferent generative processesto
explainhow translatedwordsarere-orderedin a tar-
get language,at thelexical level they arequitesim-
ilar; all thesemodelsassumethat sourcewordsare
individually translatedinto targetwords.1

1The individual wordsmaycontaina non-existentelement,
calledNULL.

We suspectthatMT researchershave so far cho-
sen to automaticallylearn translationlexicons de-
fined only over words for primarily pragmaticrea-
sons. Large scalebilingual corporawith vocabu-
laries in the rangeof hundredsof thousandsyield
very largetranslationlexicons.Tuningtheprobabil-
itiesassociatedwith theselargelexiconsis adifficult
enoughtaskto deteronefrom trying to scaleup to
learningphrase-basedlexicons.Unfortunately, trad-
ing spacerequirementsandefficiency for explana-
tory power oftenyieldsnon-intuitive results.

Consider, for example,theparallelcorpusof three
sentencepairsshown in Figure1. Intuitively, if we
allow any Sourcewordsto bealignedto any Target
words,thebestalignmentthatwe cancomeup with
is theonein Figure1.c. Sentencepair (S2,T2) of-
fersstrongevidencethat“b c” in languageS means
the samething as “x” in languageT. On the basis
of this evidence,we expectthesystemto alsolearn
from sentencepair (S1, T1) that “a” in languageS
meansthesamethingas“y” in languageT. Unfortu-
nately, if oneworkswith translationmodelsthatdo
not allow Target words to be alignedto more than
oneSourceword— asit is thecasein theIBM mod-
els (Brown et al., 1993)— it is impossibleto learn
that thephrase“b c” in languageS meansthesame
thing asword “x” in languageT. The IBM Model
4 (Brown etal.,1993),for example,convergesto the
word alignmentsshown in Figure1.bandlearnsthe
translationprobabilitiesshown in Figure1.a.2 Since
in the IBM model one cannotlink a Target word
to morethana Sourceword, the trainingprocedure

2To traintheIBM-4 model,weusedGiza(Al-Onaizanetal.,
1999).



IBM−4 T−Table

p(y | a) = 1
p(x | c) = 1
p(z | b) = 0.98
p(x | b) = 0.02

Joint T−Table

p(x, b c) = 0.34
p(y, a) = 0.01

p(x y, a b c) = 0.32

p(z, b) = 0.33

Corresponding
Conditional Table

p(x y | a b c ) = 1
p(x | b c) = 1
p(y | a) = 1
p(z | b) = 1

S1: a   b   c

T1: x   y

S2: b   c

T2: x

S3: b

T3: z

S1: a   b   c

T1: x   y

S2: b   c

T2: x

S3: b

T3: z

S1: a   b   c

T1: x   y

S2: b   c

T2: x

S3: b

T3: z

Intuitive JointIBM−4

a) b) c) e)d)

Figure1: Alignmentsandprobabilitydistributionsin IBM Model4 andour joint phrase-basedmodel.

yields unintuitive translationprobabilities. (Note
that anothergoodword-for-word model is onethat
assignshigh probability to p(x

�
b) andp(z

�
b) and

low probabilityto p(x
�
c).)

In thispaper, wedescribea translationmodelthat
assumesthat lexical correspondencescanbe estab-
lishednot only at the word level, but at the phrase
level aswell. In constrastwith many previous ap-
proaches(Brown et al., 1993;Ochet al., 1999;Ya-
madaandKnight, 2001),our modeldoesnot try to
capturehow Sourcesentencescanbe mappedinto
Target sentences,but rather how Sourceand Tar-
get sentencescanbe generatedsimultaneously. In
otherwords,in thestyleof Melamed(2001),we es-
timate a joint probability model that canbe easily
marginalizedin orderto yield conditionalprobabil-
ity modelsfor both source-to-target and target-to-
sourcemachinetranslationapplications.The main
differencebetweenour work and that of Melamed
is that we learn joint probability modelsof trans-
lation equivalencenot only betweenwordsbut also
betweenphrasesandweshow thatthesemodelscan
beusednot only for theextractionof bilingual lexi-
consbut alsofor theautomatictranslationof unseen
sentences.

In the rest of the paper, we first describeour
model(Section2) andexplain how it canbe imple-
mented/trained(Section3). We briefly describea

decodingalgorithmthat works in conjunctionwith
ourmodel(Section4) andevaluatetheperformance
of atranslationsystemthatusesthejoint-probability
model(Section5). We endwith a discussionof the
strengthsandweaknessesof ourmodelascompared
to othermodelsproposedin theliterature.

2 A Phrase-Based Joint Probability Model

2.1 Model 1

In developingourjoint probabilitymodel,westarted
out with a very simplegenerative story. We assume
thateachsentencepair in ourcorpusis generatedby
thefollowing stochasticprocess:

1. Generateabagof concepts� .

2. For eachconcept ������� , generatea pair of
phrases�
	� �� 	� ��� , accordingto the distribution� �
	� �� 	� ��� , where 	� � and 	� � each contain at least
one word.

3. Order the phrasesgeneratedin eachlanguage
soasto createtwo linearsequencesof phrases;
these sequencescorrespondto the sentence
pairsin abilingual corpus.

For simplicity, we initially assumethatthebagof
conceptsandthe orderingof the generatedphrases
are modeledby uniform distributions. We do not
assumethat ��� is a hiddenvariable that generates



the pair ��	� �� 	� ��� , but ratherthat �������
	� �� 	� ��� . Un-
dertheseassumptions,it follows thattheprobability
of generatinga sentencepair (E, F) usingconcepts������� is given by the product of all phrase-to-
phrasetranslationprobabilities,�������! � �
	� � � 	� � � that
yield bagsof phrasesthatcanbeorderedlinearly so
asto obtainthesentencesE andF. For example,the
sentencepair “a b c” — “x y” canbegeneratedus-
ing two concepts,(“a b” : “y”) and(“c” : “x”); or
oneconcept,(“a b c” : “x y”), becausein bothcases
the phrasesin eachlanguagecanbe arrangedin a
sequencethatwouldyield theoriginalsentencepair.
However, the samesentencepair cannotbe gener-
atedusingtheconcepts(“a b” : “y”) and(“c” : “y”)
becausethesequence“x y” cannotberecreatedfrom
thetwo phrases“y” and“y”. Similarly, thepaircan-
not be generatedusing concepts(“a c” : “x”) and
(“b” : “y”) becausethesequence“a b c” cannotbe
createdby catenatingthephrases“a c” and“b”.

We saythata setof concepts� canbelinearized
into asentencepair (E, F) if E andF canbeobtained
by permutingthephrases	� � and 	� � thatcharacterize
all concepts���"�#� . We denotethis propertyus-
ing thepredicate$%��&'�)(*�+�,� . Underthis model,the
probabilityof a given sentencepair (E, F) canthen
be obtainedby summingup over all possibleways
of generatingbagsof concepts�-�/. that canbe
linearizedto (E, F).0 ��&'�)(1�2� 3 4�6587 9;:=<?> @A>  CB D�����E � �
	� �F� 	� ��� (1)

2.2 Model 2

AlthoughModel1 is fairly unsophisticated,wehave
found that it producesin practicefairly goodalign-
ments. However, this model is clearly unsuitedfor
translatingunseensentencesas it imposesno con-
straintson the ordering of the phrasesassociated
with a given concept. In order to accountfor this,
we modify slightly thegenerative processin Model
1 so as to accountfor distortions. The generative
storyof Model2 is this:

1. Generateabagof concepts� .

2. Initialize E andF to emptysequencesG .
3. Randomlytake a concept�+�H�I� andgenerate

a pair of phrases�
	� �� 	� ��� , accordingto thedis-

tribution
� �
	� �� 	� ��� , where 	� � and 	� � eachcontain

at leastoneword. Remove then �+� from � .

4. Appendphrase 	� � at theendof F. Let J bethe
startpositionof 	� � in F.

5. Insertphrase 	� � at position K in E providedthat
no otherphraseoccupiesany of the positions
betweenK and K�L � 	� � � , where

� 	� � � givesthe
length of the phrase 	� � . We hencecreatethe
alignmentbetweenthe two phrases 	� � and 	� �
with probabilityMON 7�PQ ��7DRTS MVU � 0 �T��K�L � 	� � � �XW!YZ�+�
where

U �\[)��]8� is aposition-baseddistortiondis-
tribution.

6. Repeatsteps3 to 5 until � is empty.

In Model2, theprobabilityto generateasentence

pair (E, F) is given by formula (2), where 0_^E` � 	� M� �
denotesthe positionof word J of phrase 	� � in sen-
tenceF and 0_^E` ��a �
	� ��� denotesthe position in sen-
tenceE of thecenterof massof phrase� � .0 ��&'�)(1�2� 3 4�T587 9;:=<?> @A>  CB D�����E cb � ��	� �� 	� ���Hd7�PQ ��7DM S4e U � 0_^E` � 	�

M� �+� 0_^E` ��a �
	� ���X��f (2)

Model 2 implementsan absoluteposition-based
distortionmodel,in thestyle of IBM Model 3. We
have tried many types of distortion models. We
eventuallysettledfor the modeldiscussedherebe-
causeit producesbettertranslationsduring decod-
ing. Sincethe numberof factorsinvolved in com-
putingtheprobabilityof analignmentdoesnot vary
with thesizeof theTargetphrasesinto whichSource
phrasesare translated,this model is not predis-
posedto producetranslationsthat are shorterthan
theSourcesentencesgivenasinput.

3 Training

Training themodelsdescribedin Section2 is com-
putationallychallenging.Sincethereis anexponen-
tial numberof alignmentsthat cangeneratea sen-
tencepair (E, F), it is clearthatwe cannotapplythe



1. Determine high-frequency n-
grams in the bilingual corpus.

2. Initialize the t-distribution
table.

3. Apply EM training on the
Viterbi alignments, while using
smoothing.

4. Generate conditional model
probabilities.

Figure 2: Training algorithm for the phrase-based
joint probabilitymodel.

EM trainingalgorithmexhaustively. To estimatethe
parametersof our model,we applythealgorithmin
Figure2, whosestepsaremotivatedanddescribed
below.

3.1 Determine high-frequency n-grams in E
and F

If one assumesfrom the outset that any phrases	� �g��h4i and 	� �*��jki canbegeneratedfrom a con-
cept ��� , onewould needasupercomputerin orderto
storein thememorya tablethatmodelsthe

� �
	� �l� 	� ���
distribution. Sincewe don’t have accessto comput-
erswith unlimitedmemory, weinitially learnt distri-
butionentriesonly for thephrasesthatoccuroftenin
thecorpusandfor unigrams.Then,throughsmooth-
ing, we learn t distribution entriesfor the phrases
thatoccurrarely aswell. In orderto be considered
in step2 of the algorithm,a phrasehasto occurat
leastfive timesin thecorpus.

3.2 Initialize the t-distribution table

BeforetheEM trainingprocedurestarts,onehasno
ideawhat word/phrasepairsare likely to sharethe
samemeaning. In otherwords,all alignmentsthat
cangenerateasentencepair(E,F)canbeassumedto
have the sameprobability. Undertheseconditions,
theevidencethatasentencepair(E,F) contributesto
the fact that ��	� � � 	� � � aregeneratedby thesamecon-
cept ��� is givenby thenumberof alignmentsthatcan
be built between(E, F) that have a concept��� that
is linked to phrase 	� � in sentenceE and phrase 	� �
in sentenceF divided by the total numberof align-

mentsthat canbe built betweenthe two sentences.
Both thesenumberscanbeeasilyapproximated.

Given a sentenceE of K words, thereare m*��Kl�nJA�
waysin which the K wordscanbepartitionedinto J
non-emptysets/concepts,where m*��Kl�nJA� is the Stir-
ling numberof secondkind.

m*��Kl�nJA�2�poJrq
M6s e3 � Sut �lv o � �Ew J [Tx ��Jyvz[l�F{ (3)

Therearealso m*�\|V�nJA� waysin which the | words
of a sentenceF can be partitioned into J non-
empty sets. Given that any words in E can be
mappedto any wordsin F, it follows that thereare} a � { :=~�> a�BM S4e Jrq+m*��Kl�nJA��m*�\|V�nJA� alignmentsthatcanbe
built betweentwo sentences(E, F) of lengthsK and| , respectively. Whena concept��� generatestwo
phrases�
	� � � 	� � � of length � and � , respectively, there
areonly K�v'� and |�v"� wordsleft to link. Hence,in
the absenceof any otherinformation,the probabil-
ity thatphrases	� � and 	� � aregeneratedby thesame
concept��� is givenby formula(4).} a � { :�~ s;� > a s;� BM S4e Jrq+m*��Kuvz�_�nJA��m*�\|�v��6�nJA�} a � { :�~�> a�BM S4e Jrq+m*��Kl�nJA��m*�\|V�nJA� (4)

Note that the fractional countsreturnedby equa-
tion (4) are only an approximationof the t distri-
bution that we are interestedin becausethe Stir-
ling numbersof thesecondkind do not imposeany
restrictionon the words that are associatedwith a
given conceptbe consecutive. However, sincefor-
mula (4) overestimatesthe numeratoranddenomi-
natorequally, theapproximationworkswell in prac-
tice.

In the secondstep of the algorithm, we apply
equation(4) to collect fractionalcountsfor all un-
igramandhigh-frequency n-grampairsin thecarte-
sian productdefinedover the phrasesin eachsen-
tencepair (E, F) in a corpus.We sumover all these
t-countsandwe normalizeto obtainan initial joint
distribution

�
. This stepamountsto runningtheEM

algorithmfor onestepover all possiblealignments
in thecorpus.

3.3 EM training on Viterbi alignments

Givenanon-uniformt distribution,phrase-to-phrase
alignmentshave differentweightsandthereareno



othertricksonecanapplytocollectfractionalcounts
over all possiblealignmentsin polynomial time.
Startingwith step3 of thealgorithmin Figure2, for
eachsentencepair in a corpus,we greedilyproduce
an initial alignmentby linking togetherphrasesso
asto createconceptsthat have high t probabilities.
We thenhillclimb towardsthe Viterbi alignmentof
highestprobability by breakingand merging con-
cepts,swappingwordsbetweenconcepts,andmov-
ing wordsacrossconcepts.We computethe prob-
abilities associatedwith all the alignmentswe gen-
erateduring the hillclimbing processand collect t
countsover all conceptsin thesealignments.

We apply this Viterbi-basedEM training proce-
durefor afew iterations.Thefirst iterationsestimate
thealignmentprobabilitiesusingModel 1. Therest
of theiterationsestimatethealignmentprobabilities
usingModel2.

During training, we apply smoothingso we can
associatenon-zerovaluesto phrase-pairsthatdonot
occuroftenin thecorpus.

3.4 Derivation of conditional probability model

At the end of the training procedure, we take
marginalsonthejoint probabilitydistributions

�
andU

. This yields conditionalprobability distributions� � 	� � � 	� � � and
U � 0_^E` ( � 0_^E` &��+� which we usefor

decoding.

3.5 Discussion

Whenwe run the trainingprocedurein Figure2 on
thecorpusin Figure1, after four Model 1 iterations
we obtainthealignmentsin Figure1.dandthejoint
and conditionalprobability distributions shown in
Figure1.e.At primafacie,theViterbi alignmentfor
thefirst sentencepair appearsincorrectbecausewe,
ashumans,have a naturaltendency to build align-
mentsbetweenthesmallestphrasespossible.How-
ever, notethatthechoicemadeby ourmodelis quite
reasonable.After all, in the absenceof additional
information, the model can either assumethat “a”
and“y” meanthesamething or thatphrases“a b c”
and“x y” meanthe samething. The modelchose
to give moreweightto thesecondhypothesis,while
preservingsomeprobabilitymassfor thefirst one.

Also notethatalthoughthejoint distribution puts
the secondhypothesisat an advantage,the condi-
tional distribution doesnot. The conditionaldistri-

bution in Figure1.eis consistentwith our intuitions
that tell us that it is reasonableboth to translate“a
b c” into “x y”, aswell as“a” into “y”. Thecondi-
tional distribution mirrorsperfectlyour intuitions.

4 Decoding

For decoding,we have implementeda greedypro-
cedure similar to that proposedby Germannet
al. (2001).Givena ForeignsentenceF, we first pro-
ducea gloss of it by selectingphrasesin h i that
maximizethe probability 0 ��&'�)(1� . We then itera-
tively hillclimb by modifying E and the alignment
betweenE and F so as to maximize the formula0 ��&�� 0 ��( � &�� . Wehillclimb by modifyinganexist-
ing alignment/translationthroughasetof operations
thatmodify locally thealigment/translationbuilt un-
til a given time. Theseoperationsreplacethe En-
glish side of an alignmentwith phrasesof differ-
entprobabilities,mergeandbreakexistingconcepts,
and swap words acrossconcepts. The probability
p(E) is computedusing a simple trigram language
model that was trainedusing the CMU Language
Modeling Toolkit (ClarksonandRosenfeld,1997).
The languagemodel is estimatedat the word (not
phrase)level. Figure3 shows thestepstakenby our
decoderin order to find the translationof sentence
“je vais me arr̂eter là .” Eachintermediatetransla-
tion in Figure3 is precededby its probability and
succededby theoperationthatchangesit to yield a
translationof higherprobability.

5 Evaluation

To evaluateour system,we trainedbothGiza(IBM
Model 4) (Al-Onaizan et al., 1999) and our joint
probabilitymodelon a French-Englishparallelcor-
pus of 100,000sentencepairs from the Hansard
corpus. The sentencesin the corpuswereat most
20 words long. The English side had a total
of 1,073,480words (21,484unique tokens). The
Frenchsidehada total of 1,177,143words(28,132
uniquetokens).

We translated500unseensentences,which were
uniformly distributedacrosslengths6,8,10,15,and
20. For eachgroup of 100 sentences,we manu-
ally determinedthe numberof sentencestranslated
perfectlyby theIBM modeldecoderof Germannet
al. (2001)andthe decoderthat usesthe joint prob-



Model Percentperfecttranslations IBM Bleuscore
Sentencelength Sentencelength

6 8 10 15 20 Avg. 6 8 10 15 20 Avg.
IBM 36 26 35 11 2 22 0.2076 0.2040 0.2414 0.2248 0.2011 0.2158
Phrase-based 43 37 33 19 6 28 0.2574 0.2181 0.2435 0.2407 0.2028 0.2325

Table1: Comparisonof IBM andPhrase-Based,JointProbabilityModelsona translationtask.

je vais me arreter la .

i   .      me  to     that  .

je vais me arreter la .

i want  me  to     there  .

je vais me arreter la .

i want  me  to     that  .

je vais me arreter la .

i want me stop there .

je vais me arreter la .

let me   to   stop  there  .

7.75e−10

9.46e−08

1.09e−09

2.97e−10

7.50e−11

1.28e−14

ChangeWordTrans("arreter","stop")

FuseAndChange("je vais","let me")

changeWordTrans("vais", "want")

FuseAndChangeTrans("la .", "there .")

je vais me arreter la .

i am going to stop   there  .

                              "i am going to")
FuseAndChange("je vais me",

Figure3: Exampleof phrase-basedgreedydecod-
ing.

ability model. We also evaluatedthe translations
automatically, usingtheIBM-Bleu metric(Papineni
et al., 2002). The resultsin Table1 show that the
phrased-basedtranslationmodelproposedin thispa-
persignificantlyoutperformsIBM Model 4 on both
thesubjective andobjective metrics.

6 Discussion

6.1 Limitations

Themainshortcomingof thephrase-basedmodelin
this paperconcernsthe size of the t-table and the
cost of the training procedurewe currently apply.
To keepthe memoryrequirementsmanageable,we
arbitrarily restrictedthe systemto learningphrase
translationsof atmostsix wordsoneachside.Also,

the swap, break, and merge operationsuseddur-
ing the Viterbi training arecomputationallyexpen-
sive. Wearecurrentlyinvestigatingtheapplicability
of dynamicprogrammingtechniquesto increasethe
speedof thetrainingprocedure.

Clearly, there are languagepairs for which it
would behelpful to allow conceptsto berealizedas
non-contiguousphrases.The English word “not”,
for example, is often translatedinto two French
words, “ne” and “pas”. But “ne” and “pas” al-
most never occur in adjacentpositions in French
texts. At theoutsetof thiswork, weattemptedto de-
velopatranslationmodelthatenablesconceptsto be
mappedinto non-contiguousphrases.But we were
notabletoscaleandtrainit onlargeamountsof data.
Themodeldescribedin this papercannotlearnthat
the English word “not” correspondsto the French
words“ne” and“pas”. However, our model learns
to dealwith negationby memorizinglongerphrase
translationequivalents, such as (“ne est pas”, “is
not”); (“est inadmissible”,“is not good enough”);
and(“ne estpasici”, “is nothere”).

6.2 Comparison with other work

A number of researchershave already gone be-
yond word-level translationsin various MT set-
tings. For example, Melamed(2001) usesword-
level alignmentsin orderto learntranslationsof non-
compositionalcompounds. Och and Ney (1999)
learn phrase-to-phrasemappings involving word
classes,which they call “templates”, and exploit
themin astatisticalmachinetranslationsystem.And
Marcu (2001)extractsphrasetranslationsfrom au-
tomaticallyalignedcorporaandusesthem in con-
junctionwith a word-for-word statisticaltranslation
system. However, noneof theseapproacheslearn
simultaneouslythe translationof phrases/templates
and the translationof words. As a consequence,
thereis achancethatthelearningprocedurewill not
discover phrase-level patternsthatoccuroftenin the



data.In ourapproach,phrasesarenot treateddiffer-
ently from individual words,andasa consequence
the likelihoodof theEM algorithmconverging to a
betterlocalmaximumis increased.

Working with phrasetranslationsthatarelearned
independentof a translationmodel can also affect
thedecoderperformance.For example,in our pre-
vious work (Marcu, 2001), we have useda statis-
tical translationmemoryof phrasesin conjunction
with a statistical translationmodel (Brown et al.,
1993). Thephrasesin thetranslationmemorywere
automaticallyextractedfrom theViterbi alignments
producedby Giza (Al-Onaizanet al., 1999)andre-
usedin decoding.Thedecoderdescribedin (Marcu,
2001)startsfrom a glossthat usesthe translations
in thetranslationmemoryandthentries to improve
on the glosstranslationby modifying it incremen-
tally, in the style describedin Section 4. How-
ever, becausethedecoderhill-climbs onaword-for-
word translationmodelprobability, it oftendiscards
goodphrasaltranslationsin favourof word-for-word
translationsof higher probability. The decoderin
Section4 doesnothave thisproblembecauseit hill-
climbs on translationmodel probabilitiesin which
phrasesplay acrucialrole.
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