
Final Report of Johns Hopkins 2003 Summer Workshop on

Syntax for Statistical Machine Translation

Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur, Anoop
Sarkar, Kenji Yamada, Alex Fraser, Shankar Kumar, Libin
Shen, David Smith, Katherine Eng, Viren Jain, Zhen Jin,

Dragomir Radev

Team website:
http://www.clsp.jhu.edu/ws03/groups/translate/

Revised Version: February 25, 2004

Abstract

In recent evaluations of machine translation systems, statistical systems have out-
performed classical approaches based on interpretation, transfer, and generation.
Nonetheless, the output of statistical systems often contains obvious grammatical
errors. This can be attributed to the fact that the syntactic well-formedness is only
influenced by local n-gram language models and simple alignment models. We
aim to integrate syntactic structure into statistical models to address this problem.

In the workshop we start with a very strong baseline – the alignment template
statistical machine translation system that obtained the best results in the 2002
and 2003 DARPA MT evaluations. This model is based on a log-linear modeling
framework, which allows for the easy integration of many different knowledge
sources (i.e. feature functions) into an overall model and to train the feature func-
tion combination weights discriminatively. During the workshop, we incremen-
tally add new features representing syntactic knowledge that deal with specific
problems of the underlying baseline. We want to investigate a broad range of
possible feature functions, from very simple binary features to sophisticated tree-
to-tree translation models. Simple feature functions test if a certain constituent
occurs in the source and the target language parse tree. More sophisticated fea-
tures are derived from an alignment model where whole sub-trees in source and
target can be aligned node by node. We also plan to investigate features based
on projection of parse trees from one language onto strings of another, a useful
technique when parses are available for only one of the two languages. We extend
previous tree-based alignment models by allowing partial tree alignments when
the two syntactic structures are not isomorphic.

We work with the Chinese-English data from the recent evaluations, as large
amounts of sentence-aligned training corpora, as well as multiple reference trans-
lations are available. This will also allow to compare results with the various sys-
tems participating in the evaluations. In addition, an annotated Chinese-English
parallel tree-bank is available. We evaluate the improvement of our system using
the BLEU metric. Using the additional feature functions developed during the
workshop the BLEU score improved from 31.6% for the baseline MT system to
33.2% using rescoring of a 1000-best list.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Log-linear Models for Statistical Machine Translation 3
1.3 Baseline MT System: Alignment Templates 5
1.4 Training Environment and Test Corpora 11
1.5 Reranking, n-best lists and oracles 12
1.6 Maximum BLEU training . 14
1.7 Syntactic Framework . 16

1.7.1 Segmentation and Part-of-Speech Tagging 16
1.7.2 Parsing . 17
1.7.3 Chunks . 17
1.7.4 Case Issues . 19
1.7.5 Tokenization Issues . 19
1.7.6 Processing Noisy Data 20

2 Implicit Syntactic Feature Functions 22
2.1 A Trio for Punctuation . 22
2.2 Specific Word Penalty . 24
2.3 Model 1 Score . 25
2.4 Missing Content Words . 28
2.5 Multi-Sequence Alignment of Hypotheses 29

3 Shallow Syntactic Feature Functions 32
3.1 Overview . 32
3.2 Part-of-Speech and Chunk Tag Counts 33
3.3 Tag Fertility Models . 35
3.4 Projected POS Language Model 37
3.5 Aligned POS-Tag Sequences . 38

i

ii CONTENTS

4 Deep Syntactic Feature Functions 40
4.1 Grammaticality Test of English Parser 40

4.1.1 Parser Probability . 40
4.1.2 Parser Probability Divided by Unigram Language Model

Scores . 41
4.2 Tree to String Model . 42
4.3 Tree to Tree Alignment . 44
4.4 Dependency Tree-to-Tree Alignments 49
4.5 Main Verb Arguments . 53
4.6 Flipped Dependencies . 54
4.7 Word Popularity . 63
4.8 CharColl . 66
4.9 Some Basic Grammar Feature Functions 68
4.10 Projecting Dependencies . 71

5 Tricky Syntactic Feature Functions 74
5.1 Cross-lingual Constituent Alignment Features 74
5.2 Additional Syntax-based Alignment Features 77

5.2.1 Parser probabilities over alignment template boundaries . 78
5.2.2 A Markov assumption for tree alignments 79
5.2.3 Using TAG elementary trees for scoring word alignments . 82
5.2.4 Results . 83

6 Reranking with Perceptron 86
6.1 Discriminative Reranking . 86
6.2 Reranking for MT . 86
6.3 Multi-Bias Perceptron Algorithm 87
6.4 Experiments . 91
6.5 Analysis . 92

7 Minimum Bayes Risk Search 93
7.1 Introduction . 93
7.2 Minimum Bayes-Risk Classifiers 94
7.3 MBR Classifiers for SMT . 95

7.3.1 Translation Loss functions 96
7.4 Experiments . 98
7.5 Conclusion . 99

CONTENTS iii

8 Conclusions 101
8.1 Summary . 101
8.2 Outlook . 102

A Contrastive Error Analysis 105
A.1 Human Evaluation . 105

B Used Symbols 107

Bibliography 109

iv CONTENTS

Chapter 1

Introduction

1.1 Motivation
Machine translation is a hard problem because natural languages are highly com-
plex, many words have various meanings and different possible translations, sen-
tences might have various readings and the relationships between linguistic enti-
ties are often vague. In addition, it is sometimes necessary to take world knowl-
edge into account. The amount of relevant dependencies is much too large and
too complex to take them all into account in a machine translation system. Given
these boundary conditions, the machine translation system has to make decisions
(produce translations) given incomplete knowledge. In such a case, a principled
approach to solve that problem is to use the concepts of statistical decision theory
to try to make optimal decisions given incomplete knowledge. This is the goal of
statistical machine translation.

The use of statistical techniques in machine translation has led to dramatic
improvements in the quality of research systems in the recent years. For example
the Verbmobil evaluations (Wahlster, 2000) or the NIST/TIDES MT evaluations
2001 through 20031 statistical approaches obtain the best results. In addition, the
field of statistical machine translation is rapidly progressing and the quality of
systems is getting better and better.

An often noted problem of state-of-the-art statistical MT systems is that
the produced translations often contain obvious ’stupid’ grammatical errors. In
the following we provide various examples of actual mistakes occurring in our
Chinese-English baseline translation system:

1http://www.nist.gov/speech/tests/mt/

1

2 CHAPTER 1. INTRODUCTION

(*) The resolution urged the to the ceasefire and
demands ...
The resolution urges Israel and the Palestinians
to cease fire and demands ...

(*) Indonesia that oppose the presence of foreign
troops.
Indonesia reiterated its opposition to foreign
military presence.

(*) in brief) (South Korea will be on high-ranking
official to visit North Korea
(News in Brief) South Korean high-ranking officials
to visit North Korea in April

(*) Japan to freeze Russia to provide humanitarian aid
Japan to freeze humanitarian assistance to Russia

(*) ... if the west further sanctions against zimbabwe ...
... if western countries impose further sanctions
against zimbabwe ...

(*) ... he is fully able to activate team.
... he is fully able to activate the team.

(*) ... , particularly those who cheat the
audience the players.
... , particularly those players who cheat
the audience.

(*) ... the trial of the outcome ...
... the outcome of the trial ...

Frequent problems are missing content words, wrong word order and wrong
choice of function words.

In existing statistical MT systems and also in our baseline MT system the syn-
tactic well-formedness of the output sentence is only influenced by local n-gram

1.2. LOG-LINEAR MODELS FOR STATISTICAL MACHINE TRANSLATION3

language models and simple alignment models. All these models are learned by
purely data-driven methods. A potential remedy for the poor syntactic quality
lies now in using to incorporate syntactic properties into the statistical transla-
tion models, i.e. to develop explicit syntactic models in contrast to the implicit
syntactic models that are used by the baseline system. In the workshop we inves-
tigate both, implicit and explicit syntactic models to improve the performance of
the baseline MT system.

1.2 Log-linear Models for Statistical Machine
Translation

The goal is the translation of a text given in some source language into a
target language. We are given a source (‘Chinese’) sentence f = f J

1 =
f1, . . . , fj, . . . , fJ , which is to be translated into a target (‘English’) sentence
e = eI

1 = e1, . . . , ei, . . . , eI . Among all possible target sentences, we will choose
the sentence with the highest probability:2

êI
1 = argmax

eI
1

{Pr(eI
1|f

J
1)} (1.1)

The argmax operation denotes the search problem, i.e. the generation of the output
sentence in the target language.

As alternative to the often used source–channel approach (Brown et al., 1993),
we directly model the posterior probability Pr(eI

1|f
J
1) (Och and Ney, 2002). An

especially well-founded framework for doing this is the maximum entropy frame-
work (Berger, Della Pietra, and Della Pietra, 1996). In this framework, we have
a set of M feature functions hm(eI

1, f
J
1), m = 1, . . . , M . For each feature func-

tion, there exists a model parameter λm, m = 1, . . . , M . The direct translation
probability is given by:

Pr(eI
1|f

J
1) = pλM

1
(eI

1|f
J
1) (1.2)

=
exp[

∑M
m=1 λmhm(eI

1, f
J
1)]

∑

e′I1
exp[

∑M
m=1 λmhm(e′I1, f

J
1)]

(1.3)

2The notational convention will be as follows. We use the symbol Pr(·) to denote general
probability distributions with (nearly) no specific assumptions. In contrast, for model-based prob-
ability distributions, we use the generic symbol p(·).

4 CHAPTER 1. INTRODUCTION

Source
Language Text

Preprocessing

λ1 · h1(e
I
1, f

J
1)

Global Search

argmax
eI
1

{ M
∑

m=1

λmhm(eI
1, f

J
1)

} λ2 · h2(e
I
1, f

J
1)

. . .

Postprocessing

Target
Language Text

Figure 1.1: Architecture of the translation approach based on a log-linear model-
ing approach.

This approach has been suggested by (Papineni, Roukos, and Ward, 1997; Pap-
ineni, Roukos, and Ward, 1998) for a natural language understanding task.

We obtain the following decision rule:

êI
1 = argmax

eI
1

{

Pr(eI
1|f

J
1)

}

= argmax
eI
1

{

M
∑

m=1

λmhm(eI
1, f

J
1)

}

Hence, the time-consuming renormalization in Eq. 1.3 is not needed in search.
The overall architecture of the log-linear modeling approach is summarized in
Figure 1.1.

A standard criterion on a parallel training corpus consisting of S sentence pairs
{(fs, es) : s = 1, . . . , S} for log-linear models is the maximum class posterior

1.3. BASELINE MT SYSTEM: ALIGNMENT TEMPLATES 5

probability criterion, which can be derived from the maximum entropy principle:

λ̂M
1 = argmax

λM
1

{

S
∑

s=1

log pλM
1

(es|fs)

}

(1.4)

This corresponds to maximizing the equivocation or maximizing the likelihood of
the direct translation model. This direct optimization of the posterior probability
in Bayes decision rule is referred to as discriminative training (Ney, 1995) because
we directly take into account the overlap in the probability distributions. The
optimization problem under this criterion has very nice properties: there is one
unique global optimum, and there are algorithms (e.g. gradient descent) that are
guaranteed to converge to the global optimum. Yet, the ultimate goal is to obtain
good translation quality on unseen test data.

An alternative training criterion therefore directly optimizes translation qual-
ity as measured by an automatic evaluation criterion, which will be described in
Section 1.6.

Typically, the translation probability Pr(eI
1|f

J
1) is decomposed via additional

hidden variables. To include these dependencies in our log-linear model, we ex-
tend the feature functions to include the dependence on the additional hidden vari-
able. Using for example the alignment aJ

1 as hidden variable, we obtain M feature
functions of the form hm(eI

1, f
J
1 , aJ

1), m = 1, . . . , M and the following model:

Pr(eI
1, a

J
1 |f

J
1) =

exp
(

∑M

m=1 λmhm(eI
1, f

J
1 , aJ

1)
)

∑

e′I1,a′J
1
exp

(

∑M
m=1 λmhm(e′I1, f

J
1 , a′J

1)
)

Obviously, we can perform the same step for translation models with an even
richer set of hidden variables than only the alignment aJ

1 .

1.3 Baseline MT System: Alignment Templates
Our baseline machine translation system is the alignment template system as im-
plemented at ISI/USC (originally implemented at RWTH Aachen (Och, 2002)).
In the following, we give a short description of this baseline model. More details
can be found in (Och, Tillmann, and Ney, 1999; Och and Ney, 2004).

In the alignment template translation model, a sentence is translated by seg-
menting the input sentence into phrases, translating these phrases and reordering
the translations in the target language. To describe our translation model based on

6 CHAPTER 1. INTRODUCTION

okay

,

how

about

the

nineteenth

at

maybe

,

two

o’clock

in

the

afternoon

?

o
k
a
y ,

w
i
e

s
i
e
h
t

e
s

a
m

n
e
u
n
z
e
h
n
t
e
n

a
u
s ,

v
i
e
l
l
e
i
c
h
t

u
m

z
w
e
i

U
h
r

n
a
c
h
m
i
t
t
a
g
s ?

Figure 1.2: Example segmentation of German sentence and its English translation
into alignment templates.

the alignment templates described in the previous section in a formal way, we first
decompose both the source sentence f J

1 and the target sentence eI
1 into a sequence

of phrases (k = 1, . . . , K):

fJ
1 = f̃K

1 , f̃k = fjk−1+1, . . . , fjk
(1.5)

eI
1 = ẽK

1 , ẽk = eik−1+1, . . . , eik (1.6)

Note that there are a large number of possible segmentations of a sentence pair
into K phrase pairs. In the following, we will describe the model for a certain
segmentation. Eventually, the specific segmentation is not known when new text
is translated. Hence, as part of the overall search process, we will also search for
the optimal segmentation.

To allow possible reordering of phrases, we introduce an alignment on the
phrase level πK

1 between the source phrases ẽK
1 and the target phrases f̃K

1 . Hence,
πK

1 is a permutation of the phrase positions 1, . . . , K and describes that the phrase
ẽk and f̃πk

are translations of each other. We assume that for the translation be-
tween these phrases a specific alignment template zk is used:

ẽk
zk←→ f̃πk

1.3. BASELINE MT SYSTEM: ALIGNMENT TEMPLATES 7

f1 f2 f3 f4 f5 f6 f7

f̃1 f̃2 f̃3 f̃4

z2 z1 z4 z3

ẽ1 ẽ2 ẽ3 ẽ4

EOS e1 e2 e3 e4 e5 e6 EOS

Figure 1.3: Dependencies in the alignment template model.

Hence, our model has the following hidden variables:

πK
1 , zK

1

Figure 1.2 gives an example of the word alignment and phrase alignment of a
German–English sentence pair.

We describe our model using a log-linear modeling approach. Hence, all
knowledge sources are described as feature functions which include the given
source language string f J

1 , the target language string eI
1 and the above stated hid-

den variables. Hence, we have the following functional form of all feature func-
tions:

h(eI
1, f

J
1 , πK

1 , zK
1)

Figure 1.3 gives an overview of the decisions taken in the alignment template
model. First, the source sentence words f J

1 are grouped to phrases f̃K
1 . For each

phrase f̃ an alignment template z is chosen and the sequence of chosen alignment
templates is reordered (according to πK

1). Then, every phrase f̃ produces its trans-
lation ẽ (using the corresponding alignment template z). Finally, the sequence of
phrases ẽK

1 constitutes the sequence of words eI
1.

8 CHAPTER 1. INTRODUCTION

Feature Functions

Alignment Template Selection
To score the use of an alignment template, we use the probability p(z|f̃) described
in which is just estimated by relative frequency. We establish a corresponding
feature function by multiplying the probability of all used alignment templates
and taking the logarithm:

hAT(eI
1, f

J
1 , πK

1 , zK
1) = log

K
∏

k=1

p(zk|f
jπk

jπk−1+1) (1.7)

Here, jπk−1 + 1 is the position of the first word of alignment template zk in the
source language sentence and jπk

is the position of the last word of that alignment
template.

Note that this feature function requires that a translation of a new sentence be
composed of a set of alignment templates that covers both the source sentence and
the produced translation. There is no notion of ’empty phrase’ that corresponds to
the ’empty word’ in the word-based statistical alignment models. The alignment
on the phrase level is actually a permutation and no insertions or deletions are
allowed.

Word Selection
For scoring the use of target language words, we use a lexicon probability p(e|f),
which is estimated using relative frequencies. The target word e depends on the
aligned source words. If we denote the resulting word alignment matrix by A :=
AπK

1
,zK

1
and the predicted word class for word ei by the symbol Ei, then the feature

function hWRD is defined as follows:

hWRD(eI
1, f

J
1 , πK

1 , zK
1) = log

I
∏

i=1

p(ei|{fj|(i, j) ∈ A}, Ei) (1.8)

For p(ei|{fj|(i, j) ∈ A}) we use a uniform mixture of a single-word model p(e|f)
which is constrained to predict only words which are in the predicted word class
Ei:

p(ei|{fj|(i, j) ∈ A}, Ei) =

∑

{j|(i,j)∈A} p(ei|fj)

|{j|(i, j) ∈ A}|
· δ(C(ei), Ei)

1.3. BASELINE MT SYSTEM: ALIGNMENT TEMPLATES 9

A disadvantage of this model is that the word order is ignored in the translation
model. The translations ‘the day after tomorrow’ or ‘after the day tomorrow’ for
the German word ‘übermorgen’ receive an identical contribution. Yet, the first
one should obtain a significantly higher probability. Hence, we also include a
dependence on the word positions in the lexicon model p(e|f, i, j):

p(ei|fj,
i−1
∑

i′=1

[(i′, j) ∈ A],

j−1
∑

j′=1

[(i, j ′) ∈ A]) (1.9)

This model distinguishes the positions within a phrasal translation. The number
of parameters of p(e|f, i, j) is significantly higher than p(e|f) alone. Hence, there
is a data estimation problem especially for words that rarely occur. Therefore, we
linearly interpolate the models p(e|f) and p(e|f, i, j).

Phrase Alignment

The phrase alignment feature simply takes into account that very often a mono-
tone alignment is a correct alignment. Hence, the feature function hAL measures
the ‘amount of non-monotonicity’ by summing over the distance (in the source
language) of alignment templates which are consecutive in the target language:

hAL(eI
1, f

J
1 , πK

1 , zK
1) =

K+1
∑

k=1

|jπk
− jπk−1+1| (1.10)

Here, jπK+1
is defined to equal J +1. The above stated sum includes k = K +1 to

include the distance from the end position of the last phrase to the end of sentence.
The sequence of K = 6 alignment templates in Figure 1.2 corresponds to the

following sum of seven jump distances: 0 + 0 + 1 + 3 + 2 + 0 + 0 = 6.

Language Model Features

As default language model feature, we use a standard backing off word-based
trigram language model (Ney, Generet, and Wessel, 1995):

hLM(eI
1, f

J
1 , πK

1 , zK
1) = log

I+1
∏

i=1

p(ei|ei−2, ei−1) (1.11)

10 CHAPTER 1. INTRODUCTION

The baseline system actually includes four different language model features
which are trained on four different training corpora: the news part of the bilin-
gual training data, a large Xinhua news corpus, a large AFP news corpus and a
language model trained from Chinese news texts downloaded from the web.

Word/Phrase Penalty

To improve the scoring for different target sentence lengths, we use as feature also
the number of produced target language words (i.e. the length of the produced
target language sentence):

hWP(eI
1, f

J
1 , πK

1 , zK
1) = I (1.12)

Without this feature, we typically observe that the produced sentences tend to be
too short.

In addition, there is a feature function which counts the number of produced
phrases:

hAP(eI
1, f

J
1 , πK

1 , zK
1) = K (1.13)

This feature function allows to give preference to short or long phrases should be
preferred.

Phrases from Conventional Lexicon

The baseline alignment template system makes use of the Chinese–English lexi-
con provided by LDC. Each lexicon entry is a potential phrase translation pair in
the alignment template system. To score the use of these lexicon entries (which
have no normal translation probability), there is a feature function that counts the
number of times such a lexicon entry is used.

Additional Features

A major advantage of the log-linear modeling approach used is that we can add
numerous additional features that deal with specific problems of the baseline sta-
tistical MT system. Here, we will restrict ourselves to the described set of features.
Yet, we could use grammatical features that relate certain grammatical dependen-
cies of source and target language. For example, using a function k(·) that counts

1.4. TRAINING ENVIRONMENT AND TEST CORPORA 11

how many arguments the main verb of a sentence has in source or the target sen-
tence, we can define the following feature, which fires if the verb in each of the
two sentences has the same number of arguments:

h(fJ
1 , eI

1, π
K
1 , zK

1) = δ(k(fJ
1), k(eI

1)) (1.14)

In the same way, we can introduce semantic features or pragmatic features such
as the dialog act classification.

1.4 Training Environment and Test Corpora
We work with the Chinese-English data from the recent evaluations, as large
amounts of sentence-aligned training corpora, as well as multiple reference trans-
lations are available. This data set is a standard data set which makes it possible to
compare results with the various systems participating in the evaluations and many
published results. In addition, an annotated Chinese-English parallel tree-bank is
available (more details in Section 1.7).

For the baseline MT system, we distinguish the following three different
sentence- or chunk-aligned parallel training corpora:

• training corpus (train): This is the basic training corpus used to train the
alignment template translation model (word lexicon and phrase lexicon).
This corpus consists of about 170M English words. Large parts of this
corpus are aligned on a sub-sentence level to avoid the existence of very
long sentences which would be filtered out in the training process to allow
a manageable word alignment training.

• development corpus (Dev): This is the training corpus used in discrimi-
native training of the model-parameters of the log-linear translation model
(Section 1.6). In most experiments described in this report this corpus con-
sists of 993 sentences (about 25K words) in both languages. During the
workshop was also prepared a larger set of 5765 sentences (about 175K
words) to be used for post-workshop experiments.

• test corpus (test): This is the test corpus used to assess the quality of the
newly developed feature functions. It consists of 878 sentences (about 25K
words).

In addition, there exists a prepared held-out test corpus (blind-test) that can be
used to make experiments using completely unseen data.

12 CHAPTER 1. INTRODUCTION

1.5 Reranking, n-best lists and oracles
For each sentence in the development, test and the blind test corpus a set of 16384
different alternative translations has been produced using the baseline system. For
extracting the n-best candidate translations, an A* search (Ueffing, Och, and Ney,
2002). These n-best candidate translations are the basis for discriminative training
of the model parameters and for re-ranking.

The decision to use n-best reranking instead of implementing new search al-
gorithms is because handling n-best lists is much easier. The development of
efficient search algorithms for long-range dependencies is very complicated and a
research topic in itself. During the workshop the major goal is to quickly try out a
lot of new dependencies which would not be possible if for each new dependency
the search algorithm has to be changed.

On the other hand, it has to be emphasized that the use of n-best list rescoring
severely limits the possibility of improvements to what is available in the n-best
list. Hence if our n-best lists do not include good translations, the rescoring can-
not produce good translations. Hence, it is important to analyze the quality of the
n-best lists by analyzing how good we could get if we had a very good reranking
algorithm. We do that by computing the oracle translations which is the set of
translations that yields the best BLEU score for a given set of candidate transla-
tions.3 This approach to compute the oracle performance of an n-best lists or a
lattice representation of alternatives is common in the speech community.

A straightforward approach to compute the quality of an oracle translation
would consist of the following two steps:

1. take sentences from the n-best list which give the highest BLEU score com-
pared to the set of 4 reference translations

2. compute BLEU score of oracle sentences using the same set of reference
translations

If we do that it turns out that with a 1000-best list we obtain oracle translation
that outperform the BLEU score of good human translations by achieving a 113%
relative human BLEU score on the test data (see below) while the first best trans-
lation just obtains a 78.9% relative human BLEU score. Problem of this approach

3Note that due to the ’holistic’ nature of the BLEU score it is not trivial to compute the optimal
set of oracle translations. We use a greedy search algorithm for the oracle translations that might
find only a local optimum. Empirically, we do not observe a dependence on the starting point,
hence we believe that this does not pose a significant problem.

1.5. RERANKING, N -BEST LISTS AND ORACLES 13

is that the same references are used to compute the oracle and to score the oracle.
It is like asking humans to produce a new translation AND showing them the ref-
erences as guideline. Obviously this way to compute the oracle leads to inflated
BLEU scores.

Hence, a better approach is to use a different reference sentence to select the
oracle and to compute the BLEU score using different references. To avoid the
need for additional references, we do this using a round-robin approach: First
reference number 1 is used to select the oracle and the references 2-4 are used to
score the resulting sentences. Then reference 2 is used to select the oracle and
references 1, 3 and 4 are used to compute the BLEU score and correspondingly
for reference 3 and 4. The resulting BLEU scores are then averaged. The average
human BLEU scores are computed in the same manner and are therefore directly
comparable to the resulting oracle BLEU score.

The results of this round-robin oracle make much more sense. The corre-
sponding relative human BLEU score on a 1000-best list is 89.3% which indicates
that we can actually improve our system only from 78.9% only by about 10% ab-
solute and not by about 35% absolute as is indicated by the above mentioned naive
oracle computation.

Note that by construction the round-robin oracle won’t (drastically) go over
100% relative human BLEU score.

If we use all four references our baseline BLEU score is 31.6%. Using the
above mentioned estimates, we could estimate that our 1000-best list on the test
corpus allows us to increase the BLEU score by a factor of 89.3/78.9 = 1.131. If
we multiply our baseline result from 31.6% BLEU score (using four references)
with 1.131 we obtain 35.7% BLEU score, which can be seen as a more realistic
upper limit of what we can achieve using the 1000-best list.4

Table 1.1 shows the resulting oracle BLEU scores for n-best list sizes ranging
from 1 to 16384. There are shown the BLEU scores computed with three ref-
erences averaged over the four different sets of three references (avBLEUr3n4)
and there are shown the BLEU scores of the optimal oracle computed using all
four references (BLEUr4n4). We observe that doubling the size of the n-best list
yields on average 1.1% improvement of the optimal oracle BLEU score and about
0.33% for the round-robin oracle. For the round-robin oracle the improvements
seem to get smaller as the n-best list size increases. The gain from going from
512 to 1024 alternatives is just 0.14% while the improvement going from 1 to 2

4Presumably using more references to pick the oracle should also give a better oracle, hence
the new estimate of the upper bound is probably slightly pessimistic.

14 CHAPTER 1. INTRODUCTION

Table 1.1: Oracle BLEU scores for different sizes of the n-best list. rr-oracle
refers to the round-robin oracle and opt-oracle refers to the optimal oracle
with respect to the four reference translations. Note that the provided BLEU
scores are computed with respect to three reference reference translations (r3)
and are computed by averaging over the four different choices of holding out one
reference. The corresponding relative human BLEU score is 35.7%.

avBLEUr3n4[%] BLEUr4n4
n rr-oracle opt-oracle opt-oracle
human 35.76 -
1 28.31 28.31 31.60
2 28.72 29.47 32.98
4 29.11 30.76 34.50
8 29.48 31.97 35.89
16 29.87 33.19 37.26
32 30.33 34.35 37.26
64 30.61 35.60 38.65
128 30.96 36.86 41.54
256 31.29 37.97 42.84
512 31.52 38.96 44.01
1024 31.66 40.00 45.25
2048 31.89 40.94 46.35
4096 31.98 41.77 47.32
8192 32.16 42.57 48.26

alternative translations is 0.41%. The theoretical upper bound of the oracle on the
1024 list is 45.25% BLEU score.

1.6 Maximum BLEU training

Many tasks in natural language processing have evaluation criteria that go beyond
simply counting the number of wrong decisions the system makes. Some often
used criteria are, for example, F-Measure for parsing, mean average precision for
ranked retrieval, and BLEU or multi-reference word error rate for statistical ma-
chine translation. The use of statistical techniques in natural language processing

1.6. MAXIMUM BLEU TRAINING 15

often starts out with the simplifying (often implicit) assumption that the final scor-
ing is based on simply counting the number of wrong decisions, for instance, the
number of sentences incorrectly translated in machine translation. Hence, there
is a mismatch between the basic assumptions of the used statistical approach and
the final evaluation criterion used to measure success in a task.

Ideally, we would like to train our model parameters such that the end-to-end
performance in some application is optimal. In this paper, we investigate meth-
ods to efficiently optimize model parameters with respect to machine translation
quality as measured by automatic evaluation criteria such as word error rate and
BLEU.

In the following, we assume that we can measure the number of errors in
sentence e by comparing it with a reference sentence r using a function E(r, e).
However, the following exposition can be easily adapted to accuracy metrics and
to metrics that make use of multiple references.

We assume that the number of errors for a set of sentences eS
1 is obtained by

summing the errors for the individual sentences: E(rS
1 , eS

1) =
∑S

s=1 E(rs, es).
Our goal is to obtain a minimal error count on a representative corpus f S

1 with
given reference translations êS

1 and a set of K different candidate translations
Cs = {es,1, . . . , es,K} for each input sentence fs.

λ̂M
1 = argmin

λM
1

{

S
∑

s=1

E(rs, ê(fs; λ
M
1))

}

(1.15)

= argmin
λM
1

{

S
∑

s=1

K
∑

k=1

E(rs, es,k)δ(ê(fs; λ
M
1), es,k)

}

with

ê(fs; λ
M
1) = argmax

e∈Cs

{

M
∑

m=1

λmhm(e|fs)

}

(1.16)

It is straightforward to refine this algorithm to also handle the BLEU score
instead of sentence-level error counts by accumulating the relevant statistics for
computing these scores (n-gram precision, translation length and reference length)
.

A standard algorithm for the optimization of the unsmoothed error count
(Eq. 1.15) is Powells algorithm combined with a grid-based line optimization
method (Press et al., 2002). We start at a random point in the K-dimensional
parameter space and try to find a better scoring point in the parameter space by

16 CHAPTER 1. INTRODUCTION

making a one-dimensional line minimization along the directions given by opti-
mizing one parameter while keeping all other parameters fixed. To avoid finding
a poor local optimum, we start from different initial parameter values. A major
problem with the standard approach is the fact that grid-based line optimization
is hard to adjust such that both good performance and efficient search are guar-
anteed. If a fine-grained grid is used then the algorithm is slow. If a large grid is
used then the optimal solution might be missed. In (Och, 2003) is described an
efficient algorithm to find the optimal solution for the line optimization problem
and presents the results of that approach in statistical machine translation applied
to various evaluation metrics.

1.7 Syntactic Framework

As a precursor to developing the various syntactic features described in this report,
the syntactic representations on which they are based needed to be computed.
This involved part-of-speech tagging, chunking, and parsing both the Chinese and
English side of our training, development, and test sets. This section describes the
representations used, how they were computed, and the particular issues involved
with parsing and tagging automatically generated machine translation output.

1.7.1 Segmentation and Part-of-Speech Tagging

For segmenting Chinese characters into words, the standard tools distributed by
the Linguistic Data Consortium (LDC) were used. The English part-of-speech
tagger was that of Ratnaparkhi (1996); for Chinese we used the part-of-speech tag-
ger trained by Nianwen Xue using Ratnaparkhi’s maximum modeling software.
These taggers were trained on data from the Penn Treebank (Marcus, Santorini,
and Marcinkiewicz, 1993) and Penn Chinese Treebank (Xue, Chiou, and Palmer,
2002); for complete descriptions of the set of tags used see Santorini (1990) and
Fei Xia (2000). Example sentences and tags are shown below:

Fourteen CD Chinese JJ open JJ border NN cities NNS make VBP
significant JJ achievements NNS in IN economic JJ construc-
tion NN

Zhongguo NR shisi CD ge M bianjing NN kaifang NN cheng-
shi NN jingji NN jianshe NN chengjiu NN xianzhu VV

1.7. SYNTACTIC FRAMEWORK 17

The English tagset makes certain distinctions that are not relevant to Chinese, such
singular vs. plural nouns (NN vs NNS) where Chinese just has one noun tag NN.
Similarly, the English tagset marks present (VBP) and past tense (VBD) verbs, as
well as present participles, past participles, etc, where Chinese just has one verb
tag VV. Chinese has a number of tags with no English equivalent, including the
measure word tag M.

1.7.2 Parsing
The English sentences were parsed using the parser of Collins (1999), the Chinese
parser was provided to us by Dan Bikel (Bikel and Chiang, 2000; Bikel, 2002).
Again, the parsers are trained on the Penn Treebank and Penn Chinese Treebank;
sample parse trees are shown in Figures 1.4 and 1.5. For details of the treebank
annotation, see Bies et al. (1995) and Nianwen Xue and Fei Xia (2000). The
formats provide a similar skeletal syntactic tree representation. The empty con-
stituent (trace) and constituent co-indexation information is not used or returned
by our parsers, and will not be referenced by any of our syntactic features in this
report. This is also true of the function tag information indicating, for example,
temporals (TMP) and locatives (LOC).

The Chinese and English treebanks differ in certain respects. While English
has S (sentence) nodes, Chinese has IP (inflectional phrase). A more substan-
tive difference is that the notoriously flat English noun phrases tend to be given
more structure in the Chinese treeabnk, as seen in the noun phrase “fourteen Chi-
nese open border cites” in our example sentence. The Chinese treebank tends to
adhere to the X-bar syntactic generalization, and consistently annotates maximal
projections such as ADJP where they may be missing for single word phrases in
English.

1.7.3 Chunks
Chunks provide a shallow level of syntax generally corresponding to a low level
of non-recursive constituents in the treebank trees. We used the fnTBL chunker
of Ngai and Florian (2001), trained on an automatic conversion of the English and
Chinese treebanks to a chunk-level repesentation (Tjong Kim Sang and Buchholz,
2000). Examples of chunked sentences follow:

[NP Fourteen Chinese open border cities] [VP make] [NP significant
achievements] [PP in] [NP economic construction]

18 CHAPTER 1. INTRODUCTION

S

NP

CD

Fourteen

JJ

Chinese

JJ

open

NN

border

NNS

cities

VP

VBP

make

NP

NP

JJ

significant

NNS

achievements

PP

IN

in

NP

JJ

economic

NN

construction

Figure 1.4: An English Parse Tree

IP

NP

NP

NR

Zhongguo

QP

CD

shisi

CLP

M

ge

NP

NN

bianjing

NN

kaifang

NN

chengshi

VP

NP

NN

jingji

NN

jianshe

NN

chengjiu

VV

xianzhu

Figure 1.5: A Chinese Parse Tree

1.7. SYNTACTIC FRAMEWORK 19

[NP Zhongguo] [QP shisi ge] [NP bianjing kaifang] [NN chengshi]
[NP jingji jianshe chengjiu] [VP xianzhu]

We hoped that chunks would represent a more robust representation than com-
plete parse trees.

The following data processing was undertaken before and during the first
weeks of the workshop:

• Training data

– English 1M sents (chunked all, parsed all)

– Chinese 1M sents (chunked all, parsed 100K sents)

– English/Chinese FBIS parsed: 70K sents

• n-best lists

– English 5000 sents, 1000 nbest (tagging, chunking, parsing)

– Chinese 5000 sents (segmentation, tagging, chunking, parsing)

1.7.4 Case Issues
Our various tools including the part-of-speech taggers and parsers are trained on
and perform best on mixed case input. However the baseline MT system produces
lower-case only text.

To address this issue, we wrote a “true-caser” to guess the correct upper/lower
case information of all-lower-case text. The approach was a Hidden Markov
Model, with the case being the hidden state, implemented using the SRI language
modeling toolkit. Measuring performance on recasing lower-cased text gave a re-
sult of 3.36% word error rate. The output of this system on the n-best was used as
the input to the English POS taggers and parsers.

1.7.5 Tokenization Issues
The English tokenization used in the treebank and expected as input by our taggers
and parser does not always match the internal tokenization of the baseline MT
system. For example hyphen are split out as separate token for MT (high @-
@ tech) but not for parsing (high-tech). Similarly and / or is separated for MT
but not for parsing (and\/or).

20 CHAPTER 1. INTRODUCTION

A retokenizer was applied to the MT output before parsing. This meant that the
word-level alignments from the MT system did not match the parse tokenization.
This problem was solved by writing a minimum edit-distance program to align
MT with parsed text using dynammic programming. The alignment produced by
the MT system was composed with the MT-to-parser token alignment to produce
word-level alignments that could be used to reference token in the parse trees.

Furthermore some word level alignment information was missing from n-best
lists, due to phrases such as number and dates that had been generated by a sep-
arate rule-based translation module. Alignments for words in this phrases were
added using separate alignment tool trained based on IBM Model 1.

1.7.6 Processing Noisy Data

Applying the part-of-speech tagger to often ungrammtical MT output from our
n-best lists sometimes led to unexpected results. Often the tagger tries to “fix up”
ungrammatical sentences, for example by looking for a verb when none is present:

China NNP 14 CD open JJ border NN cities NNS achieve-
ments VBZ remarkable JJ

Here, although achievements has never been seen as a verb in the tagger’s training
data, the prior for a verb in this position is high enough to cause a present tense
verb tag to be produced. In addition to the inaccuaracies of the MT system, the
difference in genre from the tagger’s training text can cause problems. For exam-
ple, while our MT data include news article headlines with no verb, headlines are
not included in the Wall Street Journal text on which the tagger is trained. Simi-
larly, the tagger is trained on full sentences with normalized punctuation, leading
it to expect punctuation at the end of every sentence, and produce a punctuation
tag even when the evidence does not support it:

China NNP ’s POS economic JJ development NN and CC open-
ing VBG up RP 14 CD border NN cities NNS remarkable JJ
achievements .

The same issues affect the parser. For example the parser can create verb
phrases where none exist, as in the following example where the tagger correctly
did not identify a verb in the sentence:

1.7. SYNTACTIC FRAMEWORK 21

S

NP

NNP

China

CD

14

JJ

open

NN

border

NNS

cities

VP

NN

construction

NP

JJ

remarkable

NNS

achievements
These effects have serious implications for designing syntactic feature func-

tions. Features such “is there a verb phrase” may not do what you expect. One
solution would be features that involve the probability of a parse subtree or tag
sequence, allowing us to ask “how good a verb phrase is it?”. Another solution is
more detailed features examining more of the structure, such as “is there a verb
phrase with a verb?”.

Although our Chinese data are “clean”, rather than noisy MT output, a number
of issue affect parsing on the Chinese side. Chinese parsing is highly dependent
on segmentation, and our automatic segmenters are relatively inaccurate. Chi-
nese parsing accuracy is lower than English even with perfect segmentation (82%
parseval vs. 90% for English), as well as being quite a bit slower computationally.

In our data, 3% of English candidates and 4% of Chinese sentences in devel-
opment set had no parse, meaning that features had to be designed to work around
this situation. We generally made use of a separate feature that fired whenever a
new feature could not be computed due to a missing parse, allowing the weights
for both the new feature and its “not available” feature to be optimized indepen-
dently.

Chapter 2

Implicit Syntactic Feature Functions

2.1 A Trio for Punctuation

Motivation
There are often ungrammatical punctuations, especially parentheses and quotes,
in the hypotheses that affect the syntactic quality of the output. Normally, we
hope that the punctuations in the output sentences mostly correspond to those in
the Chinese sentence, instead of appearing as something new.

Idea No.1
The simplest approach to attack the punctuation problem is to penalize the occur-
rences of ungrammatical parentheses and quotes.

Implementation
h MatchParenMatchQuote(e) = the number of the occurrences of unmatched
parentheses and quotes or empty parentheses or quotes in the English translation.

Idea No.2
A more robust feature function applies to nearly all punctuations. Both English
and Chinese tokens in any sentence can be grouped according to the nearest punc-
tuations. By calculating the percentage of overlap between the groups of a Chi-
nese sentence and the groups of its corresponding English sentence, this feature

22

2.1. A TRIO FOR PUNCTUATION 23

function penalizes word movement around punctuations, and more severely, punc-
tuation deletions.

Implementation
h Punc(e, f) = % overlap of punctuation-grouped English and Chinese tokens
= the percentage of English tokens that agree with the majority their respective
groups in terms of their aligned Chinese tokens’ grouping

Idea No.3
Instead of depressing the n-best score of each infected hypothesis by feature func-
tions, we can correct the wrong parentheses and quotes by making new hypothe-
ses.

Implementation
1. Delete unaligned parentheses and quotes

2. Insert an opening parenthesis/quote before the first word aligned to the first
Chineses word inside the parenthese

3. Insert a closing parenthesis/quote after the last word aligned to the last Chi-
nese word inside the parentheses

Results
None of the above three methods result in statistically significant improvement to
the BLEU score.

Analysis
The first two approaches of feature functions have a restriction in their application.
When most of the hypotheses for a Chinese sentence make similar punctuation
mistakes, which happens frequently, the feature functions have little discriminat-
ing power. In those kind of situations, they tend to be useless.

The second feature function extends its usage to nearly all punctuations. It
penalizes punctuation deletion more harshly than word movement around punctu-
ation, since all the tokes following that missing punctuations join the wrong group.

24 CHAPTER 2. IMPLICIT SYNTACTIC FEATURE FUNCTIONS

But it doesn’t work for the deletion of those punctuations that should appear at the
beginning or at the end of a sentense or next to another punctuation. This puts
another limit to its application.

To work around those limitations, the third approach makes new hypotheses
by making changes in the old one. We are able to do this due to the fact that
minor changes in punctuations won’t massively affect existing feature function
values, so that we can assume the old values are still valid. However, big changes
in hypotheses won’t be viable under this framework, since we don’t have accurate
feature function values and, therefore, n-best scores.

The resulting trivial improvement to the BLEU score implies that punctuation
soundness has little influence on BLEU.

2.2 Specific Word Penalty

Motivation and Idea
The output of Chinese to English machine translation is often made incoherent by
errant non-content (function) words, whether they be wrongly placed, inserted or
deleted. For example, compared against its reference translation (“the agreement
stipulates that israel is to give more land in west bank of jordan river to pales-
tinian”), the sentence the baseline MT system outputs (“the agreement, israel and
jordan in the west bank land to the palestinians”) is made awkward by the insertion
of “and” and the deletion of “of”.

If there could be a way to detect the possibly systematic over-deletion or over-
insertion of certain words, a feature function capturing such a pattern could be
very useful in improving MT output. To this end, we could identify the misused
words and mark each sentence with specific word penalties. In other words, we
note for each hypothesis how many of these key words occur.

Implementation
Taking a unigram count of the training corpus yields a ranking of the most fre-
quently occurring words. By narrowing this list down to the top ten non-content
words (“the”, “,”, “.”, “and”, “of”, “to”, “in”, “a”, “that” and “for”), we can take
the count of each of these words and use these numbers as feature functions.

There are two ways to derive feature functions from these counts. One way
is to use each word count as an individual feature (i.e. there would be ten feature

2.3. MODEL 1 SCORE 25

functions for the above list, one for each word). Another is to combine all of
these counts into one value which could help avoid over-fitting the data. Both
approaches were tried in the implementation.

Results

Using each of the ten individual word counts as features yielded a BLEU score
of 31.1 against a 31.6 baseline. Combining the counts into one total value gave a
31.7 BLEU score.

Of the ten specific word features, two (“that” and “a”) contributed to the over-
all maximum BLEU score obtained by a greedy search algorithm over all feature
functions. For both of the features, sentences with more of these words scored
better on the BLEU criteria.

Analysis and Conclusions

While using individual word penalty features results in a drop in BLEU, the pres-
ence of two word penalty features in the greedy feature combination does imply
that certain words are systematically mistranslated in our baseline MT system.
The limited list of words used in these experiments could easily be expanded to
test other common non-content words as well.

2.3 Model 1 Score

Motivation and Idea

We used IBM Model 1 (Brown et al., 1993) as one of the feature functions. As
the baseline MT system uses a very complex model, we expected the simple and
robust Model 1 can provide extra information that was missed in the baseline
system. Especially, as Model 1 is a bag-of-word translation model and it gives
the sum of all possible alignment probabilities, a lexical co-occurrence effect, or
triggering effect, is expected. This captures a sort of topic or semantic coherence
in translations.

26 CHAPTER 2. IMPLICIT SYNTACTIC FEATURE FUNCTIONS

Implementation

As defined in (Brown et al., 1993), Model 1 gives a probability of any given
translation pair, which is

p(f |e) =
ε

(l + 1)m

m
∏

j=1

l
∑

i=0

t(fj|ei).

We used GIZA++ to train the model. The training data is a subset (30 million
words on the English side) of the entire corpus that was used to train the baseline
MT system. As it is a conditional model, we trained both p(f |e) and p(e|f),
and each of them is a separate feature function. Like other feature functions, the
log of the model probability was used as a feature function value, and the length
normalization was not applied. For a missing translation word pair or unknown
words, where t(fj|ei) = 0 according to the model, a constant t(fj|ei) = 10−40

was used as a smoothing value. This constant was determined by experimenting
several different values (from 10−5 to 10−80) on the development set.

Results

The average BLEU scores (average of the best four among different 20 search ini-
tial points) are 32.5 for p(f |e), and 30.6 for p(e|f). Table 2.1 shows the additional
results when we changed the model training size from 1 million words to 30 mil-
lion words. As seen from the table, the scores by p(f |e) increases as the training
size grows. However, the scores by p(e|f) are always lower than the baseline and
fractured. We suspect there is a bug in our script for p(e|f).

p(f |e) p(e|f)
30MW 32.5 30.6
20MW 31.8 30.8
10MW 31.9 31.1
5MW 31.1 31.0
2MW 30.9 30.9
1MW 30.9 30.9

Table 2.1: BLEU scores by Model 1 with different training sizes

2.3. MODEL 1 SCORE 27

Smoothing Value
The smoothing value for t(fj|ei) = 0 might be tricky. Table 2.2 and 2.3 show the
BLEU scores for different smoothing values and different training corpus sizes.
Table 2.2 shows the result when only one search initial point was used, and shows
the BLEU scores for the development set and the test set. When applied with 20
different search initial points, and experimented with different training size, the
results are shown in Table 2.3. The numbers in bold face correspond the results in
Table 2.1.

Obviously, the proper smoothing value depends on the training corpus size.
Another finding is that the best smoothing value for the development set was not
necessarily the best for the test set.

10
−5

10
−10

10
−20

10
−30

10
−40

10
−50

10
−60

10
−70

10
−80

30MW p(f |e) dev 32.5 32.5 32.6 32.6 32.6 32.5 32.6 32.6 32.6
30MW p(f |e) test 32.3 32.3 31.6 31.6 31.6 32.1 31.8 31.8 31.6
30MW p(e|f) dev 31.8 31.9 31.9 31.9 32.1 31.9 31.9 31.9 31.9
30MW p(e|f) test 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0

Table 2.2: Effect of smoothing value (search initial point = 1)

10
−5

10
−10

10
−20

10
−30

10
−40

10
−50

10
−60

10
−70

10
−80

30MW p(f |e) 32.2 32.3 32.5 32.4 32.5 32.6 32.5 32.5 32.5
30MW p(e|f) 30.8 31.4 30.7 30.7 30.6 30.6 30.8 30.8 30.8
1MW p(f |e) 31.3 31.1 30.8 30.9 30.9 30.7 30.9 30.7 30.7
1MW p(e|f) 31.3 30.6 30.5 30.7 30.9 30.8 30.9 30.9 30.9

Table 2.3: Effect of smoothing value and training size (search initial points = 20).

Conclusion
The feature function by Model 1 score is one of the best performing features
experimented in the workshop. The simplicity and the robustness of the model
may be accounted for the performance. In terms of improving the syntactic as-
pect of translations, it seems to work for detecting missing content words, and
for word selection coherence by the triggering effect. It is also possible that the
triggering effect might work on selecting a proper verb-noun combination, or a
verb-preposition combination. The strange results by p(e|f) should be investi-
gated further.

28 CHAPTER 2. IMPLICIT SYNTACTIC FEATURE FUNCTIONS

2.4 Missing Content Words

Motivation

A frequent and annoying problem of the baseline MT system is the omission of
content words. Here are some examples of that phenomenon occurring in the
translations produced by the baseline system (rank 1) contrasted with the next
lower ranking sentence which includes this missing content word:

rank 1: condemns us interference in its internal
affairs

rank 3: ukraine condemns us interference in its
internal affairs

rank 1: opposing revision of the united_nations
charter

rank 3: france opposes revision of the united_nations
charter

rank 1: small number of enterprises will be local
governments .

rank 25: some small-scale enterprises will be managed
by local governments .

We see that in the translation on ranked highest there is missing an important
content word while there is a translation with a smaller probability that includes
the translation of the content word. In all these examples and in a large number of
occurring cases the missing content words are not due to unknown Chinese words
but due to ’wrong’ phrase translation pairs that have been learned because of a
wrong word or sentence alignment or because the used training sentence pair did
not include a plain translation of that content word but used instead for example an
anaphoric reference. In all these cases the probability for the ’correct’ translation
probability for the phrase is much higher than the ’wrong’ translation probability.
Yet, the language model probability to use that (rare) content word is much lower
that finally the ’wrong’ translation is chosen.

2.5. MULTI-SEQUENCE ALIGNMENT OF HYPOTHESES 29

Idea
In all the above shown cases the correct translation is part of the n-best list. To
detect that in a sentence content word translations are missing, we use a version of
our single-word translation lexicon where low probability entries with a probabil-
ity smaller than 0.04 are filtered away. For the purposes of this feature function,
we treat all but the 200 most frequent Chinese words as content words.

Implementation
The feature function is then implemented simply by counting the number of ’con-
tent’ words that are missing in a candidate translation:

h(eI
1, f

J
1) =

J
∑

j=1

[fj is not stop word] · [probable-translations(fj) 6∈ eI
1]

Results
This feature function obtains comparatively large, yet not statistically significant
improvement of 0.3% BLEU score from 31.6% to 31.9%.

Analysis and Conclusions
Looking at those sentences that actually change if only that feature function is
optimized, we have the feeling that many sentences actually get significantly bet-
ter. In all the above given examples this feature function actually helps to get the
content word in which makes the adequacy of that sentence significantly better.

2.5 Multi-Sequence Alignment of Hypotheses

Motivation and Idea
The 1000-best lists used in this workshop research, and even the 16000-best lists
to which we had access, often exhibited a lack of diversity compared with the
range of possible translations. One way to tackle this problem is by recombining
subparts of existing hypotheses into new ones. Multi-sequence alignment (MSA)

30 CHAPTER 2. IMPLICIT SYNTACTIC FEATURE FUNCTIONS

algorithms developed in computational genomics are one class of methods for
determining what substrings are interchangeable (Gusfield, 1997).

We had hoped to use the MSA lattices to generate new hypotheses to aug-
ment the 1000-best lists. We would then have had to produce word alignments,
chunkings, and parses of the new hypotheses, and of course we would not have
alignment template information for them. Unfortunately, time constraints during
the workshop did not allow for this approach. We did, however, use the MSA
lattices to produce another class features corresponding to center hypothesis or
consensus among the hypotheses. In particular, we determined three features:

1. We calculated the weight of each hypothesis’ path through the MSA lattice.
Each hypothesis that agreed on a certain arc contributed one to the weight
of that arc.

2. We found those arcs that represented the consensus of at least half the hy-
potheses. A binary feature then indicated whether a particular hypothesis
contained this consensus path.

3. Another feature counted the number of arcs on which a hypothesis agreed
with the consensus path.

Implementation
We used multi-sequence alignment software developed at Johns Hopkins by our
colleague Gideon Mann. It takes a set of strings and a vocabulary file and outputs
lattices in the AT&T FSM toolkit format. (These lattices of course represent more
strings than the lattice produced by taking the union of the N-best list and min-
imizing.) In outline, the MSA system calculates the edit distance between each
pair of strings, and then performs hierarchical agglomerative clustering.

Results
The three implemented features achieved mediocre results (table 2.4).

Analysis
The relative ease of movement in statistical MT, even in the relatively constrained
domain of news translation, makes MSA a less than obvious fit for the problem.

2.5. MULTI-SEQUENCE ALIGNMENT OF HYPOTHESES 31

Method BLEU %
Path score 31.6
Agrees w/ consensus? 31.4
Count arcs agreeing w/ consensus 31.5

Table 2.4: MSA feature scores

We can see, nevertheless, that some idea of consensus may emerge from the align-
ment and help with scoring. Recombining hypotheses is still a largely unexplored
in statistical machine translation (Ueffing, Och, and Ney, 2002), and we are inter-
ested in pursuing this line of research in the future.

Chapter 3

Shallow Syntactic Feature Functions

3.1 Overview

Shallow Syntactic Feature Functions are those feature functions which depend on
Part-of-Speech Tagging and/or the subsequent step of Chunking, which is some-
times referred to as Shallow Parsing.

The idea behind using shallow syntactic analysis in the context of statistical
machine translation is to overcome data sparseness with respect to the syntactic
behavior of words. If the syntactic behavior of each word in each context were
modeled individually, with the current amount of training data there would be
insufficient observations to make the correct choice. If we use tools such as POS
Taggers and Chunk Parsers, we hope to make use of annotated observations about
syntax in order to form generalizations which are stronger than the generalizations
we can make based on what is observed in the training data for the baseline MT
system.

However, the POS information is modeled implicitly in the baseline system,
which was trained on more data than was POS tagged. Also, the Chunks found
by the Chunk Parser are not at a much higher granularity than the Alignment
Template granularity, and was also trained on the same training set as the POS
tagger. Because of these issues there is a danger that at the Shallow Syntactic level
it will not be possible to make generalizations that capture information which is
not already present in the baseline system.

There are several advantages to working at the shallow syntactic level, rather
than with parser output. Part-of-Speech Taggers and Chunkers are efficient. Deci-
sions made by these tools are local, and so they may function better than parsers on

32

3.2. PART-OF-SPEECH AND CHUNK TAG COUNTS 33

noisy MT hypotheses. 1.3 M tagged parallel sentences were available for training.
Finally, using simpler models allows a quicker reaction to the problems evident
from contrastive error analysis.

The generalizations possible using shallow syntax must necessarily be less
powerful than those available using the full parser output (Deep Syntax), or a
decomposition of the full parser output (Tricky Syntax), both of which rely on
richer knowledge sources. These feature functions are described in subsequent
sections.

3.2 Part-of-Speech and Chunk Tag Counts

Motivation

There are low-level syntactic problems with the baseline system where the base-
line is systematically overgenerating or undergenerating certain parts of speech
and chunk types. The contrastive error analysis shows that there is overgeneration
of article, comma, singular nouns and undergeneration of pronouns, past tense,
coordination, plural nouns, etc.

Idea

The reranker can learn to favor a more balanced distribution of tags by learning
whether to favor sentences with less or more of a certain tag. If past tense verbs
are being systematically undergenerated, a feature function which simply counts
the number of past tense verbs generated should receive a high weight from the
Maximum-BLEU optimization. Likewise, a feature function which counts the
number of Chinese N tags which are translated only to non-N tags in English
(using the word alignment) should receive a highly negative weight in the case
that this is generally incorrect.

Implementation

Individual feature functions were implemented using tag count and tag count dif-
ferences for both POS tags and Chunk tags. Note that this is not dependent on the
word alignment as it is characteristic of the tag distributions on the English side,
or of the difference in tag counts from the Chinese to the English.

34 CHAPTER 3. SHALLOW SYNTACTIC FEATURE FUNCTIONS

Tag translation counts which depend on the word alignment were implemented
for POS tags. This involves looking at the predefined mapping of a particular set
of Chinese tags to a particular set of English tags. In particular, we implemented
the number of Chinese N tags translated only as non-N tags in English; the number
of V tags in Chinese translated only as non-V tags in English; and the number of
P tags in Chinese which were only translated non-P tags in English. Others could
easily be imagined, in particular see the appendix of (Xia, 2000) containing a table
of tag equivalences from the Penn Treebank to the Chinese Treebank.

Examples

• Number of NPs in English hypothesis

• Difference in number of NPs from Chinese to English

• Number of Chinese N tags translated to only non-N tags in the English
hypothesis

Results

See table 3.1.

Analysis and Conclusion

The performance of the simplest features of this type possible, the simple tag
count features is not much better than the baseline when considered individually.
This is not surprising as this information is implicit in the trigram language model
using in the baseline MT system. However, for feature combination these fea-
tures appeared to be more useful. One possible explanation for this is that they
counteract biases present in other more sophisticated feature functions.

The more complex features involving the word alignment did not perform bet-
ter than the baseline, which is probably a function of the simplicity of the models
and their integration into the weight-learning framework. In addition, it may re-
flect problems with the Chunk and/or POS level analyses.

3.3. TAG FERTILITY MODELS 35

BLEU
POS Tag WDT 31.2
POS Tag VBG 31.3

POS Tags JJS,NNP,NNS,SYM,TO,UH,VBZ,WP,colon,leftdoublequote 31.4
POS Tags CC,CD,DT,EX,JJ,MD,NN,WP$,$,period,rightdoublequote 31.5

POS Tags FW,IN,LRB,LS,NNPS,PDT,PRP$,RB,RBR,RBS,RP,RRB,VBD 31.6
POS Tags JJR,VB,VBN,VBP,WRB,comma 31.7

Chunker Tag VP 31.4
Chunker Tags NP,O 31.5

Chunker Tags ADJP,ADVP,INTJ,LST,SBAR 31.6
Chunker Tags CONJP,PP,PRT 31.7
Difference in number of NPs 31.4
Difference in number of VPs 31.4

Verb translated as non-verb word(s) 31.3
Noun translated as non-noun word(s) 31.4

Pronoun translated as non-pronoun word(s) 31.6

Table 3.1: BLEU Scores of Tag Features

3.3 Tag Fertility Models

Motivation

The use of feature functions based on probabilistic Tag Fertility models is moti-
vated by the same observation as the previous Tag Count features, which is that
the tag distribution of the top hypotheses output by the baseline system is often
wrong. In this case however, the idea is to model how surprised we would be that
an English hypothesis with a particular tag distribution is the correct translation
of the Chinese source sentence.

Idea

The idea is to model the English tag distribution. There are two options, either to
probabilistically model the expected English tag distribution in general, or specif-
ically to model the expected English distribution of tags given the Chinese tags.

36 CHAPTER 3. SHALLOW SYNTACTIC FEATURE FUNCTIONS

Implementation
The implementation is essentially a bag of tags. In principal, it is similar to IBM
Model 1 (Brown et al., 1993), but tags with zero counts are explicitly modeled.

One set of models models the probability of the English tag distribution. This
is done only for POS currently, but it could be extended to the chunk distribution:

P (NNe = 2)
Another set of models models the conditional probability of number of English

tags given number of Chinese tags (POS, Chunk):
P (NPe = 2|NPf = 1)
P (CCe = 1|CCf = 0)
P (CDe = 1|Mf = 1)
The probabilities in both of these cases were estimated using simple maximum

likelihood from the 1.3M tagged sentences.
Several different parameter formulations were tried, using the lists of equiva-

lences from (Xia, 2000), and lists formed by hand.
These were then combined into a single feature function by simple multipli-

cation, and a log-linear combination of the individual probabilities learned using
Maximum BLEU was also tried.

Results

BLEU
Mapping of All to All Tags 30.7

Mapping of All Chunk Tag to All Chunk Tags 31.5
Mapping of Identical Tags only 31.5

Mapping of Chinese POS tags to English POS tags 31.4

Table 3.2: BLEU Scores of Tag Fertility Features

Analysis and Conclusion
These feature function sdid not work as well as hoped.

Clearly, one large issue is smoothing. The estimation of the parameters
here was simplistic, as the counts for obviously related probabilities such as
P (NPe = 1|NPc = 1) and P (NPe = 2|NPc = 2) are independently estimated.

3.4. PROJECTED POS LANGUAGE MODEL 37

A parameterized distribution on the ratio of the Chinese to the English for each
tag might be better, as there would be fewer free parameters.

3.4 Projected POS Language Model

Motivation
The baseline MT system has a weak model of word movement.

Idea
Use Chinese POS tag sequences as surrogates for Chinese words to model move-
ment. Chinese words are too sparse to model movement, but an attempt to model
movement using Chinese POS may be more successful.

Implementation
Chinese POS sequences are projected to English using the word alignment. Rel-
ative positions are indicated for each Chinese tag. The feature function was also
tried without the relative positions. NULL alignments were handled by inserting
the literal ’NULL’. In addition, a variant was tried where NULL-aligned English
words were left in place for both training and testing.

The feature function itself is the log probability of a trigram language model
built on the projected Chinese tags and positions.

This is similar to the HMM Alignment model (Vogel, Ney, and Tillmann,
1996) but in this case movement is calculated on the basis of parts of speech.

Example

CD +0 M +1 NN +3 NN -1 NN +2 NN +3
14 (measure) open border cities

Table 3.3: Example

The table shows an example tagging of an English hypothesis showing how it
was generated from the Chinese sentence. The feature function is the log proba-
bility output by a trigram language model over this sequence.

38 CHAPTER 3. SHALLOW SYNTACTIC FEATURE FUNCTIONS

Results

BLEU
Projected POS LM no positions 31.4

Projected POS LM positions 31.5
Projected POS LM positions with NULL words lexicalized 31.7

Table 3.4: BLEU Scores of Projected POS Features

Analysis and Conclusion

The Projected POS feature function with positions and lexicalized NULL words
was one of the strongest performing shallow syntactic feature functions. This
is undoubtedly due to the weak movement model of the baseline system. This
feature function should be further investigated, as it may represent an interesting
trade-off between purely word-based models, and full generative models based
upon shallow syntax.

3.5 Aligned POS-Tag Sequences

Motivation and Idea

We used aligned POS-tag sequences as one of the feature functions. The align-
ment templates used in the baseline MT system is on the word level, so that the
probability was computed on lexical items directly. However, the distribution of
lexical items is always very sparse. In natural language processing, people al-
ways use POS tags as the smoothing model for lexical items. Therefore we used
aligned POS-tag sequences as the smoothing model for the aligned templates in
the baseline MT system.

Implementation

For each template in a given Chinese sentence and its English translation, we
first replace all the single words with part-of-speech tags. We have designed two
models to use aligned POS sequences.

3.5. ALIGNED POS-TAG SEQUENCES 39

The first one is a unigram language model on aligned templates

p(f , e) =
∏

(sf ,se)∈AT

p(sf , se),

where (sf , se) is a pair of aligned POS-tag sequences, AT is the set of all the
aligned templates for the given Chinese sentence and its English translation.
p(sf , se) is estimated in the training data as a unigram model.

The second model is a conditional model given the Chinese POS-tag sequence.

p(e, f) = p(f)
∏

(sf ,se)∈AT

p(se|sf),

where p(se|sf)) is estimated on the training data, and p(f) is estimated with a
trigram language model.

Results
The average BLEU scores (average of the best four among different 20 search
initial points) are 31.6 for the unigram model, and 31.4 for the conditional model.

Analysis and Conclusion
The performance of the feature function of aligned POS-tag sequences is not as
good as supposed. The main reason is because of the rule based module used in
the baseline MT system. For those words translated with rules, the baseline sys-
tem did not output alignment information, so that we cannot recover the aligned
sequences if they are handled by some rules. In addition, the use of the rules is
not consistent in the 1000 best results. This has a great impact on the performance
of the alignment based models. Once this problem is solved, the performance of
these feature functions is believed to be much more better.

Chapter 4

Deep Syntactic Feature Functions

4.1 Grammaticality Test of English Parser

We performed an experiment to test if the English (Collins) parser assigns a higher
probability to grammatical sentences. We looked at two features - raw parser
probabilities output by the Collins parser and parser probabilities divided by the
unigram language model probability. We now report experiments under these
features.

4.1.1 Parser Probability

We first present experiments using the raw parser probabilities.
We report the average log probability assigned by the Collins parser to the 1-

best (produced), oracle and the reference translations. The results are presented in
Table 4.1.

Hypothesis 1-best Oracle ref1 ref2 ref3 ref4
log(parseProb) -147.2 -148.5 -148.0 -157.5 -155.6 -158.6

Table 4.1: Average Parser Log Probability assigned to produced/oracle/reference
Translations on the development set.

We observe that the average parser log-probability of the 1-best translation is
higher than the average parse log probability of the oracle or the reference trans-
lations.

40

4.1. GRAMMATICALITY TEST OF ENGLISH PARSER 41

We next report the number of sentences (expressed as a percentage) on which
the parser assigned higher probability to oracle/reference translations in compari-
son to the produced translation. These results are summarized in Table 4.2.

Hypothesis Oracle ref1 ref2 ref3 ref4
% of sentences 42.6 46.0 32.3 32.7 29.9

Table 4.2: % of sentences in the development set for which the parser assigned
higher probability to the oracle/reference translation compared to the produced
translation

4.1.2 Parser Probability Divided by Unigram Language Model
Scores

We now present the results obtained by dividing the parser-probability by the un-
igram language model probability. The unigram language model was trained on
the Wall Street Journal corpus.

We first report the average normalized log probability scores obtained on the
produced, oracle and the reference translations under this feature in Table 4.3.

Hypothesis 1-best Oracle ref1 ref2 ref3 ref4
log(parseProb/UniProb) 17.85 18.44 26.33 30.97 28.77 24.63

Table 4.3: Average Normalized Parser Log Probability assigned to pro-
duced/oracle/reference Translations on the development set.

We next report the number of sentences (expressed as a percentage) on which
the parser assigned higher normalized probability to oracle/reference translations
in comparison to the produced translation. These results are summarized in Ta-
ble 4.4.

Hypothesis Oracle ref1 ref2 ref3 ref4
% of sentences 50.4 65.6 72.3 67.5 62.0

Table 4.4: % of sentences in the development set for which the parser assigned
higher normalized probability to the oracle/reference translation compared to the
produced translation.

42 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

4.2 Tree to String Model

Model Description
A tree-to-string model is one of syntax-based translation models. The model is a
conditional probability p(f |T (e)). Here, we used a model defined in (Yamada and
Knight, 2001) and (Yamada and Knight, 2002).

Internally, the model performs three types of operations on each node of a
parse tree. First, it reorders the child nodes, such as changing VP → VB NP
PP into VP → NP PP VB. Second, it inserts an optional word at each node.
Third, it translates the leaf English words into Chinese words. These operations
are stochastic and their probabilities are assumed to depend only on the node, and
are independent of other operations on the node, or other nodes. The probability
of each operation is automatically obtained by a training algorithm, using about
780,000 English parse tree - Chinese sentence pairs. The probability of these
operations θ(ek

i,j) are assumed to depend on the edge of the tree being modified,
ek

i,j but independent of everything else, giving the following equation,

p(f |T (e)) =
∑

Θ

∏

θ(ek
i,j)

p(θ(ek
i,j)|e

k
i,j) (4.1)

where Θ varies over the possible alignments between the f and e and θ(ek
i,j) is the

particular operations (in Θ) for the edge ek
i,j.

The model is further extended to incorporate phrasal translations performed at
each node of the input parse tree (Yamada and Knight, 2002). An English phrase
covered by a node can be directly translated into a Chinese phrase without regular
reorderings, insertions, and leaf-word translations.

Implementation
The model was trained before the workshop, using about 780,000 English parse
tree - Chinese sentence pairs. There are about 3 million words on the English side,
and they were parsed by Collins’ parser.

Since the model is computationally expensive, we added some limitations on
the model operations. As the base MT system does not produce a translation with
a big word jump, we restrict the model not to reorder child nodes when the node
covers more than seven words. For a node which has more than four children, the
reordering probability is set to be uniform. We also introduced pruning, which

4.2. TREE TO STRING MODEL 43

discards partial (subtree-substring) alignments if the probability is lower than a
threshold.

The model gives a sum of all possible alignment probabilities for a pair of
a Chinese sentence and an English parse tree. We also calculate the probability
of the best alignment according to the model. Thus, we have the following two
feature functions.

hTreeToStringSum(e, f) = log(
∑

Θ

∏

θ(ek
i,j)

p(θ(ek
i,j)|e

k
i,j)) (4.2)

hTreeToStringViterbi(e, f) = log(max
Θ

∏

θ(ek
i,j)

p(θ(ek
i,j)|e

k
i,j)) (4.3)

Results
As the model is computationally expensive, we sorted the n-best list by the sen-
tence length, and processed them from the shorter ones to the longer ones. We
used 10 CPUs for about five days, and 273/997 development sentences, and
237/878 test sentences were processed.

The average BLEU score (average of the best four among different 20 search
initial points) was 31.7 for both hTreeToStringSum and hTreeToStringViterbi . Among the
processed development sentences, the model preferred the oracle sentences over
the produced sentence in 61% cases.

Analysis and Conclusion
The biggest problem of this model is that it is computationally very expensive. It
only processed less than 30% of the n-best lists in long CPU hours. In addition,
we processed short sentences only. For long sentences, it is not practical to use
this model as it is.

However, even though it processed small portion of the n-best lists, the BLEU
score was not that bad. Actually, it is one of the best results among the feature
functions which utilized parse trees.

One of the possible ways to reduce the computational cost is to break down a
long sentence into a set of small fragments. We used such a tool, called machete
(see Section ?.?), to preprocess the n-best lists. Using the same model described
above, it now covers almost all sentences. The average BLEU score was 31.5,
which is lower than the case described above. However, we found that the tool

44 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

had some problems in handling punctuation and tokenization. We expect better
results by sharpening the machete.

4.3 Tree to Tree Alignment
A tree-to-tree model translation makes use of syntactic tree for both the source
and target language. As in the tree-to-string model, a set of operations apply, each
with some probability, to transform one tree into another. However, when training
the model, trees for both the source and target languages are provided, in our case
from the Chinese and English parsers.

Work during the workshop began with the tree-to-tree alignment model pre-
sented by Gildea (2003). We begin with a description of the basic probability
model in the following section before describing the extensions developed during
the workshop. The major extension were adapting the model to handle depen-
dency trees (Section 4.4), and making use of the word-level alignments produced
by the baseline MT system for the purposes of rescoring (Section 4.3). The basic
feature function produced by a tree-to-tree alignment is the probability assigned
by the model. Further features derived from the alignments are described in Sec-
tion 4.5.

Tree to Tree Model
The tree-to-tree alignment model has tree transformation operations similar to
those of the tree-to-string model described above. However, the transformed tree
must not only match the surface string of the target language, but also the tree
structure assigned to the string by the parser. In order to provide enough flexibility
to make this possible, additional tree transformation operations allow a single
node in the source tree to produce two nodes in the target tree, or two nodes in
the source tree to be grouped together and produce a single node in the target tree.
The model can be thought of as a synchronous tree substitution grammar, with
probabilities parameterized to generate the target tree conditioned on the structure
of the source tree.

The probability P (Tb|Ta) of transforming the source tree Ta into target tree
Tb is modeled in a sequence of steps proceeding from the root of the target tree
down. At each level of the tree:

1. At most one of the current node’s children is grouped with the current node
in a single elementary tree, with probability Pelem(ta|εa ⇒ children(εa)),

4.3. TREE TO TREE ALIGNMENT 45

conditioned on the current node εa and its children (ie the CFG production
expanding εa).

2. An alignment of the children of the current elementary tree is chosen, with
probability Palign(α|εa ⇒ children(ta)). This alignment operation is sim-
ilar to the re-order operation in the tree-to-string model, with the exten-
sion that 1) the alignment α can include insertions and deletions of individ-
ual children, as nodes in either the source or target may not correspond to
anything on the other side, and 2) in the case where two nodes have been
grouped into ta, their children are re-ordered together in one step.

In the final step of the process, as in the tree-to-string model, lexical items at the
leaves of the tree are translated into the target language according to a distribution
Pt(f |e).

Allowing non-1-to-1 correspondences between nodes in the two trees is nec-
essary to handle the fact that the depth of corresponding words in the two trees
often differs. A further consequence of allowing elementary trees of size one or
two is that some reorderings not allowed when reordering the children of each
individual node separately are now possible. For example, with our simple tree

A

B

X Y

Z

if nodes A and B are considered as one elementary tree, with probability
Pelem(ta|A ⇒ BZ), their collective children will be reordered with probability
Palign({(1, 1)(2, 3)(3, 2)}|A⇒ XYZ)

A

X Z Y
giving the desired word ordering XZY. However, computational complexity as
well as data sparsity prevent us from considering arbitrarily large elementary trees,
and the number of nodes considered at once still limits the possible alignments.
For example, with our maximum of two nodes, no transformation of the tree

46 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

A

B

W X

C

Y Z
is capable of generating the alignment WYXZ.

Tree-to-String Tree-to-Tree
elementary tree grouping Pelem(ta|εa ⇒ children(εa))
re-order Porder (ρ|ε⇒ children(ε)) Palign(α|εa ⇒ children(ta))
insertion Pins(left, right, none|ε) α can include “insertion” symbol
lexical translation Pt(f |e) Pt(f |e)
with cloning Pins(clone|ε) α can include “clone” symbol

Pmakeclone(ε) Pmakeclone(ε)

Table 4.5: Model parameterization

In order to generate the complete target tree, one more step is necessary to
choose the structure on the target side, specifically whether the elementary tree
has one or two nodes, what labels the nodes have, and, if there are two nodes,
whether each child attaches to the first or the second. Because we are ultimately
interested in predicting the correct target string, regardless of its structure, we
do not assign probabilities to these steps. The nonterminals on the target side
are ignored entirely, and while the alignment algorithm considers possible pairs
of nodes as elementary trees on the target side during training, the generative
probability model should be thought of as only generating single nodes on the
target side. Thus, the alignment algorithm is constrained by the bracketing on the
target side, but does not generate the entire target tree structure.

While the probability model for tree transformation operates from the top of
the tree down, probability estimation for aligning two trees takes place by iterating
through pairs of nodes from each tree in bottom-up order, as sketched below:

for all nodes εa in source tree Ta in bottom-up order do
for all elementary trees ta rooted in εa do

for all nodes εb in target tree Tb in bottom-up order do
for all elementary trees tb rooted in εb do

for all alignments α of the children of ta and tb do
β(εa, εb) += Pelem(ta|εa)Palign(α|εi)

∏

(i,j)∈α β(εi, εj)

4.3. TREE TO TREE ALIGNMENT 47

end for
end for

end for
end for

end for
The outer two loops, iterating over nodes in each tree, require O(|T |2). Be-

cause we restrict our elementary trees to include at most one child of the root node
on either side, choosing elementary trees for a node pair is O(m2), where m refers
to the maximum number of children of a node. Computing the alignment between
the 2m children of the elementary tree on either side requires choosing which
subset of source nodes to delete, O(22m), which subset of target nodes to insert
(or clone), O(22m), and how to reorder the remaining nodes from source to target
tree, O((2m)!). Thus overall complexity of the algorithm is O(|T |2m242m(2m)!),
quadratic in the size of the input sentences, but exponential in the fan-out of the
grammar.

Tree-to-Tree Clone Operation

Allowing m-to-n matching of up to two nodes on either side of the parallel tree-
bank allows for limited non-isomorphism between the trees, as in Hajič et al.
(2002). However, even given this flexibility, requiring alignments to match two
input trees rather than one often makes tree-to-tree alignment more constrained
than tree-to-string alignment. For example, even alignments with no change in
word order may not be possible if the structures of the two trees are radically
mismatched. This leads us to think it may be helpful to allow departures from
the constraints of the parallel bracketing, if it can be done in without dramatically
increasing computational complexity.

For this reason, we introduce a clone operation, which allows a copy of a
node from the source tree to be made anywhere in the target tree. After the clone
operation takes place, the transformation of source into target tree takes place
using the tree decomposition and subtree alignment operations as before. The
basic algorithm of the previous section remains unchanged, with the exception
that the alignments α between children of two elementary trees can now include
cloned, as well as inserted, nodes on the target side. Given that α specifies a new
cloned node as a child of εj, the choice of which node to clone is made as in the
tree-to-string model:

Pclone(εi|clone ∈ α) =
Pmakeclone(εi)

∑

k Pmakeclone(εk)

48 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

Because a node from the source tree is cloned with equal probability regardless
of whether it has already been “used” or not, the probability of a clone operation
can be computed under the same dynamic programming assumptions as the basic
tree-to-tree model. As with the tree-to-string cloning operation, this independence
assumption is essential to keep the complexity polynomial in the size of the input
sentences.

For reference, the parameterization of all four models is summarized in Table
4.5.

Experiments
We trained the parameters of the tree transformation operations on 42,000 sen-
tence pairs of parallel Chinese-English data from the Foreign Broadcast Informa-
tion Service (FBIS) corpus. The lexical translation probabilities Pt were trained
using IBM Model 1 on the 30 million word training corpus. This was done to
overcome the sparseness of the lexical translation probabilities estimated while
training the tree-to-tree model, which was not able to make use of as much train-
ing data.

As a test of the tree-to-tree model’s discrimination, we performed an oracle
experiment, comparing the model scores on the 1st sentence in the n-best list with
candidate giving highest BLEU score. On the 1000-best list for the 993 sentence
development set, restricting ourselves to sentences with no more than 60 words
and a branching factor of no more than five in either the Chinese or English tree,
we achieved results for 480, or 48% of the 993 sentences. Of these 480, the model
preferred the produced over the oracle 52% of the time, indicating that it does not
in fact seem likely to significantly improve BLEU scores when used for reranking.

Using Word-Level Alignments
One source of information in our n-best list that we have not exploited is the
word-level alignments. Since the English sentences were in fact generated by
the system, it “knows” which Chinese word or words were used to generate each
English word, meaning that the tree-to-tree model does not need to figure this out
for itself.

We modified the tree-to-tree alignment code to take as input a word-level
alignment for each sentence. In this setting, rather using the model to find the
best word-level alignment, it is serving merely to provide a measure of the syntac-
tic similarity of the Chinese sentence and its English candidate translation, given

4.4. DEPENDENCY TREE-TO-TREE ALIGNMENTS 49

the alignment between to two. This was implemented by using a new set of lexi-
cal translation probabilities for each sentence, based on the word-level alignment.
Word pairs that align were given probability one (this is not strictly a probabil-
ity now, as a word on the source side can be aligned with more than one target
word, meaning the translation probabilities sum to more than one). Words with
no alignment in the other language were given insertion or deletion probability of
one, and all other lexical translation probabilities were fixed to zero.

This modification to the alignment algorithm had the benefit of significantly
reducing the search space and making the tree-to-tree alignment run much faster.
The speed-up made it possible to align all 1000 candidates from our n-best list.
Three features were added to the baseline system: the probability of the tree-to-
tree alignment, another feature that fired when one or both sentences were skipped
because of a branching factor of more than six or length of more than sixty, and a
third feature that fired when no alignment was found despite both sentences being
within the specified branching factor. This can happen because the root of the
dependency tree cannot be cloned.

4.4 Dependency Tree-to-Tree Alignments

Motivation

When performing alignment for the Chinese and English n-best constituency parse
trees, two problems arise.

First, the n-best parses are often unreliable and may contain “hallucinated”
structures. As parsers which have been trained on well-formed sentences expect
to parse well-formed sentences, the parser’s output can be corrupted for ungram-
matical n-best hypotheses. For example, in the following set of sentences, the
English n-best has no tagged verbs. However, at a higher level in the parse tree
the parser has inserted a verb phrase label.

50 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

S

NP

NP

NR

Zhongguo

QP

CD

shisi

CLP

M

ge

NP

NN

bianjing

NN

kaifang

NN

chengshi

NP

NN

jingji

NN

jianshe

NN

chengjiu

VP

VV

xianzhu

Chinese constituency tree

S

NP

NNP

China

CD

14

JJ

open

NN

border

NNS

cities

VP

NN

construction

NP

JJ

remarkable

NNS

achievements
English constituency tree

Unreliable parses can be detrimental to the alignment process. In the above
example, if the alignment program sees a verb phrase in both the Chinese and
English, it may assign a high probability to the two trees aligning when in fact the
English tree contains no verb.

The second problem with aligning constituency trees is the sometimes arbi-
trary depth within a parse tree. For example, looking at the two above trees, we
see that the noun phrase structures on the left of the two trees have varying depth
(the Chinese tree reaches a depth of six while the English side only four). How-
ever, despite the different depths, the words that the head noun nodes span are
actually very accurate translations; the number of intermediate noun phrase nodes
that have been inserted above the leaves are more or less arbitrary.

As a result, even though two structures might be very similar, a difference in
tree depth causes the aligner to perform node merges in order to align the terminal
nodes correctly which comes at a cost to the alignment probability. In a more

4.4. DEPENDENCY TREE-TO-TREE ALIGNMENTS 51

severe case, the aligner may not even be able to align the corresponding terminal
nodes because only one merge is possible at any point in the tree. In this case
the aligner will clone the subtree which comes at an even greater probability cost.
As a result, the alignment score for this good translation has been unnecessarily
lowered.

Idea

Dependency trees offer a solution to both of the drawbacks that constituency trees
present for alignment. Instead of representing the overall grammatical structure
of a sentence, dependency trees represent the relationships between the words.
Essentially, they show graphically which words depend on each other via a
language’s head rules. The result is a tree in which every node represents a word,
and its children are words that depend on it. Traversing down the tree, a node’s
child may in turn have children (dependents) of its own. Below are the previous
Chinese and English constituency trees converted to dependency trees.

VV:xianzhu

NN:chengshi

NR:Zhongguo CD:shisi

M:ge

NN:bianjing NN:kaifang

NN:chengjiu

NN:jingji NN:jianshe

Chinese dependency tree

NN:construction

NNS:cities NNP:China CD:14 JJ:open NN:border

NNS

acheivements JJ:remarkable

English dependency tree

By converting the parsed constituency trees into dependency trees, we elim-
inate the “hallucinated” node labels. By only using the words and their part of

52 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

speech tag, any of the parser’s corrupted output is ignored while still preserving
the overall grammatical relationships between the words. Now, in the above ex-
ample there is no verb phrase in the English tree where there should not be.

Dependency trees also solve the second problem we encountered with aligning
constituency tree by ignoring the depth within a parse tree structure. Since all non-
terminal nodes are ignored and only the grammatical relations between words are
shown, the number of non-terminal nodes above the words is not represented. In
the above example, the similar noun phrases in the left of the trees now have very
similar tree structures as well.

Implementation

Once we use English and Chinese head rules to convert each constituency tree to
a dependency tree, we modify the tree-to-tree alignment algorithm in two ways.

First, we must address the issue of word translation. Now that the trees contain
words in every single node as opposed to only leaf nodes, we must account for
translation occuring in these new locations. This is done simply by multiplying
in the probability of word translation occuring between the words of every two
nodes that align.

The second change we make to the tree-to-tree alignment algorithm is to intro-
duce a lexicalized reordering parameter. The original alignments take into consid-
eration the probability that, given the label, a Chinese node’s children have been
so reordered in the English tree. However now that we have dependency trees
representing word relationships, we can make a more informative and perhaps
powerful estimation which judges the probability that, given the Chinese word
and its children’s labels, its children have been so reordered in the English tree.

With these modifications, we then train the train the alignment program on
40,000 pairs of Chinese-English dependency parses to obtain the parameters for
the EM algorithm. With these trained parameters, we can run the alignment pro-
gram and use the probability of each n-best hypothesis aligning with its source
Chinese sentence as a feature function.

Another feature to be extracted from the alignment compares what type of
words align with other types of words via the part of speech label. Counting the
number of times that a noun aligns with a noun or a verb aligns with a verb gives
an estimate as to how often similar words are aligning and could indicate at a finer
grain how well two sentences align.

4.5. MAIN VERB ARGUMENTS 53

Results

Using the probability of the source Chinese dependency parse aligning with the
n-best hypothesis dependency parse as a feature function, making use of the word-
level alignments as decribed in Section 4.4, yields a 31.6 BLEU score (against a
31.6 baseline).

Using noun alignment counts as a feature function yields a 31.4 BLEU score,
and using verb alignment as a feature function yields a 31.4 BLEU score.

Analysis and Conclusions

Even by using dependency trees to eliminate much of the noise created by unre-
liable parsing, using the alignments as a source for feature functions is currently
not very effective.

One reason we see insignificant improvements can be explained by inadequate
parsing tools for ungrammatical n-best sentences. Even at the most basic level of
part of speech, words are incorrectly tagged (e.g. the last word of a headline
being tagged as a punctuation mark). If parsing for machine translation output
could be improved, one could also expect to gain more utility for using tree-to-
tree alignment probability and node part of speech alignment as an indicator for
the accuracy of a hypothesis.

4.5 Main Verb Arguments

Motivation and Idea

It is not uncommon to see machine translation output which has misplaced or
simply omitted entire syntactic entities. For example, the object of one verb may
have become the subject of another or may have been simply untranslated. It
would be desirable to make sure that the most important “players”, such as the
subject and object of a sentence, have been preserved.

Dependency trees offer an organization that is naturally conducive to tracking
the argument structure of a sentence. Because they are formed by applying a lan-
guage’s head rules, one can see if a word is an argument of another by looking for
a parent-child relationship (children are arguments of their parent node). By ana-
lyzing the dependency tree parses of a Chinese sentence and English hypothesis,
we can compare if the correct arguments have been transfered in translation.

54 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

Implementation

Here we create a feature function that counts the difference in the number of ar-
guments to the main verb between a Chinese sentence and an English translation.

To do this, we perform a breadth-first search through the dependency tree. The
first verb that is found is labeled as the main verb of the sentence since it is closest
to the top of the dependency tree. After the main verb is found, counting the
number of its immediate children yields the number of arguments the main verb
has taken.

Results

Using the difference in the number of arguments to the main verb as a feature
function yields a BLEU score of 31.6 (over a 31.6 baseline).

Analysis and Conclusions

While preserving the number of arguments to the main verb would seem to be
helpful in preserving the meaning of a translation, the BLEU score does not show
any significant increase.

One explanation could lie in the sometimes unreliable parsing of the n-best
sentences. As described in dependency tree-to-tree alignment, parsers that have
been trained on grammatical sentences create errors when parsing ungrammatical
machine translation output. The noise generated from this could explain the inef-
ficacy of a feature function that tracks the main verb arguments via dependency
parse trees.

Another problem in this approach is the lack of consideration to which ar-
guments exactly have been transferred via the word alignment. Similar feature
functions which do incorporate word alignment yield much higher performance
(e.g. Projected Dependency feature functions).

4.6 Flipped Dependencies

Motivation

Word dependencies (see e.g., section “Dependency Tree-to-Tree Alignments” are
often used as a robust representation for sentences. Dependencies capture the

4.6. FLIPPED DEPENDENCIES 55

Figure 4.1: Sample dependency tree.

relationship between a head word and the words that depend on it. For example
in the sentence

John likes tabby cats.

The root-level head is “likes”; two words “John” and “cats” depend on “likes”
and, finally, “tabby” depends on “cats”.

The corresponding constituent tree for the same sentences is shown below:
S

NP

NNP

John

VP

V

likes

NP

JJ

tabby

NNS

cats

English language head rules allow for dependency trees to be built with little
effort from arbitrary sentences.

In 4.8 we indicated that a large number of the NBEST candidates are not
grammatical sentences and that fact challenges the construction of S-rooted parse
trees by either the Collins or Charniak parsers.

Under such circumstances one may wonder whether some sentences that fail
to parse to S or some sentences which parse to S incorrectly may not contain some
interesting information at a level below S, e.g., at the level of individual NPs. It
makes only sense to consider whether dependency information can be used to
capture some interesting properties of the NBEST sentences.

56 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

mark

city

china 14 open border

achievement

economic

make

city

china 14 open border construction

economic

achievement

significant

Figure 4.2: Dependency trees for two sample NBEST sentences.

fourteen chinese open border cities make significant achievements in
economic construction

significant accomplishment achieved in the economic construction of
the fourteen open border cities in china

in china , fourteen cities along the border opened to foreigners
achieved remarkable economic development

economic construction achievement is prominent in china ’s fourteen
border opening up cities .

Figure 4.3: Four reference translations for sentence 0 of the development set.

Other dependency models are described elsewhere in this report. This sec-
tion addresses the FlipDefs family of dependency-based syntactic features. These
features are monolingual (they don’t depend on the Chinese counterparts of the
English dependencies).

The following example (Figure 4.2) shows the motivation behind FlipDefs.
In the first tree, the word “economic” depends on “achievement” whereas in the
second one, it depends on “construction”.

Clearly at most one of these dependencies can be correct given a Chinese sen-
tence. In this example, the four reference translations into English are shown
in Figure 4.3. Three of these four sentences contain the “construction′′ →
“economic′′ dependency, the fourth one contains a different dependency, namely
“development′′ → “economic′′ but none of the four contains a dependency
“economic′′ → “construction′′.

4.6. FLIPPED DEPENDENCIES 57

(S1 (S (NP (CD fourteen)
(ADJP (JJ chinese)

(JJ open))
(NN border)
(NNS cities))

(VP (VBP make)
(NP (JJ significant)

(NNS achievements))
(PP (IN in)

(NP (JJ economic)
(NN construction))))))

(S1 (NP (NP (JJ significant)
(NN accomplishment))

(VP (VBN achieved)
(PP (IN in)

(NP (NP (DT the)
(JJ economic)
(NN construction))

(PP (IN of)
(NP (NP (DT the)

(CD fourteen)
(JJ open)
(NN border)
(NNS cities))

(PP (IN in)
(NP (NNP china))))))))))

(S1 (S (PP (IN in)
(NP (NNP china)))

(, ,)
(NP (NP (CD fourteen)

(NNS cities))
(PP (IN along)

(NP (DT the)
(NN border))))

(VP (VBN opened)
(PP (TO to)

(NP (NP (NNS foreigners))
(VP (VBN achieved)

(NP (JJ remarkable)
(JJ economic)
(NN development))))))))

(S1 (S (NP (JJ economic)
(NN construction)
(NN achievement))

(VP (AUX is)
(ADJP (JJ prominent)

(PP (IN in)
(S (NP (NP (NNP china)

(POS ’s))
(NP (CD fourteen)

(NN border)))
(VP (VBG opening)

(PRT (RP up))
(NP (NNS cities)))))))))

Figure 4.4: Parsed reference sentences.

58 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

(S1 (S (NP (NP (NNP china)
(POS ’s))

(CD 14)
(ADJP (JJ open))
(NN border)
(NNS cities))

(VP (VBD marked)
(NP (JJ economic)

(NNS achievements)))))

Figure 4.5: Parsed produced sentence.

Figure 4.6: Reference 0. Figure 4.7: Reference 1.

4.6. FLIPPED DEPENDENCIES 59

Figure 4.8: Reference 2. Figure 4.9: Reference 3.

Idea
The main idea is to penalize NBEST sentences that have too many flipped de-
pendencies. Figure 4.10 illustrates how the FlipDefs feature is computed. The
first candidate gets penalized for its incorrect use of the “achievement′′ →
“economic′′ dependency.

Implementation
A large amount of preprocessing was needed to compute the FlipDefs features.
The following steps were needed, in order.

1. Preprocess the input text

2. Parse with the Collins/Charniak parsers

3. Extract heads using code from Jason Eisner

4. Lemmatize and convert the resulting structures into the Prague dependency
format using tools provided by Martin Čmejrek, Jan Hajič, Ivona Kučerová,
and Zdeněk Žabokrtský

5. Extract all dependencies

60 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

PRODUCED: china ’s 14 open border cities marked economic achievements

mark->city
city->china
city->14
city->open
city->border
mark->achievement
achievement->economic

score: 2.3219 - rank 493

ORACLE: china ’s 14 open border cities in economic construction made
significant achievements

make->city
city->china
city->14
city->open
city->border
city->construction
construction->economic
make->achievement
achievement->significant

score: 2.4404 - rank 327

Figure 4.10: Example features for two of the NBEST translations of sentence 0
from the dev set.

4.6. FLIPPED DEPENDENCIES 61

0. china ’s 14 open border cities marked economic achievements
1. china ’s 14 open border cities achievements remarkable
2. china ’s 14 open border cities building remarkable achievements
3. china ’s 14 open border cities , remarkable achievements
4. china ’s 14 open border cities construction remarkable achievements
5. china ’s 14 open border cities achievements marked
6. china ’s 14 open border cities achievements significant
7. china ’s 14 open border cities economic achievements remarkable
8. china ’s 14 open border cities economic remarkable achievements
9. china ’s 14 open border cities economic construction remarkable achievements

Figure 4.11: The first ten NBEST translations of sentence 0 in the dev set.

0. mark->city city->china city->14 city->open city->border
mark->achievement achievement->economic

1. achievement->city city->china city->14 city->open city->border
achievement->remarkable

2. city->china city->14 city->open city->border city->build
build->achievement achievement->remarkable

3. city->china city->14 city->open city->border city->achievement
achievement->remarkable

4. achievement->city city->china city->14 city->open city->border
achievement->construction achievement->remarkable

5. mark->city city->china city->14 city->open city->border
mark->achievement

6. achievement->city city->china city->14 city->open city->border
achievement->significant

7. city->china city->14 city->open city->border city->remarkable
remarkable->achievement achievement->economic

8. economic->city city->china city->14 city->open city->border
economic->achievement achievement->remarkable

9. achievement->city city->china city->14 city->open city->border
city->economic achievement->construction achievement->remarkable

Figure 4.12: Dependency representations of these sentences.

6. Build a FlipDeps model from the training/dev data

7. Run the FlipDefs model on the test data

Figure 4.11 shows the first ten NBEST translations for sentence 0 of the dev
set. Figure 4.12 shows the same sentences in dependency format:

The FlipDefs model
We define the “small” dependency feature d(w1, w2) to be:

d(w1, w2) = log
p(w1 → w2)

p(w2 → w1)

62 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

w1 w2 ct(w1) ct(w1) + ct(w2)
ct(w1)

ct(w1)+ct(w2)

china have 74 77 0.9610
china training 4 5 0.8000
china room 9 12 0.7500
china become 2 3 0.6667
china it 2 4 0.5000
china present 5 11 0.4545
china Japan 8 18 0.4444
china billion 4 9 0.4444
china Bank 3 7 0.4286
china fund 10 28 0.3571
china loan 6 20 0.3000
china trade 62 317 0.1956
china be 9 47 0.1915
china production 1 20 0.0500
china Dingha 1 26 0.0385
china use 14 737 0.0190
china growth 5 323 0.0155
china enterprise 9 588 0.0153
china and 8 3745 0.0021

Table 4.6: Sample values of the dependency feature for dependencies including
the word “china”.

For example:

• f(”mark”→ ”achievement”) = 8

• f(”achievement”→ ”mark”) = 4

• d(”mark”, ”achievement”) = log(8/4) = log 2

Similarly, the “big” dependency feature is:

D =
∑

i

di

Table 4.6 shows some representative examples of dependencies.

4.7. WORD POPULARITY 63

There are four features in the FlipDefs family: FlipDefs1, FlipDefs2,
FlipDefs3, and FlipDefs4. The last two are exprimental. The rest (FlipDefs1
and FlipDefs2) will now be described:

• FlipDefs1 - using only the first 100,000 sentences from the dev-set as train-
ing.

• FlipDefs2 - using the entire dev-set (990,952 sentences) for training.

Let’s now consider the 1000 NBEST translations for sentence 0. The value of
FlipDefs1 for them ranges from 2.9069 to -2.6630.

Results
20 iterations, BLEU (%) 50 iterations, BLEU (%)

FlipDeps1 31.6234 31.5735
FlipDeps2 31.6328 31.7700

Future ideas
• In these experiments, we haven’t done any backoff for rare dependencies.

Backoff is likely to help.

• Using transitive dependencies seems to be an idea worth trying.

• We should also investigate different functions f for D = f(di).

4.7 Word Popularity

Motivation
It is known that human translations of the same input sentence can be very differ-
ent from one another. This is one of the motivations behind the BLEU evaluation
(Papineni et al., 2001). The idea behind the Flipped Dependencies family of fea-
tures is also motivated by the diversity of human translations.

Translation models are traditionally trained from a single reference translation.
As a result, they are likely to underestimate the probabilities of certain less fre-
quent translations of a word while overemphasizing the single translation present
in the given reference translation.

64 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

Figure 4.3 shows why this is the case. If only the first human translation were
used for training, the translation model would learn an inappropriately high proba-
bility for the translation “achievements” while discounting the fact that other valid
translation of the same Chinese word may be “accomplishment” or “achieve”/.

If one were to train on all four reference translations, then the relative proba-
bilities of the different translations would more accurately reflect the tendency of
humans to use them.

Idea
To exploit multiple translations of the same sentence, we built several models of
Word Popularity based on the development set. We didn’t have access to multiple
translations of the training set.

Let’s consider the four translations shown in Figure 4.3. We can build several
equivalence classes of words, e.g., (fourteen); (chinese, china); (open, opened,
opening); (achievements, accomplishment, achievement, achieved); (construc-
tion, development), etc. A quick analysis reveals the existence of several types
of words based on their presence in the multiple translations.

• very popular words (e.g., fourteen) - these words appear in all four refer-
ences.

• alternatives based on syntax and morphology (e.g., open, opened, opening).

• synonyms or near synonyms (e.g., construction, development)

• idiosyncratic cases or words that appear only in a small percentage of the
translations (e.g., along).

Implementation
We trained a WordPop family of models using the development set.

IDF (inverse document frequency) is a measure borrowed from Information
Retrieval which measures how frequent a word is in a large corpus. Low-content
words such as prepositions and articles have low IDF while rare words have very
high IDF values. IDF is measured on a logarithmic scale so a word with an IDF
of 10 is 210 times as rare as a word with an IDF of 0.

The IDF values for our experiments were computed from a training cor-
pus of TDT documents (Radev, Hatzivassiloglou, and McKeown, 1999). Some

4.7. WORD POPULARITY 65

typical values of IDF are “the” (0.010), “of” (0.110), “open” (2.388), “China”
(2.391), “along” (3.006), “achievement” (4.381), “cities” (4.528), and “achieve-
ment” (4.993). Rare words include “oratorios” (8.420), “physiological” (8.707),
and “textures” (9.806).

The WordPop model assigns a given word a score roughly proportional to the
certainty with which it is used in a set of four translations. If a word appears in
all four translations, its score is 1.0. If it appears in 3 or 2 of them, then its score
is 0.75 and 0.5, respectively. Finally, if it only appears in one, we only assign it a
score of 0.1 to reflect the possible randomness of the reason for its presence.

Example:

• economic = 1

• fourteen = 1

• border = 1

• significant, construction = 0.75; development = 0.1

• china = .75, chinese = .1

• open = .5, opened = .1, opening = .1

• achieved = .5, achievement = .1, achievements = .1, made = .1

The full set of WordPop models is described here:

• WordPop

• WordPopIdf - same as WordPop but the score for each word is first multi-
plied by its IDF.

• WordPop2Idf - same as WordPopIdf but the WordPop score is given a weight
of two.

• WordPop3Idf - same as WordPopIdf but the WordPop score is given a weight
of three.

• WordPopIdf2 - same as WordPopIdf but the IDF score is given a weight of
two.

66 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

parser total nb sentences failed to parse parsed to S parsed to NP parsed to other
Collins 990952 30761 811723 85577 62891
Charniak 990952 0 887202 41745 62005

Table 4.7: Statistics about the Collins and Charniak parsers on the development
set. Sentences parsed to constituents other than “S” or “NP” typically parse to
“FRAG”, “SINV”, “X”.

Results
20 iterations, BLEU (%) 50 iterations, BLEU (%)

WordPop 31.5980 31.6675
WordPop-Idf 31.8329 31.4092
WordPop2-Idf 31.7577 31.7577
WordPop3-Idf 31.0741 31.8826
WordPop-Idf2 31.4164 31.5971

4.8 CharColl

Motivation

A cursory analysis of the NBEST list shows that a large number of them are
not grammatical sentences. In other words, state of the art parsers like Collins’s
and Charniak’s are likely to encounter problems. As Section (XXXX) reports,
more than 3% of the sentences cannot be parsed by the Collins parser at all. The
Charniak parser parses all sentences however often both parsers fail to parse them
all to way to an S and instead parse the entire NBEST input to a lower-level
constituent such as NP (See Table 4.7)

Example

Figures 4.13 and 4.14 illustrate how the distance function is computed. The Char-
niak parser uses the S1 symbol to denote the root of the parse tree, while Collins
uses TOP. Other than that, the distance metric captures all other differences be-
tween the rest of the parse trees (or rather, parse strings). In the first example
below, Charniak “discovers” an Adjective Phrase (ADVP) on top of the adjec-
tive “open” whereas Collins doesn’t. The overall distance for the first example is
therefore rather small (12). The second example indicates a larger disagreement.
First, Charniak parses the input as a sentence fragment (FRAG) while Collins

4.8. CHARCOLL 67

(S1 (S (NP (NP (NNP china) (POS ’s)) (CD 14) (ADJP (JJ open)) (NN
border) (NNS cities)) (VP (VBD marked) (NP (JJ economic) (NNS
achievements)))))

(TOP (S (NP (NP (NNP China) (POS ’s)) (CD 14) (JJ open) (NN border)
(NNS cities)) (VP (VBD marked) (NP (JJ economic) (NNS achievements)))))

Figure 4.13: Sample parses of the same sentence by Charniak (top) and Collins
(bottom) (dev set sentence number 1) - the edit distance is 12.

(S1 (FRAG (NP (NP (DT the) (JJ first) (CD two) (NNS months)) (PP (IN
of) (NP (DT this) (NN year)))) (ADJP (NNP guangdong) (JJ high)) (: -)
(NP (NP (NNP tech) (NNS products)) (NP (QP (CD 3.76) (CD billion)) (NP
(PRP us)) (NNS dollars)))))

(TOP (NP (NP (DT the) (JJ first) (CD two) (NNS months)) (PP (IN of)
(NP (QP (ADVP (NP (DT this) (NN year)) (IN Guangdong) (NP (JJ
high-tech) (NNS products))) (CD 3.76) (CD billion)) (NNP US) (NNS
dollars)))))

Figure 4.14: Sample parses of the same sentence by Charniak (top) and Collins
(bottom) (test set sentence number 1) - the edit distance is 74.

identifies an NP. Next, the sequence “this year” is parsed quite differently by the
two parsers. Finally, the sequence “3.76 Billion U.S. dollars” is also parsed in two
very different ways. The overall distance between these two parse strings is 74.

Implementation
We decided to use the Levenshtein edit distance at the string level to determine
the discrepancy between the two parses. The Levenshtein distance is equal to the
number of edits (insertions, deletions, and substitutions, all with the same weight)
needed to transform one string into another.

To run the Charniak parser, we used the unix command “ulimit -s unlimited”
to set the stack size to unlimited. Not doing that would cause the Charniak parser
to fail approximately 1-2% of the time. With unlimited stack size, none of the
approximately 2 Million sentences in dev-test and test failed to parse. This is in
contrast the Collins parser falied completely on 30,761 out of 990,952 sentences.

We report results for the following features:

• CharColl - the Levenshtein edit distance between the two parses represented
as strings.

68 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

Situation Count
Collins fails 30,761
Collins succeeds and d > 100 175,307
Collins succeeds and d > 50 579,912
Collins succeeds and d > 25 852,497

Table 4.8: Histogram of the edit distances between Collins and Charniak (dev set
only).

• CollFails - this feature is equal to 1 if the Collins parser fails to parse a given
sentence and -1 otherwise.

• CharColl2 - if Collins fails, this feature is equal to 10,000, otherwise it is
equal to CharColl.

We looked at the distribution of edit distances for the sentences on which
Collins didn’t fail.

Results
20 iterations, BLEU (%) 50 iterations, BLEU (%)

CharColl 31.2004 31.5103
CollFails 31.6369 31.6130
CharColl2 31.2482 31.2482

Conclusion
Our results indicate that the edit distance is a reasonable feature, however the
simpler “Does the Collins parser fail” on a given input is a much better predictor
of a poor translation.

4.9 Some Basic Grammar Feature Functions

Motivation
Looking at the Contrastive Error Analysis, we can see that there are often basic
grammar-related mistakes in the original output, the so-called ”stupid mistakes.”
For example, there are sometimes independent sentences that are not headed by
verbs. Or there may be an adjective standing in a noun’s position. There may be a

4.9. SOME BASIC GRAMMAR FEATURE FUNCTIONS 69

noun phrase on one side of a conjunction word with an adverb phrase on the other
side. To reduce such kind of stupid mistakes, we developed a few feature functions
that penalize the occurrences of some specific mistakes in the hypotheses.

Ideas
Chinese grammar is more difficult to pin down than English grammar. For in-
stance, there are no morphologies in Chinese, and switches between nouns, adjec-
tives, and verbs happen so often that the Chinese parser broke down frequently.
Therefore, we relied solely on the English side here. Dependency trees gave us
not only parsing information but also the headwords of all constituents. There-
fore, we extracted the POS information as well as the word-hierarchy structure of
each hypothesis. The POS trees made it easier to detect some specific grammati-
cal mistakes. Feature functions were then developed to penalize each occurrence
of those mistakes.

Implementation
1.

h V erb headed(e) =

{

−1 if the sentence is not headed by a verb;
0 otherwise.

2. h Match Conn(e) = the number of occurrences of conjunction words that
are not balanced on both sides.
Balance is determined by whether within the boundary of a constituent, the
sections before and after a conjuction word end with the same or similar
POS tags. For example, both NN-NN and NN-NNS pairings are regarded
as balanced.

3. h Wrong PP Position(e) = the number of occurrences of prepositional
phrases that appear at wrong positions.
Being wrong means that a prepositional phrase occurs neither at the be-
ginning nor at the end of a constituent, or that a prepositional phrase isn’t
headed by a prepositional word.

4. h Wrong CD Position(e) = the number of occurrences of numerical words
that appear at wrong positions.

70 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

Being wrong means that a numerical word is preceded by a noun and fol-
lowed by a punctuation. Most mistakes of this kind are due to the wrong
translation of classifier words in Chinese.

5. h Wrong JJ Position(e) = the number of occurrences of adjectives that ap-
pear at wrong positions.
Being wrong means that an adjective appears at the end of a constituent ex-
cluding the situations of an adjective phrase and ’the + JJ’ structure. This
feature function is especially targeted at reordering mistakes between nouns
and adjectives.

6. h Wrong NN Position(e) = the number of occurrences of nouns that appear
at wrong positions.
Being wrong means that a plural noun is followed by a word other than
a conjunction word or punctuation within the boundary of its constituent.
This feature function penalizes not only reordering mistakes between adjec-
tives and plural nouns, but also the mistake that a descriptive noun appears
in its plural form.

Results
BLEU Score

Baseline 31.6
Verb headed 31.6
Match Conn 31.4
Wrong PP Position 31.7
Wrong CD Position 31.7
Wrong JJ Position 31.6
Wrong NN Position 31.8

Analysis
The above six feature functions are targeted at specific mistakes made by the orig-
inal system. They are based on basic English grammar. The improvements that
they bring about are not well reflected by the BLEU score. On one hand, this
implies that these syntactic features are only fine-tuning the output results instead
of providing profound improvements to the system. On the other hand, it shows
that BLEU is not adept at capturing these fine tunes. A limitation on these fea-
ture functions is that they don’t give any consideration to the original Chinese

4.10. PROJECTING DEPENDENCIES 71

sentences. It is possible that a translation is absurdly wrong while grammatically
right. In that case, these features are futile.

4.10 Projecting Dependencies

Motivation and Idea
It has been observed that a syntactic dependency in one sentence more often than
not corresponds to a syntactic dependency in a translation of that sentence. In
(Hwa et al., 2002), about 70% of the unlabeled dependencies in a English sentence
mapped to a dependency in a corresponding Chinese sentence. The projection rate
of labeled dependencies must of course be lower.

The simplest dependency projection feature functions count the number of
source dependencies for which we can find a corresponding dependency in the
target (figure 4.15). Alternately, we can count the number of source dependencies
that do not project to the target. Finally, we can model the probability that a
dependency will project, conditioned on the type of Chinese dependency under
consideration.

We have another degree of freedom in the types of dependency relations that
we will consider valid for projection. Let → indicate the “depends on” relation
and ‖ indicate “aligns with.” If A → B in Chinese and A′ → C ′ → B′ in
English; and A ‖ A′; and B ‖ B′; we may or may not wish to count the transitive
dependency A′ → B′ as a valid projection of A → B. Similarly, we can also
consider whether transitive dependencies in the Chinese project onto the English.

Implementation
Given word alignments between the source and target sentences and a set of syn-
tactic dependencies in each source and target sentence, we can calculate the three
types of features enumerated above: counting matching dependencies, counting
broken dependencies, and calculating the likelihood of the dependencies projec-
tions.

In the third case, for calculating the conditional probability of a dependency
projection, we used the MT system’s training data and the single best word align-
ment induced during training by GIZA++. Conditioning on the parts of speech at
each end of the Chinese dependency, we then determined the relative frequency of
that part-of-speech pair’s projecting successfully onto an English dependency. We

72 CHAPTER 4. DEEP SYNTACTIC FEATURE FUNCTIONS

Figure 4.15: Projecting dependencies: the first sentence, originally produced by
the system, had only one dependency in common with the Chinese; the oracle has
seven.

could then calculate the likelihood of a source/translation pair under this model as
the product of the one term per source sentence dependency. If the dependency
did project, the term was the probability p(projection|POS tags) determined in
training. If the dependency did not project, it was 1− p.

Results

Results for various experimental conditions are shown below (table 4.9). Counting
successful dependencies, with transitivity on the English side alone, achieved the
best results.

Analysis

Although some results are encouraging, they are not nearly as high as for some of
the “implicit” syntactic features. It is also discouraging that the probability model
of syntactic dependency does not outperform simple counting. Since we expect
some dependencies not to project due to different linguistic structures in Chinese

4.10. PROJECTING DEPENDENCIES 73

Transitivity
Method None English Both
Count projecting dependencies 31.6 31.7 31.4
Count non-projecting dependencies 31.0 30.9 30.9
Dependency projection likelihood 31.6 31.5 —

Table 4.9: Dependency projection feature scores

and English, we do not want to count all dependencies equally.
We conditioned the probability of a dependency projection only on the parts

of speech of the Chinese words in the dependency relation. Given a more sophis-
ticated model of what projects from Chinese to English and what does not, we
could expect to improve our performance. A bound may be placed on our per-
formance in this direction, however: during the workshop, team member Kenji
Yamada noted that the human authors of the reference translations would often
preserve Chinese word order in English even at the expense of preserving exact
syntactic relations.

Finally, as noted above, Chinese parsing achieves only about 82% parseval
even with perfect segmentation. We might, therefore, find it helpful to incorporate
into our models the probability of a dependency as assigned by the parser.

Chapter 5

Tricky Syntactic Feature Functions

5.1 Cross-lingual Constituent Alignment Features

Motivation and Idea
Parse trees provide a rich source of linguistic information. By combining
Chinese and English trees with word-level alignments provided by the translation
system, we would like to introduce syntactic features that score candidate English
translations. Hypotheses that syntactic differ from the source Chinese sentence
should be penalized, while those translations with similar syntactic structure
should be preferred.

Implementation 1: Tree to String Penalty
For each constituent in the Chinese parse tree, the English words corresponding
to the leafs (i.e., Chinese words) of the subtree rooted at the constituent are dis-
covered via the alignments provided by the MT system. If there exists any words
between the left-most and right-most aligned English word that was not aligned
to any word within the Chinese subtree, then a penalty of ”1” is given for that
constituent. In Figure 5.1, for example, the unaligned word ”marked” appears be-
tween the left-most aligned English word ”China’s” and right-most ”cities”. Thus,
a penalty is assigned for the NP constituent that roots the shown Chinese subtree.
The penalties are accrued for all Chinese parse constituents, and this sum is then
provided as the feature. Note that this feature makes no use of the English parse
tree.

74

5.1. CROSS-LINGUAL CONSTITUENT ALIGNMENT FEATURES 75

Figure 5.1: Tree to String Penalty

Implementation 2: Tree to Tree Penalty
This feature is similar to the former Tree to String penalty, but additionally uses
the English parse tree. After discovering the aligned English words from the leafs
of a given Chinese parse subtree, the smallest English parse subtree that contains
all the aligned words is computed. If there exist any leafs in that English subtree
which is not aligned to a leaf of the original Chinese subtree, then a penalty of ”1”
is given for that Chinese constituent. In Figure 5.2, for example, the unaligned
word ”remarkable” appears in the English subtree which the words ”open”, ”bor-
der”, and ”cities” are contained by, and thus a penalty is assigned for the shown
Chinese subtree rooted by an NP node. The penalties are accrued for all Chinese
parse constituents, and this sum is then provided as the feature.

Implementation 3: Constituent Label Probability
This feature learns node label mapping probabilities from training data (via simple
counting) and then applies the learned distributions to the ranking of candidate
translations. Specifically, this feature learns the probability of a node label (”VP”,
”NP”, etc) Y being the root of an English subtree that aligns to a Chinese subtree
rooted by a node with label X:

p(englishlabel = VP|chineselabel = NP) = 0.019.

Alignments between parse constituents are not given, and thus are discovered
by aligning leaf nodes (words) between subtrees, and then finding the minimum

76 CHAPTER 5. TRICKY SYNTACTIC FEATURE FUNCTIONS

Figure 5.2: Tree to Tree Penalty

common ancestor within the parse tree of those leafs. The whole feature is given
by the product of the probabilities of each English node label given its aligned
Chinese subtree label.
The transition probabilities generated by the training procedure of this feature are
themselves interesting, as they inform us as to whether the relationships between
the two trees are consistent with linguistic intuition and, to a certain extent, the
degree of noise in the parse information. Table 1 provides a sampling of this
information, in which the left column denotes the Chinese source label, and the list
of labels denotes English labels and their corresponding conditional probability.
In addition to the label transition probability, a similar feature was implemented

CC CONJP RB TO NN
CC .845 .023 .02 .026 .008

NP V P PP JJ NN
VP .327 .327 .101 .036 .033

NP V P S PP SBAR
IP .48 .172 .20 .047 .026

Table 5.1: Chinese to English Node label transition probabilities

which calculated the probability of the number of leafs under a subtree with a
given label, conditioned on the label of the source root node and the number of
leafs in the source tree.

5.2. ADDITIONAL SYNTAX-BASED ALIGNMENT FEATURES 77

Results

BLEU
Baseline 31.6

Tree to String 31.6
Tree to Tree 31.1

Constituent Label Probability 31.2
Number of Leaf Nodes Probability 31.7

Table 5.2: BLEU Scores of Constituent Alignment Features

Analysis and Conclusion

The constituent alignment features seem to have little or no impact on the perfor-
mance of the current system. A variety of reasons could account for this: noisy
parses, imperfect BLEU measurement of subtle syntactic improvement, or noisy
alignments. Mostly likely, it is a combination of all of these factors that at this
time prevent such complicated features from being sufficiently robust for overall
performance gains.

5.2 Additional Syntax-based Alignment Features

In this section we will consider various additional syntax-based alignment fea-
tures. In contrast with the other tree-tree or tree-string alignment features dis-
cussed elsewhere in this report, in this section we will consider those syntax-based
alignment features that use trees in their alignment, but do not align the full parse
tree. The alignments take advantage of various parts of the parse tree, usually in
an attempt to simplify the extensive computation required to align full parses.

The particular alignment strategies we consider in this section are:

• Parser probabilities over alignment template boundaries

• Hacking up the parse tree: a Markov assumption for tree alignments

• Using TAG elementary trees for scoring word alignments

78 CHAPTER 5. TRICKY SYNTACTIC FEATURE FUNCTIONS

5.2.1 Parser probabilities over alignment template boundaries
Let us consider a method that uses individual constituent probabilities from the
parser. We use these constituent probabilities to score alignment template bound-
aries.

In this particular feature function definition, we only use the parse on the target
side (English) to provide us with constituent probabilities. We use a statistical
parser (the Collins parser) which provides us with a parse for the target sentence.
In addition, from the Collins parser we obtain for each constituent that comprises
the parse tree, the log probability of that constituent.

Alignment templates have been explained earlier. We can see an example of an
alignment between source and target in Figure 5.3 that uses the alignment template
approach. The black filled squares in the figure represent the word alignments,
while the rectangles that enclose these filled squares are the alignment templates.
Note that while the alignments inside an alignment templates have strong evidence
from the training data, the boundaries between these alignment templates are not
modelled as directly in the statistical MT model. The way that the MT model
scores these alignment template boundaries is by using four probability models
that are estimated from the MT training data. These two models are based on two
concepts:

• P(left-monotone) or P(right-monotone): this is the probability that in the
training data a particular alignment template occurred with it’s left/right
boundary touching another alignment template.

• P(left-continuous) or P(right-continuous): this is the probability that in the
training data a particular alignment template occurred with it’s left/right
boundary touching another alignment template and in addition the word
alignments at the boundary are contiguous in the parallel text.

The motivation for this feature function is to provide extra evidence for these
alignment template boundaries using the constituent probabilities from the statis-
tical parser. In addition to the four probability models described above, we add
a new model P(min-parser-prob). This model takes the minimum log probability
from each of the constituents that span across the alignment template boundary
and uses this probability as evidence for the boundary.

Figure 5.3 shows an example of how the probability for an NP constituent
P(min-parser-prob) = -20.56 is used as a score for the alignment template bound-
ary. The feature function for each candidate sentence in the n-best list is computed

5.2. ADDITIONAL SYNTAX-BASED ALIGNMENT FEATURES 79

�! "# $ %&'()* +, -./012
China
's
14
open
border
cities
marked
economic
achievements

P(left-monotone)

1-P(left-monotone)

P(right-continuous)

1-P(right-continuous)

CD

NPB
NNP

POS

NNS

JJ

NN

NPB JJ

NNS

VBD

NP

S

VP

-20.56
-78.98

P(min-parser-prob)

-50.23

-11.45

hsentATParserOverlap = -20.56 -50.23 -11.45 ... = -105.78

Figure 5.3: Feature function that uses the constituent log probabilities from a
statistical parser to score the boundaries between alignment templates.

as a linear combination of the scores for each alignment template boundary. For
n alignment templates for a particular candidate the feature function is computed
as follows:

hsentATParserOverlap = P(min-parser-prob-AT[1])+. . .+P(min-parser-prob-AT[n− 1])

5.2.2 A Markov assumption for tree alignments
In previous sections we have seen two different methods for computing translation
models for machine translations that are constrained using parse trees. In the tree-
to-tree translation model, both the source and target languages are parsed using
a statistical parser, while in the tree-to-string translation model, the parse on the
source side is used to translate to the target by using a model that produces a parse
on the target side. In this section, we consider some computational limitations on
these approaches and explore a solution that involves a Markov assumption for
the tree-to-tree and tree-to-string translation models.

First, we describe some of the tractability considerations on the tree-to-tree
and tree-to-string models. In particular, we consider two limitations:

• Full parse tree models are expensive to compute for long sentences and for
trees with flat constituents

80 CHAPTER 5. TRICKY SYNTACTIC FEATURE FUNCTIONS

• There is limited reordering observed in the n-best lists that form the basis
of our experiments. In addition to this, higher levels of parse tree rarely
observed to be reordered between source and target parse trees.

In this section, we provide an algorithm for hacking full parse trees into tree
fragments. These tree fragments are then aligned between target and source by
exploiting the word alignments taken from the base machine translation model.
These aligned tree fragments are then used in an unconstrained tree-to-tree or tree-
to-string translation model. Using fragments rather than full parse trees avoids the
problematic issues with these models that we mentioned above.

This approach provides a simple Markov model for tree-based alignments.
It guarantees tractability. Compared to a coverage of approximately 30% of the
n-best list by the unconstrained tree-based models, using the Markov model ap-
proach provides 98% coverage of the n-best list. In addition, this approach is
robust to inaccurate parse trees (which are often produced since the candidate
translations are often completely unlike the training data for the statistical parser).

The algorithm works as follows: we start with word alignments and two pa-
rameters: n for maximum number of words in tree fragment and k for maximum
height of tree fragment. We proceed from left to right in the source sentence
(Chinese, in our case) and incrementally grow a pair of subtrees, one subtree in
Chinese and the other in English, such that each word in the Chinese subtree is
aligned to a word in the English subtree. We grow this pair of subtrees until we
can no longer grow either subtree without violating the two parameter values n
and k. Note that these aligned subtree pairs have properties similar to alignment
templates. They can rearrange in complex ways between source and target.

For example, consider the sentence pair with word alignments shown in shown
in Figure 5.4. Figure 5.4 shows how subtree-pairs for parameters n = 3 and k = 3
can be drawn for this sentence pair.

Once these subtree-pairs have been obtained, we can easily assert a Markov
assumption for the tree-to-tree and tree-to-string translation models that exploits
these pairings. Let consider a sentence pair in which we have discovered n
subtree-pairs which we can call Frag0, . . ., Fragn. We can then compute a feature
function for the sentence pair using the tree-to-string translation model as follows:

hMarkovTreeToString = logPtree-to-string(Frag0) + . . . + logPtree-to-string(Fragn)

5.2. ADDITIONAL SYNTAX-BASED ALIGNMENT FEATURES 81

�! "# $ %& '()* +, -./012

NP

NR

QP

CD
CLP
M

NP

NNNN NN NN NN NN

NP

VV

VP
NP

IP

China 's 14 open border cities marked economic achievements
CD

NPB

NNP POS NNSJJ NN

NPB

JJ NNSVBD

NP
S

VP

Figure 5.4: Overlay of the parse trees in the source and target languages showing
the word alignments produced by the base MT system.

�! "# $ %& '()* +, -./012

NP

NR

QP

CD
CLP
M

NP

NNNN NN NN NN NN

NP

VV

VP
NP

IP

China 's 14 open border cities marked economic achievements
CD

NPB

NNP POS NNSJJ NN

NPB

JJ NNSVBD

NP
S

VP

n=3
k=3

h = log(P_TreeToString(Frag0)) + log(P_TreeToString(Frag1)) + ...MarkovTreeToString

Figure 5.5: Result of carving up the tree using a Markov assumption over the size
of sub-trees aligned with respect to the word alignments.

82 CHAPTER 5. TRICKY SYNTACTIC FEATURE FUNCTIONS

5.2.3 Using TAG elementary trees for scoring word alignments

In this section, we consider another method for carving up the full parse tree.
However, in this method, instead of subtree-pairs we consider a decomposition of
parse trees that provides each word with a fragment of the original parse tree. In
addition, the decomposition provides a method of pasting each of these fragments
to recover the original parse tree.

The formalism of Tree-Adjoining Grammar (TAG) provides the definition
what each tree fragment should be and in addition how to decompose the orig-
inal parse trees to provide the fragments. Each fragment is a TAG elementary
tree and the composition of these TAG elementary trees in a TAG derivation tree
provides the decomposition of the parse trees.

The decomposition into TAG elementary trees is done by augmenting the parse
tree for source and target sentence with head-word and argument (or complement)
information. This kind of information is added to the parse tree using standard
heuristics. These heuristics are common to most contemporary statistical parsers
and easily available for both English and Chinese.

The first step is adding head-word and argument information to the parse trees.
Figure 5.6 shows what the parse trees look like after this information is added to
the parse trees (the original trees are shown in Figure 5.4). Head non-terminals
are marked with superscript H , while argument non-terminals are marked with
superscript A. Each non-terminal in the parse tree has a unique distinguished
child node which is marked as a head. In addition, some sister non-terminals of a
head non-terminal node is marked as an argument non-terminal.

Removing all tree relationships that are not between head nodes, and duplicat-
ing argument nodes gives us the tree fragments shown in Figure 5.7. Drawing it
slightly differently as shown in Figure 5.8 we can immediately observe that each
word is assigned a single TAG elementary tree (the fragments we were after).
Note that we do not use the word alignment information for the decomposition
into TAG elementary trees.

Once we have a TAG elementary tree per word, we can create several models
that score word alignments by exploiting the alignments between TAG elementary
trees between source and target. Let fi be a word in the target sentence, let ei

be a word in the source sentence aligned with fi. In addition, let tfi
and tei

be
the TAG elementary trees associated with the words fi and ei respectively. We
experimented with the following two models over alignments:

• Unigram model over alignments:
∏

i P (fi, tfi
, ei, tei

)

5.2. ADDITIONAL SYNTAX-BASED ALIGNMENT FEATURES 83

�! "# $ %& '()* +, -./012

NP

NR

QP

CD
CLP
M

NP

NNNN NN NN NN NN

NP

VV

VP
NP

IP

China 's 14 open border cities marked economic achievements
CD

NPB

NNP POS NNSJJ NN

NPB

JJ NNSVBD

NP
S

VP

A H

H

H H H H

H

H H

H H H H

H
H

A

Figure 5.6: Marking head word and argument information on the non-terminals
in the parse trees in source and target languages.

• Conditional model:
∏

i P (ei, tei
| fi, tfi

)× P (fi+1, tfi+1
| fi, tfi

)

•

We trained both of these models using the SRI Language Modeling Toolkit
using 60K aligned parse trees. We extracted 1300 TAG elementary trees each for
Chinese and for English.

In addition, we also trained IBM Model 1 on aligned TAG elementary trees
and the words.

5.2.4 Results
Figure 5.2.4 show the results for all the models described in this section.

84 CHAPTER 5. TRICKY SYNTACTIC FEATURE FUNCTIONS

�! "# $ %& '()* +, -./012

NP

NR

QP

CD
CLP
M

NP

NNNN NN NN NN NN

NP

VV

VP
NP

IP

China 's 14 open border cities marked economic achievements
CD

NPB

NNP POS NNSJJ NN

NPB

JJ NNSVBD

S
VP

H

H

H H H H

H

H H

H H H H

H
HNP

NP

NP

Figure 5.7: TAG elementary trees are defined by the connections between head
and argument non-terminals.

�! "# $ %& '()* +, -./012

NP

NR

QP

CD

CLP

M

NP

NNNN NN NN NN NN

NP VP
NP IP

China 's 14 open border cities marked economic achievements
CD

NPB

NNP POS NNSJJ NN

NPB

JJ NNSVBD

NP

S

VP

VV

NP

NP

Figure 5.8: Word alignments associated with TAG elementary trees.

5.2. ADDITIONAL SYNTAX-BASED ALIGNMENT FEATURES 85

Method BLEU[%]
Baseline 31.6
AT Boundary Parser Prob 31.7
Tree-to-string without machete 31.7
(covers only 273/993 for dev, 237/878 for test)
Tree-to-string with machete 32.0
Model 1 on elementary trees 31.6
Unigram model over aligned elementary trees 31.7
Conditional bigram model over aligned elementary trees 31.9

Figure 5.9: Results for additional syntax-based alignment features

Chapter 6

Reranking with Perceptron

6.1 Discriminative Reranking
In the recent years, discriminative reranking techniques have been successfully
used in some natural language processing tasks, such as sentence parsing, POS
tagging. Various learning algorithms have been employed in parse reranking, such
as Boosting (Collins, 2000), Perceptron (Collins and Duffy, 2002), Support Vec-
tor Machines (Shen, Sarkar, and Joshi, 2003) and Log-linear models (Charniak,
2000; Collins, 2000). The use of the reranking techniques gives rise to a signifi-
cant increase in labeled recall/precision over the previous best generative parsing
systems.

There are several advantages of using discriminative reranking techniques.
First, discriminative ranking enables us to use global features which are unavail-
able with the baseline system. Second, we can use features of various kinds and
do not need to worry about fine grained smoothing issues. Finally, the statisti-
cal machine learning approach is theoretically well founded, and has been shown
effective many applications.

6.2 Reranking for MT
Inspired by the works in parse reranking, we apply discriminative reranking to
machine translation. We hope to improve the performance of MT systems by
exploiting the advantages of the rerank techniques.

The procedure of MT reranking is similar to parse reranking. We first use a
baseline MT system to generate N-best translations. Then, we analyze the struc-

86

6.3. MULTI-BIAS PERCEPTRON ALGORITHM 87

tures of the source sentence and its translation by POS tagging, parsing and deriva-
tion tree extraction, and then extract features from these linguistic structures. Fi-
nally, we rerank the N-best translations with respect to these features.

For machine translation, two classes of features could be used to handle the
language model and the translation model respectively. For the first class, we
may use features extracted for produced translations, such as N-gram POS tags,
NP chunks, segments of parse trees, and LTAG elementary trees. For the second
class, we use pairs of aligned syntactic structures (or fragments of these structures)
as features.

As far as machine translation is concerned, the reranking approach also helps
to decrease the decoding complexity. The underlying generative system uses sim-
ple language models and alignment models. Then we extract syntactic structures
from the source and target sentences, and we get the alignment on the deep syntac-
tic structures. Thus, we decrease the computational complexity of tree alignment.
Compared with some generative models for alignment, the reranking system is
relatively easy to implement since the decoding on complex structures is avoided.

However, MT reranking is more complicated than parse reranking. In MT
translation, there is no unique best parse for each sentence. Thus we cannot simply
use the pairwise translations as samples, which was used in parse reranking. For
each source sentence, we have several manually translated references. Similarity
to these references are used to measure the quality of a translation.

Another problem is that we don’t have a reliable measure for the quality of a
single translation. This is also the reason why BLEU and NIST scores are defined
on the whole data set instead of each single sentence. Although, we can extend
those measures to single sentences, such as the delta BLEU score that we have
used, the score itself is not reliable at all; a translation with lower score could be
better than a translation with a higher score.

Therefore, we cannot directly use those algorithms that have been used in
parse reranking or other NLP tasks. We need to adapt those algorithms to the MT
reranking task, considering the distinction of machine translation.

6.3 Multi-Bias Perceptron Algorithm
In this section, we will introduce a variant of the traditional perceptron algorithm,
the Multi-Bias Perceptron with Margin, for the MT reranking task.

We cannot use the traditional perceptron to the reranking task directly since we
need a unique bias. For example, there are three clusters in the following figure.

88 CHAPTER 6. RERANKING WITH PERCEPTRON

b1

X2

X1

b2

b3

2m

good

bad

(score metric)
W

Distinct bias for each cluster

Each one contains several English translations for the same Chinese sentence.
Black points are the good translations, and white points are the bad translations.

Obviously, it is impossible to find a hyperplane to successfully separate all the
black points and white points. This is because translations for the same sentence
are usually very similar in the feature space. Therefore we need a unique bias bi

for each Chinese sentence i.
However, we can find three parallel hyperplanes to separate each cluster suc-

cessfully. This means we have a global weight vector w, which is expected to be
in the same direction of the score metric. The resulting weight vector w can be
used to rerank translations for a Chinese sentence.

The basic idea of the multi-bias perceptron is to train a distinct bias for each
cluster, which all the separating hyperplanes are parallel by sharing the same
weight vector w. We assume that the weight vector is in the same direction of
the score metrics, which means that the quality of a translation is determined by
its distance to the separating hyperplane of the corresponding cluster.

There are two ways to handle the issue of multiple bias. One is to use pairwise
translations as training samples, which is similar to approach to parse reranking.
Since we don’t have good standard translation for a sentence, how to define pair-

6.3. MULTI-BIAS PERCEPTRON ALGORITHM 89

wise translations becomes a problem.
We must first define good translations and bad translations, which is still a

big problem, due to the lack of a reliable measure for a single translation. In
practice, we do like this. We first list the 1000 best translations according to the
delta BLEU scores. Then we say the translations in the top one third are good
translations, while those in the bottom one third are bad translations.

If we use a pair of a good translation and a bad translation as a sample, we will
generate a huge number of related samples which are bad to any machine learning
algorithm. So our solution is to take the other approach; we train a bias explicitly
for all the translations of the same Chinese sentence. The resulting weight vector
w is used as the score vector, but the biases are only used in training.

The following is the pseudo code of the multi-bias perceptron algorithm.

Multi-Bias Perceptron with Margin
Input: (xij, yij)i=1..s, j=1..n, where xij is the jth English translation for Chinese
sentence i, yij ∈ {1,−1}.
Output: w

Variables: b1, b2, ..., bs, biases for each Chinese sentence.
Parameters: τ, η.

w0 = 0; b0
i = 0; R = maxxij

||xij||;
repeat

foreach translation xij

if yij(w
t · xij) ≤ τ

wt+1 = wt + ηyijxij;
bt+1
i = bt

i + ηyijR
2;

t = t + 1;
end if

end for
until convergence

The line with underline is what is different from the traditional perceptron
algorithm. In this algorithm, we only update the bias related to this translation.
Now we will show that this algorithm converges after finite number of updating
if the training samples are separable. We show it by modifying the proof for the
perceptron with margin.

90 CHAPTER 6. RERANKING WITH PERCEPTRON

Theorem 1 The algorithm converges within at most 2(s + 1)((R
γ
)2 + τ

ηγ2) steps
of updates, if each cluster of the training data is separable with margin γ by a set
of parallel hyperplanes defined on w∗, b∗1, ..., b

∗
s, where ||w∗|| = 1, |b∗i | ≤ R.

Proof: Suppose there are s clusters and each cluster has k samples. Let Ii =
(0,...0,1,0...0) be a vector of s elements, where the ith element is 1 and all others
are 0. Through the proof we use the short-hand notations as follows.

zij = (xij
′, RIi)

′, v = (w′,
1

R
b′)′

Therefore there exist w∗, b∗ and margin γ such that ||w∗|| = 1, |b∗i | ≤ R and
yij(v

∗ · zij) > γ > 0, where (xij, yij) is the jth sample of the ith cluster.
According to the algorithm, at the tth step of updating

||vt+1||2 = ||vt + ηyijzij||
2

= ||vt||2 + 2ηyij(v
t · zij) + ||ηzij||

2

≤ ||vt||2 + 2ητ + ||ηzij||
2

= ||vt||2 + 2ητ + ||ηxij||
2 + ||ηRIi||

2

≤ ||vt||2 + 2ητ + 2η2R2

Therefore,

||vT ||2 ≤ 2T (ητ + η2R2). (6.1)

On the other hand,

v∗ · vt+1 = v∗ · vt + ηyij(v
∗ · zij)

> v∗ · vt + ηγ

v∗ · vT > Tηγ (6.2)

Combining (6.1) and (6.2), we have

T 2η2γ2 < (v∗ · vT)2

≤ ||v∗||2||vT ||2

≤ (s + 1)||vT ||2

≤ (s + 1) ∗ 2T (ητ + η2R2) (6.3)

Therefore T ≤ 2(s + 1)((R
γ
)2 + τ

ηγ2), which means there are at most that much
updates in the algorithm and then it converges. 2

6.4. EXPERIMENTS 91

6.4 Experiments

We have designed two sets of experiments by using two different kinds of features.
We first use the comprehensive features that we have described in the previous
chapters. Then we use a rich feature set by using individual structures as features.

Our first experiment is on the 12 baseline features. The training data for our
perceptron algorithm contains 993 Chinese sentences. Each Chinese sentence has
1000 best translations generated by Och’s system. We list the 1000 best trans-
lations with respect to delta BLEU scores. Then the top 30% of the translations
are used as positive samples, and the bottom 30% of the translations are used as
negative samples. The test data contains 878 Chnese sentences. Each one has four
reference translations. The BLEU score on the test set is used for evaluation.

Then we use 12 baseline features plus 30 features that we have developed in
the workshop, such as the features defined on IBM model 1, POS language model,
etc. The train data and test data are the same as our experiment on the baseline
features.

By using the baseline features, our algorithm achieves a BLEU of 30.9%. With
the 30 extra features included, it achieves a BLEU score of 31.6%.

In the second group of experiments, we use individual structures as features.
We first use aligned POS-tag sequences as features.

For each pair of the aligned templates, we first replace all the words with
POS-tags. Then the POS-tag sequence on the Chinese side is used as a feature,
and the sequence on the English is used as a feature too. Furthermore, pair of
the corresponding sequences is also used as a features. Thus, each translation is
represented by a vector defined on those POS-tag based features. The value of a
feature is 1 if the corresponding POS-tag sequence or pair of sequences appears
in this samples. Otherwise, the value of the feature is set to 0. We say the feature
is active in this sample if its value is 1.

The feature space of the POS-tag features is about 30,000. However, the fea-
ture space is very sparse. There are about 31 active features for each sample in
average. We use the same training and test data set as the previous two experi-
ments. The BLEU score on the training set is 34.2%, and the BLEU score on the
test set is 30.9%.

Our next experiment uses fragments in translation parse trees as features. For
each translation, we first parse it with Collins’ parser. Then we use subtrees in its
parse tree as the features for that translation. We use the following subtrees in our
experiment.

92 CHAPTER 6. RERANKING WITH PERCEPTRON

• Rules used in derivation, which is equal to (parent node, all child nodes)
structure.

• (parent node, two adjacent child nodes)

• (parent node, three adjacent child nodes)

By parent node we mean the POS tag of the parent node. So do child node.
The feature space of the subtree features is about 65,000. There are about 100

active features for each sample in average. The BLEU score on the training set is
30.3%, and the BLEU score on the test set is 30.5%.

6.5 Analysis
Experiments on comprehensive features show slight improvement in BLEU score
when more useful features are incorporated, however the improvement is not sig-
nificant. We think this is due to the nature of the data set. With 1000 translations
for each Chinese sentence, the reranking task here is more like a regression prob-
lem instead of a classification problem. Furthermore, the feature space is very
limited so that the training data are inseparable by a linear classifier.

We know discriminative machine learning algorithm can be used a very high
space, with which many useful individual structures can be used as features. This
is the reason why we have designed the second group of features. However, since
the training data contains only 997 Chinese features, we cannot use some useful
features such as lexicalized structures. But the preliminary results are still con-
vincing. The result of using only the POS-tags features is already as good as the
well optimized baseline system.

We notice that features defined on aligned structures are more useful than
features defined only on the translations, as they are shown in the second group of
experiments. This to some extent explains why log-likelihood of translation parse
is not a good feature in our previous experiments.

Although the performance of the reranking result of the perceptron algorithm
is not convincing, this approach is still attractive. We need further our research
in adapting discriminative algorithm to MT reranking. The Multi-Bias perceptron
algorithm presented here is our first step in this direction. On the other hand,
we will also explore the possibility of working a data set of different style, i.e.
100,000 Chinese sentences with 20 translations for each one, so that discrimina-
tive machine learning algorithms become more useful.

Chapter 7

Minimum Bayes Risk Search

7.1 Introduction

Statistical MT systems are being applied to a wide range of information process-
ing tasks such as information retrieval from text archives in a foreign language or
for speech-to-speech translation. In these applications, the overall system perfor-
mance is not measured by the accuracy of the automatic translation, but through
task dependent evaluation criteria. Furthermore, we might find applications in
which the MT evaluation metric incorporates syntactic structure. Given that dif-
ferent performance metrics are used for different applications, it is useful to create
MT systems tuned with respect to each individual criterion. In contrast, the max-
imum likelihood techniques that underlie the decision processes of most current
MT systems do not take into account these application specific goals. Minimum
Bayes-Risk (MBR) Classification is a promising approach in this direction, and
allows building of automatic MT systems tuned for specific tasks. We will show
how syntactic structure obtained from parse-trees of the source and target sen-
tences, can be incorporated into statistical MT framework using MBR classifiers.

We first introduce the MBR framework in the context of automatic speech
recognition (Goel and Byrne, 2000). We then present MBR classifiers for machine
translation, and describe a hierarchy of translation loss functions that are based on
different levels of syntactic information. We finally present the performance of
MBR classifiers optimized for each loss function.

93

94 CHAPTER 7. MINIMUM BAYES RISK SEARCH

7.2 Minimum Bayes-Risk Classifiers

We now introduce the Minimum Bayes-Risk Classification framework in relation
to Automatic Speech Recognition.

In ASR, an acoustic observation sequence A = a1, a2, ..., aT is to be mapped
to a word string W = w1, w2, ..., wN , where wi are words belonging to a vocabu-
lary V .

We assume that a language is known; it is a subset of the set of all word strings
over V . This language specifies the word strings that could have produced any
acoustic data seen by the ASR system. We further assume that the ASR classifier
selects its hypothesis from a set W of word strings, that forms a subset of the
language. The ASR classifier can then be described as the functional mapping
δ(A) : A →W .

Let L(W, W ′) be a real valued loss function that describes the cost incurred
when an utterance W belonging to languageW is mistranscribed as W ′ ∈ W . An
example loss function is Levenshtein distance (Levenshtein, 1965) which mea-
sures the minimum string edit distance (word error rate) between W and W ′. This
loss function is defined as the minimum number of substitutions, insertions and
deletions needed to transform one word string into another.

Suppose the true distribution P (W, A) of speech and language is known. It
would then be possible to measure the performance of a classifier δ as R(δ(A)) =
EP (W,A)[L(W, δ(A))]. This is the expected loss when δ(A) is used as the clas-
sification rule for data generated under P (W, A). Given a loss function and a
distribution, the classification rule that minimizes R(δ(A)) is given by (Bickel
and Doksum, 1977)

δR(A) = argmin
W ′∈W

∑

W∈W

L(W, W ′)P (W |A). (7.1)

We shall refer to the sum
∑

W∈W L(W, W ′)P (W |A) in Equation 7.1 as condi-
tional risk and classifier given by this equation as the Minimum Bayes-Risk (MBR)
classifier.

Our treatment so far assumes that the true distribution P (W |A) is available,
however this is not the case in practice. This distribution is obtained by applying
Bayes rule P (W |A) = P (W)P (A|W)/P (A), where the component distributions
are approximated by models. As is commonly done, P (W) is approximated as the
language model and P (A|W) is obtained from a hidden Markov model acoustic
likelihoods.

7.3. MBR CLASSIFIERS FOR SMT 95

The conventional Maximum A-posteriori Probability Classifier (MAP) can be
derived as a special case of the MBR classifier by considering a loss function that
assigns a equal cost (say 1) to all misclassifications. Under the 0/1 loss function
on word strings,

L(W, W ′) =

{

0 if W = W ′

1 otherwise (7.2)

the classifier of Equation 7.1 reduces to the MAP classifier

δMAP = argmax
W∈W

P (W ′|A) (7.3)

where
P (W ′|A) =

∑

W∈W :L(W,W ′)=0

P (W |A). (7.4)

This illustrates why we are interested in MBR decoders based on other loss
functions: the MAP decoder is optimal with respect to a loss function that is
overly harsh. It does not distinguish between different types of recognition errors
and good sentences receive the same penalty as poor sentences.

7.3 MBR Classifiers for SMT
Statistical Machine Translation can be described as a classification task that maps
a word sequence f = f J

1 in a source language (e.g. Chinese) to a word sequence
e = eI

1 in a target language (e.g. English), where fi are words in the source
vocabulary, and ei are words in the target vocabulary.

We now show the formulation of MBR classifiers for statistical machine trans-
lation, and present various loss functions that measure translation performance. In
addition we will demonstrate that syntactic structure can be incorporated into the
loss functions by considering parse-trees for the source sentence and its transla-
tion.

Suppose we have a loss function that measures the quality of a given
translation using information from the word sequences, alignments and parse-
trees. Given a foreign sentence f and its parse-tree T (f), its correct
translation e with word alignment a and parse-tree T , the loss function
L((e′, a′, T ′), (e, a, T); f , T (f)) should reflect the quality of a candidate transla-
tion e′ with word alignment a′ and parse-tree T ′.

Suppose we have the true distribution P (e, a, f) that describes translations
of human quality. We can then measure the performance of the classifier δ(f)

96 CHAPTER 7. MINIMUM BAYES RISK SEARCH

using the Bayes-Risk Bayes-Risk R(δ(f)) = EP (e,a,f)[L((e, a, T), δ(f))]. Given
a loss function and a distribution, the classifier that minimizes R(δ(f)) is given
by (Bickel and Doksum, 1977)

δ(f) = argmin
e′,a′,T ′

∑

e,a,T

L((e′, a′, T ′), (e, a, T); f , T (f))P ((e, a|f)). (7.5)

This optimal decoder has the usual difficulties of search (minimization) and
computing the expectation under the true distribution. In practice, we will con-
sider the space of translations to be an N-best list of translation alternatives gener-
ated under a translation model. We will also approximate the true distribution by
a statistical translation model.

7.3.1 Translation Loss functions
We will now present a three-level hierarchy of loss functions for translation which
have the general form L((e′, a′, T ′), (e, a, T); f , T (f)), and make use of different
levels of lexical and syntactic information.

Tier 1 Loss functions

The first tier of loss functions has no information about word alignments or parse-
trees and can be reduced to L(e, e′). Examples of loss functions in this cate-
gory are Levenshtein distance that measures word-error rate (WER), position-
independent word-error rate (PER) (Och and Ney, 2002) and the BLEU score (Pa-
pineni et al., 2001). A loss function of this type depends only on information from
word strings.

PER measures the minimum number of edit operations needed to transform a
word string to any permutation of the other word string. The PER score (Och and
Ney, 2002) is then computed as a ratio of this distance to the number of words
in the reference word string. BLEU score (Papineni et al., 2001) measures the
precision of unigrams, bigrams trigrams and four-grams in the hypothesis word
string with respect to the reference word string, and includes a length penalty
(γ) if the hypothesis is shorter than the reference. The score is computed as a
geometric mean of these four precisions, weighted by the length penalty.

BLEU(W, W ′) = exp(
1

4

4
∑

i=1

log(pi(W, W ′))) ∗ γ(W, W ′). (7.6)

Therefore, BLEU measures accuracy, rather than an error rate.

7.3. MBR CLASSIFIERS FOR SMT 97

Tier 2 Loss functions

The second tier of translation loss functions uses information from word strings
and parse-trees only, and can be written as L((e, T), (e′, T ′). This loss function
has no access to any information from the source sentence or the word align-
ment. An example of such a loss function is a tree-kernel (Collins and Duffy,
2002) that measures the number of common subtrees between any two parse-trees
T and T ′. This metric measures structural similarity between the parse-trees of
the hypothesis and the reference translation. To measure this similarity, we con-
sider a representation of parse-trees that tracks all sub-trees seen in training data.
This is done by enumerating (implicitly) all tree fragments in the training data
1, ..., d, where d is huge. Each tree T is then represented as a d dimensional vec-
tor h(T) = [h1(T), ..., hd(T)] , where the ith component hi(T) counts the number
of occurrences of the ith tree fragment in tree T . Given two trees T and T ′, the
tree-kernel computes an inner-product of the two structures using an efficient re-
cursion whose computational complexity is independent of d.

Tree-Kernel(W, W ′) = h(T) · h(T ′) =

d
∑

k=1

hk(T)hk(T
′). (7.7)

The Tree-Kernel is a measure of accuracy; a larger score implies greater similarity
between the two trees and vice-versa.

Tier 3 Loss functions

The third tier of loss functions is trans-lingual and uses information from word
strings, alignments and parse-trees in both languages , and can be written in the
most general form L((e, a, T), (e′, a′, T ′); f , T (f)). We will now describe an ex-
ample of such a loss function. We first assume that each node n in the source tree
T (f) can be mapped to a node m in T (and a node m′ in T ′) using word alignment
a (and a′). We also denote tm to be the subtree of T rooted at node m ∈ T and t′m′

to be the subtree of T ′ rooted at node m′ ∈ T ′.
Such a node-to-node alignment between nodes in the source and the target

trees can be obtained using MT word-to-word alignments. For each node n in
the source tree T (f) we first obtain the source word sequence that corresponds
to the leaves of the subtree rooted at n. We next consider the subset of words in
the target sentence that are aligned to any word in this source word string, and
select the leftmost and rightmost word from this set. We then obtain the closest
common ancestor m of the leaf nodes corresponding to these two words in the

98 CHAPTER 7. MINIMUM BAYES RISK SEARCH

target language parse tree. This procedure allows us to obtain a node-to-node
correspondence between nodes n ∈ T (f) and m ∈ T .

The loss function can now be computed as

BiTreeLoss((e, a, T), (e′, a′, T ′); f , T (f)) =
∑

n∈T (f)

d(tm, t′m′), (7.8)

where d(t, t′) is a distance measure (e.g. 0/1 loss) between sub-trees t and t′.
The BiTree Error Rate is then computed as a ratio of this loss to the number of
nodes in the source tree T (f). An example of a tree-to-tree mapping between a
source (Chinese) parse-tree and parse-trees of two competing candidate English
translations is shown in Figure 7.1. The figure shows node-to-node mappings
between some of the nodes in the source tree and the two target trees.

Among these loss functions, BLEU directly takes into account multiple refer-
ence translations. In case of the other loss functions, we consider multiple refer-
ences in the following way. For each sentence, we compute the error rate of the
hypothesis translation with respect to the most similar reference translation under
each loss function.

7.4 Experiments
We performed our MT experiments on the NIST 2002 MT-eval set consisting of
878 sentences. The baseline translation model was used to generate 1000-best
translation hypotheses for each sentence in the test set. The N-best lists were
rescored using the different translation loss functions described in Section 7.3.
The performance of the MBR decoder under the various loss functions is pre-
sented in Table 7.1. We say we have a matched condition when the same loss
function is used in both the error rate and the decoder design.

We observe that the MBR decoder optimized for each loss function performs
the best under the corresponding error metric. We also notice some affinity among
the loss functions. The MBR decoding under the Bitree Loss function obtains a
significant WER reduction. The Parse-Kernel metric assigns a higher score for
translations which are parsable; the MBR decoder under this error does poorly
with respect to all metrics other than parse-kernel.

Our second set of experiments were performed on top of the best system (as
of 4th week of the workshop) that was trained with the max-BLEU training with
syntactic feature functions. The results are summarized in Table 7.2

7.5. CONCLUSION 99

IP

NP

NP

NR

Zhongguo

QP

CD

shisi

CLP

M

ge

NP

NN

bianjing

NN

kaifang

NN

chengshi

NP

NN

jingji

NN

jianshe

NN

chengjiu

VP

VV

xianzhu

S

NP

NP

NNP

China

POS

’s

CD

14

JJ

open

NN

border

NNS

cities

VP

VBD

marked

NP

JJ

economic

NNS

achievements

S

NP

NP

NNP

China

POS

’s

CD

14

JJ

open

NN

border

NNS

cities

VP

VBZ

achievements

ADJP

JJ

remarkable

Figure 7.1: An example showing a parse-tree for a Chinese sentence and parse-
tree for two of the candidate English translations. Node-to-node alignments be-
tween some of the nodes of the Chinese tree and the two English trees are dis-
played.

We observe that the MBR decoder under the BLEU loss function improves
over the best system trained with the max-BLEU training.

7.5 Conclusion
We have described the formulation of Minimum Bayes-Risk classifiers for ma-
chine translation. We have described several translation loss functions that incor-
porate varying degrees of syntactic structure from Chinese and English parse-trees
and word alignments. This can accomplished without building detailed models of
these linguistic features and retraining models from scratch. However, we em-
phasize that the MBR framework does not preclude the construction of complex
models of syntactic structure. Our second set of experiments show that models
that have been trained with linguistic features could still benefit by the application

100 CHAPTER 7. MINIMUM BAYES RISK SEARCH

Performance Metrics
BLEU (%) mWER(%) mPER (%) mParseKernel mBiTree Error(%)

MAP(baseline) 31.6 62.4 39.3 1002.2 46.56
MBR Decoder

BLEU 31.9 62.5 39.2 1113.1 46.75
WER 31.8 61.8 38.8 1016.4 46.16
PER 31.7 62.2 38.5 835.5 46.48

Parse-Kernel 29.9 68.5 43.2 4478.1 50.59
BiTree Loss 31.1 61.6 39.2 840.5 45.28

Table 7.1: Translation performance of the MBR decoder under various loss func-
tions. For each metric, the performance under a matched condition is shown in
bold. BLEU and mParseKernel represent similarities while other metrics measure
error rates.

Performance Metrics
BLEU mWER mPER NIST

Best System 32.9 61.7 38.3 9.40
MBR-BLEU 33.2 61.7 38.3 9.65

Table 7.2: MBR Decoding Under BLEU loss function on top of the best system
at the end of 4th week. Matched condition is indicated in bold.

of MBR decoding procedures.
Each of these loss functions could be valuable in describing some aspect of

system performance. We have shown through our experiments that MBR classi-
fiers can allow the decoding procedure to be tuned for specific loss functions. We
have also performed experiments to show that MBR decoding under the BLEU
loss function can obtain further improvements on top of a baseline system trained
under max-BLEU training.

In future we plan to investigate translation loss functions based on alignments
obtained using the tree-to-string and the tree-to-tree translation models. We expect
these alignments to improve upon the tree-to-tree alignments (Section 7.3) that
were obtained using the MT word alignments. We also plan to extend the search
space of the MBR decoder to word lattices generated by the translation system,
and by considering more hypotheses, obtain improved performance.

Chapter 8

Conclusions

8.1 Summary

The goal of the workshop has been to integrate better models of syntactic structure
into statistical models for machine translation.

The workshop started with a very strong baseline – the alignment template sta-
tistical machine translation system that obtained the best results in the 2002 and
2003 DARPA MT evaluations. During the workshop we developed more than 450
different feature functions with the goal to improve the syntactic well-formedness
of the machine translation output of the alignment template baseline system. We
break our feature functions into two broad categories: implicit syntactic feature
functions and explicit syntactic feature functions. The implicit syntactic feature
functions just try to exploit (better than the baseline system) the translations pro-
vided in the training and development corpora without using additional annotated
data and explicit linguistic modeling. Prominent examples of this type of feature
function are the multi-sequence alignment of hypotheses, the Model 1 score or the
specific word penalty feature functions. A major goal during the workshop was
to find out if we can exploit annotated data, especially treebanks for Chinese and
English, by using tools like POS tagger, parser or shallow analysis tools. Promi-
nent examples of this type of feature function are the parser probabilities of the
tree-to-string and tree-to-tree alignment models.

Most of the experiments were performed using a 1000-best list experiment.
Due to the limitations of this relatively small list there is an estimated upper bound
of 35.7% BLEU score and a theoretical upper bound of 45.25% BLEU score if
the optimal translations with respect to the four reference translations are picked

101

102 CHAPTER 8. CONCLUSIONS

(Section 1.4).
The best single feature functions developed during the six week workshop are

in the category ’implicit syntax’, most prominently the Model 1 feature function.
Most other feature functions and especially the feature functions from the cat-
egories shallow, deep and tricky did not obtain statistically significant improve-
ments. A major problem is that many of the results are not statistically signifi-
cantly better than the baseline. It would be necessary to measure the improvement
of single feature functions on a much larger test corpus. Yet, the overall improve-
ment by performing feature combination was 1.6% from 31.6% to 33.2%, which
is statistically significant. If we contrast that to the estimated upper bound on that
test corpus of 35.7%, our conclusion is that within the boundary conditions this is
actually a considerable improvement over the baseline system.

During the workshop we created a large number of resources that we expect
to be useful for various follow-up research projects. First of all the 16384-best
lists of the development and test corpora created before the workshop are a valu-
able resource for various language modeling experiments. Both, the Chinese input
sentences and the best 1000 translations of the development and test corpora have
been parsed. The creation of this resource took over 3000 hours of computing
time. This resource will be useful for any research to experiment with additional
feature functions making use of parse trees. The more than 450 developed feature
functions are all precomputed and are a valuable resource for conducting ma-
chine learning research to develop better discriminative training techniques useful
in machine translation. All three major resources: n-nbest lists, bilingual parse
annotation and feature function files are unique in the field of machine transla-
tion. We expect that these resources will stimulate a large amount of useful MT
research.1

8.2 Outlook
Here is a list of interesting research problems which can be tackled in the future:

Better evaluation metrics
During the workshop, we typically used the BLEU evaluation metric for error
analysis, training and assessment of results because according to the experience

1Unfortunately, due to copyright problems it is not possible to make all of these resources
freely available at this point in time.

8.2. OUTLOOK 103

of team members this metric seems to be better than other available metrics in
assessing relatively small improvements with respect to word order changes.

One problem with existing metrics is that they have a very poor correlation
with translation quality when used to score single single sentences (Melamed,
Green, and Turian, 2003). This affects the quality of the produced oracle trans-
lations that are used in our contrastive error analysis. In addition, certain types
of improvements (like reducing the number of omitted content words) result in a
subjectively too small improvement in the BLEU score.

Improved discriminative training for MT

The use of discriminative training for machine translation directly related to the
evaluation criterion has shown to be a very effective method to boost MT perfor-
mance. The technique of (Och, 2003), which was used at the workshop, works
well for a small number of parameters (less than 10). Yet, it seems that for larger
number of parameters the training technique is not reliable and it is especially
not able to combine a large number of very small improvements into one large
improvement. This obviously depends directly on the size of the development
corpus used. Hence, one solution would be to use a larger development corpus for
discriminative training which would allow to estimate larger number of parame-
ters. An alternative promising approach would be the use of smoothed discrimi-
native training criteria related to the evaluation criterion as is commonly done in
the speech community (Beyerlein, 1997; Schlüter and Ney, 2001).

Bilingual syntactic analysis

The experiments in Section 5.1 on the ’cross-lingual constituent alignment fea-
tures’ show that often certain constituents do not align nicely between Chinese
and English parse trees. This has also been observed in (Hwa et al., 2002) and
for French–English in (Fox, 2002). The alignment mismatch that we observe is
partially due to alignment and parser errors but partially also due to systematic
language differences. A systematic approach to deal with this problem could be
to analyze the source language sentence in such a way that the resulting entities
can easily be transferred into the target language. This bilingual syntactic analysis
would be specific for the considered language pair.

104 CHAPTER 8. CONCLUSIONS

Parser as language model for MT
During the workshop large amounts of English machine translation output has
been parsed. The majority of these hypothesized sentences are not syntactically
well-formed. However, our experiments using the statistical parser as an addi-
tional language model were not successful. The results described in Section 4.1
show that the parser prefers the ’bad’ machine translation output in more than
fifty percent of the cases over the presumably syntactically well-formed reference
translations!

The experiments performed in the workshop used a parser trained off of the
Penn treebank with about one million words. The language model used in the
baseline system is a trigram language model trained on about 250 million words.
A promising idea is to parse this language model training data and to retrain the
parser on that data. If this is done, the statistical parser will presumably perform
better. In addition, it would be interesting to examine the effect of the change
in domain from the Penn treebank to the MT training corpus on the highly lex-
icalized parser models that were used, and to evaluate whether reducing lexical
dependencies could result in more robust syntactic modeling.

Confident Parsers
Today’s statistical parsers do not provide confidence information on the quality of
the produced analysis. Currently, the parser hallucinates parse trees for completely
garbled sentences which have no syntactic structure at all. Ideally, we would like
the parser to provide information on which parts of the syntactic analysis should
be presumed to be correct, and hich parts are likely to be wrong. This information
could be used to develop feature functions that rely only on those parts of the parse
tree in which there should be a high level of confidence.

Appendix A

Contrastive Error Analysis

A.1 Human Evaluation

During the workshop the members of the team conducted an error analysis con-
trasting the Oracle-BLEU translations in the N -best lists with the sentences pre-
ferred by the baseline MT system.

The categories are listed below:
0: deletion: missing articles, prepositions, and other function words: incoher-

ent
1: deletion: missing articles, prepositions, and other function words: changing

meaning significantly
2: deletion: missing content words
3: insertion: hallucinated content words
4: substitution: word choice (WSD wrong)
5: substitution: wrong tense
6: word order: VP internal structure
7: word order: NP internal structure
8: word order: PP internal structure
9: messed up puncutation
10: named entities wrong
11: wrong single/plural cases
12: wrong noun dependency (ie, noun incorrectly moves from subject to ob-

ject, etc)
13: insertion, deletion: pronouns wrong
For 100 sentences which were randomly selected for each team member, they

105

106 APPENDIX A. CONTRASTIVE ERROR ANALYSIS

were asked to make a binary decision as to whether the problem existed in the
BLEU-Oracle translation of that sentence, and in the baseline systems output.
Two native Chinese speakers, and two native English speakers double-annotated
the same set of English hypotheses.

The results of this error analysis were inconclusive. In many cases the BLEU
Oracle sentence appeared to have more problems than the baseline-produced sen-
tence. Because the sentences were selected at random, the quality of both sen-
tences examined was often quite low, and humans have difficulty analyzing hy-
potheses with many problems. In the future it would be interesting to repeat this
analysis by first looking for Oracle sentences which are more likely to be correct,
and then conducting the contrastive analysis. In addition, techniques for artifi-
cially improving the output to make it easier for human annotators to analyze
should be examined, though of course great care must be taken to avoid distortion
of the analysis.

Appendix B

Used Symbols

p(·): generic symbol for modeled probabilities
Pr(·): generic symbol for ‘true’ probabilities
C(·): class function for mapping words to word classes

fJ
1 = f : source language symbols (Chinese)

f̃K
1 : sequence of source language phrases

eI
1 = e: target language symbols (English)

ẽK
1 : sequence of target language phrases

aJ
1 = a: word alignment vector (as produced by IBM alignment models)

ãK
1 : phrase alignment

φI
1: fertility of target language words

BI
1 : inverted word alignment

Bi,j: j-th element of Bi in ascending order

j, J : index and length for source language sentence
i, I: index and length for target language sentence
k, K: index and length for segmented source language sentence
m, M : index for feature function and number of feature functions for maxi-

mum entropy modeling

cJ
1 = c: coverage vector

z: alignment template
Z = (z, j): alignment template instantiation (a specific alignment template

starting used in a sentence starting at position j)

Pe(·): preprocessing function for target language sentence

107

108 APPENDIX B. USED SYMBOLS

Pf(·): preprocessing function for source language sentence
P−1

e (·): postprocessing function for target language sentence

θ: set of all parameters for translation model
γ: set of parameters for language model
M : number of parameters/feature functions in log-linear model
λM

1 : parameters of log-linear model
hM

1 (eI
1, f

J
1): feature functions

fS
1 , eS

1 : training corpus sentences

Rs: number of reference translations for sentence s
es,r: r-th reference translation of the s-th sentence (r = 1, . . . , Rs)

T (e), T (f): parse tree of e or f

POS(e), POS(f): parts-of-speech sequence of e or f

CHK(e), CHK(f): chunk-tagged sequence of e or f

Te, Tf : arbitrary source/target language parse tree
POSe, POSf : arbitrary source/target language parts-of-speech sequence
CHKe, CHKf : arbitrary source/target language chunk segmentation

109

References

Berger, Adam L., Stephen A. Della Pietra, and Vincent J. Della Pietra. 1996. A
maximum entropy approach to natural language processing. Computational
Linguistics, 22(1):39–72, March.

Beyerlein, P. 1997. Discriminative model combination. In Proc. of the IEEE Workshop
on Automatic Speech Recognition and Understanding, pages 238–245, Santa Barbara,
CA, December.

Bickel, P. J. and K. A. Doksum. 1977. Mathematical Statistics: Basic Ideas and Selected
topics. Holden-Day Inc., Oakland, CA, USA.

Bies, Ann, Mark Ferguson, Karen Katz, and Robert MacIntyre. 1995. Bracketing
guidelines for treebank II style. Penn Treebank Project, January.

Bikel, Daniel and David Chiang. 2000. Two statistical parsing models applied to the
chinese treebank. In Proceedings of the Second Chinese Language Processing
Workshop, pages 1–6, Hong Kong.

Bikel, Daniel M. 2002. Design of a multi-lingual, parallel-processing statistical parsing
engine. In Human Language Technology Conference (HLT).

Brown, Peter F., Stephen A. Della Pietra, Vincent J. Della Pietra, and R. L. Mercer.
1993. The mathematics of statistical machine translation: Parameter estimation.
Computational Linguistics, 19(2):263–311.

Charniak, E. 2000. A maximum-entropy-inspired parser. In Proc. of NAACL 2000.

Collins, M. and N. Duffy. 2002. New ranking algorithms for parsing and tagging:
Kernels over discrete structures, and the weighted perceptron. In Proceedings of the
Conference on Empirical Methods in Natural Language Pr ocessing, Philadelphia,
PA, USA.

Collins, Michael. 2000. Discriminative reranking for natural language parsing. In
Proceedings of the 7th International Conference on Machine Learning.

Collins, Michael and Nigel Duffy. 2002. New ranking algorithms for parsing and
tagging: Kernels over discrete structures, and the voted perceptron. In Proceedings of
ACL 2002.

Collins, Michael John. 1999. Head-driven Statistical Models for Natural Language
Parsing. Ph.D. thesis, University of Pennsylvania, Philadelphia.

Fei Xia. 2000. The part-of-speech tagging guidelines for the penn chinese treebank.
Technical Report IRCS-00-07, IRCS, University of Pennsylvania.

Fox, Heidi J. 2002. Phrasal cohesion and statistical machine translation. In Proceedings
of the 2002 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2002), pages 304–311, Philadelphia, PA.

110 APPENDIX B. USED SYMBOLS

Gildea, Daniel. 2003. Loosely tree-based alignment for machine translation. In Proc. of
the 41st Annual Meeting of the Association for Computational Linguistics (ACL),
Sapporo, Japan.

Goel, V. and W. Byrne. 2000. Minimum Bayes-risk automatic speech recognition.
Computer Speech and Language, 14(2):115–135.

Gusfield, Dan. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology. Cambridge University Press, Cambridge, England.

Hajič, Jan, Martin Čmejrek, Bonnie Dorr, Yuan Ding, Jason Eisner, Daniel Gildea, Terry
Koo, Kristen Parton, Gerald Penn, Dragomir Radev, and Owen Rambow. 2002.
Natural language generation in the context of machine translation. Technical report,
Center for Language and Speech Processing, Johns Hopkins University, Baltimore.
Summer Workshop Final Report.

Hwa, R., P. Resnik, A. Weinberg, and O. Kolak. 2002. Evaluating translational
correspondence using annotation projection. In the Proceedings of the 40th Annual
Meeting of the ACL, Philadelphia, PA.

Levenshtein, V. I. 1965. Binary codes capable of correcting spurious insertions and
deletions of ones. Problems of Information transmission, 1(1):8–17.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a
large annotated corpus of English: The Penn treebank. Computational Linguistics,
19(2):313–330, June.

Melamed, I. Dan, Ryan Green, and Joseph P. Turian. 2003. Precision and recall of
machine translation. In Proceedings of the Human Language Technology and North
American Association for Computational Linguistics Conference (HLT/NAACL),
Edmonton, Canada.

Ney, Hermann. 1995. On the probabilistic-interpretation of neural-network classifiers
and discriminative training criteria. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 17(2):107–119, February.

Ney, Hermann, M. Generet, and Frank Wessel. 1995. Extensions of absolute discounting
for language modeling. In Proc. of the Fourth European Conf. on Speech
Communication and Technology, pages 1245–1248, Madrid, Spain, September.

Ngai, Grace and Radu Florian. 2001. Transformation-based learning in the fast lane. In
Proceedings of the 39th ACL Conference.

Nianwen Xue and Fei Xia. 2000. The bracketing guidelines for the penn chinese
treebank. Technical Report IRCS-00-08, IRCS, University of Pennsylvania.

Och, Franz Josef. 2002. Statistical Machine Translation: From Single-Word Models to
Alignment Templates. Ph.D. thesis, Computer Science Department, RWTH Aachen,
Germany, October.

111

Och, Franz Josef. 2003. Minimum error rate training in statistical machine translation.
In Proc. of the 41st Annual Meeting of the Association for Computational Linguistics
(ACL), pages 160–167, Sapporo, Japan, July.

Och, Franz Josef and Hermann Ney. 2002. Discriminative training and maximum
entropy models for statistical machine translation. In Proc. of the 40th Annual
Meeting of the Association for Computational Linguistics (ACL), pages 295–302,
Philadelphia, PA, July.

Och, Franz Josef and Hermann Ney. 2004. The alignment template approach to
statistical machine translation. Computational Linguistics.

Och, Franz Josef, Christoph Tillmann, and Hermann Ney. 1999. Improved alignment
models for statistical machine translation. In Proc. of the Joint SIGDAT Conf. on
Empirical Methods in Natural Language Processing and Very Large Corpora, pages
20–28, University of Maryland, College Park, MD, June.

Papineni, Kishore A., Salim Roukos, and R. T. Ward. 1997. Feature-based language
understanding. In European Conf. on Speech Communication and Technology, pages
1435–1438, Rhodes, Greece, September.

Papineni, Kishore A., Salim Roukos, and R. T. Ward. 1998. Maximum likelihood and
discriminative training of direct translation models. In Proc. Int. Conf. on Acoustics,
Speech, and Signal Processing, pages 189–192, Seattle, WA, May.

Papineni, Kishore A., Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2001. Bleu: a
method for automatic evaluation of machine translation. Technical Report RC22176
(W0109-022), IBM Research Division, Thomas J. Watson Research Center, Yorktown
Heights, NY, September.

Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
2002. Numerical Recipes in C++. Cambridge University Press, Cambridge, UK.

Radev, Dragomir R., Vasileios Hatzivassiloglou, and Kathleen R. McKeown. 1999. A
description of the CIDR system as used for TDT-2. In DARPA Broadcast News
Workshop, Herndon, VA, February.

Ratnaparkhi, Adwait. 1996. A maximum entropy part-of-speech tagger. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, pages
133–142, University of Pennsylvania, May. ACL.

Santorini, Beatrice. 1990. Part-of-speech tagging guidelines for the Penn Treebank
project. 3rd revision, 2nd printing.

Schlüter, Ralf and Hermann Ney. 2001. Model-based MCE bound to the true Bayes’
error. IEEE Signal Processing Letters, 8(5):131–133, May.

Shen, L., A. Sarkar, and A. K. Joshi. 2003. Using LTAG based features in parse
reranking. In Proc. of EMNLP 2003.

112 APPENDIX B. USED SYMBOLS

Tjong Kim Sang, Erik F. and Sabine Buchholz. 2000. Introduction to the conll-2000
shared task: Chunking. In Proceedings of CoNLL-2000 and LLL-2000, Lisbon,
Portugal.

Ueffing, Nicola, Franz Josef Och, and Hermann Ney. 2002. Generation of word graphs
in statistical machine translation. In Proc. Conference on Empirical Methods for
Natural Language Processing, pages 156–163, Philadelphia, PA, July.

Vogel, Stephan, Hermann Ney, and Christoph Tillmann. 1996. HMM-based word
alignment in statistical translation. In COLING ’96: The 16th Int. Conf. on
Computational Linguistics, pages 836–841, Copenhagen, Denmark, August.

Wahlster, Wolfgang, editor. 2000. Verbmobil: Foundations of speech-to-speech
translations. Springer Verlag, Berlin, Germany.

Xia, Fei. 2000. The part-of-speech guidelines for the penn chinese treebank (3.0).
Technical Report IRCS Report 00-07, University of Pennsylvania, Pennsylvania, PA.

Xue, Nianwen, Fu-Dong Chiou, and Martha Palmer. 2002. Building a large-scale
annotated chinese corpus. In Proceedings of the 19th. International Conference on
Computational Linguistics (COLING 2002), Taipei, Taiwan.

Yamada, K. and K. Knight. 2002. A decoder for syntax-based MT. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics (ACL).

Yamada, Kenji and Kevin Knight. 2001. A syntax-based statistical translation model. In
Proc. of the 39th Annual Meeting of the Association for Computational Linguistics
(ACL), pages 523–530, Toulouse, France, July.

