Learning Decision Lists

Ronald L. Rivest*

August 5, 2001

Abstract

This paper introduces a new representation for Boolean functions, called decision lists,
and shows that they are efficiently learnable from examples. More precisely, this result
is established for “k-DL” — the set of decision lists with conjunctive clauses of size k at
each decision. Since k-DL properly includes other well-known techniques for representing
Boolean functions such as k-CNF (formulae in conjunctive normal form with at most k
literals per clause), k-DNF (formulae in disjunctive normal form with at most k literals
per term), and decision trees of depth k, our result strictly increases the set of functions
which are known to be polynomially learnable, in the sense of Valiant (1984). Our proof is
constructive: we present an algorithm which can efficiently construct an element of k-DL
consistent with a given set of examples, if one exists.

Keywords: learning from examples, decision lists, boolean formulae, polynomial-time
identification.
Running head: Learning Decision Lists

9 Author’s address: MIT Lab. for Computer Science, Cambridge, Massachusetts 02139 USA

9Author’s net address: rivest@theory.lcs.mit.edu

*This paper was prepared with support from NSF grant DCR-8607494, ARO Grant DAAL03-86-K-0171, and
the Siemens Corporation.

1 Introduction

One goal of research in “machine learning” is to identify the largest possible class of concepts
which are learnable from examples.

In this paper we restrict our attention to concepts which can be defined in terms of a given
set of n Boolean attributes; each assignment of true or false to the attributes can be classified
as either a positive or a negative instance of the concept to be learned.

To make precise the notion of “learnable from examples”, we adopt the definition of polyno-
mial learnability pioneered by Valiant (1984) and studied by a number of authors (e.g., Blumer,
Ehrenfeucht, Haussler, & Warmuth 1986, 1987). In this model a concept to be learned is first
selected arbitrarily from a prespecified class F of concepts. Then, a learning algorithm may
request a number of positive and negative examples of the unknown concept. These examples
are drawn at random according to fixed but unknown probability distributions. ! The learning
algorithm then produces an answer — its hypothesis about the identity of the concept being
learned. If the learning algorithm needs relatively few examples and relatively little running
time in order to produce a hypothesis from F which is likely to be “close” to the correct an-
swer, then the prespecified class of concepts is said to be polynomially learnable. (We make this
notion more precise later.)

A number of classes of concepts are already known to be polynomially learnable. For
example, Valiant (1984) has shown that k-CNF (the class of Boolean formulae in conjunctive
normal form with at most k literals per clause) is polynomially learnable.

It is also known that certain classes of concepts are mot polynomially learnable, unless
P = NP. For example, Kearns, Li, Pitt and Valiant (1987) show that Boolean threshold
formulae and k-term-DNF (Boolean formulae in disjunctive normal form with & terms) for
k > 2 are not polynomially learnable, unless P = N P.

It is a somewhat surprising fact, however, that it is possible for a class F which is not
polynomially learnable to be a subset of a class ' which is polynomially learnable. That is,
enlarging the set of concepts may make learning easier, rather than harder. The reason is that
it may be easier for the learning algorithm to produce a nearly correct answer from a rich set
of alternatives than from a sparse set of possibilities. This paper provides another illustration
of this fact.

The paper introduces the notion of a decision list and shows that k-DL — the set of decision
lists with conjunctive clauses of size at most k at each decision — is polynomially learnable.
This provides a strict enlargement of the functions known to be polynomially learnable: we
show that k-DL generalizes the notions of k-CNF, k-DNF, and depth-k decision trees.

! Accordingly, this model is sometimes called distribution-free learning, since the results do not depend upon
any particular assumptions about the probability distributions.

2 Definitions

2.1 Attributes (Boolean Variables)

It is common in the machine learning literature to consider concepts defined on a set of ob-
jects, where the objects are described in terms of a set of attribute-value pairs. We adopt this
convention here, with the understanding that each attribute is Boolean — its associated value
will be either true or false. We assume that there are n Boolean attributes (or variables) to
be considered, and we denote the set of such variables as V;, = {z1,z2,...,z,}. Of course, in
a particular learning situation, each variable will have a preassigned meaning. For example, if
n = 3, 1 might denote “heavy”, zo might denote “red”, and z3 might denote “edible”. We
assume that the given set of attributes is sufficient to precisely define the concepts of interest.

2.2 Object Descriptions (Assignments)

As is common in computer science, we identify true with 1, and false with 0.

An assignment is a mapping from V;, to {0, 1}: an assignment gives (or assigns) each variable
in V,, a value — either 1 (true) or 0 (false). We may also think of an assignment as a binary
string of length n whose i-th bit is the value of x; for that assignment. We let X,, denote the
set {0,1}" of all binary strings of length n.

We may think of an assignment as a description of an object. For example, if n = 3 the
assignment 011 (i.e. z;1 = 0, 2 = 1, and 3 = 1) might describe a non-heavy, red, edible object.

2.3 Representations of Concepts (Boolean Formulae)

Boolean formulae are often used as representations for concepts. This section reviews the
definitions of some common classes of Boolean formulae.

A Boolean formula can be interpreted as a mapping from objects (assignments) into {0,1}.
If the formula is 1 (true) for an object, we say that the object is a positive example of the
concept represented by the formula; otherwise we say that it is a negative example.

The simplest Boolean formula is just a single variable.

Each variable z; is associated with two literals: x; itself and its negation Z;. An as-
signment naturally assigns a value to z;: z; = 0 if z; = 1, otherwise ; = 1. We let
L, ={z1,%1,...,%n, Ty} denote the set of 2n literals associated with variables in V;,.

A term is a conjunction (“and”) of literals and a clause is a disjunction (“or”) of literals. The
truth of a term or clause at an assignment is a simple function of the truth of its constituents.
For example, the term z1Z3z4 is true if and only if z3 is false, and both z; and x4 are true.
Similarly, the disjunction (T2 V z3 V z5) is true if and only if x4 is false or either of z3 or x5 is
true.

The size of a term or clause is the number of its literals. We let true be the unique term of
size 0, and false be the unique clause of size 0.

We let C}! denote the set of all terms (Conjunctions) of size at most k with literals drawn
from L,,. Similarly, we let D} denote the set of all clauses (Disjunctions) of size at most k£ with
literals drawn from L,,. Thus

k
CFl=1D}1 =Y (i”) = 0(n*);
=0

for any fixed k, C}} and D} have sizes which are polynomial functions of n.

A boolean formula is in conjunctive normal form (CNF) if it is the conjunction (“and”) of
clauses. We define k-CNF to be the set of boolean formulae in conjunctive normal form where
each clause contains at most k literals. For example, the following formula is in 3-CNF:

(.’131 VgV T5)(£C2 \Y Tg)($4 V .Tﬁ)(.’l}'?).

Similarly, a boolean formula is in disjunctive normal form (DNF) if it is the disjunction
(“or”) of terms. We define k-DNF to be the set of boolean formulae in disjunctive normal form
where each term contains at most & literals. For example, the following formula is in 2-DNF":

123V T1T4 V T3V T2T7.

We define k-term-DNF to be the set of all boolean formulae in disjunctive normal form
containing at most k terms, and k-clause- CNF to be the set of boolean formulae in conjunctive
normal form with at most &k clauses. (The previous examples were from 4-clause-CNF and
4-term-DNF, respectively.)

Extending our definition of size for terms and clauses, we define the size of a Boolean formula
to be the number of literals it contains.

Each Boolean formula defines a corresponding Boolean function from X, to {0,1} in a
natural manner. In general, we do not distinguish between formulae and the Boolean functions
they represent. That is, we may interchangeably view a formula as a syntactic object (so that we
might consider its size) or a Boolean function (so that we may consider its value at a particular
point x € X,,).

The four classes of functions defined above (k-CNF, k-DNF, k-clause-CNF, and k-term-
DNF) are not independent, as we now show.

By duality (DeMorgan’s Rules) k-DNF is the set of negations of functions in k-CNF. For
example, the negation of the 2-CNF formula:

(51 \Y 52)(53 \Y .774)(.775)

is the 2-DNF formula:
129 V 23%T4 V Ts

Similarly, k-term-DNF is the set of negations of functions in k-clause-CNF.
Also, by distributivity, k-term-DNF is a subset of k-CNF. For example, we can rewrite the
3-term-DNF formula:
T1T2 V T3%T4 V T5

as the 3-CNF formula:
(1171 V3V T5)($1 V4V T5)(.’132 Vx3V f{,)(iﬂg V4V 55)

Similarly, k-clause-CNF is a subset of k-DNF.

2.4 Decision Trees

Another useful way to represent a concept is as a decision tree.

A decision tree is a binary tree where each internal node is labelled with a variable, and
each leaf is labelled with 0 or 1. The depth of a decision tree is the length of the longest path
from the root to a leaf.

Each decision tree defines a boolean function as follows. An assignment determines a unique
path from the root to a leaf: at each internal node the left (respectively right) edge to a child
is taken if the variable named at that internal node is 0 (respectively 1) in the assignment. The
value of the function at the assignment is the value at the leaf reached.

Figure 1 shows an example of a decision tree of depth 3; the concept so defined is equivalent
to the Boolean formula;:

T1Z3 V £1Tox4 V T1T2.

We let k-DT denote the set of Boolean functions defined by decision trees of depth at most
k.

2.5 Other Notation

When we wish to emphasize the number of variables upon which a class of functions depends, we
will indicate this in parentheses after the class name, as in k-CNF(n), k-DNF(n), or k-DT(n).
We use 1g(n) to denote the base-2 logarithm of n, and In(n) to denote the natural logarithm
of n.
We may denote a function of one argument as f(-), a function of two arguments as f(-,-),
and so on.

2.6 Decision Lists

We now introduce a new technique for representing concepts: decision lists. Decision lists are a
strict generalization of the concept representation techniques described in the previous section.
And they are, as we shall see, easy to learn from examples.

[0]

Figure 1: A Decision Tree

A decision list is a list L of pairs

(fr,v1)5 o5 (frsvr) (1)

where each f; is a term in C}, each v; is a value in {0, 1}, and the last function f, is the constant
function true.

A decision list L defines a boolean function as follows: for any assignment x € X,,, L(x) is
defined to be equal to v; where j is the least index such that f;(x) = 1. (Such an item always
exists, since the last function is always true.)

We may think of a decision list as an extended “if — then — elseif — ...else —” rule.
Or we may think of a decision list as defining a concept by giving the general pattern with
exceptions. The exceptions correspond to the early items in the decision list, whereas the more
general patterns correspond to the later items.

For example, consider the decision list

(21%3,0), (ZT12225, 1), (T3T4, 1), (true, 0) (2)
which has the truth table given in Table 1. 2 For example, L(0,0,0,0,1) = 1; this value is

2The format of this table is that of a standard Karnaugh map as used in logical design; three of the input
variables are used to select the row, and the remaining two variables are used to select the column, of the desired
value.

T4T5
zi1zows | 00 | 01 [10 | 11

000 | 1 [1](0)](0)
001 | (0) | (0) | (0) | (0)
010 | I |1](0]1
011 | ()| 1 [(0] 1
100 | 0 00
101 | (0) | (0) | (0) | (0)

110 0 0 0 0
111] (0) | (0) | (0) | (0)

Table 1: Truth table for example decision list function

specified by the third pair in the decision list. The zeros in parentheses indicate the positions
filled by the last (default) item.

This decision list may also be diagrammed as in Figure 2. (No decision box is given for the
last item, since it is always true.)

We remark that decision lists always form a “linear” sequence of decisions; the “true”
branch of a decision always points to either 1 or 0, never to another decision node. Compared
to decision trees, decision lists have a simpler structure, but the complexity of the decisions
allowed at a node is greater.

We let k-DL denote the set of all boolean functions defined by decision lists, where each
function in the list is a term of size at most k. As k increases, the set k-DL becomes increasingly
expressive.

We note that — unlike k-DNF or k-CNF — k-DL is closed under complementation (negation):
if f is in k-DL, then so is the complement of f. The proof is trivial: merely negate the second
element of each pair in the decision list, or — equivalently — change all the 1’s to 0’s and vice-versa
in the leaves of the decision list.

The items of a decision lists are essentially the same as “production rules” studied by many
people. For example, Quinlan (1986b) has examined production rules as a means of simplifying
decision trees. One may think of “decision lists” as a “linearly ordered” set of production rules.

3 Relationship of decision lists to other classes of functions

In this section we prove that decision lists are more expressive than the other forms of concept
representation discussed in section 2.

Figure 2: Diagram of decision list corresponding to Table 1.

We first examine the relationship of k-DL to k-CNF and k-DNF. We see that the sequential
“if — then — else” combinator used to construct decision lists is more powerful than the
associative and commutative V and A operators.

3.1 Decision Lists generalize k-CNF and £-DNF Formulae
Theorem 1 For 0 < k < n, k-CNF(n) and k-DNF(n) are proper subsets of k-DL(n).

Proof: To see that k-DNF is a subset of k-DL, observe that we can easily transform a given
formula in k-DNF into a decision list representing the same function. Each term of a DNF
formula is converted into an item of a decision list with value 1. For example, the term xZo
would yield the item (z1Z2,1). The last (default) item of the decision list has the value 0.

To see that k-CNF is a subset of k-DL, recall that every k-CNF formula is the complement
of some k-DNF formula, and that k-DL is closed under complementation.

The subset relations are proper, since neither k-CNF nor k-DNF is a subset of the other if
0<k<n N

Corollary 1 For 0 < k < n, k-clause-CNF(n) and k-term-DNF(n) are proper subsets of k-
DL(n).

Proof: This follows from the previous theorem and the previously noted facts that k-clause-
CNF(n) is a subset of k-DNF(n), and that k-term-DNF(n) is a subset of k-CNF(n). B

We can strengthen the above result to show that not only is k-DL a generalization of k-CNF
and k-DNF; it is also a generalization of their union (i.e. the set of functions which have either
a k-CNF representation or a k-DNF representation) for n > 2.

Theorem 2 For0 < k <mn andn > 2, (k-CNF(n) | k-DNF(n)) is a proper subset of k-DL(n).

Proof: Our proof makes essential use of the notion of the prime implicants of a Boolean
function f. An implicant of f is any term which logically implies f. A prime implicant is an
implicant all of whose literals are essential: if any literal is dropped it is no longer an implicant.
For example, for the function represented by Table 1, T;T3T4 is a prime implicant. We will
also use the fact that if a function f has a prime implicant of size ¢, then f has no k-DNF
representation if &k < . It follows from this that if the negation of a function f has a prime
implicant of size t, then f has no k-CNF representation if k£ < ¢.

We break our proof into the cases k =1 and 1 < k < n.

For k£ = 1, we claim that the following decision list from 1-DL(n) represents a function f
which is not in 1-CNF(n) |J 1-DNF(n):

(1171,0),(1‘2,1),(:1,‘3,1),(121‘116,0). (3)

To see that f is not in 1-DNF(n), note that Z1zo is a prime implicant of f. Similarly, to see
that f is not in 1-CNF(n); note that ToZ3 is a prime implicant of the negation of f.
For 1 < k < n, we consider the decision list:

(T17k41,1), (T17841,0), (71 © T2 @ - - - © T, 1) (true, 0). (4)

This is not a proper decision list according to our definition, since the third item does not
have a term as its first part, but rather the “exclusive-or” of x1,...,z), where “®” denotes the
“exclusive-or” (mod 2 addition) operator. However, it is simple to convert the function into
a proper k-DL representation, since we are only taking the exclusive or of k£ variables. The
conversion would involve replacing the third item above with a sequence of 2¥~1 items whose
first parts are all possible terms of length k involving variables z1, . .., z; having an odd number
of unnegated variables, and whose second parts are always 1.

The function f represented above has the prime implicant

T1T2T3 "« * T T+1, (5)
so that it has no k-DNF representation. Similarly, its negation f has the prime implicant
Z1X2X3 " TTk41, (6)

so that f has no k-CNF representation either. Hl

3.2 Decision Lists generalize Decision Trees

Theorem 3 k-DT(n) is a proper subset of k-DL(n), for 0 < k < n.
Proof: By theorem 1 it suffices to observe that
k-DT(n) C k-DNF(n), (7

since one can create a k-DNF(n) formula equivalent to a given decision tree in k-DT(n) by
creating one term for each leaf labelled with “1”. One could also create a k-CNF(n) formula
equivalent to the given tree by creating one clause for each leaf labelled with “0”; this additional
fact suffices to prove that k-DT(n) C k-CNF(n) N k-DNF(n). B

4 Polynomial Learnability

We are interested in algorithms for learning concepts from examples, where the notion of “con-
cept” is identified with that of “Boolean function”. In this section we review the notion of the
“polynomial learnability” of a class of concepts, as pioneered by Valiant (1984).

4.1 Examples and Samples

An ezxample is a description of an object, together with its classification as either a positive or
a negative instance of the concept f being learned. More formally, an example of f is a pair
(x,v) where x is an assignment and v € {0,1}. The example is considered to be a positive
example if v = 1, and a negative example otherwise.

We will be interested in learning algorithms which produce as answers Boolean functions
which do not contradict any of the given training data; in this case we say that the answer
produced is consistent with the training data. More formally, we say that a boolean function f
is consistent with an example (x,v) if f(x) = v.

A sample is a set of examples. We say that a function is consistent with a sample if it is
consistent with each example in the sample. If f is a Boolean function, then a sample of f is
any sample consistent with f.

4.2 Hypothesis Space

The learning algorithms we consider will have a hypothesis space F — a set of concepts which
contains the concept being learned. The goal of the learning algorithm is to learn which concept
in F is actually being used to classify the examples it has seen.

We partition the hypothesis space F according to the number n of variables upon which
the concept depends. Typically the learning algorithm will be told at the beginning that the

10

concept to be learned depends on a given set V,, of variables. Let F, denote the subset of F
which depends on V;,, for any integer n > 1, so that F = [Js>; F,,. (We assume that each
function in F' depends on a finite set of variables.)

Of course, the difficulty of learning a concept that has been selected from F;, will depend
on the size |F,| of F,,. We let

An = 1g(| Fnl) (8)

denote the logarithm of the size of F;,; this may be viewed as the number of bits needed to
write down an arbitrary element of F};, using an optimal encoding.

We are interested in characterizing when a class F of functions is “easily learnable from
examples”. Clearly this is a characteristic of the set F and not of any particular member of F;
identifying any particular function from examples would be trivial if there were no alternatives.

4.3 Discussion — Learnability from Examples

Informally, to say that a class F of functions is “learnable from examples” is to say that there
exists a corresponding learning algorithm A such that for any function f in F, as A is given
more and more examples consistent with f, A will converge upon f as the function it has
“learned” from the examples.

However, any class F of Boolean functions is clearly learnable from examples in principle,
since each function f € F), is defined on a finite domain (the 2" assignments X,,). The algorithm
A need only wait until it sees an example corresponding to each element of X, ; then A knows
the complete truth table for f.

Thus, the interesting question is not whether a class F is learnable from examples, but
whether it is “easily” learnable from examples. This involves two aspects, since a learning
algorithm has two resources available: examples and computational time. We say that a learning
algorithm is economical if it requires few examples to distinguish the correct answer from other
alternatives, and say that it is efficient if it requires little computational effort to identify the
correct answer from a sufficient number of examples. We would like our learning algorithms to
be both economical and efficient.

We observe that each example provides at most one bit of information to the learning
algorithm. Since A, bits are required to describe a typical concept in Fj,, we see that any
learning algorithm will have to examine at least A, examples on the average, if it is to make a
correct identification.

4.4 Polynomial-Time Identifiability

Our first formal notion of learnability is “polynomial-time identifiability”, which captures the
notion of efficiency but not that of economy.

11

We say that F is polynomial-time identifiable if there exists an identification algorithm A
and a polynomial p(A,m) such that algorithm A, when given the integer n and a sample S
of size m, will produce in time p(A,,m) a function f € F, consistent with S (if one exists,
otherwise it will output “impossible”).

To say that a set F is polynomial-time identifiable is not necessarily very interesting. For
example, the the class DL of all decision lists is clearly polynomial-time identifiable: it is easy
to construct a decision list consistent with a given sample of size m in time polynomial in
An and m, by turning each example into an item of the decision list. These decision lists are
uninteresting because they are as long as the data itself. A “good” identification procedure
should produce an answer which is considerably shorter than the data, if possible. Answers
which are not short may be poor predictors for future data (see Pearl, 1978 or Rissanen, 1978).

4.5 Polynomial Learnability

Valiant (1984) introduced a more elegant notion of learnability, which makes explicit the notion
that the concept acquired by the learner should closely approximate the concept being taught,
in this sense that the acquired concept should perform well on new data. To do so, he presumed
the existence of an arbitrary probability distribution P, defined on the set X,; the learning
algorithm’s examples are drawn from X, according to the probability distribution P,. When it
has produced its answer f, one measures the quality of its answer by measuring the probability
that a new example drawn according to P,, will be incorrectly classified by f.

To make this formal, we define the discrepancy f ® g between two functions f and g in F),
as the probability (according to P,) that f and g differ:

foOg= Z Pn(x) (9)
x| f(x)#£g(x)

The discrepancy will always be a number between 0 and 1, inclusive. We also define the error
of a function g to be f ®g, where f is the “correct” function. A hypothesis g with error at most
€ will incorrectly classify at most a fraction e of the objects drawn according to the probability
distribution P,.

We would like our learning algorithm A to be able to produce an answer whose error is less
than an arbitrary prespecified accuracy parameter e. (Here 0 < e < 1.)

However, we can not expect A to be sufficiently accurate always, since it may suffer from
“bad luck” in drawing examples according to P,. Thus, we will also supply A with a confidence
parameter 6 (here 0 < 6 < 1), and require that the probability that A produces an accurate
answer be at least 1 — 4.

Of course, as € and ¢ approach zero, we should expect A to require more examples and
computation time.

12

We now make this formal. We say that a set of Boolean functions F is polynomially learnable
if there exists an algorithm A and a polynomial s(-, -, -) such that for all n, €, and 4, all probability
distributions P, on X, and all functions f € F},, A will with probability at least 1 — §, when
given a sample of f of size m = s(Ay, %, %) drawn according to P,, output a g € F;, such that
g ® f < e. Furthermore, A’s running time is polynomially bounded in n and m.

Thus, if F is polynomially learnable, then it is possible to get “close” to the right answer
in a reasonable amount of time, independent of the probability distribution that is used to
generate the examples. Here, as is only fair, the same probability distribution P, that is used
to generate the examples is used to judge the error of the program’s answer.

There are several variations on the above definition in the literature. In Valiant’s original
paper (1984), the probability distribution P, was constrained so that only positive examples
were shown to the learning algorithm. In other papers (e.g. Kearns et. al., 1987), the algorithm
may choose whether it would like to see a positive example or a negative example. (In this
case there are two unknown probability distributions, one for each type of example.) The
formulation we have adopted here, using a single probability distribution, is identical to that
used by Blumer et. al. (1986, 1987). It is possible to prove that the model we use here is in
fact formally equivalent to the two-distribution model used by Kearns et. al. (1987); we use the
single-distribution model because it is simpler.

A number of important classes of Boolean functions have been proved to be polynomially
learnable. For example, Valiant (1984) proved that k-CNF is polynomially learnable from
positive examples only. It follows that k-DNF is also polynomially learnable (using an algorithm
that makes use of the negative examples only). Pitt and Valiant (1986) have shown that k-
CNF |J k-DNF is polynomially learnable, but that k-term-DNF and k-clause-CNF are not
polynomially learnable unless P = NP. (To identify a k-term-DNF formula that is consistent
with the examples is NP-hard in general, so the problem is efficiency. However, since k-term-
DNF is a subset of k-CNF, it is easy to learn a k-CNF formula equivalent to the unknown
k-term-DNF formula. Enlarging the set of formulae helps.)

4.6 Proving Polynomial Learnability

Although proving that a class F of formulae is polynomial learnability can be difficult in general,
Blumer et. al. (1986, 1987) have developed some elegant methods for doing so.

They show how one can prove polynomial learnability by proving polynomial-time identifi-
ability, if the class F is polynomial-sized (i.e. if A\, = O(n') for some t).

For the reader’s convenience we repeat a key theorem and its proof from Blumer et. al.
(1987).

Theorem 4 Given a function f € F, and a sample S of f of size m drawn according to P,

13

the probability is at most
|Fn| (1 — €)™

that there exists a hypothesis g € Fy, such that
e the error of g is greater than €, and

e g is consistent with S.

Proof: If g is a single hypothesis in F}, of error greater than e, then the chance that g is
consistent with a randomly drawn sample S of size m is less than (1 — €)™. Since F), has |F,|
members, the chance that there exists any member of F,, satisying both conditions above is at
most |Fp|(1—¢€)™. A
Since))
m > ~(In(|Fy) + () (10)

implies that
|Fnl(1— €)™ <0, (11)

if mn satisfies equation (10) the chance is less than ¢ that a hypothesis in F,, which is consistent
with § will turn out to have error greater than e. Thus to achieve the bounds in the definition
of polynomial learnability, the learning algorithm need only examine enough examples (as given
by equation (10)), and then return any hypothesis consistent with the sample. We note that
if F is polynomial-sized, then the bound of equation (10) is bounded by a polynomial in 7, %,
and %. Thus, if F is polynomial-sized and polynomial-time identifiable, then it is polynomially
learnable in the sense of Valiant (see Blumer et. al. (1987) for a fuller discussion).

The previous theorem shows that polynomial-sized classes of functions are economically
learnable, in the sense that after a polynomial number of examples are seen, any hypothe-
sis consistent with the observed data will be “close enough” to the correct answer with high
probability. Furthermore, polynomial-time identifiability implies efficient learnability: such
a consistent answer can be found quickly. Together, these imply learnability in the sense of
Valiant.

5 k-DL is polynomially learnable

From the previous section we conclude that to prove that k-DL is polynomially learnable in the
sense of Valiant, it suffices to prove that k-DL is polynomial-sized and that it is polynomial-time
identifiable. The following two subsections provide these proofs.

14

5.1 k-DL is polynomial-sized
To show that k-DL is polynomial-sized, we begin by noting that

[k-DL(n)| = Ol (lCp)y). (12)

This follows because each term in C}' can either be missing, paired with 0, or paired with 1
in the decision list, and the order of the elements of the decision list is arbitrary. This implies
that

lg(|k-DL(n)]) = O(n") (13)

for some constant ¢; i.e., k-DL is polynomial-sized. (Recall that lg(z) is the base-two logarithm
of z.)

5.2 k-DL is polynomially identifiable

In this subsection we show that a “greedy” algorithm works for constructing decision lists
consistent with a given set of data.

We begin with the trivial observation that if a function is consistent with a sample S, then
it is consistent with any subset of S.

The algorithm proceeds by identifying the elements of the decision list in order. That is to
say, we may select as the first element of the decision list any element of C}} x {0,1} which is
consistent with the given set of data..

The algorithm can then proceed to delete from the given data set any data points which
are explained by the chosen element of the decision list, and then to construct the remainder of
the decision list in the same way to be consistent with the remaining data points. Choosing a
particular function in C7} “doesn’t hurt”, in the sense that explaining a certain subset of the data
points with this first item doesn’t prevent or interfere with the ability of the remaining elements
of C}} to explain the remaining data points. If the original sample could be represented by an
element of k-DL, then so can the remaining portion of the sample. Thus the greedy algorithm
will find a function k-DL consistent with the sample if and only if such a function exists.

We now specify our algorithm more precisely. Let S denote a non-empty input sample of
an unknown function f € F},, and let j denote an auxiliary variable which is initially 1.

1. If S is empty, halt.

2. Examine each term in C}} in turn until a term ¢ is found such that all examples in S which
make ¢ true are of the same type (i.e. all positive examples or all negative examples). If
no such term can be found, report “The given sample S is not consistent with any k-DL
function.” and halt. Otherwise proceed to step 3.

15

3. Let T denote those examples in S which make ¢ true. Let v = 1 if T is a set of positive
examples; otherwise let v = 0. Output the item (¢,v) as the j-th item of the decision list
being constructed, and increment j by one.

4. Set S to S — T, and return to step 1.

That this algorithm is polynomial-time is easily seen from the fact that the size of C7 is
polynomial in n (for fixed k).
This completes our proof that k-DL is polynomial learnable.

5.3 Variations and Extensions

It is interesting to note that the proof here really only depends on the fact that the size of C}'
is polynomial in n; we could replace C}! with any family of functions of polynomial size as long
as it is possible to evaluate the functions quickly for any given example.

There is certainly some flexibility in step 2 of the algorithm which could be used to advan-
tage, in an attempt to yield a shortest possible decision list. For example, one could choose
t so that it “explained” the largest number of examples (i.e. so that the corresponding set T
was as large as possible). This would be analogous to the strategy used by Quinlan’s (1986a)
ID3 system for constructing decision trees. However, it is NP-hard in general to compute the
shortest decision list consistent with a given sample S; this result can be derived from the
results of Masek (1976) or Kearns et. al. (1987).

6 Open Problems

We now describe four open problems regarding the learning of decision lists.

Problem 1: Can the functions in k-DL can be learned from positive examples only, in the
sense of Pitt and Valiant (1986)% In this model the learning algorithm is not allowed to see
any negative examples; instead it has access to a supply of positive examples, drawn according
to the unknown probability distribution restricted to the set of positive examples.

Problem 2: Can one devise an efficient incremental (i.e. on-line) version of our algorithm for
learning functions in k-DL? In this model the algorithm receives examples one at a time, and
after each example must produce an updated hypothesis consistent with all the examples seen
so far.

Problem 3: Can the functions in k-DL be learned efficiently when the supplied examples are
“noisy”? In this model the classifications of the given examples may be erroneous with some
small probability B; we may suppose that the algorithm is given 8 as part of its input.

Problem 4: Can one learn functions in k-DL efficiently when the examples may only partially
describe an object? A partial assignment is a mapping from V,, to {0,1,*} where “x” denotes

16

“unspecified” or “unknown”. Quinlan (1986a) has discussed this problem of “unknown attribute
values”, as well as techniques for coping with it when trying to learn a decision tree. We may
also think of a partial assignment as a string in {0,1,*}". A partial assignment is a partial
specification of an object — some attributes are not specified. A partial example is a partial
description of an object (i.e. a partial assignment), together with its classification. More
formally, a partial example is a pair (x,v) where x is a partial assignment and v € {0,1}. An
assignment x is said to be an extension of partial assignment y if z; = y; whenever y; # “*”.
We say that f is consistent with a partial example if f(y) = v for all assignments y which are
extensions of z.

We say that F is polynomial-time identifiable from partial examples if the definition of
polynomial identifiability holds even when S may contain partial examples. Our previous
“greedy” algorithm does not apply in a straightforward way to learning from partial examples,
and we leave it as an open question as to whether k-DL is polynomial-time identifiable from
partial examples.

7 Conclusions

We have presented a new class of Boolean concepts — the class k-DL: concepts representable
by decision lists with a term of size at most k£ at each decision. Decision lists are interpreted
sequentially, and the first term in the decision list that is satisfied by the input determines how
the input is to be classified.

We have shown that decision lists represents a strict generalization of the classes of boolean
functions previously known to be polynomial-time identifiable from examples and polynomially
learnable in the sense of Valiant. In particular, k-DL generalizes the formula classes k-CNF
and k-DNF, as well as decision trees of depth k.

The algorithm for determining an element of k-DL consistent with a given set of examples
is particularly simple; it is basically a “greedy” algorithm that constructs the decision list one
element at a time until all of the examples have been accounted for.

When learning a concept in the class k-DL, our algorithm will, with high probability, produce
as output an answer that is approximately correct; the running time is polynomial in the
number of input variables, the parameter k, and the inverses of the accuracy and confidence
levels desired.

Acknowledgements
We wish to thank David Haussler, Barbara Moore and the referees for their very helpful
comments on an earlier version of this paper.

References

17

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1987) Occam’s Razor. Infor-
mation Processing Letters 24, 377-380.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1986). Classifying learn-
able geometric concepts with the Vapnik-Chervonenkis dimension. Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing (pp. 273-282), Berkeley,
California.

Kearns, M., Li, M., Pitt, L., & Valiant, L. (1987) On the learnability of boolean formulae. Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing (pp. 285
295), New York, New York.

Masek, W. (1976) Some NP-Complete Set-Covering Problems. MIT Laboratory for Computer
Science, unpublished manuscript.

Pearl, J. (1978) On the connection between the complexity and credibility of inferred models.
Journal of General Systems, 4, 255—264.

Pitt, L., & Valiant, L. G. (1986) Computational Limitations on Learning from Examples. (Tech-
nical Report). Cambridge, Mass.: Harvard University Aiken Computation Laboratory.

Quinlan, J. R. (1986a) Induction of Decision Trees. Machine Learning 1,1 (1986), 81-106.
Quinlan, J. R. (1986b) Simplifying decision trees. (To appear).
Rissanen, J. (1978) Modeling by shortest data description. Automatica, 14, 465-471.

Valiant, L. G. (1984) A theory of the learnable. Communications of the ACM, 27, 1134-1142.

18

