
Analyzing the Effectiveness and Applicability
of Co-training

Kamal Nigam
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

knigam@cs.cmu.edu

Rayid Ghani
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

rayid@cs.cmu.edu

ABSTRACT
Recently there has been significant interest in supervised
learning algorithms that combine labeled and unlabeled data
for text learning tasks. The co-training setting [1] applies to
datasets that have a natural separation of their features into
two disjoint sets. We demonstrate that when learning from
labeled and unlabeled data, algorithms explicitly leveraging
a natural independent split of the features outperform al-
gorithms that do not. When a natural split does not exist,
co-training algorithms that manufacture a feature split may
out-perform algorithms not using a split. These results help
explain why co-training algorithms are both discriminative
in nature and robust to the assumptions of their embedded
classifiers.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval—
Information Filtering

Keywords
co-training, expectation-maximization, learning with labeled
and unlabeled data, text classification

1. INTRODUCTION
There has been much recent interest in supervised learning
algorithms that combine information from labeled and un-
labeled data. Such approaches include using Expectation-
Maximization to estimate maximum a posteriori parame-
ters of a generative model [16], using a generative model
built from unlabeled data to perform discriminative classi-
fication [10], and using transductive inference for support
vector machines to optimize performance on a specific test
set [12]. Each of these results, and others, has shown that
using unlabeled data can significantly decrease classification
error, especially when labeled training data are sparse.

A related set of research uses labeled and unlabeled data
in problem domains where the features naturally divide into
two disjoint sets. For example, Blum and Mitchell [1] present
an algorithm for classifying web pages that builds two clas-
sifiers: one over the words that appear on the page, and
another over the words appearing in hyperlinks pointing to
that page. Riloff and Jones [17] learn information extrac-
tors for geographic locations by a meta-bootstrapping pro-
cess that builds a term-matching classifier over word tokens,
and a context rule classifier over the neighboring words of
the token. Yarowsky [18] performs word sense disambigua-
tion by building a sense classifier using the local context of
the word and a classifier based on the senses of other occur-
rences of that word in the same document. Finally, Collins
and Singer [4] introduce the CoBoost algorithm to perform
named entity classification which boosts classifiers that use
either the spelling of the named entity or the context in
which that entity occurs.

Datasets whose features naturally partition into two sets,
and algorithms that use this division, fall into the co-training
setting [1]. Blum and Mitchell [1] show that under the as-
sumptions that (1) each set of features is sufficient for clas-
sification, and (2) the two feature sets of each instance are
conditionally independent given the class, PAC-like guaran-
tees on learning with labeled and unlabeled data hold.

This paper explores questions of why co-training algorithms
are successful: do they actually leverage independent di-
visions of features, or do these algorithms use unlabeled
data only as well as those that ignore the feature division?
How sensitive are co-training algorithms to the correctness
of their assumptions? Can co-training algorithms be applied
to datasets without natural feature divisions?

We show that when an independent and redundant feature
split exists, co-training algorithms outperform other algo-
rithms using unlabeled data. For example, on a constructed
text classification task based on UseNet newsgroups, Blum
& Mitchell’s co-training algorithm achieves 3.7% error using
only 6 labeled documents and 1000 unlabeled documents,
while an EM-based approach achieves a significantly higher
8.9% error. Even on real-world text data sets with no nat-
ural feature divisions, co-training algorithms outperform an
EM approach by using random splits of the features. From
these results, we are able to understand more about why co-
training algorithms work, and give prescriptive suggestions

for how to improve them.

2. THE CO-TRAINING SETTING
The co-training setting applies when a dataset has a natu-
ral division of its features. For example, web pages can be
described by either the text on the web page, or the text on
hyperlinks pointing to the web page. Traditional algorithms
that learn over these domains ignore this division and pool
all features together. An algorithm that uses the co-training
setting may learn separate classifiers over each of the feature
sets, and combine their predictions to decrease classification
error. Co-training algorithms using labeled and unlabeled
data explicitly leverage this split during learning.

Blum and Mitchell [1] formalize the co-training setting and
provide theoretical learning guarantees subject to certain as-
sumptions. In the formalization, each instance is described
by two sets of features. Under certain assumptions Blum
and Mitchell [1] prove that co-training algorithms can learn
from unlabeled data starting from only a weak predictor.
The first assumption is that the instance distribution is com-
patible with the target function; that is, for most examples,
the target functions over each feature set predict the same
label. For example, in the web page domain, the class of
the instance should be identifiable using either the hyper-
link text or the page text alone. The second assumption
is that the features in one set of an instance are condition-
ally independent of the features in the second set, given the
class of the instance. This assumes that the words on a web
page are not related to the words on its incoming hyper-
links, except through the class of the web page, a somewhat
unrealistic assumption in practice.

They argue that a weak initial hypothesis over one feature
set can be used to label instances. These instances seem
randomly distributed to the other classifier (by the con-
ditional independence assumption), but have classification
noise from the weak hypothesis. Thus, an algorithm that
can learn in the presence of classification noise will succeed
at learning from these labeled instances.

However, real-world data sets with a feature division will
not completely satisfy the strict requirements of compatibil-
ity and conditional independence. It is thus an important
empirical question to ask how sensitive are co-training algo-
rithms to the correctness of these assumptions.

3. ALGORITHMS FOR LEARNING
In this section we present two algorithms that learn from
labeled and unlabeled data, one that uses the co-training
setting (the co-training algorithm), and one that does not
(EM). We will then compare these algorithms, and others
that use and ignore a given feature split, on a series of text
classification tasks. We choose these algorithmic representa-
tives, because (1) both have been experimentally successful
on similar text classification domains, and (2) they can both
be instantiated with the underlying representation of a naive
Bayes classifier, which makes for a more direct comparison.
We begin with a brief overview of naive Bayes text classifi-
cation.

3.1 Naive Bayes
Naive Bayes is a simple but effective text classification al-
gorithm for learning from labeled data alone [13, 14]. The
parameterization given by naive Bayes defines an underlying
generative model assumed by the classifier. In this model,
first a class is selected according to class prior probabilities.
Then, the generator creates each word in a document by
drawing from a multinomial distribution over words specific
to the class. Thus, this model assumes each word in a doc-
ument is generated independently of the others given the
class.

Naive Bayes forms maximum a posteriori estimates for the
class-conditional probabilities for each word in the vocab-
ulary, V , from labeled training data D. This is done by
counting the frequency that word wt occurs in all word oc-
currences for documents di in class cj, supplemented with
Laplace smoothing to avoid probabilities of zero:

P(wt|cj) =
1 +
P|D|
i=1 N(wt, di)P(cj|di)

|V |+
P|V |
s=1

P|D|
i=1 N(ws, di)P(cj|di)

, (1)

where N(wt, di) is the count of the number of times word
wt occurs in document di, and where P(cj|di) ∈ {0, 1} as
given by the class label.

The prior probabilities of each class are calculated in a sim-
ilar fashion, counting over documents instead of words:

P(cj) =
1 +
P|D|

i=1 P(cj|di)
|C|+ |D| . (2)

At classification time we use these estimated parameters by
applying Bayes’ rule to calculate the probability of each class
label and taking the most probable class as the prediction.
This makes use of the naive Bayes independence assumption,
which states that words occur independently of each other,
given the class of the document:

P(cj|di) ∝ P(cj)P(di|cj)

= P(cj)

|di |Y

k=1

P(wdi,k |cj). (3)

The overly-strong word independence assumption causes naive
Bayes to predict extreme (nearly 0 or 1) posterior class prob-
abilities. However, while these estimates are poor, naive
Bayes classification accuracy is typically high. This can be
explained in part because classification is only a function
of which class has the maximum posterior, and is not con-
cerned with its actual value [8].

3.2 Expectation-Maximization
If we extend the supervised learning setting to include un-
labeled data, the naive Bayes equations presented above are
no longer adequate to find maximum a posteriori parameter

estimates. The Expectation-Maximization (EM) technique
can be used to find locally maximum parameter estimates.

EM is an iterative statistical technique for maximum likeli-
hood estimation in problems with incomplete data [7]. Given
a model of data generation, and data with some missing val-
ues, EM will locally maximize the likelihood of the param-
eters and give estimates for the missing values. The naive
Bayes generative model allows for the application of EM for
parameter estimation. In our scenario, the class labels of
the unlabeled data are treated as the missing values.

In implementation, EM is an iterative two-step process. Ini-
tial parameter estimates are set using standard naive Bayes
from just the labeled documents. Then we iterate the E- and
M-steps. The E-step calculates probabilistically-weighted
class labels, P(cj|di), for every unlabeled document using
Equation 3. The M-step estimates new classifier parame-
ters using all the documents, by Equations 1 and 2, where
P(cj|di) is now continuous, as given by the E-step. We iter-
ate the E- and M-steps until the classifier converges.

In previous work [16], we have shown this technique can sig-
nificantly increase text classification accuracy when given
limited amounts of labeled data and large amounts of un-
labeled data. However, on datasets where the assumption
correlating the classes with a single multinomial component
is badly violated, basic EM performance suffers.

3.3 The co-training algorithm
The co-training algorithm1 explicitly uses a feature split
when learning from labeled and unlabeled data. Its ap-
proach is to incrementally build classifiers over each of the
feature sets. Each classifier is initialized using just the few
labeled documents on hand. At every round of co-training
each classifier chooses one unlabeled document per class to
add to the labeled set of examples.2 The documents se-
lected are those with the highest classification confidence
as given by the underlying classifier. Then, each classifier
rebuilds from the augmented labeled set, and the process
repeats. In this paper we use naive Bayes for the underlying
classifiers. The class probabilities (Equation 3) are the con-
fidence estimates used by co-training. At classification time,
the prediction of the underlying classifiers are combined by
multiplying the posterior probabilities together, and renor-
malizing them so they sum to one. Table 1 outlines this
process.

The intuition behind the co-training algorithm is that clas-
sifier A adds examples to the labeled set that classifier B
will then be able to use for learning. If the conditional in-
dependence assumption holds, then on average each added
document will as informative as a random document, and
learning should progress, subject to adding many documents
with the wrong class. If the independence assumption is vi-
olated, then on average added documents can be less infor-
mative and co-training may not be successful.

1We distinguish between the co-training setting and the co-
training algorithm, both presented by Blum and Mitchell
[1]. We use co-training algorithms to refer generically to
algorithms using the co-training setting.
2If the class frequencies are not even, instead label docu-
ments according to the empirical frequencies.

• Inputs: An initial collection of labeled documents and
one of unlabeled documents.

• Loop while there exist documents without class labels:

• Build classifier A using the A portion of each doc-
ument.

• Build classifier B using the B portion of each doc-
ument.

• For each class C, pick the unlabeled document
about which classifier A is most confident that
its class label is C and add it to the collection of
labeled documents.

• For each class C, pick the unlabeled document
about which classifier B is most confident that
its class label is C and add it to the collection of
labeled documents.

• Output: Two classifiers, A and B, that predict class
labels for new documents. These predictions can be
combined by multiplying together and then renormal-
izing their class probability scores.

Table 1: The co-training algorithm described in Sec-
tion 3.3.

4. CO-TRAINING ON A
REAL-WORLD DATASET

From the description of the EM and co-training algorithms
in Sections 3.2 and 3.3, it is not clear whether co-training
should do better than EM on data with divided feature sets,
especially when each is based on a naive Bayes classifier.
One assumption of naive Bayes is that words in a document
occur independently of each other given the class. What
benefit is to be gained by further asserting that one set of
features is independent of another? Certainly, the naive
Bayes assumption subsumes this. To answer this question,
we compare the performance of these algorithms on a real-
world dataset previously used in support of co-training.

4.1 The WebKB Course dataset
In their paper, Blum and Mitchell [1] present experimental
results that compare the co-training algorithm with labeled
and unlabeled data to the naive Bayes classifier with la-
beled data alone. Their experimental domain is the WebKB-
Course dataset, a collection of 1051 web pages collected from
computer science departments at four universities. The task
is to identify those that are home pages of academic courses
(22% fall into that category). Each example consists of both
the words that occur on the web page, as well as words oc-
curring in the anchor text of hyperlinks pointing to that
page. The co-training algorithm uses this partition (page
vs. hyperlinks) to define the feature split. EM pools these
features together though for all algorithms, words that occur
in hyperlinks are different features than words that occur in
the body of a web page. Thus for the word “career” there are
really two features, “career-body” and “career-hyperlink”.

We run co-training, EM, and naive Bayes on this dataset for

Table 2: Classification error rates for co-training,
EM and naive Bayes on the WebKB-Course dataset.
This dataset does not demonstrate that co-training
algorithms are better than other algorithms even
when the features naturally divide.

Algorithm # Labeled # Unlabeled Error
Naive Bayes 788 –0– 3.3%
Co-training 12 776 5.4%
EM 12 776 4.3%
Naive Bayes 12 –0– 13.0%

ten paired trials of randomly selected train/test/unlabeled
splits. Three course documents and 9 non-course documents
form the training set. 25% of the documents are held aside
as a test set, and the remaining documents are unlabeled.
The co-training algorithm proceeds identically as in Blum
and Mitchell [1], except that we run co-training until it gives
labels to all the unlabeled documents.3 The performance
of co-training continues to improve as it labels more doc-
uments. EM proceeds according to Section 3.2. We run
EM for seven iterations; EM convergence for text classifica-
tion is rapid as naive Bayes gives very extreme probability
estimates.

4.2 Experimental Results
Table 2 show classification error rates for co-training and
EM, in comparison to baselines provided by naive Bayes.
Both co-training and EM lower classification error consid-
erably compared to a naive Bayes classifier using just the
labeled data. However, EM results in a smaller error than
co-training, 4.3% compared to 5.4%. If all the data were
labeled, naive Bayes would achieve error of 3.3%.

From these results, we certainly cannot conclude that co-
training successfully uses the feature splits provided in the
WebKB-Course data, as the performance of EM is better
than co-training. Three possibilities could explain why the
co-training performance on this dataset is disappointing.
First, the WebKB-Course task could be too easy and thus
suffers from ceiling effects that make it hard to compare clas-
sification algorithms. The EM and co-training error rates
are close to the naive Bayes error when all the labels are
known. Another possible explanation is that the feature
split of the WebKB-Course dataset is not sufficiently in-
dependent to allow co-training to perform well. Although
hyperlink text and web page body text will typically be au-
thored by different people, it is certainly unreasonable to
expect them to be completely independent, as they both re-
fer to the same web page. Co-training algorithms may be
quite sensitive to the correctness of this assumption. A final
and more serious possibility is that co-training algorithms
do not adequately benefit from the existing independence of

3There are slight variations between their algorithm and the
one presented in Section 3.3. They perform feature selection
at each iteration of co-training and we follow Section 3.3.
They select from and replenish a limited pool of unlabeled
documents. We follow their protocol in this section for strict
comparability. In later sections we do not; preliminary ex-
periments on our datasets indicated that the pool did not
provide extra benefit, and its removal reduces the number
of tunable parameters.

Table 3: The setup of the News 2x2 dataset. This
data has class-conditional independence and redun-
dancy between its two feature sets.

Class Feature Set A Feature Set B
Pos comp.os.ms-windows.misc talk.politics.misc
Neg comp.sys.ibm.pc.hardware talk.politics.guns

the feature split and thus do not perform better than EM.
In the next section we will explicitly test this hypothesis by
constructing a dataset for which this assumption does hold.

5. CO-TRAINING WITH INDEPENDENT
FEATURE SPLITS

The previous section raises the interesting question of whether
co-training algorithms sufficiently leverage a feature split to
provide a benefit over algorithms for learning with labeled
and unlabeled data that do not explicitly use this knowl-
edge. In this section we show that on datasets for which
there truly is independence between the two feature sets,
co-training provides a significant improvement over EM.

5.1 The News 2x2 dataset
To test this question, we create a semi-artificial dataset that
has the independence properties we seek. We select four
newsgroups from the 20 Newsgroups dataset [11]. We cre-
ate a two-class problem with class-conditional independence
by joining together randomly selected documents from each
of the first two newsgroups to make positive examples, and
joining together randomly selected documents from each of
the second two newsgroups to make negative ones. This
joining is done such that the words in the first and third
newsgroups come from the same vocabulary, while words
from the second and fourth newsgroups come from a sep-
arate vocabulary. Thus, the word “career” from the first
newsgroup is a distinct feature from the word “career” in
the second. Table 3 shows the setup of this dataset.

This dataset has some features that make it appropriate for
testing the efficacy of co-training. First, and most impor-
tantly, there is true class-conditional independence between
the words in the two feature sets. This represents an ideal
situation for co-training. Second, each feature set taken on
its own is sufficient for accurate classification ensuring high
compatibility. When taken separately each feature set can
be used to train a naive Bayes classifier that reaches error
rates of less than 10% with a large amount of training data.
Finally, it is appropriate that each of the two subtasks itself
consists of real-world data. It keeps the artificiality of the
dataset at a minimum, and allows us to draw our conclusions
more confidently.

When tokenizing this data, the UseNet headers (includ-
ing the subject line) are discarded. Words on a stoplist
are removed, but no stemming is performed. The word
counts of each document are scaled such that each doc-
ument has constant length, with possibly fractional word
counts. Each experiment is run on ten paired randomly-
selected test/train/unlabeled splits. Three documents per
class form a training set, one thousand documents are left
unlabeled, and the remaining 976 documents form the test

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 25 50 75 100 125 150 175 200 225 250

C
la

ss
ifi

ca
tio

n
E

rr
or

Rounds of Co-training

Classifier B
Classifier A

Combined Co-training Classifier
EM

Figure 1: Performance of co-training as it gives la-
bels to more and more unlabeled documents. The
combined co-training classifier does better than ei-
ther of its embedded classifiers because of the inde-
pendence of their features. The performance of EM
is shown as the horizontal line.

set. Based on the initial training set, mutual information
feature selection is used to prune the vocabulary to 4000
words. Initial experiments indicated that this feature set
size gave best performance for both EM and co-training.

5.2 Co-training outperforms EM
Figure 1 shows the average performance of co-training as it
gives labels to more and more documents. At each round,
co-training labels four documents (each classifier labels one
from each of two classes). Note that the combination of the
two embedded classifiers gives significantly lower error than
either of the two individually, because of the independence
of the features each sees. The question of how co-training
performs when this independence does not strictly hold is
addressed in the next section.

Table 4 presents the classification errors obtained by co-
training and EM. On this dataset with conditional feature
set independence, co-training has significantly lower error
rates. Starting from a baseline error of 34.0%, co-training
uses the unlabeled data to reduce error down to 3.7%, even
slightly below the 3.9% achieved by knowing all the labels of
the unlabeled data. EM also reduces the error, but only to
8.9%. These results suggest that the co-training algorithm
performs better than EM when there is indeed an indepen-
dent division of the feature space.

However, this result does not allow us to argue that co-
training algorithms perform better than non-co-training al-
gorithms in general. Algorithmically, co-training differs from
EM in more ways than just its use of the feature split. The
other significant difference between them is that co-training
labels just a few documents per round; that is, co-training
incrementally uses the unlabeled data. In contrast, EM
probabilistically labels all the data at each round; EM itera-
tively uses the unlabeled data. This difference could account
for the benefit of the co-training algorithm instead of its use
of the feature split.

Table 4: Classification error rates on the News 2x2
dataset. On a dataset with true class-conditional
independence between the two feature sets, co-
training outperforms EM, which does not explicitly
use the feature split.

Algorithm # Labeled # Unlabeled Error
Naive Bayes 1006 –0– 3.9%
Co-training 6 1000 3.7%
EM 6 1000 8.9%
Naive Bayes 6 –0– 34.0%

5.3 Hybrid algorithms
In order to tease apart the effects of the feature splitting
from the effects of the labeling process, we specify two hy-
brids of EM and co-training to fill the space of algorithms
along these dimensions. The first, co-EM, is an iterative
algorithm that uses the feature split. It proceeds by initial-
izing the A-feature-set naive Bayes classifier from the labeled
data only. Then, A probabilistically labels all the unlabeled
data. The B-feature-set classifier then trains using the la-
beled data and the unlabeled data with A’s labels. B then
relabels the data for use by A, and this process iterates until
the classifiers converge. A and B predictions are combined
together as co-training embedded classifiers are. In practice,
co-EM converges as quickly as EM does, and experimentally
we run co-EM for 10 iterations.

The co-EM algorithm can be thought of as a closer match to
the theoretical argument of Blum and Mitchell [1] than the
co-training algorithm. The essence of their argument is that
an initial A classifier can be used to generate a large sample
of noisily-labeled data to train a B classifier. The co-EM
algorithm does exactly this using one learner to assign labels
to all the unlabeled data, from which the second classifier
learns from. In contrast, the co-training algorithm learns
from only a single example at a time.

The second EM/co-training hybrid is self-training. Self-
training is an incremental algorithm that does not use the
split of the features. Initially, self-training builds a single
naive Bayes classifier using the labeled training data and all
the features. Then it labels the unlabeled data and con-
verts the most confidently predicted document of each class
into a labeled training example. This iterates until all the
unlabeled documents are given labels.

Self-training can be viewed as the classification analog of
pseudo relevance feedback [6, 2] in information retrieval. In
pseudo relevance feedback, an initial query is performed on
a corpus. Then the initial query is refined by adding new
terms from its best matching documents. Self-training is
similar in that it adds its most confident document as a
training example and repeats.

Table 5 shows the setup of these four algorithms. Note that
co-EM is an algorithm using the co-training setting while
self-training is not.

Table 6 shows classification error rates for the four algo-
rithms above. Both algorithms that explicitly use the fea-

Table 5: The space of algorithms using labeled and
unlabeled data. The co-training algorithm is an in-
cremental labeling algorithm that utilizes the fea-
ture split explicitly. EM iteratively relabels the un-
labeled data, but not directly use any feature splits.
Co-EM and self-training are hybrid algorithms that
combine these properties.

Uses Feature Split?
Method Yes No
Incremental co-training self-training
Iterative co-EM EM

Table 6: Classification error rates for four algo-
rithms using labeled and unlabeled data on the
News 2x2 dataset. Both algorithms that explicitly
using the feature sets are more accurate than algo-
rithms ignoring the feature split.

Uses Feature Split?
Method Yes No
Incremental 3.7% 5.8%
Iterative 3.3% 8.9%

ture split have lower error rates than either algorithm that
does not. Co-training and co-EM have error rates of 3.7%
and 3.3%, where self-training and EM have error rates of
5.8% and 8.9% respectively. Given these results, we can
finally argue that algorithms that explicitly use an indepen-
dent and redundant division of the features can be expected
to perform better than algorithms that do not. Section 7
discusses why this finding holds, and what it suggests about
the nature of co-training.

6. APPLYING CO-TRAINING TO
REGULAR DATASETS

Although co-training is a powerful paradigm, it is not widely
applicable. Relatively few datasets come with a known,
natural division of the features which can reasonably be
expected to help for classification. The large majority of
datasets have a single set of features with no obvious or
natural way to divide them. Yet, if there were sufficient
redundancy among the features, and we could identify a
fairly reasonable division of them, then co-training algo-
rithms may show similar advantages to those seen in the
previous section. To test this idea, we present some initial
experiments on applying co-training to regular text datasets.
One straightforward way of splitting a feature set is to ran-
domly divide it in two. We use this as our initial step in
applying co-training to regular datasets.

6.1 Datasets and Protocol
The first dataset we use is the News 2x2 dataset, but without
the knowledge of the natural split. Since we know there is a
natural split, we can evaluate how much we lose by choosing
a random split instead.

The second dataset we use is the News5 dataset, used previ-
ously by McCallum and Nigam [15]. This dataset is the sub-
set of the 20 Newsgroups dataset consisting of the approx-

Table 7: Classification error rates for four algo-
rithms using labeled and unlabeled data on the
News 2x2 dataset. Both algorithms explicitly using
the feature splits are more accurate than algorithms
ignoring the feature split.

Uses Random Feature Split?
Method Yes No
Incremental 5.5% 5.8%
Iterative 5.1% 8.9%

Table 8: Classification error rates for four algo-
rithms using labeled and unlabeled data on the
News5 dataset.

Uses Random Feature Split?
Method Yes No
Incremental 28.0% 27.0%
Iterative 29.9% 31.2%

imately 5000 articles in the 5 comp.* newsgroups. Unlike
News 2x2 there is no natural way of splitting these features.
When tokenizinig this data, we skip the UseNet headers,
use a standard stoplist, perform no stemming and normal-
ize word counts by document length.

Again, experimental results are shown as averages of ten
paired randomly selected train/unlabeled/test splits. For
the News5 dataset, ten documents per class are training,
3000 documents are unlabeled, and the remaining are held
aside for testing. Feature selection is performed by selecting
the top 4000 words by mutual information.

6.2 Experimental Results
Table 7 shows classification error rates for the News 2x2
dataset. The results for EM and self-training are identi-
cal to those in Section 5. Notice that again, the two co-
training algorithms perform better than the non-co-training
ones, but by a smaller margin that if the correct feature
division were known. Interestingly, each embedded classi-
fier performs more accurately here than with the ideal fea-
ture split of the previous section, indicating a higher de-
gree of compatibility in the random feature split. These
results show promise for applying co-training algorithms to
flat data. However, recall that this dataset is constructed
to be redundant in that it contains twice as much data as
is needed for classification. The results indicate that, with
enough redundancy in the text, there may be enough natural
independence of words to allow co-training to flourish.

Table 8 shows classification errors for News5. Naive Bayes
with access to all the labels gets 16.7% accuracy, while with
just the initially labeled data it gets 50.1% error. The re-
sults for this dataset do not set such a clear trend. The
worst performer is EM—the algorithm with a strong prob-
abilistic foundation. The best performer is self-training, an
algorithm that does not use feature splitting. However, the
co-training algorithm does reduce error over EM by 10%.
This seems like encouraging evidence to support our hy-
pothesis that splitting regular datasets into disjoint feature
sets and running co-training-like algorithms on it can re-

sult in a decrease in classification error compared to regular
algorithms like EM.

Note that we split our feature sets in a random fashion; the
next step is to develop a splitting algorithm that results in
feature sets that are maximally independent. An ideal fea-
ture split is one with class-conditional independence of the
two sets of features; that is, the conditional mutual informa-
tion between the feature sets is zero. With text data though,
there are too many features to reasonably calculate the mu-
tual information between sets of features for a candidate
split. However, we can approximate the conditional mutual
information criteria between two feature sets by the sum of
the pairwise conditional mutual informations for all pairs of
words that are in different sets. With this criteria, we can
define the following algorithm for splitting a vocabulary of
size V into approximately independent parts:

• Calculate the conditional mutual information between
every pair of words in the vocabulary.

• Create a V-regular undirected weighted graph with the
words as nodes and the weights on the edges being the
conditional mutual information between the two nodes
that the edge connects.

• Make a 2-way balanced cut in the graph so as to min-
imize the sum of the weights of the edges that are cut.

The two resulting sets of nodes (words) then form the fea-
ture split to which co-training can be applied. However, step
3 of the algorithm is NP-hard so we need to use efficient ap-
proximation algorithms. Fortunately, much is known about
efficient approximate min-cut graph partitioning algorithms
[9]. Experiments using this approach, and ideas in similar
directions, are an area of ongoing research.

7. DISCUSSION AND FUTURE WORK
Given the results from the previous sections, what can we
conclude about the behavior of co-training? Certainly, re-
sults on the News 2x2 dataset show that co-training per-
forms better than EM when the feature set independence
assumption is valid. But why does co-training do well? Per-
haps some insight can be gained by considering instead the
question of why EM does not do so well. As discussed by
Nigam et al. [16], EM is expected to do well when its un-
derlying assumptions about the data are valid. When these
assumptions are strongly violated, the performance of EM
suffers because it depends on these assumptions when using
the unlabeled data. Since our observed performance of EM
is poor in comparison to the other algorithms, we argue that
the violated naive Bayes assumptions are one cause of this
performance.

Yet, the co-training algorithm in this paper also makes the
same assumptions (as it too has underlying naive Bayes clas-
sifiers), but does not suffer from the violations. Thus we
hypothesize that the co-training algorithm succeeds in part
because it is more robust to the assumptions made by its
underlying classifiers. This can be understood by looking at
the differences in how EM and co-training use the underly-
ing assumptions.

EM uses the naive Bayes classifier to assign posterior class
probabilities to each unlabeled document. However, as dis-
cussed in Section 3.1, these probabilities are poorly esti-
mated because the word independence assumption is vio-
lated by text data. Co-training, on the other hand, makes
limited use of the assumptions of the underlying classifier.
It uses the classifier to rank the documents by confidence,
but does not directly use the actual posterior probabilities.
This ranking use is a a much weaker use of the indepen-
dence assumption than EM makes, but still a stronger use
than classification makes. Empirical evidence shows that
the ranking of naive Bayes scores is well correlated with the
correctness of classification [5], and thus co-training’s use of
the naive Bayes assumptions is not harming performance as
it does for EM.

While co-training may be more robust to the violated as-
sumptions of its underlying classifiers, that does not make it
immune to violations of its own assumptions of compatibility
and feature set independence. In particular, the comparison
of ideal feature splits and random splits on the News 2x2
dataset show the sensitivity of co-training to the validity
of the feature set independence assumption. As discussed
in Section 6.2, we can approximately measure the amount
of feature set independence empirically for a given feature
split. In future work, we plan to explicitly measure the in-
dependence of different feature splits to evaluate the extent
to which co-training depends on the correctness of these as-
sumptions.

The robustness of co-training to the underlying classifier as-
sumptions can also be understood in another way. EM is
a likelihood-based approach, and nothing about the tech-
nique is geared specifically towards classification. Thus, as
EM fits the generative model to the unlabeled data, if the
natural clustering of the unlabeled data does not correspond
to class-based clusters, EM will suffer. Co-training, on the
other hand, is a more discriminative approach, in that it
tries to add documents to its labeled set that will help with
classification. Most incremental co-training algorithms [1,
17, 18] approximate this by adding documents about which
it is most confident.

This selection criteria can be improved by making it more
directly focused towards the classification task at hand. For
example, instead of always adding the most confident ex-
amples, one could balance this confidence (which minimizes
the risk of adding a misclassified example) with a measure
of how much will be learned from the other half of the docu-
ment. McCallum and Nigam [15] use a prototypicality mea-
sure in an active learning setting that approximately mea-
sures the benefit of labeling a particular example. More
formally, one might quantify the expected reduction in clas-
sification error for adding a single document, in the style
of Cohn, Ghahramani, and Jordan [3], that mathematically
balances the cost of misclassifying an example with the bene-
fit of correctly adding it. These two suggested improvements
should allow co-training algorithms to behave even more
discriminatively, requiring fewer documents for good per-
formance, and presenting lower error rates than likelihood-
based parameter estimation.

As an interesting side point, note that the self-training algo-

rithm outperforms EM on the data sets used in this paper.
One possible explanation for this difference is that EM is
suffering from getting trapped in local maxima in param-
eter likelihood space. Self-training may be more resistant
to local maxima, because at each round of the algorithm,
a new document is added to the labeled training data. By
contrast, EM works with the same data at each iteration,
and thus can get stuck more easily in a local maxima. This
suggests that incremental algorithms may outperform iter-
ative algorithms, so long as they are not led astray by a
few mislabeled documents in the early rounds of using the
unlabeled data.

In addition to ongoing work on constructing feature splits
and making co-training more discriminative, other areas of
future work remain. We will investigate the behavior of co-
training with underlying classifiers other than naive Bayes.
We plan to examine the performance of co-training algo-
rithms on more challenging real-world text datasets drawn
from the Web. We hope to use co-training to combine text
and non-text features for mixed-media datasets in a natural
way. Finally, we plan further a empirical and theoretical ex-
amination of the sensitivity of co-training to the assumption
of conditional feature set independence.

Acknowledgements
We thank Andrew McCallum for clarifying discussions and
suggestions, Tom Mitchell for helpful discussion and Tommi
Jaakkola for insights about discriminative classification.

8. REFERENCES
[1] A. Blum and T. Mitchell. Combining labeled and

unlabeled data with co-training. In Proceedings of
COLT ’98, 1998.

[2] C. Buckley, A. Singhal, M. Mitra, and G. Salton. New
retrieval approaches using SMART: TREC 4. In
Proceedings of the TREC 4 Conference, 1996.

[3] D. Cohn, Z. Ghahramani, and M. Jordan. Active
learning with statistical models. Journal of Artificial
Intelligence Research, 4:129–145, 1996.

[4] M. Collins and Y. Singer. Unsupervised models for
named entity classification. In Proceedings of
EMNLP*99, 1999.

[5] M. Craven and S. Slattery. Relational learning with
statistical predicate invention: Better models for
hypertext. Machine Learning. To appear.

[6] W. B. Croft and D. J. Harper. Using probabilistic
models of document retrieval without relevance
information. Journal of Documentation, 35:285–295,
1979.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society,
Series B, 39(1):1–38, 1977.

[8] P. Domingos and M. Pazzani. On the optimality of the
simple Bayesian classifier under zero-one loss. Machine
Learning, 29:103–130, 1997.

[9] P.-O. Fjallstrom. Algorithms for graph partitioning: A
survey. Linkoping Electronic Atricles in Computer and
Information Science, 3, 1998.

[10] T. Jaakkola and D. Haussler. Exploiting generative
models in discriminative classifiers. In Advances in
NIPS 11, 1999.

[11] T. Joachims. A probabilistic analysis of the Rocchio
algorithm with TFIDF for text categorization. In
Proceedings of ICML ’97, 1997.

[12] T. Joachims. Transductive inference for text
classification using support vector machines. In
Proceedings of ICML ’99, 1999.

[13] D. D. Lewis. Naive (Bayes) at forty: The
independence assumption in information retrieval. In
Proceedings of ECML-98, 1998.

[14] A. McCallum and K. Nigam. A comparison of event
models for naive Bayes text classification. In AAAI-98
Workshop on Learning for Text Categorization, 1998.
Tech. rep. WS-98-05, AAAI Press.
http://www.cs.cmu.edu/∼mccallum.

[15] A. McCallum and K. Nigam. Employing EM in
pool-based active learning for text classification. In
Proceedings of ICML ’98, 1998.

[16] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell.
Text classification from labeled and unlabeled
documents using EM. Machine Learning,
39(2/3):103–134, 2000.

[17] E. Riloff and R. Jones. Learning dictionaries for
information extraction using multi-level
boot-strapping. In Proceedings of AAAI-99, 1999.

[18] D. Yarowsky. Unsupervised word sense
disambiguation rivaling supervised methods. In
Proceedings of ACL-95, 1995.

