LING572

Project Part #4
Due 3/7/06
1. Tasks
In Project Part 4, you will work on one of the following four tasks: (if you want, you can choose more than one)

· Task #1: System combination: Combining results from three baseline taggers

1. On 1/31/06, we discuss four methods of combining parsing output. The idea can be easily carried over to the POS tagging task.
2. If you choose this option, you should try at least three methods. The methods can be the same as the ones in (Henderson and Brill, 1999), or they can be your own invention (in that case, describe your algorithm in the report).
3. At least one of the methods should have a training stage (e.g., the voting strategy in Henderson and Brill’s paper does not fall into this category). For this method, you should divide training data into two parts: one is used to train three baseline taggers (e.g., trigram tagger), the other is used to train the combination system.
· Task #2: Bagging: use bagging to improve tagging results.
 Here are major steps:
1. Given a training sample, create B bootstrap samples

2. Train your three taggers on each bootstrap sample, and tag the test data. That will give you 3B sets of results.

3. Write a tool, let’s call it combine_result.pl, that combines N sets of tagging results.
4. For each baseline tagger, run the tool on the B sets of results created by the tagger. That will yield three tagging accuracies.

5. Run combine_result.pl on the 3B sets of results.

Note:

1. For this option, you only need to implement one way of combining tagging results.

2. Training 3B could be very slow especially when you use the whole training data. So set B to be 10.
3. Also it is OK if you don’t use the whole training data. In other words, just use the 1K, 5K, and 10K training data, not the 40K training data.

· Task #3: Boosting:
 You can find a boosting package under ~/dropbox/572/P4/BoosText2_1.

1. Learn to use the package: just follow the README file, and the package is very easy to use.
2. Write a piece of code called aaa130.exec and aab130.exec that create boosting training data (*.names and *.data) from the tagged training data. The format should be
 cat word_tag_training_file | aaa130.exec context_template_file lexical_template_file > output_stem.data
 (the code will create output_stem.data

 aab130.exec context_template_file lexical_template_file tag_voc > output_stem.names

 (the code will create output_stem.names

 Here word_tag_training_file is the training data in the “word/tag” sequence format (see ~/572/P2/data/*.1K); tag_voc is a list of POS tags used in the training data.
 The two template files should be in a format similar to the ones used by TBL. (see ~/572/P2/params/*.templ)

3. Run boostexter to create a strong hypothesis (*.shyp) after N iterations. (You need to choose a “good” N)
4. Convert the test data to the format used by boostexter (c.f. sample.test)

5. Run the hypothesis on the test data and save the output file.

6. Convert the output file to “word/tag” sequence, and run calc_tagging_accuracy.pl to get the tagging accuracy. Is the tagging accuracy the same as reported by boostexter in step 5?
7. For each training data set, show tagging accuracies after N/5, 2N/5, …, N iterations.

Note:

1. Suppose you choose N to be 10K. There are two ways to get five tagging accuracies:

a. boostexter (with –p option) allows you to create a new strong hypothesis using the current one as the starting point. The new hypothesis will overwrite the current file, so remember to copy the old one before continuing training. Therefore, you can get the hyp after 2K iterations, save the *.shyp file. Then continue training for another 2K iterations, save the *.shyp. Continue until then you finish the 10K iterations.

b. You can run boostexter for 10K rounds. *.shyp is a text file. You can save the top 1/5 to the file, which is the *.shyp after 2K rounds. Then save the top 2/5 of the file, and so on.

2. Training is slow for a large N and a large number of features. With only three feature templates and 1K sentences as training data, training for 10K rounds takes a couple of hours. So start your experiments long before the due date.
3. We don’t have source code. So be aware of the possibility that the code could crash on your data, and it would be hard to debug.

4. When you create training data for boosting, you need to pay special attention to some punctuation marks: comma, period, semicolon, dollar sign, and so on. When they are part of a word or a POS tag, you need to replace them with something else (e.g., replace “,” with “XcommaX”.
· Task #4: Semi-supervised learning:
 Try one of the two semi-supervised learning methods (bootstrapping and co-training).
1. Run two experiments: one uses the *.1K as the labeled data; the other uses *.5K as the labeled data.

2. Use 572/P4/unsupervised/* as unlabeled data. You might need to remove the tag info from the file. To show the effect of the size of unlabeled data on tagging results, try four sets of experiments, where the size of unlabeled data are 15K, 25K, and 35K respectively.
3. Decide what criteria you are using to choose the subset of unlabeled data to be added to the labeled data at each iteration. Describe your strategies in the report.

4. Show the tagging results with labeled data only, and the results with labeled data + unlabeled data.
Note:

1. You have to write your own code for the whole process.

2. Files provided for the project
 All the files are under ~fxia/dropbox/572/P4
· BoosTexter2_1/: Boosting package.
· unsupervised/: the unlabeled data. You might want to remove the tag info from the files.
3. What should be included in the report?

 For each module you have created, write a few lines of description of its functionality. In addition,

 the report should include the following:
· Task #1: System combination:
· Describe your strategies for combining.
· For the combination system that requires training,
1. Write the formulae for modeling.
2. You should divide training data into two parts: one is used to train three baseline taggers (e.g., trigram tagger), the other is used to train the combination system.
3. Specify the sizes of the two parts: part1 and part2.
· Create a table that lists the tagging results: each cell should have two numbers: a/b. “a” is the tagging result when the tagger is trained with the “whole” training data, “b” is the result when the tagger is trained on the part1 of the whole training data. For instance, suppose *.5K is the whole training data, and you divide it into 4K and 1K: “a” is the result when trained on 5K data, and b is the result when trained on 4K data.
	
	1K
	5K
	10K
	40K

	Trigram
	a/b
	…
	
	

	TBL
	a/b
	..
	
	

	MaxEnt
	…
	
	
	

	Comb1
	…
	
	
	

	Comb2
	…
	
	
	

	Comb3
	…
	
	
	

· Task #2: Bagging:
· Describe your method for creating boostrap samples.
· Describe the combination method.
· Create a table that lists the tagging results. Each cell is a/b/c.
For the 1st three rows, “a” is the result of using the original training data, “b” is the result of using one bag, and “c” is the result of using 10 bags.
The last row is for the results of system combination: “a” and “b” are the results of combining 3 tagging results (a: with original data, b: with one bag), c is the result of combining 30 tagging results.

	
	1K
	5K
	10K
	40K (optional)

	Trigram
	a/b/c
	…
	
	

	TBL
	…
	
	
	

	MaxEnt
	…
	
	
	

	Comb1
	a/b/c
	…
	
	

· Task #3: Boosting
· Explain how you handle unknown words.

· Create two template files used in this experiment, which are similar to the two files used in TBL.
· Can all feature templates used in TBL (see dropbox/572/P2/params/*.templ) be used by boostexter? Why or why not?
· Can Boostexter use certain feature templates that are currently not allowed by TBL?

· How do –W and –N options work?
· Boostexter is a particular implementation of AdaBoost algorithm. What type of weak learner do you think is used in Boostexter?
· Right now, each classification decision is independent of other decisions. If you want to use neighboring words’ POS tags as input attributes, you need to decide how to get the tags of neighboring words (e.g., you can use the most frequent tags for those words or adopt other strategies). Please use two following strategies:
1. The true tags for neighboring words: you can get the info from the gold standard.
2. The most frequent tags for neighboring words: you need to create a word_tag dictionary from the training data.

· How many rounds of iterations are needed to achieve good results (results that are at least as good as trigram tagger)? Once you choose N, show the results after N/5, 2N/5, …, and N iterations? For instance, if N is 10K, show the results after 2K, 4K, 6K, 8K, and 10K iterations.
· Show the tagging results both in a table. Each cell is a/b: “a” is the result with true tags for neighboring words, “b” is the result with most frequent tags for neighboring words.
	
	1K
	5K
	10K
	40K (optional)

	Iteration num1
	a/b
	…
	
	

	Iteration num2
	…
	
	
	

	….
	…
	
	
	

	Iteration
Num5
	…
	
	
	

· Task #4: Semi-supervised learning
· Describe your method for adding unlabeled data.
1. Which tagger(s) have you chosen for this experiment?
2. What algorithm? Co-training or boosting?
3. How do you decide whether an instance of unlabeled data should be added to the labeled data set?
4. Show tagging results in a table. Each cell is a/b: “a” is the tagging accuracy, “b” is the number of sentences added to the labeled data.
	
	1K labeled data
	5K labeled data

	No unlabeled data
	
	

	15K unlabeled data
	
	

	25K unlabeled data
	
	

	35K unlabeled data
	
	

4. Submission
· Bring a hardcopy of your report to class on 03/07/06.

· ESubmit the following by 6am on 03/07/06.

1. Code for Part 4

2. Report for Parts 3-4.

