LING572

Project Part #3 (MaxEnt)

Due 3/7/06
1. Project overview
In Project Part 3, you will play with a MaxEnt POS tagger.
 The main tasks:

· Understanding how the MaxEnt algorithm and the MaxEnt tagger work: you need to write a short report (a few pages) to explain how MaxEnt works.
· Running MaxEnt on four sets of training data: this task is trivial. Just set the number of iterations to be 100. Training with the whole 40K sentences for 100 iterations should take about 20 minutes on pongo.
2. Files for the project
 All the files are under ~fxia/dropbox/572/P3/Zhang/maxent-20041229
a. src/: the MaxEnt core, written in C++.
b. example/postagger/: the MaxEnt POS tagger, written in python.

c. Training and test data are the same as the ones used in Project Parts 2-3. You need to change the format of the test data.

d. doc/manual.pdf: the manual for the package.

The files that you are going to produce:
e. A short report that explain how MaxEnt works. The file should be in WORD or pdf format.
You might want to save the models and tagging results for Project Part 4.
3. Details about the report
In your report, please include the following table.

	
	1K
	5K
	10K
	40K

	Tagging accuracy
	
	
	
	

	Training time
	
	
	
	

	# of features
	
	
	
	

In addition, your report should include the answers to the following questions. Try to avoid pseudo-codes in your answers. Instead, use text and examples to illustrate your points. Also, when explaining an algorithm (e.g., GIS), please identify the corresponding filename and the function name.
a. About TBL core algorithm: see src/
· What is the format of the training data?
· What is the format of the test data?

· How does GIS work?

· How does L-BFGS work?

· What is Gaussian prior smoothing? And how is it calculated?
· How are events and features represented internally?

· During the decoding stage, how does the code find the top-N classes for a new instance?
b. About the POS tagger trainer: see example/postagger/postrainer.py:
· What’s the format of the training sentences?

· How does the trainer convert a training sentence into a list of events?

· How does the trainer treat rare words? What additional features do rare words produce?

· How many files are created by the trainer in each experiment? How are they created? And what are their usages?

· Features;

1. Where are feature templates defined?

2. List the feature templates used by the tagger. Divide the templates into two types: one for all the words, and the second type for rare words only.
3. If you want to add a new feature template, what do you need to do? Which piece of code do you need to modify?

4. Given the feature templates, how are (instantiated) features selected and filtered?

c. About the POS tagger decoder: see example/postagger/maxent_tagger.py:

· What’s the format of the test data?

· How are unknown words handled by the decoder?
· Which function does the beam search (Just provide the function name and file name)?
d. About the whole experiments:
· How long does it take you to understand the code?
· How long does it take you to run the experiments? (human time, not machine time)

4. Submission
a. Bring a hardcopy of the report to class on 3/7/06.
b. ESubmit the report with the report and the code for Part 4.

