LING572

Project Part #2 (TBL)

Due 2/16/06
1. Project overview
In Project Part 2, you will build a TBL POS tagger for English. This is a group assignment. Each group should have no more than three members.
 The main task:

· Understand how fnTBL works: you need to write a short report (a few pages) to explain how fnTBL works.

· Run fnTBL and observe the effects of the following factors on performance:

(1) Corpus size
(2) Feature templates
(3) The treatment of unknown words
2. Files for the project
 All the files are under ~fxia/dropbox/572/P2.
 The files provided by me:
a. fnTBL package: fnTBL-1.1.linux.tar.gz
b. Parameter files and feature templates: under params/

These files come from the fnTBL package.
c. Training and test data etc.: under data/

 The files are the same as the ones used in Project Part 1.

d. Perl code: under perl_code/:
 I wrote a wrapper and a few conversion tools.
 I also fixed a few bugs in the original fnTBL package.
The files that you are going to produce:

e. Your new parameter files: put the files under new_params/

It should include at least three files: file.templ, context_rules.templ.10, lexical_rules.templ.10.
The last two files can be the subsets of the corresponding files under params/.

f. Your Perl code: put your code under new_perl_code/.

It should include at least three files: build_TBL_tagger3.pl, pos-train3.pl, and pos-apply3.pl.

These files are the same as the corresponding files under perl_code/, except that the part about learning lexical rules should be removed, and the data might have to be preprocessed in some ways.

In addition, you might need to write some simple tools.
g. Report files: under report/

· Report1: this file contains a 4*3 table, and you need to fill the table with tagging accuracy and the number of transformations. Let’s call the table Table 1.
· Report2: a short report that explains how TBL works. The file can be in *.doc, *.pdf, or *.txt format.
h. Result files: under result/
· a11/, a12/, …, a43/: each subdirectory corresponds to a cell in Table 1, and it stores all the files generated by the TBL tagger. For instance, a11/ contains all the files generated by perl_code/build_TBL_tagger1.pl when training data is data/*.1K.
3. The main steps of using an existing package.

a. Download and compile the package, and test the code with given examples.
b. Create your own test data, write a few wrappers/converters, and test the code.
c. Understand the main algorithm of the package:
Read README files, tutorials, and related papers, and check the source code.
d. Modify and improve the package:
Design new algorithms, modify the code, and test the new code.
 The last two steps might not be necessary if you want to treat the package as a black box. But going through these two steps is a good way of truly understanding the learning method.
 In general, fnTBL is a good package, and the first step is simple. The second simple is not trivial, but I have done the most of work for you. Therefore, the focus of this project is the last two steps.

4. A simple treatment of unknown words

You will implement this algorithm in order to fill out the third column of Table 1 in Report1.
In the fnTBL package, much effort was made to deal with unknown words. We want to know to know how well the taggers work without such a sophisticated treatment for unknown words.
In order test that, you are going to implement the following strategy to deal with unknown words:

a. During the training time: (you will implement it in new_perl_code/pos-train3.prl)
· Create a (word, tags) lexicon named word_pos.lexicon from the whole training data.
· Replace rare words in the training data with a special token “UNK”. A “rare” word can be defined as a word that occurs only once in the training data, or it can be defined as a word that appears in one part (part2), but not the other part (part1) of the training data. For the latter, you need to decide the ratio used to split the data into two parts. Create a new lexicon named word_pos.lexicon.w_unk.
· Call the initial tagger with word_pos.lexicon.w_unk. The initial tagger simply tags a word with its most frequent tag.

· Call fnTBL-train to learn context rules only.
b. During the decoding time: (you will implement it in new_perl_code/pos-apply3.prl)
· Replace unknown words (words that don’t appear in the whole training data) with the special token “UNK”.
· Call the initial tagger. You need to decide which lexicon you want to use: word_pos.lexicon.w_unk or word_pos.lexicon.
· Call fnTBL to tag the test data.

5. Major steps
a. Download and compile fnTBL, and test the code with given examples.

· cp –R ~fxia/dropbox/572/P2 your_dir
· cd your_dir (From now on, all the path/filenames are with respect to your_dir)
· rm –r fnTBL-1.1/
 (You cannot use this directory because the code needs to be recompiled in order to work properly)

· tar –xvzf *.gz
 (this will create fnTBL-1.1/ subdirectory.
· Compile the code according to the instructions in fnTBL-1.1/README.
1. cd fnTBL-1.1/src
2. make all

· Test fnTBL with given examples:

 Read the tutorial file fnTBL_1.1/docs/tbl-toolkit.pdf and follow the instructions under fnTBL-1.1/test-cases/pos-tagging/README.
b. Create your own test data, write a few wrappers/converters, and test the code.

I have created two wrappers for you under perl_code/
· build_TBL_tagger1.pl: learn lexical and context rules, and use templates provided in the fnTBL package.

· build_TBL_tagger2.pl: same as build_TBL_tagger1.pl except that it uses different template files, which are under new_params/. You need to provide those files. You can choose any templates that you think are useful as long as each template file has no more than 10 templates.
 The wrappers take three arguments: (same as in Project Part 1):

· input_dir: the directory for the input file: in this case, it is your_dir
· output_dir: the directory where you want to store the output: in this case, it should be your_dir/result/a[1-4][1-3]
· output_file_pref: the prefix of the output files created by the tagger

 To test the first wrapper, try the following:

· cd your_dir
· perl_code/build_TBL_tagger1.pl . result/a11 1K > result/a11/1K.log
Here, the input directory is “.”, the current directory.

The output directory is result/a11
The prefix of the output file is 1K.

The wrapper should produce all the files under result/a11, and print out tagging accuracy at the end of result/a11/1K.log. Remember to keep the log files.
· If you copy data/*.5K to data/training_data and run “perl_code/build_TBL_tagger1.pl . result/a21 5K”, you will get the result for cell(2,1) in Table 1. Similarly, you can get results for cell(3,1) and cell(4,1).
· Create new template files under new_params/ and run perl_code/build_TBL_tagger2.pl to get the results for the 2nd column in Table 1

c. Understand the main algorithm of the package
The code belongs to different levels:
· The code for the core algorithm: they are under fnTBL-1.1/src. The code is one implementation of the TBL method, and it can be used for tasks other than POS tagging.

· The TBL POS tagger: they are perl_code/pos-train.prl (for training) and perl_code/pos-apply.prl (for decoding): the wrappers show how TBL can be used for POS tagging.
· A wrapper and simple tools: they are perl_code/build_TBL_tagger[1-2].pl and a*110.exec: the POS tagger assumes that the input/output data are in certain format. The wrapper converts the data between the standard format and the format used by the tagger, and call the tagger.
 Study the code and in Report 2 explain how the TBL works.

d. Modify and improve the package:
· Write new code to implement the algorithm specified in Section 4, and put the code under new_perl_code.

· Run the new code to fill in the 3rd column in Table 1.

6. Details about Report2
Your Report2 should include the answers to the following questions. You might want to read three conference papers under fnTBL-1.1/docs/, but remember that the implementation could be different from what is described in the papers. Try to avoid pseudo-codes in your answers. Instead, use text and examples to illustrate your points.
a. About TBL core algorithm:

· How are transformations represented internally?

· How are feature templates represented internally?

· During the training stage

1. Does the set of transformations change from iteration to iteration? If so, at the beginning of an iteration, is the transformation set generated from scratch or is it modified from the set used in previous iteration?
2. Given a tagged sentence and the truth, how does the code update the gains for all relevant transformations? Are the gains from previous iteration used in calculating the gains in the current iteration? If so, how?
3. How many transformations are learned at each iteration?
4. Are the effects of applying transformations visible right away? If so, are transformations applied from left to right or from right to left?
5. Are the training data indexed in some way to speech up the training process?
· During the decoding stage:

1. Given a sentence and a word position, how does the algorithm quickly find the first transformation in the list that is applicable?
2. Are the effects of applying transformations visible right away? If so, are transformations applied from left to right or from right to left?
b. About the POS tagger under perl_code/:
· How does the original tagger deal with unknown words in pos-train.prl and pos-apply.prl?
c. About your new perl code:
· What have you changed in pos-train.prl?

· What have you changed in pos-apply.prl?

· Do you need to write other tools? If so, what are they for?
d. About the whole experiments:
· What conclusion can you draw from the experiments (see Table 1)?

· What are the hard parts of the project?

· What are the easy parts of the project?

· Any suggestions about the project assignment in general?
7. Submission
a. Bring a hardcopy of result/Report1 and result/Report2 to class on 2/16/06.
b. Tar the following and submit via ESubmit by noon 2/16/06.
· new_params/
· report/
· new_perl_code/
· result/a[1-4][1-3]/*.log: I only need the log files.

