LING572

Project Part #1 (baseline)

Due 1/19/06
1. Project overview
In this project, you will use different learning methods for a common task: POS tagging for English. P1 is an individual assignment, while P2-P6 are group assignments. Each group should have no more than three members.
 The goal of P1 is four folded:

· Understand the relationship between HMM and WFST

· Become familiar with a WFST toolkit called Carmel

· Learn to use a “wrapper”.

· Get the baseline for the POS tagging task.

2. Files provided for the project
 All the files are under ~fxia/dropbox/571/P1

a. Carmel package: under graehl/

b. Perl code: under perl_code/

c. Training and test data etc.: under data/

d. Output files: under output/

3. Major steps
a. Copy the code to your directory

cp –R ~fxia/dropbox/571/P1 your_dir
From now on, all the path/filenames are with respect to your_dir.

b. Learn how to use Carmel: read the tutorial and try a few examples
A tutorial for the package is under graehl/carmel/doc. The examples used in the tutorial are stored under graehl/carmel/sample. Try the commands in the tutorial and see what results you get.
I have installed the Carmel code, so you can just run it.

The command is graehl/carmel/bin/linux/carmel and the parameters are discussed in the tutorial and at the end of graehl/carmel/README.
c. Think about how to use Carmel as a Viterbi decoder for a trigram tagger.

An example is given in the tutorial that illustrates how Carmel can be used as a decoder for a bigram tagger. Use the same idea, but remember that we are building a trigram tagger here.

d. Understand the wrapper code: perl_code/build_trigram_tagger.pl
· The wrapper has 11 steps: see the comments in the code.

 The perl codes (aaa100.exec, aab100.exec, and aae100.exec) for Steps 7, 8, and 10 are not provided. Your job is to provide the missing pieces (More details about these pieces are in Section 3e).
· The wrapper takes three arguments:

1. input_dir: the directory for the input file: in this case, it is your_dir/P1

2. output_dir: the directory where you want to store the output: in this case, it should be your_dir/P1/output

3. output_file_pref: the prefix of the output files created by the tagger

· Test the code:

cd your_dir
perl_code/build_trigram_tagger.pl . output t1

Here, the input directory is “.”, the current directory.

The output directory is output/

The prefix of the output file is t1.

Before you provide the missing pieces, the command line should fail after the 6th step because aaa100.exec does not exist. Nevertheless, you can see the files created under output/. Some of those files are the input to your perl code.
After you provide the missing pieces, the wrapper should finish, produce all the files and print out tagging accuracy at the end of stderr.
e. Provide the missing pieces.
· aaa100.exec: it takes the smoothed trigrams as input and produces a WFA as output. The weight on each edge of the WFA is a transition probability in HMM.

· aab100.exec: it takes a list of (word, POS) pairs as input and produces a WFT as output. The weight on each edge of the WFT is an emission probability in HMM.

· aae100.exec: it takes the paths produced by Carmel as input and produces word/tag sequences as output.
· Note: when you debug a perl code, you should call that code directly, instead of running build_trigram_tagger.pl. For instance, if you are debugging aaa100.exec, just run “cat output/1k*.smooth | perl_code/aaa100.exec > foo”.

f. Run the tagger to get four sets of tagging results
· cd your_dir
· cp data/*.1K data/training_data

· perl_code/build_trigram_tagger.pl . output 1k 2> output/1k.result

· cp data/*.5K data/training_data

· perl_code/build_trigram_tagger.pl . output 5k 2> output/5k.result

· cp data/*10K data/training_data

· perl_code/build_trigram_tagger.pl . output 10k 2> output/10k.result

· cp data/*40K data/training_data

· perl_code/build_trigram_tagger.pl . output 40k 2> output/40k.result

g. Edit output/report
· Each output/*.result file has some numbers at the end of the file. Just copy the last three numbers to fill in the table in output/report.
h: Submission:
· Bring a hardcopy of output/report to class on 1/19.

· I will let you know later how to submit the code.
· I am going to look at the following files:
1. Three perl files under perl_code/: aaa100.exec, aab100.exec, aae100.exec

2. The output/ directory that includes four sets of results: 1k.*, 5k.*, etc.

3. output/report

· Everybody should produce the same tagging results. Don’t try to improve the results as they are our baselines. As usual, this part is worth 100 points.
4. If you have any questions, please let me know ASAP. Don’t wait until the last minute.

