Exploring Temporal Vagueness with Mechanical Turk

Yuping Zhou (yzhou@brandeis.edu), Nianwen Xue (xuen@brandeis.edu) Computer Science Department, Brandeis University, Waltham, MA 02452, USA

1. Why Temporal Vagueness (TempV)?

- TempV is a major obstacle to consistent temporal annotation;
- Temporal annotation's crucial for training of temporal inference-capable systems;
- Temporal inference supports applications like Information Extraction [Ji2010], Question Answering [Harabagiu and Bejan2005, Harabagiu and Bejan2006] and Text Summarization [Lin and Hovy2001, Barzilay et al.2002].

2. What kind of TempV?

3. Why Mechanical Turk (MTurk)?

- TempV ~> annotation uncertainty ~> low agreement ; e.g. *now* refers to this second, this minute, this hour...?
- Solution: characterizing TempV with a distribution of different annotations;
- \bullet "distribution" \rightsquigarrow way more than 2 annotators \rightsquigarrow MTurk.

4. The experiment

• Task: linking temporal modifiers (TMod) with modified events;

- Vague time expressions: *now, soon, a long time* etc.;
- Implicit modification of multiple events by one temporal modifier, esp. across sentence/paragraph boundaries.

5.HIT design

- <20 events (plus 1 non-event) per HIT;
- One sentence per line;
- Event: in boldface TMod: underlined;
- Drop-down list next to event:
- -<temporal modifiers in quotes>
- -not in the list
- *not the main element of a predicate*

Overall distribution

- 65% of all tokens fall whithin the 0.7-1 Mturk-internal agreement;
- \bullet 70.7% of all majority annotations produce a TMod~event link;
- 72.5% of links created have an MTurk-internal agreement of 0.7 or higher.

- 10 annotators per item;
- Data source: Chinese data from the TempEval-2 campaign [Verhagen et al.2010], and the Chinese TreeBank [Xue et al.2005].

6. <u>七十年代后期</u>,由于长时间过度捕捞,舟山渔场水产资源**开始 ["]七十年代</mark>-"**出现萎缩。

Figure 1: Part of a HIT from the experiment

6. Results

Agreement with expert annotation

- MTurk-internal agreement keeps pace with agreement with expert;
- Both correlate with the concentration of intra-sentential links;

Range	Agreement (%)	Concentration intraS (%)
$0.2 \le A < 0.5$	48.2	20.5
$0.5 \le A < 0.6$	59.5	23.4
$0.6 \le A < 0.7$	71.7	41.3
$0.7 \le A < 0.8$	74.9	67.9
$0.8 \le A < 0.9$	83.2	67.2
$0.9 \le A \le 1.0$	91.5	93.7
Total:	78.0	70.8

• Intra-sentential links: very concentrated in the top MTurkinternal agreement range;

	No. tkn	Links		
Range	INO. IKH	Total	No.	
	(percent)	(percent)	intraS	
0.2-0.5	153(6.3)	83(3.4)	17	
0.5-0.6	449(18.6)	244(10.1)	57	
0.6-0.7	245(10.1)	143(5.9)	59	
0.7-0.8	138(5.7)	84(3.5)	57	
0.8-0.9	353(14.6)	235(9.7)	158	
0.9-1.0	1082(44.7)	922(38.1)	864	
Total:	2420(100)	1711(70.7)	1212	

Table 1: Distribution of all annotations and time~event links. No. *intraS*: number of intra-sentential links.

References

- [Barzilay et al.2002] Regina Barzilay, Noemie Elhadad, and Kathleen McKeown. 2002. Inferring strategies for sentence ordering in multidocument news summarization. *Journal of Artificial Intelligence Research*, 17:35–55.
- [Harabagiu and Bejan2005] Sanda Harabagiu and Cosmin Adrian Bejan. 2005. Question Answering Based

Table 2: Agreement with expert annotation

Comparison with double-blind annotation

- Within the high-agreement range (≥ 0.7), the quality of MT annotation is comparable to that produced in a double-blind setting [Xue and Zhou2010];
- At comparable levels of agreement, MT annotation achieves higher coverage (11-15 percentage points).

Coverage: num. of events in a link/total num. of events;

Note: The maximum value of coverage is not 100%. (Quiz: why?)

MT annotation		Double-blind		
Range	Agr	Coverage	Agr	Coverage
≥ 0.8	88.6	47.8%	86	36.4%*
≥ 0.7	86.1	51.3%		

on Temporal Inference. In *Proceedings of the AAAI-2005 Workshop on Inference for Textual Question Answering*, Pittsburgh, Pennsylvania.

[Harabagiu and Bejan2006] Sanda Harabagiu and Cosmin Adrian Bejan. 2006. An Answer Bank for Temporal Inference. In *Proceedings of LREC 2006*, Genoa, Italy.

[Ji2010] Heng Ji. 2010. Challenges from information extraction to information fusion. In *Proceedings of COLING 2010*, pages 507–515, Beijing, China, August.

[Lin and Hovy2001] Chin-Yew Lin and Eduard Hovy. 2001. Neats: A multidocument summarizer. In *Proceedings of the Document Understanding Workshop*.

[Verhagen et al.2010] Marc Verhagen, Roser Sauri, Tommaso Caselli, and James Pustejovsky. 2010.Semeval-2010 task 13: Tempeval-2. In *Proceedings of the 5th International Workshop on Semantic Evaluation*, pages 57–62, Uppsala, Sweden, July. Association for Computational Linguistics.

[Xue and Zhou2010] Nianwen Xue and Yuping Zhou. 2010. Applying Syntactic, Semantic and Discourse Constraints to Chinese Temporal Annotation. In *Proceedings of COLING 2010*, pages 1363–1372, Beijing, China, August.

[Xue et al.2005] Nianwen Xue, Fei Xia, Fu dong Chiou, and Martha Palmer. 2005. The Penn Chinese TreeBank: Phrase Structure Annotation of a Large Corpus. *Natural Language Engineering*, 11(2):207–238.

Table 3: Comparison with double-blind annotation of the same data. *: this number is directly based on the TempEval-2 Chinese data.

7. Conclusions

- To tackle the vagueness problem, elements of vagueness need to be identified and treated with care;
- Vagueness can be characterized with a distribution of different annotations and MT makes it feasible;
- This approach, when implemented successfully, not only provides high-quality data, but also offers additional flexibility in data use with respect to information quantity vs. certainty.