
Intra-Chunk Dependency Annotation :
Expanding Hindi Inter-Chunk Annotated

Treebank

Prudhvi Kosaraju, Bharat Ram Ambati, Samar Husain
Dipti Misra Sharma, Rajeev Sangal

Language Technologies Research Centre
IIIT Hyderabad

Treebank

• Linguistic resources in which each sentence has
– Parse tree
– morphological, syntactic and lexical information

marked explicitly

• Some treebanks
– Penn Treebank (Marcus et al., 1993) for English
– Prague Dependency Treebank (Hajicova, 1998) for

Czech.

• For Indian Languages
– Lack of such treebank been a major bottleneck for

advance research and development of NLP tools and
applications

Treebank creation

• Annotated manually or semi-automatically

• Manual creation
– Annotators has to follow prescribed guidelines

– Costly process in terms of both money & time

• Semi-automatic creation
– Running of tools or parsers

– Manual correction of Errors

Note: An accurate annotating parser/tool saves cost
and time for both the annotation as well as the
validation task

Hindi Treebank

• Multi-layered and multi-representational
treebank having

– Dependency relations

– Verb arguments (PropBank, Palmer et al., 2005)

– Phase structure

• Dependency treebank has information at

– morpho-syntactic (morphological ,part-of-speech
(POS) and chunk) level

– syntactico-semnatic (dependency) level

Hindi Dependency Treebank

• Manual annotation has been done at

– Part_of_speech level

– Chunk level

– Morph level

– Inter-chunk dependency level

Inter-chunk annotated sentence
 Sentence1: नीली किताब गिर िई
 niilii kitaab gir gaii

 ‘blue’ ‘book’ ‘fall’ ’go-perf’

 The blue book fell down

 Figure 1: SSF Representation Figure 2: Inter-chunk

 dependency tree of sentence 1

Intra-chunk dependencies

• Intra-chunk dependencies left unannotated since
– Identification of intra-chunk dependencies are quite

deterministic

– Can be automatically annotated with high degree of
accuracy

• Marking intra-chunk dependencies on inter-
chunk dependency annotated trees results
expansion of the later

• Automatic conversion to phase structure depends
upon the expanded version of the treebank

• Hence, a High quality intra-chunk dependency
annotator/parser is required

 Fig 3: SSF representation of complete

 dependency tree

Fig 4: complete dependency tree of Sentence 1

Intra-chunk dependency annotation
Guidelines

• Tags can be classified into

– Normal dependencies

• nmod__adj, jjmod__intf etc

– Local word group dependencies (lwg)

• lwg__psp, lwg__vaux, lwg__neg etc

– Linking local word group dependencies

• lwg__cont etc

• Total of 12 tags were used for experiments

nmod__adj
• Various types of adjectival modifications are shown using

this label.
• An adjective modifying a head noun is one such instance.
• The label also incorporates various other modifications

such as a demonstrative or a quantifier modifying a noun

 Chunk: नीली किताब
 NP ((niilii_JJ kitaab_NN))
 ‘blue ‘ ‘book’

 niilii
 nmod__adj
 kitaab

lwg__psp

• Used to attach post-positions/ auxiliaries
associated with the noun or a verb.

• ‘lwg’ in the label name stands for local word
grouping and associates all the postpositions with
the head noun

 Chunk: अगिषेि ने
 NP((abhishek_NNP ne_PSP))
 ’abhishek’ ’ERG’

 abhishek
 lwg__psp
 ne

lwg__cont
• To show that a group of lexical items inside a chunk together

perform certain function
• In such cases, we do not commit on the dependencies between

these elements
• We see this with complex post-positions associated with a

noun/verb or with the auxiliaries of a verb
• ‘cont’ stands for continue
 Chunk: जा सिता है
 VGF((jaa_VM sakataa_VAUX hai_VAUX))
 ‘go’ ‘can’ ‘be-pres’
 jaa
 lwg__vaux
 sakataa
 lwg__cont
 hai

Intra-chunk dependnecy
annotator/parser

• Built a robust intra-chunk dependency parser
for Hindi

– Rule based Approach

– Statistical Approach

– Hybrid Approach (using heuristic based post-
processing component on top of statistical
approach)

• The rule based tool can easily adaptable to
other languages as well

Rule based intra-chunk dependency
annotator

• Identifies modifier-modified (parent-child)
relationship inside a chunk

• Rules provided in a fixed rule template

• Heads in each chunk determined by head
computation module

• All information present in the SSF can be
captured through the rule template

Rule template
• We capture the rules in form of constraints

applicable at
• Chunk Label

• Parent Constraints

• Child Constraints

• Contextual Constraints

 Table 1 : Rule template

Chunk Name Parent
Constraints

Child
Constraints

Contextual Constraints Dep. Relation

NP POS == NN POS == JJ posn(parent) >
posn(child);

nmod__adj

Statistical approach : Sub-tree parsing
using Malt parser

• Malt parser(Nivre et al., 2007) , transition based
dependency parser is best suited for identifying
short range dependencies (Nivre, 2003)

• Each chunk is separated and called sub-tree

• Data is divided into training (192 sentences),
development(64) and testing(64)

• We followed the strategies used in kosaraju
et.al,2010
– Feature pool

– Pruning features using forward selector

Results (on gold data)

 Table 2 : Data Statistics

Table 3: Rule based accuracies

 Table 4: Statistical approach showing baseline,
 POS and best templates

No:of Sentences

Training 192

Development 64

Testing 64

LAS 97.89

UAS 98.50

LS 98.38 Baseline POS -template Best template

LAS 95.70 96.80 97.35

UAS 97.07 97.62 98.26

LS 96.80 97.80 97.90

Data Statistics

 Table 2 : Data Statistics

No:of Sentences

Training 192

Development 64

Testing 64

Results (on gold data)

 Table 3: Rule based accuracies

 Table 4: Statistical approach showing baseline, POS and best templates

LAS 97.89

UAS 98.50

LS 98.38

Baseline POS -template Best template

LAS 95.70 96.80 97.35

UAS 97.07 97.62 98.26

LS 96.80 97.80 97.90

Hybrid approach

• Post processed the statistical approach output
using the rules as heuristics

• Only those tag associated rules are considered
for which recall in rule-based is greater than
statistical approach

– Pof__cn, nmod__adj,rsym

 Table 5: All methods parsing accuracies

Approach LAS UAS LS

Rule-based 97.89 98.50 98.38

Statistical 97.35 98.26 97.90

Hybrid 98.17 98.81 98.63

Special Cases

‘Chunks are self contained units. Intra-chunk
dependencies are chunk internal and do not span
outside a chunk.’

• The above is the basis for neat division of inter-
chunk and intra-chunk parsing

• However, there are two cases this constraint does
not hold.
– In these two cases a chunk internal element that is

not the head of the chunk has a relation with a lexical
item outside its chunk

• Hence, these relations are to be handled
seperately

Special cases
• rsym__EOS (End of Sentence marker):

– Occurs in the last chunk, Attached to head of the
sentence

• lwg__psp :
– According to guidelines, psp attaches to head of

the chunk with lwg__psp

– However, if the right most child of a CCP
(conjunction chunk) is a nominal (NP or VGNN),
one needs to attach the PSP of this nominal child
to the head of the CCP during expansion

– If there are multiple PSP, then first PSP gets a
lwg__psp and second lwg__cont

Special case (lwg__psp)

 NP(raama_NNP) CCP(aur_CC) NP(siitaa_NNP ne_PSP)
 ‘ram’ ‘and’ ‘sita’ ‘ERG’

aur
 ccof ccof lwg__psp

 raama ne

 sita

 Fig 5: Expanded sub-tree with PSP connected with CC

Conclusion

• Described annotation guidelines for marking
intra-chunk dependency relations

• Approaches:

1. Rule based 2. Statistical 3. Hybrid (using 1&2)

• By error analysis the outputs, only certain
tags are not being marked correctly.

• This is good news because then one can
make very targeted manual corrections after
the automatic tool is run

 THANK YOU

