Intra-Chunk Dependency Annotation : Expanding Hindi Inter-Chunk Annotated Treebank

Prudhvi Kosaraju, Bharat Ram Ambati, Samar Husain Dipti Misra Sharma, Rajeev Sangal Language Technologies Research Centre IIIT Hyderabad

Treebank

- Linguistic resources in which each sentence has
 - Parse tree
 - morphological, syntactic and lexical information marked explicitly
- Some treebanks
 - Penn Treebank (*Marcus et al., 1993*) for English
 - Prague Dependency Treebank (*Hajicova, 1998*) for Czech.
- For Indian Languages
 - Lack of such treebank been a major bottleneck for advance research and development of NLP tools and applications

Treebank creation

- Annotated manually or semi-automatically
- Manual creation
 - Annotators has to follow prescribed guidelines
 - Costly process in terms of both money & time
- Semi-automatic creation
 - Running of tools or parsers
 - Manual correction of Errors

Note: An accurate annotating parser/tool saves cost and time for both the annotation as well as the validation task

Hindi Treebank

- Multi-layered and multi-representational treebank having
 - Dependency relations
 - Verb arguments (PropBank, Palmer et al., 2005)
 - Phase structure
- Dependency treebank has information at
 - morpho-syntactic (morphological ,part-of-speech (POS) and chunk) level
 - syntactico-semnatic (dependency) level

Hindi Dependency Treebank

- Manual annotation has been done at
 - Part_of_speech level
 - Chunk level
 - Morph level
 - Inter-chunk dependency level

Inter-chunk annotated sentence

Sentence1: नीली किताब गिर गई

niilii kitaab gir gaii 'blue' 'book' 'fall' 'go-perf' The blue book fell down

NP <name='NP' drel='k1:VGF'> ((niilii IJ 1.1 <name='niilii'> <name='kitaab'> 1.2 kitaab NN)) 2 VGF <name='VGF'> 2.1 <name='gir'> VM gir VAUX <name='gaii'> 2.2 gaii))

Figure 1: SSF Representation

Figure 2: Inter-chunk dependency tree of sentence 1

Intra-chunk dependencies

- Intra-chunk dependencies left unannotated since
 - Identification of intra-chunk dependencies are quite deterministic
 - Can be automatically annotated with high degree of accuracy
- Marking intra-chunk dependencies on interchunk dependency annotated trees results expansion of the later
- Automatic conversion to phase structure depends upon the expanded version of the treebank
- Hence, a High quality intra-chunk dependency annotator/parser is required

- 1 niilii JJ <fs drel='nmod_adj:kitaab' chunkType='child:NP' name='niilii '>
- 2 kitaab NN <fs drel='k1:gir' name='kitaab' chunkId='NP' chunkType='head:NP'>
- 3 gir VM <fs name='gir' chunkId='VGF' chunkType='head:VGF'>
- 4 gaii VAUX <fs drel='lwg_aux:gir' name='gaii' chunkType='child:VGF'>

Fig 3: SSF representation of complete dependency tree

Fig 4: complete dependency tree of Sentence 1

Intra-chunk dependency annotation Guidelines

- Tags can be classified into
 - Normal dependencies
 - nmod__adj, jjmod__intf_etc
 - Local word group dependencies (lwg)
 - lwg_psp, lwg_vaux, lwg_neg etc
 - Linking local word group dependencies
 - lwg__cont etc
- Total of 12 tags were used for experiments

nmod__adj

- Various types of adjectival modifications are shown using this label.
- An adjective modifying a head noun is one such instance.
- The label also incorporates various other modifications such as a demonstrative or a quantifier modifying a noun

Chunk: नीली किताब NP ((*niilii_JJ kitaab_*NN)) 'blue ''book'

lwg__psp

- Used to attach post-positions/ auxiliaries associated with the noun or a verb.
- 'lwg' in the label name stands for local word grouping and associates all the postpositions with the head noun

Chunk: अभिषेक ने NP((abhishek_NNP ne_PSP)) 'abhishek' 'ERG'

> abhishek *Iwg_psp* ne

lwg__cont

- To show that a group of lexical items inside a chunk together perform certain function
- In such cases, we do not commit on the dependencies between these elements
- We see this with complex post-positions associated with a noun/verb or with the auxiliaries of a verb
- 'cont' stands for continue

Intra-chunk dependnecy annotator/parser

- Built a robust intra-chunk dependency parser for Hindi
 - Rule based Approach
 - Statistical Approach
 - Hybrid Approach (using heuristic based postprocessing component on top of statistical approach)
- The rule based tool can easily adaptable to other languages as well

Rule based intra-chunk dependency annotator

- Identifies modifier-modified (parent-child) relationship inside a chunk
- Rules provided in a fixed rule template
- Heads in each chunk determined by head computation module
- All information present in the SSF can be captured through the rule template

Rule template

- We capture the rules in form of constraints applicable at
 - Chunk Label
 - Parent Constraints
 - Child Constraints
 - Contextual Constraints

Chunk Name	Parent Constraints	Child Constraints	Contextual Constraints	Dep. Relation
NP	POS == NN	POS == JJ	posn(parent) > posn(child);	nmodadj

Table 1 : Rule template

Statistical approach : Sub-tree parsing using Malt parser

- Malt parser(*Nivre et al., 2007*), transition based dependency parser is best suited for identifying short range dependencies (Nivre, 2003)
- Each chunk is separated and called sub-tree
- Data is divided into training (192 sentences), development(64) and testing(64)
- We followed the strategies used in kosaraju et.al,2010
 - Feature pool
 - Pruning features using forward selector

Results (on gold data)

Table 2 : Data Statistics			
No:of Sentences			
Training	192		
Development	64		
Testing	64		

Table 3: Rule based accuracies

LAS	97.89	Table 4: Statistical approach showing baseline, POS and best templates			
UAS	98.50				
LS	98.38		Baseline	POS -template	Best template
		LAS	95.70	96.80	97.35
		UAS	97.07	97.62	98.26
		LS	96.80	97.80	97.90

Data Statistics

	No:of Sentences
Training	192
Development	64
Testing	64

Table 2 : Data Statistics

Results (on gold data)

Table 3: Rule based accuracies

LAS	97.89
UAS	98.50
LS	98.38

Table 4: Statistical approach showing baseline, POS and best templates

	Baseline	POS -template	Best template
LAS	95.70	96.80	97.35
UAS	97.07	97.62	98.26
LS	96.80	97.80	97.90

Hybrid approach

- Post processed the statistical approach output using the rules as heuristics
- Only those tag associated rules are considered for which recall in rule-based is greater than statistical approach
 - Pof cn, nmod adj, rsym

Table 5. All filethous parsing accuracies			
Approach	LAS	UAS	LS
Rule-based	97.89	98.50	98.38
Statistical	97.35	98.26	97.90
Hybrid	98.17	98.81	98.63

Table E: All methods parsing accuracies

Special Cases

- 'Chunks are self contained units. Intra-chunk dependencies are chunk internal and do not span outside a chunk.'
- The above is the basis for neat division of interchunk and intra-chunk parsing
- However, there are two cases this constraint does not hold.
 - In these two cases a chunk internal element that is not the head of the chunk has a relation with a lexical item outside its chunk
- Hence, these relations are to be handled separately

Special cases

- rsym__EOS (End of Sentence marker):
 - Occurs in the last chunk, Attached to head of the sentence
- lwg_psp :
 - According to guidelines, psp attaches to head of the chunk with lwg__psp
 - However, if the right most child of a CCP (conjunction chunk) is a nominal (NP or VGNN), one needs to attach the PSP of this nominal child to the head of the CCP during expansion
 - If there are multiple PSP, then first PSP gets a lwg__psp and second lwg__cont

Special case (lwg__psp)

NP(*raama*_NNP) CCP(*aur*_CC) NP(*siitaa*_NNP *ne*_PSP) 'ram' 'and' 'sita' 'ERG'

Fig 5: Expanded sub-tree with PSP connected with CC

Conclusion

- Described annotation guidelines for marking intra-chunk dependency relations
- Approaches:
 - 1. Rule based 2. Statistical 3. Hybrid (using 1&2)
- By error analysis the outputs, only certain tags are not being marked correctly.
- This is good news because then one can make very targeted manual corrections after the automatic tool is run

THANK YOU