Exploiting naive vs expert discourse annotations: an experiment using lexical cohesion to predict Elaboration / Entity-Elaboration confusions

Clémentine Adam, Marianne Vergez-Couret

CLLE - Université de Toulouse, France

July 12th 2012

NODIS	Elaboration	and	E-elaborat

Differentiating using lexical cohesion $_{\rm OOOO}$

Predicting confusions

Introduction

- Field: Corpus annotation at the discourse level
- The ANNODIS corpus:
 - top-down approach: annotation of macro structures (enumerative structures)
 - bottom-up approach: construction of the structure of discourse via discourse relations between elementary discourse units (EDU)
- Other corpus annotated with discourse relations: RST TreeBank (Carlston 2001), Penn Discourse TreeBank (Prasad 2007), Discor Corpus (Reese 2007)

ANNODIS oo	Elaboration and E-elaboration	Differentiating using lexical cohesion	Predicting confusions

- ANNODIS is the first corpus annotated with discourse relations for french
- It provides two levels of annotations:
 - a pre-annotation done by naive annotators (naive annotation)
 - a revised annotation done by expert annotators (expert annotation)
- Objective of this study: using the two levels, we want to predict confusions between two relations, Elaboration and Entity-Elaboration (E-Elaboration)

Introduction

ANNODIS oo	Elaboration and E-elaboration	Differentiating using lexical cohesion	Predicting confusions

- IIIIIe

- 2 On Elaboration and Entity-elaboration
- 3 Differentiating between Elaboration and Entity-Elaboration using lexical cohesion
- Predicting confusions between Elaboration and Entity-elaboration: implementation

ANNODIS 00	Elaboration and E-elaboration	Differentiating using lexical cohesion	Predicting confusions
Outline			

- On Elaboration and Entity-elaboration
- 3 Differentiating between Elaboration and Entity-Elaboration using lexical cohesion
- Predicting confusions between Elaboration and Entity-elaboration: implementation

Differentiating using lexical cohesion $_{\rm OOOO}$

Predicting confusions

The ANNODIS Corpus

- Composition: Wikipedia articles and newspaper articles
- Set of discourse relations, adapted from the SDRT model (Asher 2003) and inspired by other discourse models: RST framework (Mann 1987), Linguistic Discourse Model (Polanyi 1988), graphbank model (Wolf 2005) : Alternation, Attribution, Background, Comment, Continuation, Contrast, Elaboration, Entity-Elaboration, Explanation, Flashback, Frame, Goal, Narration, Parallel, Result, Temporal Location

ANNODIS

Differentiating using lexical cohesion $_{\rm OOOO}$

Predicting confusions

The ANNODIS Corpus

Three steps of annotation:

- Preliminary annotation: 50 texts; 2 annotators (postgraduate students)
 - \rightarrow creation of the annotation manual
- Naive annotation: 86 texts; 3 annotators (other postgraduate students)
 Kappa: 0.4 (week to moderate inter-annotator agreement)
- Expert annotation: 42 texts... still in progress

ANNODIS 00	Elaboration and E-elaboration	Differentiating using lexical cohesion	Predicting confusions
Outline			

On Elaboration and Entity-elaboration

- 3 Differentiating between Elaboration and Entity-Elaboration using lexical cohesion
- Predicting confusions between Elaboration and Entity-elaboration: implementation

Elaboration and E-elaboration ••••• Differentiating using lexical cohesion 0000

Predicting confusions

Elaboration and E-elaboration in the ANNODIS corpus

Elaboration and Entity-elaboration

• Elaborations + E-elaborations: 50% of the naive annotated relations; 35% of the expert annotated relations

		Naive		
		Elab	E-Elab	Total
t	Elab	302	70	372
Expert	E-Elab	158	216	374
Ш	Total	460	286	746
	Continuation	70	32	
Expert	Background	32	18	
ШЩ.	Other	150	59	

Elaboration and E-elaboration $\circ \circ \circ \circ$

Differentiating using lexical cohesion $_{\rm OOOO}$

Predicting confusions

Elaboration and Entity-elaboration: description

Elaboration and Entity-elaboration

- The Elaboration relation relates two propositions only if the second proposition describes a sub-state or sub-event of the state or event described in the first proposition. Elaboration also includes exemplification, reformulation and paraphrase cases.
- The E-Elaboration relation relates two segments for which the second one specifies a property of one of the involved entities in the first segment. This property can be important (e.g. identificatory) or marginal.

Elaboration and E-elaboration $\circ \circ \bullet \circ$

Differentiating using lexical cohesion 0000

Predicting confusions

Elaboration and Entity-elaboration: description

Elaboration and Entity-elaboration

[La Lausitz, [une région pauvre de l'est de l'Allemagne,]₁ [réputée pour ses mines de charbon à ciel ouvert,]₂ a été le théâtre d'une première mondiale, mardi 9 septembre.]₃ [Le groupe suédois Vattenfall a inauguré, dans la petite ville de Spremberg, une centrale électrique à charbon expérimentale]₄ [qui met en œuvre toute la chaîne des techniques de captage et de stockage du carbone]₅

[Lausitz, [a poor region in east Germany,]₁ [famous for its open air coal mines,]₂ was the scene of a world first, on Tuesday September 9th.]₃ [The swedish group Vattenfall inaugurated, in the small town of Spremberg, an experimental coal power plant]₄ [involving the complete carbon capture and storage chain.]₅

E-Elaboration (3,[1-2]) Elaboration (3,4) E-Elaboration (4,5)

Elaboration and E-elaboration

Differentiating using lexical cohesion $_{\rm OOOO}$

Predicting confusions

Linguistic features

Elaboration and Entity-elaboration

- No prototypical marker exists, neither for Elaboration nor E-elaboration
- Some possible markers are indicated in the ANNODIS manual: à savoir, c'est-à-dire, notamment, etc.
 → But they can mark both relations
- Other possible linguistic features:
 - Prévot (2009): E-elaboration can be realized by relative clauses and appositions (nominal and adjectival appositions, brackets...)
 - Vergez-Couret (2012): French gerund clauses may express several discourse relations including Elaboration but not E-elaboration
 - \rightarrow All these features are ambiguous and seldom appear

ANNODIS 00	Elaboration and E-elaboration	Differentiating using lexi

ical cohesion

Outline

- 2 On Elaboration and Entity-elaboration
- 3 Differentiating between Elaboration and Entity-Elaboration using lexical cohesion
- Predicting confusions between Elaboration and Entity-elaboration: implementation

Predicting confusions

Lexical cohesion of Elaboration and E-elaboration

[Un soir, il faisait un **temps** horrible,]₁₆ [les **éclairs** se croisaient,]₁₇ [le **tonnerre** grondait,]₁₈ [la **pluie** tombait à torrent.]₁₉

[One night, the weather was horrible,]₁₆ [flashes of lightning were crossing,]₁₇ [thunder growled,]₁₈ [rain fell heavily.]₁₉

Elaboration (16,[17-19])

Lexical cohesion of Elaboration and E-elaboration

[Pourquoi a-t-on abattu Paul Mariani, [cinquante-cinq ans]₄, [attaché au cabinet de M. François Doubin,]₅ ?]₆

[Why was Paul Mariani, [fifty-five]₄, [personal assistant to M. François Doubin,]₅ gunned down?]₆

E-elaboration (6,[4-5])

Lexical cohesion of Elaboration and E-elaboration

In order to evaluate the strength of lexical cohesion between two segments S_a and S_b :

- 1. The two segments are annotated with part-of-speech and lemma information using the TreeTagger (Schmid 1994)
- 2. All the lexical proximity links between the two segments are annotated. To detect these links, we use a lexical proximity measure based on the distributional analysis of the french Wikipedia (Bourigault 2002)

Calling N_{ℓ} the number of links between S_a and S_b , N_a and N_b the numbers of words in the segments S_a and S_b , our score Sc is defined as:

$$Sc = rac{N_\ell}{\sqrt{N_a \cdot N_b}}$$

Elaboration and E-elaboration 0000

Differentiating using lexical cohesion $\circ \circ \circ \bullet$

Predicting confusions

Lexical cohesion of Elaboration and E-elaboration

	Elab.	E-elab.
Number of cases	625	527
Average $\#$ of proj. links N_ℓ	5.99	1.39
Average cohesion score <i>Sc</i>	0.61	0.32

 \rightarrow Elaboration is much more cohesive than E-Elaboration

ANNODIS 00	Elaboration and E-elaboration	Differentiating usin

Predicting confusions

g lexical cohesion

Outline

- 2 On Elaboration and Entity-elaboration
- 3 Differentiating between Elaboration and Entity-Elaboration using lexical cohesion
- Predicting confusions between Elaboration and Entity-elaboration: implementation

Elaboration and E-elaboration 0000

Differentiating using lexical cohesion 0000

Predicting confusions

Predicting confusions between Elab. and E-elab.

Att.	Description	Values
Ν _ℓ	Number of links	$N_{\ell} \in \mathbb{N}$
Sc	Lexical cohesion score	$\mathit{Sc} \in \mathbb{R}^+$
rel	S_b is a relative clause	boolean
app	S_b is a nom. / adj. apposition	boolean
ger	S_b is a gerund clause	boolean
bra	S_b is in brackets	boolean
emb	S_b is an embedded segment	boolean
WSa	# of words in S_a	$w_{S1} \in \mathbb{N}$
W _{Sb}	# of words in S_b	$w_{52} \in \mathbb{N}$
W _{tot}	$w_{Sa} + w_{Sb}$	$w_{tot} \in \mathbb{N}$
s _{Sa}	# of segments in S_a	$s_{S1} \in \mathbb{N}$
s _{Sb}	$\#$ of segments in S_b	$s_{S2} \in \mathbb{N}$
S _{tot}	$s_{Sa} + s_{Sb}$	$s_{tot} \in \mathbb{N}$

19/25

Elaboration and E-elaboration 0000

Differentiating using lexical cohesion 0000

Predicting confusions

Predicting confusions between Elab. and E-elab.

Naive vs Expert annotations:

	elab	e-elab	$ \leftarrow Naive annot. $
elab	302	70	
e-elab	158	216	
↑Expert annot.		Ac	curacy : 69.4%

Predicting confusions

Predicting confusions between Elab. and E-elab.

Classification using Weka's (Hall 2009) implementation of Random Forest classifier (Breiman 2001):

	elab	e-elab	$\leftarrow Naive-aided$
elab	306	66	auto. annot.
e-elab	115	259	
↑Expert annot.		Acc	uracy : 75.7%

Differentiating using lexical cohesion 0000

Predicting confusions

Predicting confusions between Elab. and E-elab.

Impact of the different attributes' categories:

Attributes used	Accuracy
Naive annotation	69.4%
Naive + lexical cohesion cues	72.3% (+2.9%)
Naive + linguistic cues	71.7% (+2.3%)
Naive + structural cues	69.7% (+0.3%)
All	75.7% (+6.3%)

Predicting confusions

Predicting confusions between Elab. and E-elab.

Using our classifier to reduce the experts' workload:

Cost matrix:

0	10
1	0

Results:

	elab	e-elab	\leftarrow automatic annot.
elab	57	13	(naive annot=e-elab)
e-elab	70	146	
↑Expert	127	159	
	\checkmark	\searrow	
second	look	accepted annot.	
by expert (error		(error	: 8.2%)

AN	Ν	0	D	IS	

Conclusion

- We focused on two frequent discourse relations, Elaboration and E-elaboration, which are:
 - often interchanged by annotators
 - difficult to detect automatically
- Using the ANNODIS corpus, we show that lexical cohesion is a strong cue to differentiate between them
- We used this cue, among others, in a machine learning experiment allowing to reduce the experts' workload for the revision of the naive annotation

ANNODIS 00	Elaboration and E-elaboration	Differentiating using lexical cohesion	Predicting confusions
Thank	you		

... for your attention !