
Proceedings of the 6th Linguistic Annotation Workshop, pages 153–156,
Jeju, Republic of Korea, 12-13 July 2012. c©2012 Association for Computational Linguistics

CSAF - a community-sourcing annotation framework

Jin-Dong Kim and Yue Wang
Database Center for Life Science (DBCLS),

Research Organization of Information and Systems (ROIS),
2-11-16, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan

{jdkim|wang}@dbcls.rois.ac.jp

Abstract

This paper presents a community-sourcing an-
notation framework, which is designed to im-
plement a “marketplace model” of annotation
tasks and annotators, with an emphasis on ef-
ficient management of community of potential
annotators. As a position paper, it explains
the motivation and the design concept of the
framework, with a prototype implementation.

1 Introduction

Corpus annotation is regarded indispensable for the
development of language-processing software and
technology, e.g., natural language processing (NLP)
and text mining. Nevertheless, the high cost required
for finding and maintaining human annotators often
hinders the development of various corpus annota-
tion. For an annotation project, annotators, e.g., do-
main experts, need to be recruited, trained, then de-
ployed for actual annotation. After the annotation
project is over, usually they are dismissed. The same
cycle then needs to be repeated for a new annotation
project. In this setup, the recruitment and training of
annotators actually take non-trivial cost.

Recently, crowdsourcing, e.g., Amazon Mechan-
ical Turk (MTurk, hereafter), is gaining a big at-
tention as a source of finding intelligent human
labor. For corpus annotation also, the usability
of MTurk has been explored (Callison-Burch and
Dredze, 2010; Buzek et al., 2010; Little et al., 2009).
There are also other efforts to achieve a large-scale
annotation based on community-wide efforts (Ide et
al., 2010), which shows current trends toward sys-

tematic incorporation of contributions from a com-
munity rather than from a small group.

In this work, we propose a community-sourcing
annotation framework (CSAF, hereafter) which de-
fines the components and protocol of a computer
system to enable community-sourcing annotation. It
is similar to MTurk to some extent in its concept,
but it is more specifically designed for corpus anno-
tation tasks, particularly for those which require spe-
cial expertise from annotators, e.g., domain knowl-
edge. With “community”, it means a group of peo-
ple who are regarded as qualified potential annota-
tors for a specific type of annotation tasks. For ex-
ample, for semantic annotation of biological liter-
ature, e.g., PubMed, graduate students of biology
may be regarded qualified, and will be expected to
form a community of potential annotators. The goal
of CSAF is to provide a framework of computer sys-
tem to enable an effective and efficient maintenance
of such communities, so that when an annotation
project is launched, available annotators in a com-
munity can be immediately found and deployed. It
is also expected that the effect of training can be ac-
cumulated in the community.

With the background, in this position paper, the
the core design concept (section 2) and the specifi-
cations and a prototype implementation (section 3)
of CSAF is discussed.

2 Community-sourcing annotation
framework (CSAF)

CSAF consists of four components: annotation edi-
tor (AE), task server (TS), task manager (TM), and
community manager (CM). Among them, the first

153



three, which are shown in figure 1, are actually re-
quired for any usual annotation project, no mat-
ter how explicitly they are implemented. The last
one, CM, being integrated with the others, enables
community-sourcing annotation.

2.1 Components for usual annotation

An AE provides annotators with a user interface (UI)
for creation or revision of annotations. This compo-
nent is often the most explicitly required software
for an annotation project.

A TS takes the role of assigning annotation tar-
gets, e.g., documents, to annotators. Often, the as-
signment is performed manually by the organizers,
particularly when the annotation projects are in a
small scale. However by automating it, the assign-
ment could be achieved in a more systematic and
error-free way. A possible implementation may in-
clude a sequential assignment with a periodic over-
lap of some documents over the annotators for qual-
ity control, e.g., inter-annotator agreement rate. A
TS may be regarded as manifestation of an assign-
ment policy while an AE as manifestation of an an-
notation scheme.

A TM is to manage the progress of annotations
performed by an individual annotator. Also, the
management is often performed manually, but pro-
vision of a proper tool should enhance the manage-
ment substantially. Together with an AE, it provides
annotators with an annotation environment. As usu-
ally annotators are not experts of computer systems,
provision of a convenient annotation environment
is closely related to the productivity of annotation
practice.

Although the three components do not include
any notion of community-sourcing, separation of the
three eases incorporation of an additional compo-
nent, community manager which will be explained
in next section.

Figure 1 illustrates how the three components
work with together over the standard HTTP protocol
in CSAF. An annotator on an annotation task will
work with a TM and AE. The annotator may begin
the annotation by requesting a document to the TS
(1). On request, the identifier of the annotator needs
to be notified to the TS, so that the TS can perform
an assignment considering the annotators. The an-
notator then can open the document in the AE (2),

and work on annotation. after a session of annota-
tion, the resulting annotation will be downloaded to
TM (3). The steps (2) and (3) may be repeated un-
til the annotation is completed. When complete, the
final annotation will be uploaded to the TS (4).

2.2 A component for community-sourcing

Figure 2 illustrates how an additional component,
CM, enables community-sourcing of annotation. A
CM plays like a job market where annotators and an-
notation tasks are registered, and associations, e.g.,
recruitment, between them are made. A possible
scenario would be as follows: whenever a new task
is registered, it is notified to the registered annota-
tors; available annotators will apply to working on
the task; and on approval of the task organizer, the
association will be made. For each association, a
TM is created for the management of the progress of
the annotation by the annotator on the task. Once a
TM is created, annotation by an individual annotator
is carried over in the way described in the previous
section

3 Specifications and implementations

In CSAF, all the four components are designed to be
web services that will communicate with each other
over the standard HTTP protocol.

3.1 Annotation Editor

An AE is supposed to take parameters (by HTTP
POST) for two objects, a document and a set of
pre-annotations, to enable production of a new set
of annotations (by annotators), and to allow down-
load (by HTTP GET) of the newly produced anno-
tations. For the parameters, the document and the
pre-annotations themselves may be passed over in
an XML or JSON format. Alternatively, the URLs
of them may be passed so that they can be read by
the AE, when they are accessible from the network.
The IO interface is intended to be minimal and flexi-
ble so that many existing web-based annotation edi-
tors can be integrated in the framework at a minimal
cost. As a reference implementation, a simple AE
that supports a named entity-style annotation is im-
plemented. Figure 3 shows a screen-shot of it.

154



Figure 1: Components for usual annotation tasks

Figure 2: The role of community manager for community sourcing

3.2 Task Server

A TS is supposed to provide (1) annotation guide-
lines and (2) a document dispatcher, and to take back
a new set of annotations (by HTTP POST). Annota-
tors will access the guidelines (by HTTP GET) for
reference before application and during annotation.
The document dispatcher is an implementation of
the organizer’s strategy on how to assign documents
to the annotators. On request from TM (by HTTP
GET), a document is assigned to the annotator, op-
tionally with a set of pre-annotations.

3.3 Task Manager

A TM is created for each association of an annotator
and a task, based on the information supplied by the
task organizer. It communicates with a TS to get a
document to annotate, and with an AE to produce a

set of new annotations. It is the responsibility of a
TM to maintain the progress of annotation, e.g., the
documents that have been or to be annotated.

3.4 Community Manager

As a community manager, account management,
e.g., registration or unsubscription, is a fundamen-
tal function of CM. The users of a CM are either
annotators or task organizers1. The task organiz-
ers can register annotation tasks to the CM. Fig-
ure 4 shows an example of task registration. Note
that URLs given for thejob request andeditor spec-
ify how the required parameters,annotator id,
document url, andannotation url can be
passed to the TM and AE.

1There is also a superuser who has all the privilege to modify
or delete all the other accounts.

155



Figure 3: An annotation editor with base-noun-phrase annotations

Figure 4: Registration of a new task to the prototype com-
munity manager

On registration of a new task, more than one an-
notators can be associated with the task through a
negotiation. For each association of an annotator
and a task, an instance of TM is created based on
the information shown in Figure 4.

4 Discussions and conclusions

While the importance of corpus annotation is widely
accepted, the low productivity of annotation often
discourage production of new annotation. In this
work, we present a community-sourcing annota-
tion framework (CSAF) with the goal to reduce the
cost for recruitment and also training of annotators.
A prototype system of CSAF is implemented as a
testbed, with a simple annotation editor as a refer-
ence implementation. The prototype system will be
released to the public.

There is a much room for improvement in the
framework and the prototype system. For example,
the format of annotation is not yet specified, and it
is currently the organizers responsibility to prepare

a pair of TS and AE that can work with each other.
The way of negotiation for recruitment and the re-
warding system are also not yet specified. We plan
to keep developing CSAF, and hope this position pa-
per to facilitate discussions and collaborations.

Acknowledgments

This work was supported by the “Integrated
Database Project” funded by the Ministry of Edu-
cation, Culture, Sports, Science and Technology of
Japan.

References

Olivia Buzek, Philip Resnik, and Benjamin B. Beder-
son. 2010. Error driven paraphrase annotation using
mechanical turk. InProceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk, CSLDAMT
’10, pages 217–221, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Chris Callison-Burch and Mark Dredze. 2010. Creating
speech and language data with amazon’s mechanical
turk. In Proceedings of the NAACL HLT 2010 Work-
shop on Creating Speech and Language Data with
Amazon’s Mechanical Turk, CSLDAMT ’10, pages 1–
12, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Nancy Ide, Collin Baker, Christiane Fellbaum, and Re-
becca Passonneau. 2010. The manually annotated
sub-corpus: A community resource for and by the peo-
ple. InProceedings of the ACL 2010 Conference Short
Papers.

Greg Little, Lydia B. Chilton, Max Goldman, and
Robert C. Miller. 2009. Turkit: tools for iterative
tasks on mechanical turk. InProceedings of the ACM
SIGKDD Workshop on Human Computation, HCOMP
’09, pages 29–30, New York, NY, USA. ACM.

156


