
Proceedings of the 6th Linguistic Annotation Workshop, pages 49–56,
Jeju, Republic of Korea, 12-13 July 2012. c©2012 Association for Computational Linguistics

Intra-Chunk Dependency Annotation: Expanding Hindi Inter-Chunk

Annotated Treebank

Prudhvi Kosaraju Bharat Ram Ambati
Intl. Institute of Info. Technology Intl. Institute of Info. Technology

Hyderabad, India Hyderabad, India

prudhvi.kosaraju@research.iii

t.ac.in

ambati@research.iiit.ac.in

Samar Husain Dipti Misra Sharma

 Univ. of Potsdam Intl. Institute of Info. Technology

Potsdam, Germany Hyderabad,India

husain@uni-potsdam.de dipti@iiit.ac.in

Rajeev Sangal

Intl. Institute of Info. Technology

Hyderabad, India

sangal@mail.iiit.ac.in

Abstract

We present two approaches (rule-based and
statistical) for automatically annotating

intra-chunk dependencies in Hindi. The

intra-chunk dependencies are added to the
dependency trees for Hindi which are

already annotated with inter-chunk

dependencies. Thus, the intra-chunk
annotator finally provides a fully parsed

dependency tree for a Hindi sentence. In

this paper, we first describe the guidelines

for marking intra-chunk dependency
relations. Although the guidelines are for

Hindi, they can easily be extended to other

Indian languages. These guidelines are
used for framing the rules in the rule-based

approach. For the statistical approach, we

use MaltParser, a data driven parser. A part
of the ICON 2010 tools contest data for

Hindi is used for training and testing the

MaltParser. The same set is used for testing

the rule-based approach.

1 Introduction

Treebanks are corpora in which each sentence
pairs with a parse tree. These are linguistic

resources in which the morphological, syntactic

and lexical information for each sentence has been

explicitly marked. Some notable efforts in this

direction are the Penn Tree Bank (Marcus et al.,
1993) for English and the Prague

Dependency Bank (Hajicova, 1998) for

Czech. Lack of such treebanks has been a major
bottleneck in various efforts in advance research

and development of NLP tools and applications for

Indian languages.
Treebanks can be created manually or semi-

automatically. Manual creation of treebank is a

costly task both in terms of money and time. The
annotators follow a set of prescribed guidelines for

the annotation task. Semi-automatic creation of

treebank involves first running of tools/parsers and
then manual correction of errors. An accurate

annotating parser/tool saves cost and time for both

the annotation as well as the validation task.
A multi-layered Hindi treebank is in the process

of being created (Bhatt et al., 2009). Dependency

treebank forms the first layer in this annotation. To
save annotation effort, manual annotation of the

dependency relations for Hindi dependency

treebank is carried at the inter-chunk level. The
intra-chunk relations are marked automatically.

The focus of this paper is the task of automatically

marking intra-chunk relations. We present both a
rule-based and a statistical approach for this

expansion process. We call this process

‘expansion’ since the intra-chunk dependencies are
made explicit by removing the chunk

49

encapsulation; one could visualize this as

expanding the chunk into sub-trees. The rest of the
paper is organized as follows. Sections 2 & 3 give

an overview of Hindi treebank and the steps

involved in its development. Section 4 describes
the guidelines for annotating intra-chunk

dependencies. Section 5 shows our approach to

building an automatic intra-chunk annotator.
Section 6 talks about issues with a couple of

dependency relations and how these are handled by

the automatic annotator. We conclude in section 7
and present future work in Section 8.

2 Hindi Dependency Treebank

A multi-layered and multi-representational

Treebank for Hindi (Bhatt et al., 2009; Xia et al.,

2009) is currently being developed. The treebank
will have dependency relations, verb-arguments

(PropBank, Palmer et al., 2005) and phrase

structure (PS) representations. The dependency
treebank contains information encoded at the

morpho-syntactic (morphological, part-of-speech

and chunk information) and syntactico-semantic
(dependency) levels The manual annotation of the

dependency treebank entails the annotation of part

of speech (POS) tag, morphological information
for each word, identification of chunk boundary

(and chunk tag) and marking inter-chunk

dependency relation between word pairs.
The intra-chunk dependencies are left

unannotated. The decision to leave intra-chunk

relations unmarked is based on the understanding
that their identification is quite deterministic and

can be automatically annotated with high degree of

accuracy. The notion of chunk is, in essence, used
as a device for modularity in the process of

annotation. The relations among the words in a

chunk are not marked in the initial phase of
annotation and hence allow us to ignore local

details while building the sentence level

dependency tree. An example of inter-chunk
dependency annotation is given in Figure 1 below.

Note how the two chunks (the noun chunk, NP and

the verb chunk, VGF) are related to each other
using the attribute 'drel' (dependency relation), also

note that the relations between the chunk-internal

words (e.g. and in the NP chunk) are

left unspecified. The annotation is represented in

SSF
1

Sentence1: ई

 niilii kitaab gir gaii
 ‘blue’ ‘book’ ‘fall’ ’go-perf’
 The blue book fell down

1 ((NP <name=’NP’ drel=’k1:VGF’>

1.1 niilii JJ <name='niilii'>

1.2 kitaab NN <name='kitaab'>

))

2 ((VGF <name=’VGF’>

2.1 gir VM <name='gir'>

2.2 gaii VAUX <name='gaii'>

))

Figure 1: SSF representation

Figure 2 shows the schematic dependency tree for
sentence 1.

 gir
 k1

 kitaab

Figure 2: Inter-chunk dependency tree of sentence1

The inter-chunk dependency annotation is done
following the dependency guidelines in Bharati et

al., (2009) that uses a dependency framework

inspired by Panini's grammar of Sanskrit (see,
Begum et al., 2008 for more details). Subsequent

to inter-chunk dependency annotation, intra-chunk

annotation is done automatically following the
guidelines described in this paper.

The final treebank for Hindi would have other

layers annotation such as Propbank and Phrase
structure. The conversion to phrase structure

depends on the expanded version of the treebank

(i.e. trees with inter-chunk, as well as, intra-chunk
relations marked).Hence, it is important to have

high quality complete dependency structure for

each sentence, and since inter-chunk annotation is
manual, this implies that the process of automatic

expansion (i.e. the task of making intra-chunk

relations explicit) should be very accurate.

1 SSF: Shakti Standard Format http:// web2py.iiit.ac.in/
publications/default/download/techreport.pdf.c08a8d0a-50ed-
4837-8ff0-93d099efbccb.pdf

50

1 niilii JJ <fs drel='nmod__adj:kitaab' chunkType='child:NP' name='niilii '>

2 kitaab NN <fs drel='k1:gir' name='kitaab' chunkId='NP' chunkType='head:NP'>

3 gir VM <fs name='gir' chunkId='VGF' chunkType='head:VGF'>

4 gaii VAUX <fs drel='lwg__aux:gir' name='gaii' chunkType='child:VGF'>

Figure 3: SSF representation of complete dependency tree

 gir<chunkId=’VGF’ chunkType=head:VGF>

 <chunkId=’NP’ chunkType=head:NP> kitaab gaii <chunkType=child:VGF>

 <chunkType: child:NP> niilii

Figure 4: Complete dependency tree of sentence 1

3 Intra-Chunk Annotation

Showing intra-chunk relations and thereby a fully

parsed dependency tree implies chunk removal

from the inter-chunk dependency annotation. Once
the intra-chunk dependencies are made explicit,

every sentential token becomes part of the

dependency tree. However, it can be useful to
retain the chunk information which has been

manually validated for inter-chunk dependency

annotation. Indeed, previous parsing experiments
for Hindi during the ICON2010 tools contest

(Husain et al., 2010) have shown that this

information consistently improves performance.
Thus, during the process of expansion, we

introduce two attribute-value pairs for this purpose.

This way we maintain chunk information after
making the intra-chunk relations explicit. This

makes it possible for the users of the treebank to

select the chunk head and ignore the intra-chunk
information if so desired. Alternatively, it is also

possible to access the complete dependency tree.

In Figure 1, the dependency relations are
marked between chunk heads, i.e. ‘kitaab’ is seen

related to ‘gir’ with a ‘k1’ relation. 'niilii' and 'gaii',

on the other hand, are not shown related to any
other word. Also note that the chunk boundaries

are shown using brackets. Once we show all the

tokens as part of the dependency tree, this

information goes in the feature structure of

individual nodes. This can be seen in figure 3.
The attribute, ‘chunkId’ and ‘chunkType’

substitute the bracketing, as well as show the
chunk members in the role of head and child. The
head node has ‘chunkId’ that gives it a unique
chunk name; note that this is same as the value of
‘name’ for the original chunk. When multiple
chunks with same name occur in a sentence, we
append a number along with the name. For
example, if there are multiple NP’s then the chunk
ids will be NP, NP2 and NP3 etc. In addition, all
the chunk members have ‘chunkType’ that gives
their membership type. In the example (figure 3),
the adjective ‘nIlI’ modifies the head noun
‘kiwAba’ with ‘nmod__adj’ relation. The chunk
membership is also shown for both these tokens,
nIlI is the ‘child of the chunk with chunkId=NP’
shown by chunkType. kiwAba on the other hand is
the ‘head of the chunk with chunkId=NP’, it has
both chunkType and chunkId.

4 Intra-Chunk Dependency Guidelines

Intra-chunk labels are used when the dependencies
within a chunk are made explicit. There are a total
of 12 major intra-chunk tags. The tags are of three
types: (a) normal dependencies, eg. nmod__adj,
jjmod__intf, etc., (b) local word group
dependencies(lwg), eg. lwg__psp, lwg__vaux, etc.,
and (c) linking lwg dependencies, eg. lwg_cont.
Local word dependencies themselves can be

51

broadly classified into two types, one that handles
post-positions and auxiliary verbs and the other
that handles negations, particles, etc. Following
guidelines are used to annotate the intra-chunk
dependencies.

1. nmod__adj: Various types of adjectival
modifications are shown using this label. An
adjective modifying a head noun is one such
instance. The label also incorporates various
other modifications such as a demonstrative or
a quantifier modifying a noun.

 Chunk:

NP ((niilii_JJ kitaab_NN))
‘blue ‘ ‘book’

niilii
 nmod__adj

kitaab

In the above example NP is the chunk with words
‘niilii’ (blue) and ‘kitaab’ (book) with POS tags JJ
and NN respectively.

2. lwg__psp: This relation is used to attach
post-positions/auxiliaries associated with the
noun or a verb. ‘lwg’ in the label name stands
for local word grouping and associates all the
postpositions with the head noun. These
relations are distinct from normal dependency
relations as they are more morphological in
nature.

Chunk:
NP((abhishek_NNP ne_PSP))

 ’abhishek’ ’ERG’

abhishek

 lwg__psp
ne

3. lwg__neg: This relation is used for negative
particles. Negative particles are normally

grouped with a noun/verb. Like postpositions

or auxiliaries these are also classified as ‘lwg’.

Chunk:

VGF((nahim_NEG aayegaa_VM))

 ‘Never’ ‘Come’
nahim

 lwg__neg

aayega

4. lwg__vaux: This relation is used when an
auxiliary verb modifies the main verb.

Chunk:
VGF((ho_VM gayaa_VAUX))

 ‘be’ ‘go-perf’

ho

 lwg__vaux
gayaa

5. jjmod_intf : This relation is used when an
adjectival intensifier modifies an adjective.

 Chunk:

NP((bahut_INTF tez_JJ jaanvar_NN))

 ‘very’ ‘fast’ ‘animal’

 bahut

 nmod__adj

 tez
 jjmod__intf

 jaanvar

6. pof__redup: This relation is used when there is
reduplication inside a chunk. The POS tag will
in almost all the cases help us identify such
instances. We see this in the example below.

Chunk:
RBP((dhiire_RB dhiire_RDP))

 ‘slowly’ ‘slowly’

dhiire

 pof__redup

dhiire

7. pof__cn: This relation is used for relating the
components within a compound noun. Like
‘pof__redup’ identifying such cases will be
straight-forward. The POS will provide us with
the relevant information

Chunk:

 NP((raamabachhan_NNPC yaadav_NNP))

 ‘rambachhan’ ‘yadav’

 raamabachhan

 pof__cn

 yaadav

8. pof__cv : This relation is used for compound
verbs. Like the previous ‘pof’ labels, POS

52

information will be sufficient to identify this
relation.

Chunk: उठ ठ
VGF((uTha_VMC baiThaa_VM))

 ‘rise’ ‘sit-perf’

uTha

 pof__cv

baiThaa

9. rsym: Punctuation marks and symbols like ‘-‘
should be attached to the head of the chunk
with relation rsym.

10. lwg__rp: This relation is used when a particle
modifies some chunk head.

Chunk:
 VGF((jaanaa_VM bhi_RP tha_VAUX))

 ‘go-inf’ ‘also’ ‘perf’

 jaanaa

 lwg__rp lwg__vaux

 bhi tha

11. lwg__uh: This relation is used when
interjection modifies other words.

Chunk : हे भगवान

NP((hei_INJ bhagvaan_NN))

 ‘Oh!’ ‘God’

bhagvaan

 lwg__uh

hei

12. lwg__cont: We use this label to show that a
group of lexical items inside a chunk together
perform certain function. In such cases, we do
not commit on the dependencies between these
elements. We see this with complex post-
positions associated with a noun/verb or with
the auxiliaries of a verb. ‘cont’ stands for
continue.

Chunk:
 VGF((jaa_VM sakataa_VAUX hai_VAUX))
 ‘go’ ‘can’ ‘be-pres’

 jaa

 lwg__vaux

sakataa

 lwg__cont
 hai

5 Intra-Chunk Dependency Annotator

In this section we discuss our approach to building

an intra-chunk dependency annotator/parser for
Hindi. We describe three experiments; the first two

are rule-based and statistical based, while the third

is hybrid in a sense that it adds on a heuristic based
post-processing component on top of the statistical

technique. We evaluate about approaches in

section 5.3 after describing rule-based and
statistical approaches in sections 5.1 and 5.2

respectively.

5.1 Rule-Based Dependency Annotator

The rule-based approach identifies the modifier-

modified (parent–child) relationship inside a chunk

with the help of the rules provided in a rule
template. The inter-chunk dependency annotated

data is run through a head computation module (a

rule-based tool), which marks the head of each
chunk. After getting the heads for each chunk, we

get the intra-chunk relations using a rule-base that

has been manually created. The design of the rule
template allows capturing all the information in a

SSF representation. The rule template is a 5-

columned table with each row representing a rule.
Table1 shows a sample rule written using the rule

template. The five columns are
1. Chunk Name: Specifies the name of the chunk
for which this expansion rule can be applied.
2. Parent Constraints: Lexical item which
satisfies these constraints will be identified as the
parent. Constraints are designed capturing POS,
chunk, word and morphological features. In Table1
the constraint on the parent is specified using its
POS category (NN: common noun).
3. Child Constraints: Lexical item satisfying
these constraints becomes the child. Constraints
are designed similar to the parent constraints. In
Table 1 the constraint on the child is specified
using its POS category (JJ:adjective).

53

Table 1: Sample rule

4. Contextual Constraints: Lexical items
satisfying constraints 1, 2 &3 become parent and
child in a chunk. One can access the previous and
next words of parent and child by applying
arithmetic on posn attribute. Information about the
lexical item can be accessed by applying attributes
like POS (for part of speech tag), CAT (category),
and LEMMA (for root form of lexical item).
 Here an example of a contextual constraint taken
from Table1:

 posn(parent) > posn(child)

Parent and child constraint look at the properties of
word but there are cases where the constraint needs
to be formed beyond word level information.
These constraints involve capturing of word order
information. In such cases we use the operator ‘>’.
It can be used only when ‘posn’ attribute is used.
Here the constraint means that this rule is
applicable only when child occurs before parent
inside the chunk.

 One can also specify constraints in form of:

 POS__posn(parent) - 1 == NN

 Here the Part of Speech of word preceding
parent is accessed and compared with NN.
posn(parent) – 1 retrieves the position of preceding

word of parent and POS__ on this position gives us
the Part of Speech tag of that lexical item.
5. Dependency Relation: If all the constraints are
satisfied, then the dependency relation from this
column is marked on the parent-child arc.

5.2 Sub-tree Parsing using MaltParser

We use MaltParser (Nivre et al., 2007) as an
alternative method to identify the intra-chunk

relations. It is well known in the literature that

transition-based dependency parsing techniques
(e.g. Nivre, 2003) work best for marking short

distance dependencies in a sentence. As must be

clear by now, intra-chunk relations are in fact short
distance dependencies; and we basically use

MaltParser to predict the internal structure of a

chunk. So instead of using it to parse a sentence,
we parse individual chunks. Each chunk is treated

as a sub-tree. The training data contains sub-trees

with intra-chunk relations marked between chunk-
internal nodes, the head of the chunk becomes the

root node of the sub-tree. The MaltParser is trained
on these sub-trees and a model is created. We run

the test data on this model for marking intra-chunk

dependencies among the sub-trees and then post-
process them to obtain complete dependency tree

for the data.

5.3 Results

 In this section we evaluate the three approaches
that were explored to build the automatic intra-

chunk annotator. A total of 320 sentences extracted

from the ICON2010 tools contest data for Hindi
(Husain et al., 2010) have been manually annotated

for intra-chunk relations. Table 2 shows the

statistics for this gold data that has been used for
evaluation (and training).

Data Number of Sentences

Training 192

Development 64

Testing 64

 Table 2: Gold data

Rule-Based Approach: As discussed in section

5.1, the rule-based approach marks dependency

relation mainly by using POS patterns in a chunk.
Table 3 shows the result when evaluated for the

test data.

LAS 97.89

UAS 98.50

LS 98.38

Table 3: Parsing accuracies
2
 obtained using rule-

based tool

Statistical/MaltParser-based approach: Table 2

shows the division of data into training,
development and test. The experimentation

procedure is similar to the one used in Kosaraju et

al., (2010). We prepared a list of features with the
aim of getting a better parse. A simple forward

selector is used to prune the list and prepare the

best feature template. The selector’s task is to
include the feature into feature template if this

2 Parsing Accuracies- LAS: labeled attachment score, UAS:
Unlabeled attachment score, LS: label score.

Chunk

Name

Parent

Constraints

Child

Constraints

Contextual Constraints Dep.

Relation

NP POS == NN POS == JJ posn(parent) > posn(child); nmod__adj

54

template improves the LAS score over the previous

template. These feature optimization experiments
were conducted over 5-fold cross-validation of the

combined training and development data. The best

feature template was used to get the final
accuracies for the test data. Table 4 shows results

on the basic template, template capturing POS

patterns and best template that included POS,
lemma and other information present in the SSF

data.

 LAS UAS LS

Base line 95.70 97.07 96.80

POS template 96.80 97.62 97.80

Best template 97.35 98.26 97.90

Table 4: Parsing accuracies using MaltParser

The POS-based template scores can be

compared with the results obtained from the rule-

based scores (Table 3) since the rules are formed
using POS patterns.

 We see that both rule-based and statistical

approach give very high accuracies on the test
data. These results validate our initial intuition that

identification of intra-chunk relations is quite

deterministic. These results also support our
annotation design choice of leaving the annotation

of intra-chunk relations out of the initial manual

phase. Table 5 shows percentage error contribution
of some major tags to total Error of their respective

systems. Table 6 shows precision (P) and recall

(R) of some major tags.

Depn.

Relation

Rule-based

appraoch

Statistical

appraoch

pof__cn 28.33 26.7

nmod__adj 13.3 13.3

lwg__rp 6.6 0

rsym 16.7 20.0

Table 5: Percentage Contribution of error by
each tag to the total error of the system

Hybrid approach: Table 5 & 6 shows error

analysis of both approaches. For some tags like
nmod__adj we see the rule-based appraoch shows

better results. Therefore we decided to include
rules as a post-processing step in the statistical

approach.

Depn.

Relation

Rule-based Statistical

P R P R

pof__cn 95.63 94.50 91.07

92.73

nmod__adj 96.33 98.33 95.28 98.06

lwg__rp 97.62 95.35 100 100

rsym 96.71 97.63 92.41 96.05

Table 6: Error analysis of both methods

We made the statistical approach hybrid by

post-processing the output of the MaltParser. This
involves correction of some dependency relations

based on heuristics framed from the rules of the

rule-based tool. Heuristics are formed for those
dependency relations that have higher recall in the

rule-based approach compared to the statistical

approach. The modification resulted in
improvement in parsing accuracies. This can be

seen in Table 7.

Approach LAS UAS LS

Rule-based 97.89 98.50 98.38

Statistical 97.35 98.26 97.90

Hybrid 98.17 98.81 98.63

Table 7: Parsing accuracies

6 Special Cases

The neat division between the task of inter-chunk

parsing and intra-chunk parsing is based on the
following assumption: 'Chunks are self contained

units. Intra-chunk dependencies are chunk internal

and do not span outside a chunk.' However, there
are two special cases where this constraint does not

hold, i.e. in these two cases a chunk internal

element that is not the head of the chunk has a
relation with a lexical item outside its chunk and

therefore, these two relations have to be handled

separately. These are related to punctuation and co-
ordination.

1. rsym__eos: The EOS (end-of-sentence)

marker occurs in the last chunk of the sentence. It
attaches to the head of the sentence (which may lie

in the same chunk or another chunk) with this

relation.
2. lwg__psp: As noted in section 4, a PSP

(postposition) attaches to the head of its chunk

with a lwg__psp relation. However, if the right
most child of a CCP (conjunction chunk) is a

55

nominal (NP or VGNN), one needs to attach the

PSP of this nominal child to the head of the CCP
during expansion. If there are multiple PSP then

the first PSP gets lwg__psp and the following gets

lwg__cont relation. Take the following example

NP(raama_NNP) CCP(aur_CC) NP(siitaa_NNP

‘ram’ ‘and’ ‘sita’

ne_PSP)

 ‘ERG’

 In this case the PSP connects to the CC with
the relation lwg__psp. The subtree after expansion

is shown in figure 6.

aur
 ccof ccof lwg__psp

 raama ne

sita

Figure 6: Expanded sub-tree with PSP connected
with CC.

7 Conclusion

 In this paper we described annotation guidelines
for marking intra-chunk dependency relations. We

then went on to show that these relations can be

automatically identified with high accuracy. This
was illustrated using (1) a rule-based approach that

mainly used intra-chunk POS patterns, and (2) a

statistical approach using MaltParser. We also
showed that these two systems can be combined

together to achieve even higher accuracy.

From the report of error analysis, it is been
shown that there are certain relations that are not

being marked successfully. This is good news

because then one can make very targeted manual
corrections after the automatic tool is run.

Acknowledgments

We would like to thank Karthik Gali for his initial

efforts in building the annotator. The work

reported in this paper is supported by the NSF
grant (Award Number: CNS 0751202; CFDA

Number: 47.070).

References

A. Bharati, D. M. Sharma S. Husain, L. Bai, R. Begam

and R. Sangal. 2009. AnnCorra: TreeBanks for

Indian Languages, Guidelines for Annotating Hindi

TreeBank (version–2.0).

http://ltrc.iiit.ac.in/MachineTrans/research/tb/DSguid

elines/DS-guidelines-ver2-28-05-09.pdf

E. Hajicova. 1998. Prague Dependency Treebank: From

Analytic to Tectogrammatical Annotation. In Proc.
TSD’98.

F. Xia, O. Rambow, R. Bhatt, M. Palmer, and D. M.

Sharma. 2009. Towards a Multi-Representational

Treebank. In Proceedings of the 7th International

Workshop on Treebanks and Linguistic Theories

(TLT 2009), Groningen, Netherlands.

J. Nivre, An Efficient Algorithm for Projective

Dependency Parsing. In Proceedings of the 8th
International Workshop on Parsing Technologies

(IWPT 03), Nancy, France, 23-25 April 2003, pp.

149-160.

J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S.

Kübler, S. Marinov and E Marsi. 2007. MaltParser:

A language-independent system for data-driven

dependency parsing. Natural Language Engineering,

13(2), 95-135.

M. Marcus, B. Santorini, and M.A. Marcinkiewicz.

1993. Building a large annotated corpus of English :

The Penn Treebank. Computational Linguistics 1993.

P. Kosaraju, S. R. Kesidi, V. B. R. Ainavolu and P.

Kukkadapu. 2010. Experiments on Indian Language

Dependency Parsing. In Proceedings of the ICON10

NLP Tools Contest: Indian Language Dependency

Parsing.

R. Begum, S. Husain, A. Dhwaj, D. M. Sharma, L. Bai,

and R. Sangal. 2008. Dependency annotation scheme

for Indian languages. In Proceedings of IJCNLP-

2008.

R. Bhatt, B. Narasimhan, M. Palmer, O. Rambow, D.

M. Sharma and F. Xia. 2009. MultiRepresentational

and Multi-Layered Treebank for Hindi/Urdu. In

Proc. of the Third Linguistic Annotation Workshop at
47th ACL and 4th IJCNLP.

56

