Disorders of Blood Cells & Blood Coagulation

CBC

- WBC count
- RBC count
- WBC differential
- Hemoglobin (HGB)
- Hematocrit (HCT)
 - % of volume occupied by RBCs

- Red cell indices
 - Mean cell volume (MCV)
 - average size of RBC
 - Mean cell hemoglobin (MCH)
 - average amount of hemoglobin in an average RBC
 - Mean cell hemoglobin concentration (MCHC)
 - average concentration of hemoglobin/unit of volume in an average RBC
Major Determinants of Disease

- Blood cells have a short life span and require continuous replacement
- Most diseases of blood cells feature too many or too few cells because of an imbalance in the production or loss of cells
- Hemoglobin must be properly assembled and produced for effective O₂ transport
- While blood cells are critical in the defense against infection
- Diseases of lymphoid cells differ importantly from diseases of myeloid cells
- Malignancies of myeloid cells are associated with circulation of malignant cells in the blood (leukemia)
- Malignancies of lymphoid cells are associated with malignant cells in the blood (leukemia) or masses in lymph nodes and other tissue (lymphoma)
- Most diseases that affect platelets cause a low platelet count

Anemia

- Abnormally low hemoglobin
- Caused by decreased numbers of RBCs, decreased amount of hemoglobin, both
- Sign of an underlying condition
- Diagnose CBC

Hemorrhage

- Loss of O₂ carrying capacity
- Loss of iron
- Most common cause of iron deficiency anemia is chronic blood loss, abnormal menstrual bleeding, intestinal bleeding
- IRON DEFICIENCY ANEMIA IN A MAN OR IN A POST-MENOPAUSAL WOMAN IS TO BE CONSIDERED BLEEDING FROM GI CANCER UNTIL PROVEN OTHERWISE

Hemolytic Anemia

- Associated with active, hypercellular bone marrow, high reticulocytes, increased LDH, low blood haptoglobin, increased bilirubin
- Genetic & non-genetic causes

Hereditary Spherocytosis

- Disorder of a structural protein in the cell membrane
- Results in splenic hemolysis
G6PD Deficiency
- Lacking enzyme that protects the RBC from oxidation

Sickle Cell Anemia
- Hemoglobin S
- Sickling precipitated by:
 - low O₂ tension
 - infections
 - dehydration
 - acidosis

Thalassemias
- Molecularly correct but not enough produced
- Several varieties
 - thalassemia major is most severe
 - most common type is a severe microcytic hypochromic anemia
 - stimulates iron absorption
 - can lead to hemachromatosis

Non-Genetic Hemolytic Anemia
- Immune hemolytic anemia
 - antibodies directed against RBC antigens
- Mechanical hemolytic anemia
 - hemolyzed as they pass through mechanical devices such as artificial heart valves
- Associated with malaria

Iron Deficiency Anemia
- About 80% of iron is in hemoglobin with the rest stored as ferritin & hemosiderin
- Plasma ferritin levels vary directly with the amount of ferritin in bone marrow
- Transferrin transports iron
 - TIBC measures total transferrin
 - % saturation of TIBC is measuring how much iron is actually bound to the transferrin
- TIBC is high
- Plasma iron is low
- % saturation is low
- Most common cause is chronic blood loss
 - menstrual abnormalities
 - GI bleeding
Macrocytic Anemia

- aka megaloblastic anemia
- Due to vitamin B₁₂ or folic acid deficiencies
 - needed for DNA synthesis
- Hyperactive, hypercellular bone marrow
- Most common cause is defective intestinal absorption
 - intrinsic factor
 - gastrectomy
 - surgical resection of ileum
 - inflammatory bowel disease
- Pernicious anemia
 - autoimmune disease
 - associated with chronic atrophic gastritis

Aplastic Anemia

- Failure to produce all blood cells
- Idiopathic
- Results in pallor & fatigue
- Thrombocytopenia
- Low WBC count
- Hypocellular bone marrow

Myelophthisis

- Bone marrow replaced by tumor or fibrosis
- Fibrosis usually due to radiation but could be a manifestation of a myeloproliferative syndrome
Polycythemia
- Too many RBCs
- Relative
 - low plasma volume such as in dehydration
 - "stress polycythemia"
- Absolute
 - primary
 - polycythemia vera
 - secondary
 - due to
 - hypoxia from chronic lung disease
 - high altitude

Leukopenia
- Low WBC count
- Caused by
 - hypersplenism
 - autoimmune disease
 - sepsis
 - bone marrow problem
- Agranulocytosis
 - severe neutropenia
 - caused mostly by drugs

Leukocytosis
- Too many WBCs
- Can be reactive or malignant

Leukemias
- Acute
 - immature cells
 - aggressive
 - short course
 - abrupt onset
 - symptoms include
 - anemia
 - infections
 - bleeding
 - bone pain
 - enlarged lymph nodes
- Chronic
 - mature cells
 - less aggressive
 - longer course
 - insidious onset
 - symptoms include
 - fatigue
 - pallor
 - night sweats
 - infections
 - splenomegaly
 - hepatomegaly

Reactive Leukocytosis
- Neutrophilia
 - bacterial infections
 - leukemoid reaction if count > 50,000
- Lymphocytosis
 - viral infections
- Eosinophilia
 - allergic reactions or parasitic infections
- "Bands"
 - when demand is great
 - "shift to the left"
Infectious Mononucleosis
- Acute, self-limited
- Atypical lymphocytes
- Epstein-Barr virus
 - infects B cells
 - heterophile antibodies
- Signs/symptoms
 - fever
 - sore throat
 - enlarged lymph nodes
- Monospot test

Monospot Test
- Screen for infectious mononucleosis
- Sensitive and specific

Lymph Node Response
- Infection
- Malignancy
- Immune reactions
- Autoimmune disease

Lymphadenopathy
- Enlarged nodes
 - tender = infectious
 - non-tender = malignant
- Lymphadenitis
 - lymph node is infected
- Reactive hyperplasia
 - acute
 - dental infections, sore throat, genital infections
 - chronic
 - TB

Acute Lymphocytic Leukemia
- ALL
- Uncommon
 - mostly in children & young adults
- Immature B cells
- Abrupt onset
- Results in
 - bone pain
 - lymphadenopathy
 - hepatosplenomegaly

Chronic Lymphocytic Leukemia
- CLL
- B cells
- About 1/3 of all leukemias
- Difficult to distinguish from small cell lymphocytic lymphoma
- Mostly in adults
- Slow developing
Plasma Cell Dyscrasias

- Activated B cells
- Make too much of a particular antibody
- On electrophoresis, appears as a dark band called an M-spike
- Light chains can pass through glomerulus & into urine
 - Bence-Jones proteins

Multiple Myeloma

- Malignant cells appear as nodular masses in bone marrow

Multiple Myeloma

- Malignant cells appear as nodular masses in bone marrow
- "punched out" lesions in skull & spine
Multiple Myeloma

- Malignant cells appear as nodular masses in bone marrow
- "punched out" lesions in skull & spine
- Hypogammaglobulinemia
- Susceptible to infections
- Elderly most commonly affected

Lymphomas

- Neoplasms of lymphocytes or lymphoblasts that grow as nodular masses usually in lymph nodes

Hodgkin Lymphoma

- EBV
- Characteristic cell is Reed-Sternberg (RS) cell
- Most common neoplasm between 10-30 yrs old
- Usually have poor T cell immunity
- Arises in a single lymph node or chain of nodes & spreads in an orderly manner
- Rarely involves anything but lymph nodes

Non-Hodgkin Lymphomas

- B cells
- Aggressive
- Usually in advanced stage when diagnosed
- 1/3 arise in organs other than lymph nodes
- Tend to spread widely
Follicular Lymphoma
- About 50%
- Less aggressive
- Painless, enlarged lymph nodes

Diffuse Lymphomas
- About 50%
- No follicles
- Usually over 60 except for childhood lymphomas & those in AIDS
- Appear quickly & grow rapidly
- Lethal unless treated

Acute Myelocytic Leukemia
- AML
- Myeloblasts
- Usually in middle age & older adults
- Sudden onset
- Marrow failure
 - anemia
 - infection
 - bleeding
 - bone pain
 - lymphadenopathy
 - hepatosplenomegaly

Chronic Myeloproliferative Disorders
- 2 features occur to some degree in each disorder
 - Myelofibrosis
 - bone marrow replaced by fibrous tissue
 - due to fibrogenic factors released by megakaryocytes
 - Extramedullary hematopoiesis
 - blood cell production outside of the marrow

Chronic Myelocytic Leukemia
- CML
- Granulocytes
- Middle-aged adults usually
- About 15% of adult leukemias
- Slow onset but progressively worsens
 - > 100,000 cells
 - May end in a “blast crisis”
Polycythemia Vera
- Red cell precursors
- Middle-aged adults
- Appears slowly
- HCT > 60%
- High WBC count & platelet count
- May see giant platelets

Malignant Thrombocythemia
- aka essential thrombocythemia
- Rare
- 500,000/ml or greater
- Thrombosis & hemorrhage
- Survival is about 10-15 years

Myeloid Metaplasia with Myelofibrosis
- Marrow fibrosis predominates
- Fibrogenic factors
- Older adults
- Extramedullary hematopoiesis
- Increased basophils
- Thrombosis & hemorrhage
- May end in "blast crisis"
Major Determinants of Disease

- Excessive bleeding is always associated with at least 1 of 3 factors:
 - fragile blood vessels
 - low platelet count or defective platelet function
 - decreased coagulation factor activity
- Bleeding related to platelet disorders usually occurs from capillary-sized blood vessels
- Bleeding related to coagulation factors usually occurs from larger vessels
- Most coagulation factors are proteins made by the liver, & severe liver disease is often accompanied by excessive bleeding
- Intravascular clotting is always abnormal & secondary to another disease

Hemorrhage

- Usually due to vascular injury
- If excessive, called hemorrhagic diathesis
- Platelet problems or fragile small blood vessels usually present as petechiae, nosebleed, hematuria, or excessive menses
- Coagulation factor deficiencies usually bleed into deep tissues, joints, & body spaces

Fragile Small Blood Vessels

- Usually trauma
- Seen in elderly
- Autoimmune vasculitis
- Scurvy
Thrombocytopenia

- Characterized by petechiae in skin or mucous membranes
- 130,000 – 400,000/ml is normal
- No concern until < 100,000/ml
- No excessive bleeding until < 50,000/ml
- Spontaneous hemorrhage at 20,000/ml
- Abnormal bleeding time
- Causes include:
 - primary bone marrow disorder
 - toxicity due to drugs
 - nutritional deficiencies
 - hypersplenism

Immune Thrombocytopenic Purpura

- ITP
- Common cause of low platelet count
- Platelets destroyed by immune system
 - covered with antibodies & removed by spleen
- Insidious onset
- Usually presents as:
 - easy bruising
 - epistaxis
 - bleeding gums
 - unusual bleeding after minor trauma
 - subungual or conjunctival petechiae

Classic Hemophilia

- aka Hemophilia A
- Factor VIII deficiency
- X linked
- Most common serious inherited coagulation disorder
- Normal bleeding time, PT, & platelet count
- PTT is prolonged

von Willebrand Disease

- Deficiency of von Willebrand factor (vWF)
 - made in endothelial cells & megakaryocytes
- One of the most common inherited coagulation disorders
- Prolonged bleeding time
- Normal platelet count
- Platelets cannot adhere to endothelium well

Severe Christmas Disease

- aka Hemophilia B
- Factor IX deficiency
- Named for 1st patient it was identified in
- X linked

Disseminated Intravascular Coagulation

- DIC
- Clotting inside vessels
- May cause obstruction in smaller vessels
- Eventually begin to bleed due to consumption of coagulation factors
 - consumptive coagulopathy
- Not a primary disease
- Anemia, thrombosis, & hemorrhage
- Initiated by:
 - obstetrical complications
 - toxemia
 - abruptio placenta
 - infections
 - gram-negative sepsis
 - malaria
 - neoplasms
 - tissue trauma
 - crush injuries
 - burns
 - others
 - snakebite
 - heat stroke
Venous Thrombosis

- Usually due to local turbulence or endothelial injury
- Can be due to abnormalities of coagulation proteins
 - lupus anticoagulant
 - anti-phospholipid antibody
 - interferes with blood coagulation tests suggesting a deficit when there is not
 - suspect if PT or PTT is prolonged with no evidence of bleeding disorder
 - factor V Leiden
 - abnormal form of factor V
 - autosomal recessive