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Abstract
The capability index Cpk for a process, that produces parts with normally dis-
tributed characteristic X , is defined as Cpk = min(U −µ, µ−L)/(3σ) = (T − |µ−
ν|)/(3σ), where U and L are upper and lower specification limits for X , µ and σ
are process mean and standard deviation, and ν = (U + L)/2, T = (U − L)/2.
Using a sample X1, . . . , Xn of independent observations from N (µ, σ2) Chou et al.
(1990) (with clarification by Kushler and Hurley (1992)) showed how to get lower
confidence bounds for Cpk. Here we extend this methodology to cover the situation
where samples come in batches and the intra batch correlation reduces the amount
of independent information. In parallel we also apply this extension to the closely
related tolerance bounds or confidence bounds for quantiles. Introducing the sim-
ple trick of effective sample size these problems are linked quite successfully to
existing tables for tolerance bounds or Cpk confidence bounds. The basic idea is to
“approximate” the complicated data situation with an i.i.d. scenario with reduced
overall sample size. The approximation is anchored by analysis to the two extreme
situations where the within batch correlation is zero or one. For the in-between
cases the effective sample size is chosen on a simple heuristic basis, namely by
matching the variances of the sample mean under the batch effect model and its
i.i.d. approximation. The coverage properties of the resulting method, examined
by simulation, were found to be reasonably accurate near the extreme cases and
mildly conservative in-between.

AMS Classification: Primary 62F25, 62N10; Secondary 62E17
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Chapter 24

24.1 Introduction and Overview

It is assumed that we deal with data from a normal population N (µ, σ2) with
mean µ and standard deviation σ. For i.i.d. samples it has long been known how
to construct tolerance bounds or confidence bounds for normal p-quantiles xp+σzp

based on the noncentral t-distribution. The earliest reference we found was Jennett
and Welch (1939), but also see Johnson and Welch (1940), Owen (1968, 1985), and
Odeh and Owen (1980) for extensive tables.

Closely related to such quantiles is the process capability index Cpk, intro-
duced by Kane (1986), and defined as

Cpk = min
{
U − µ

3σ
,
µ− L

3σ

}
=

1
2 (U − L) − |µ− 1

2 (U + L)|
3σ

,

where U and L are given upper and lower product specification limits. Confidence
bounds for Cpk, again for the i.i.d. case, were given by Chou et. al (1990) with clar-
ification by Kushler and Hurley (1992). For a comprehensive overview of capability
indices see Kotz and Johnson (1993).

Often the data of a production process arrive in batches with significant
within batch correlation. A popular model for such batch data is {Xij , j =
1, . . . , ni, i = 1, . . . , B}, where B is the number of batches and ni is the size
of the ith batch. It is then assumed that Xij = µ + bi + eij , where bi is normal
with mean zero and variance σ2

b and eij is normal with mean zero and variance
σ2

e . The effects bi and {eij} are assumed to be mutually independent. Hence Xij

is normally distributed with mean µ and variance σ2 = σ2
b + σ2

e . The correlation
of two different observations within the same batch is ρ = σ2

b/(σ2
b + σ2

e) which can
range anywhere within [0, 1]. Under such a scenario one usually still wants to char-
acterize aspects of the overall N (µ, σ2) population and not of individual batches.
Hence it is desirable to extend the methodology for constructing tolerance bounds
or Cpk confidence bounds to such batch data.

Although this sampling model reflects greater realism of the industrial data
experience, it also makes it impossible to construct exact confidence bounds for
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2 CHAPTER 24.

xp and Cpk. For the latter we are aware of no attempts. For tolerance bounds
several attempts have been made, with various degrees of numerical complexity,
see Seeger and Thorsson (1972), Mee and Owen (1983), and Vangel (1995) who
also treats additional regression covariates.

Our intent here is to “reduce” the problem to the i.i.d. case by the sim-
ple device of effective sample size. As with other methods we can only hope for
achieved confidence levels that are approximate. The validity of this approximation
is checked via simulations and contrasted with the treatment that ignores batch
effects altogether. The appeal of this method is its conceptual simplicity and the
reduction to a methodology with available tables and that already is widely spread
in the industrial quality assurance practice.

We start out by giving the rationale for the effective sample size, which de-
pends on the within batch correlation ρ, and show how to estimate it in straight-
forward fashion. This is followed by confidence bound construction for xp, either
exactly or approximately, for the two extreme cases: (σe > 0, σb = 0) or ρ = 0
and (σe = 0, σb > 0) or ρ = 1. The resulting bounds are further simplified so that
they only differ in one parameter which can be identified with the effective sample
size N�. The cases between these two extremes can then be interpolated using the
effective sample size and using the existing tables from the i.i.d. case. This process
is repeated, but more from a testing perspective, for Cpk. For this latter case we
present some simulation results for validation and give a sample calculation using
a composite material strength data set.

24.2 Effective Sample Size and its Estimation

The extreme case (σe > 0, σb = 0) or ρ = 0 reduces the assumed batch data
structure to N = n1 + . . . + nB i.i.d. observations, i.e., the effective sample size
is N� = N . The other extreme case (σe = 0, σb > 0) or ρ = 1 leaves us with
effectively N� = B i.i.d. observations X11, X21, . . . , XB1, since the remaining ob-
servations are just copies of those in this independent set and are of no use.

This suggests that we use an effective sample size N� ∈ [B,N ] for the inter-
mediate cases 0 < ρ < 1 in the following sense. We aim to approximate the given
batch data set by a fictitious i.i.d. data set X�

1 , . . . , X
�
N� , with X�

i ∼ N (µ, σ2),
that in some sense carries the same amount of information. Hence each individ-
ual observation in either sample has the same distribution but whereas {Xij} has
sample size N with complex batch structure, the fictitious sample has the simple
i.i.d. structure but with effective sample size N�.

The above vague notion of “carrying the same amount of information” could
be made precise in several different ways. Here we choose N� to match the variances
of X̄ =

∑B
i=1

∑ni

j=1 Xij/N and X̄� =
∑N�

i=1 X
�
i /N

�, i.e., find N� such that

var
(
X̄
)

= σ2
b

B∑
i=1

(ni

N

)2

+ σ2
e

1
N

= var
(
X̄�
)

=
σ2

b + σ2
e

N�
.
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This leads to the following formula for N� = N�(ρ)

N� =

[
σ2

b

σ2
b + σ2

e

B∑
i=1

(ni

N

)2

+
1
N

σ2
e

σ2
b + σ2

e

]−1

=
[
ρ

1
f + 1

+ (1 − ρ)
1
N

]−1

,

where we write 1/(f + 1) =
∑B

i=1(ni/N)2 for reasons to become clear later. For
ρ = 0 this becomes N� = N and for ρ = 1 we get N� = f + 1 which matches
B when n1 = . . . = nB. Thus in the latter case of equal batch sizes this effective
sample size formula agrees with our previous notion. We will not bother with the
fact that N� may not be an integer. An actual fictitious sample X�

1 , . . . , X
�
N� is

never used in our procedure and all calculations are based on the actual batch
data {Xij}.

In practice the within batch correlation ρ is unknown but one may find rea-
sonable estimates from the data as follows. Compute the between batch and error
sums of squares

SSb =
B∑

i=1

ni(X̄i· − X̄)2 and SSe =
B∑

i=1

ni∑
j=1

(Xij − X̄i·)2 .

Take σ̂2
e = SSe/(N − B) as unbiased estimate of σ2

e and κ̂2 = SSb/(B − 1) as
unbiased estimate of

κ2 = σ2
e + σ2

b

N

B − 1

(
1 −

B∑
i=1

(ni

N

)2
)

= σ2
e + σ2

b

N

B − 1
f

f + 1
.

Combining these two estimates we get σ̂2
b =

(
κ̂2 − σ̂2

e

)
(B − 1)(f + 1)/(N f) as

unbiased estimate for σ2
b . Unfortunately, this latter estimate may be negative. If

that happens it is suggested to set the estimate to zero. We denote this modification
again by σ̂2

b but it will no longer be unbiased. The estimate of ρ is then computed
as ρ̂ = σ̂2

b/(σ̂2
b + σ̂2

e). It is this estimate that is used in place of ρ in estimating N�

by N̂� = N�(ρ̂).
The notion of “effective sample size” is not new although it is not clear

whether we have the earliest references. A recent one is Fisher and Van Belle
(1993) (p. 828) when interpreting the information loss in the Kaplan-Meier es-
timate due to censoring. Earlier references, provided kindly by Thomas Lumley,
are Kish (1965) (p. 162, p. 259) interpreting design effects with simple random
sampling and Skinner, et al. (1989) who view the same issue from the perspective
of misspecification.
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24.3 Tolerance Bounds

Let xp = µ+ zp σ denote the p-quantile of the sampled N (µ, σ2) population. Here
zp = Φ−1(p) is the p-quantile of the standard normal population. It is desired to
find lower confidence or lower tolerance bounds for xp based on the batch data
{Xij}. We will approach this problem by first examining two extreme situations,
namely (σb = 0, σe > 0), i.e., no between batch variation, and (σb > 0, σe = 0), i.e.,
no within batch variation, and then interpolate all intermediate situations using
the effective sample size.

24.3.1 No Between Batch Variation

Here we assume σb = 0 and σe > 0, i.e, ρ = 0, and thus all observations Xij are
mutually independent. X̄ ∼ N (µ, σ2/N) and SST = SSb + SSe ∼ σ2 · χ2

N−1 and
both are independent of each other. In the following let

Z =
√
N

X̄ − µ

σ
and V =

S

σ
, where S =

√
SST

N − 1
.

We consider 100γ% lower tolerance bounds of the form X̄ − k S, where the
factor k is determined such that

γ = P
(
X̄ − k S ≤ xp

)
= P

(
Z − zp

√
N

V
≤ k

√
N

)
= P

(
TN−1,−zp

√
N ≤ k

√
N
)

,

where TN−1,−zp

√
N represents a noncentral Student t random variable with non-

centrality parameter −zp

√
N and N − 1 degrees of freedom. This results in the

following expression for the factor k:

k = k0(N) =
1√
N

tN−1,−zp

√
N,γ =

√
N − 1
N

1√
N − 1

tN−1,−zp

√
N,γ ,

where tN−1,−zp

√
N,γ is the γ quantile of TN−1,−zp

√
N .

24.3.2 No Within Batch Variation

Here we assume σb > 0 and σe = 0, i.e, ρ = 1, and thus σ2 = σ2
b and all observa-

tions within each batch are identical. Hence SSe = 0, and thus S2 = SSb/(N −1).
Using Satterthwaite’s method we will approximate the distribution of SST = SSb

by a chi-square multiple with g degrees of freedom, i.e., SST = SSb ≈ a ·χ2
g, where

a and g are determined to match the first two moments on either side. This leads
to
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g =
(1 −∑w2

i )2∑
w2

i − 2
∑

w3
i + (

∑
w2

i )2
and a =

N

g
σ2

b

(
1 −

B∑
i=1

w2
i

)
,

where wi = ni/N . In the Appendix it is shown that this complicated expression
for g can be approximated very well by a much simpler expression, namely by
f =

(∑
w2

i

)−1 − 1, and the approximation is exact when the ni are all the same.
We will use this simplification (f replacing g) from now on since it leads to a
convenient similarity of the formulas for the factor k in the two cases studied.
With this simplification we have a ≈ N σ2

b/(f + 1) and we can treat

V 2 =
SST

a f
= S2 (N − 1)(f + 1)

f N σ2
b

as an approximate χ2
f/f random variable. Further, X̄ ∼ N (µ, τ2) with τ2 =

σ2
b ·∑B

i=1 w
2
i ≈ σ2

b/(f + 1), i.e., Z =
√
f + 1 (X̄ − µ)/σb has a standard normal

distribution.
Note that when all samples sizes ni are the same (= n), then the above

complicated expressions for f and a (and their approximations) reduce to f = B−1
and a = nσ2

b . In that case SSb actually is exactly distributed like nσ2
b · χ2

B−1 and
then SST = SSb is independent of X̄ . When the samples sizes are not the same,
then SST is approximately distributed like the above chi-square multiple and the
strict independence property no longer holds. We will ignore this latter flaw in our
derivation below. The simulations show that this is of no serious consequence.

Again we have

γ = P
(
X̄ − k S ≤ xp

)
= P

(
Z − zp

√
f + 1

V
≤ k

√
f N

N − 1

)

= P

(
T

f,−zp

√
f+1

≤ k

√
f N

N − 1

)

leading to

k = k1(N) =

√
N − 1
N

1√
f
t
f,−zp

√
f+1,γ

.

24.3.3 The Interpolation Step

We note that the two expressions for k0(N) and k1(N) share the common factor√
(N − 1)/N and the remainder can be matched if we match f + 1 and N . We

propose to use the previously developed estimated effective sample size N̂� as a
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simple interpolation between f + 1 and N and use as k-factor in the general case

k�(N) =

√
N − 1
N

1√
N̂� − 1

t
N̂�−1,−zp

√
N̂�,γ

.

24.4 Confidence Bounds for CL, CU and Cpk

For lower and upper specification limits L and U define

CL =
µ− L

3σ
, CU =

U − µ

3σ
and Cpk = min(CL, CU ) .

These process capability indices are unknown but can be estimated respectively
by

ĈL =
X̄ − L

3S
, ĈU =

U − X̄

3S
and Ĉpk = min

(
ĈL, ĈU

)
.

Here S is again the sample standard deviation of all the data, i.e, S2 = (SSb +
SSe)/(N −1). We want to use these estimates ĈL, ĈU , and Ĉpk in order to decide
whether the corresponding population parameters exceed a given threshold C0.
This can be accomplished either by constructing lower confidence bounds based
on these estimates or by testing of appropriate hypotheses. Since the available
tables so far favor the testing framework we will stay with that preference, but we
will indicate confidence bounds at the appropriate places.

We focus on CL (CU is handled the same way) and then combine the results
for Cpk. Consider the problem of testing the hypothesis HL(C0) : CL ≤ C0 against
the alternative KL(C0) : CL > C0. We will reject HL(C0) at level α whenever
ĈL ≥ C�, where C� = C�(α,C0) is determined such that the maximal chance of ĈL

exceeding C� is α when the hypothesis is true. Clearly C�(α,C0) is an increasing
function of C0 and thus has an inverse C−1

� (α, ·). Solving C�(α,C0) = ĈL for
C0 = C−1

� (α, ĈL) will give us a 100(1− α)% lower confidence bound ĈL(1 −α) =
C−1

� (α, ĈL) for CL. By this construction ĈL(1 − α) > C0 means that we should
reject HL(C0). Similarly ĈU (1−α) = C−1

� (α, ĈU ) is a 100(1−α)% lower confidence
bound for CU and Ĉpk(1−α) = min(ĈL(1−α), ĈU (1−α)) is a 100(1−α)% lower
confidence bound for Cpk. The latter is easily seen by letting σ get arbitrarily small
so that the two-sided problem reduces to the one-sided one, see also Kushler and
Hurley (1992).

The main problem now is to find the proper critical value C�. We will do this
again by examining the two extreme situations (σb > 0, σe = 0) and (σb = 0, σe >
0). All other situations will then be dealt with by a simple interpolation scheme.
Finally, the resulting procedure is examined via simulations.

24.4.1 No Between Batch Variation

Here we assume again (σb = 0, σe > 0). Thus σ = σe and all Xij are mutally
independent. X̄ is normally distributed with mean µ and variance σ2/N , SST is
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distributed as σ2 · χ2
N−1 and both are independent of each other. Adopting the

notation that PC0 denotes a probability distribution under (µ, σ) with CL = C0

we find C� by solving

α = PC0

(
ĈL ≥ C�

)
= PC0

(
X̄ − L

3S
≥ C�

)
= P

(
TN−1,3C0

√
N ≥ 3C�

√
N
)

which yields

C� =
1

3
√
N

tN−1,3C0
√

N,1−α =

√
N − 1
N

1
3
√
N − 1

tN−1,3C0
√

N,1−α .

24.4.2 No Within Batch Variation

Here we assume again (σb > 0, σe = 0) and use the same notation and ap-
proximations developed in the corresponding section on tolerance bounds. The α
requirement on C� leads to

α = PC0

(
ĈL ≥ C�

)
= PC0

(
X̄ − L

3S
≥ C�

)

= P

(
Z + δ

V
≥ 3C�

√
N/(N − 1)

√
f

)
≈ P

(
Tf,δ ≥ 3C�

√
N/(N − 1)

√
f
)
,

where Tf,δ is a noncentral Student t random variable with f degrees of freedom
and noncentrality parameter δ = 3C0

√
f + 1. This yields the following expression

for C�

C� =

√
N − 1
N

1
3
√
f
t
f,3C0

√
f+1,1−α

,

where tf,δ,1−α represents the 1 − α percentile of that noncentral Student t distri-
bution.

24.4.3 The Interpolation Step

Note that the two formulas for C�, developed for the two extreme cases, share the
factor

√
(N − 1)/N and the remainder can be matched if we match f + 1 and N .

We propose to use the previously developed effective sample size N� as a simple
interpolation between f + 1 and N , namely

N� =
[
ρ̂

1
f + 1

+ (1 − ρ̂)
1
N

]−1
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and use as critical point in the general case

C� =

√
N − 1
N

1
3
√
N� − 1

tN�−1,3C0
√

N�,1−α .

Table 3 of Chou et al. (1990) gives the value of

CTable �(N) =

√
N − 1
N

1
3
√
N − 1

tN−1,3C0
√

N,1−α for α = .05,

for various values of C0 = .7, .8, . . . , 2.0 and N = 10, 20, . . . , 50, 75, 100, 125, 150,
200, 300, 350, 400. These tabled values are correct when σb = 0, i.e, in the i.i.d. case,
which was addressed by Chou et al. and then clarified by Kushler and Hurley
(1992). The same table, covering a somewhat different grid, and additional tables
for α = .20, .10, .01 are given in Tables 24.1-24.4.

To allow for the possible batch effect we should, according to the above
derivation, use instead the adjusted critical value

CAdj �(N) =

√
N − 1
N

√
N�

N� − 1
CTable �(N�).

This concludes the derivation of the critical point C� for our hypothesis testing
problem concerning CL. The same C� in conjunction with ĈU works for the testing
the hypothesis HU : CU ≤ C0 against the alternative KU : CU > C0.

To combine these two procedures into one for testing the corresponding hy-
pothesis for Cpk, namely H : Cpk ≤ C0 versus K : Cpk > C0, we simply reject H

when Ĉpk ≥ C� with C� = CAdj �(N) as developed previously. Upon rejection of
H we can be at least 100(1 − α)% confident that Cpk > C0. When CL = CU the
confidence will be slightly higher than the target of 100(1−α)% but when CL and
CU are quite different, the confidence will be approximately equal to 100(1−α)%.
Not knowing the actual values of CL and CU and wanting to use the simple es-
timated value Ĉpk as a decision criterion, this procedure should serve its purpose
reasonably well.
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Table 24.1: α = .20 or 80% confidence

Critical Values C�

α = .20

sample C0

size
1.00 1.10 1.20 1.30 1.33 1.40 1.50 1.60 1 .70 1.80 1.90 2.00

500 1.03 1.13 1.24 1.34 1.37 1.44 1.54 1.65 1.75 1.85 1.95 2.06
300 1.04 1.14 1.25 1.35 1.38 1.45 1.56 1.66 1.76 1.87 1.97 2.08
250 1.04 1.15 1.25 1.36 1.39 1.46 1.56 1.67 1.77 1.87 1.98 2.08
200 1.05 1.15 1.26 1.36 1.40 1.47 1.57 1.68 1.78 1.88 1.99 2.09
175 1.05 1.16 1.26 1.37 1.40 1.47 1.58 1.68 1.79 1.89 2.00 2.10
150 1.06 1.16 1.27 1.37 1.41 1.48 1.58 1.69 1.79 1.90 2.00 2.11
125 1.06 1.17 1.28 1.38 1.42 1.49 1.59 1.70 1.80 1.91 2.01 2.12
100 1.07 1.18 1.29 1.39 1.43 1.50 1.60 1.71 1.82 1.92 2.03 2.14
90 1.08 1.18 1.29 1.40 1.43 1.50 1.61 1.72 1.82 1.93 2.04 2.14
80 1.08 1.19 1.30 1.40 1.44 1.51 1.62 1.73 1.83 1.94 2.05 2.15
70 1.09 1.20 1.30 1.41 1.45 1.52 1.63 1.74 1.84 1.95 2.06 2.17
60 1.10 1.21 1.31 1.42 1.46 1.53 1.64 1.75 1.86 1.97 2.07 2.18
50 1.11 1.22 1.33 1.44 1.47 1.55 1.66 1.76 1.87 1.98 2.09 2.20
46 1.11 1.22 1.33 1.44 1.48 1.55 1.66 1.77 1.88 1.99 2.10 2.21
42 1.12 1.23 1.34 1.45 1.49 1.56 1.67 1.78 1.89 2.00 2.11 2.23
38 1.13 1.24 1.35 1.46 1.50 1.57 1.68 1.79 1.91 2.02 2.13 2.24
34 1.14 1.25 1.36 1.47 1.51 1.58 1.70 1.81 1.92 2.03 2.14 2.26
30 1.15 1.26 1.37 1.49 1.52 1.60 1.71 1.82 1.94 2.05 2.16 2.28
28 1.15 1.27 1.38 1.49 1.53 1.61 1.72 1.83 1.95 2.06 2.18 2.29
26 1.16 1.27 1.39 1.50 1.54 1.62 1.73 1.85 1.96 2.07 2.19 2.30
24 1.17 1.28 1.40 1.51 1.55 1.63 1.74 1.86 1.97 2.09 2.20 2.32
22 1.18 1.29 1.41 1.53 1.56 1.64 1.76 1.87 1.99 2.11 2.22 2.34
20 1.19 1.31 1.42 1.54 1.58 1.66 1.77 1.89 2.01 2.13 2.24 2.36
19 1.20 1.31 1.43 1.55 1.59 1.67 1.78 1.90 2.02 2.14 2.26 2.37
18 1.20 1.32 1.44 1.56 1.60 1.68 1.79 1.91 2.03 2.15 2.27 2.39
17 1.21 1.33 1.45 1.57 1.61 1.69 1.81 1.93 2.04 2.16 2.28 2.40
16 1.22 1.34 1.46 1.58 1.62 1.70 1.82 1.94 2.06 2.18 2.30 2.42
15 1.23 1.35 1.47 1.59 1.63 1.71 1.83 1.96 2.08 2.20 2.32 2.44
14 1.24 1.36 1.49 1.61 1.65 1.73 1.85 1.97 2.10 2.22 2.34 2.46
13 1.26 1.38 1.50 1.62 1.67 1.75 1.87 1.99 2.12 2.24 2.36 2.49
12 1.27 1.40 1.52 1.64 1.69 1.77 1.89 2.02 2.14 2.27 2.39 2.52
11 1.29 1.42 1.54 1.67 1.71 1.79 1.92 2.05 2.17 2.30 2.43 2.55
10 1.31 1.44 1.57 1.70 1.74 1.82 1.95 2.08 2.21 2.34 2.47 2.60
9 1.34 1.47 1.60 1.73 1.77 1.86 1.99 2.12 2.25 2.39 2.52 2.65
8 1.37 1.51 1.64 1.77 1.82 1.91 2.04 2.18 2.31 2.45 2.58 2.72
7 1.42 1.56 1.70 1.83 1.88 1.97 2.11 2.25 2.39 2.53 2.67 2.81
6 1.48 1.63 1.77 1.92 1.96 2.06 2.21 2.35 2.50 2.64 2.79 2.93
5 1.58 1.73 1.89 2.04 2.09 2.20 2.35 2.51 2.66 2.82 2.97 3.13
4 1.75 1.92 2.09 2.26 2.32 2.44 2.61 2.78 2.95 3.12 3.29 3.47
3 2.14 2.35 2.56 2.77 2.84 2.98 3.19 3.40 3.61 3.82 4.03 4.24
2 3.94 4.34 4.73 5.13 5.26 5.52 5.92 6.31 6.71 7.10 7.50 7.89
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Table 24.2: α = .10 or 90% confidence

Critical Values C�

α = .10

sample C0

size
1.00 1.10 1.20 1.30 1.33 1.40 1.50 1.60 1.70 1.80 1.90 2.00

500 1.05 1.15 1.25 1.36 1.39 1.46 1.57 1.67 1.78 1.88 1.98 2.09
300 1.06 1.17 1.27 1.38 1.41 1.48 1.59 1.69 1.80 1.90 2.01 2.11
250 1.07 1.17 1.28 1.39 1.42 1.49 1.60 1.70 1.81 1.91 2.02 2.13
200 1.08 1.18 1.29 1.40 1.43 1.50 1.61 1.72 1.82 1.93 2.04 2.14
175 1.08 1.19 1.30 1.40 1.44 1.51 1.62 1.72 1.83 1.94 2.05 2.15
150 1.09 1.20 1.30 1.41 1.45 1.52 1.63 1.74 1.84 1.95 2.06 2.17
125 1.10 1.21 1.32 1.42 1.46 1.53 1.64 1.75 1.86 1.97 2.08 2.19
100 1.11 1.22 1.33 1.44 1.48 1.55 1.66 1.77 1.88 1.99 2.10 2.21
90 1.12 1.23 1.34 1.45 1.49 1.56 1.67 1.78 1.89 2.00 2.11 2.22
80 1.13 1.24 1.35 1.46 1.50 1.57 1.68 1.79 1.90 2.02 2.13 2.24
70 1.14 1.25 1.36 1.47 1.51 1.58 1.70 1.81 1.92 2.03 2.15 2.26
60 1.15 1.26 1.38 1.49 1.53 1.60 1.72 1.83 1.94 2.06 2.17 2.28
50 1.17 1.28 1.40 1.51 1.55 1.63 1.74 1.85 1.97 2.08 2.20 2.31
46 1.18 1.29 1.41 1.52 1.56 1.64 1.75 1.87 1.98 2.10 2.21 2.33
42 1.19 1.30 1.42 1.53 1.57 1.65 1.77 1.88 2.00 2.12 2.23 2.35
38 1.20 1.31 1.43 1.55 1.59 1.67 1.78 1.90 2.02 2.14 2.25 2.37
34 1.21 1.33 1.45 1.57 1.61 1.69 1.80 1.92 2.04 2.16 2.28 2.40
30 1.23 1.35 1.47 1.59 1.63 1.71 1.83 1.95 2.07 2.19 2.31 2.43
28 1.24 1.36 1.48 1.60 1.64 1.72 1.84 1.97 2.09 2.21 2.33 2.45
26 1.25 1.37 1.49 1.62 1.66 1.74 1.86 1.98 2.11 2.23 2.35 2.47
24 1.26 1.39 1.51 1.63 1.67 1.76 1.88 2.00 2.13 2.25 2.38 2.50
22 1.28 1.40 1.53 1.65 1.69 1.78 1.90 2.03 2.15 2.28 2.40 2.53
20 1.30 1.42 1.55 1.68 1.72 1.80 1.93 2.06 2.18 2.31 2.44 2.57
19 1.31 1.44 1.56 1.69 1.73 1.82 1.95 2.07 2.20 2.33 2.46 2.59
18 1.32 1.45 1.58 1.71 1.75 1.83 1.96 2.09 2.22 2.35 2.48 2.61
17 1.33 1.46 1.59 1.72 1.77 1.85 1.98 2.11 2.24 2.37 2.50 2.63
16 1.35 1.48 1.61 1.74 1.78 1.87 2.00 2.14 2.27 2.40 2.53 2.66
15 1.37 1.50 1.63 1.76 1.81 1.89 2.03 2.16 2.29 2.43 2.56 2.69
14 1.38 1.52 1.65 1.79 1.83 1.92 2.06 2.19 2.33 2.46 2.60 2.73
13 1.41 1.54 1.68 1.81 1.86 1.95 2.09 2.22 2.36 2.50 2.64 2.77
12 1.43 1.57 1.71 1.85 1.89 1.99 2.13 2.26 2.40 2.54 2.68 2.82
11 1.46 1.60 1.74 1.89 1.93 2.03 2.17 2.31 2.45 2.60 2.74 2.88
10 1.50 1.64 1.79 1.93 1.98 2.08 2.22 2.37 2.52 2.66 2.81 2.95
9 1.55 1.69 1.84 1.99 2.04 2.14 2.29 2.44 2.59 2.74 2.89 3.04
8 1.61 1.76 1.91 2.07 2.12 2.22 2.38 2.54 2.69 2.85 3.00 3.16
7 1.69 1.85 2.01 2.17 2.23 2.34 2.50 2.66 2.83 2.99 3.15 3.32
6 1.80 1.97 2.15 2.32 2.38 2.49 2.67 2.84 3.02 3.19 3.37 3.54
5 1.98 2.17 2.36 2.55 2.62 2.74 2.94 3.13 3.32 3.51 3.71 3.90
4 2.31 2.53 2.76 2.98 3.05 3.20 3.43 3.65 3.88 4.10 4.33 4.55
3 3.13 3.43 3.73 4.04 4.14 4.35 4.65 4.96 5.26 5.57 5.88 6.18
2 7.95 8.75 9.55 10.3 10.6 11.1 11.9 12.7 13.5 14.3 15.1 15.9
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Table 24.3: α = .05 or 95% confidence

Critical Values C�

α = .05

sample C0

size
1.00 1.10 1.20 1.30 1.33 1.40 1.50 1.60 1.70 1.80 1.90 2.00

500 1.06 1.17 1.27 1.38 1.41 1.48 1.59 1.69 1.80 1.90 2.01 2.11
300 1.08 1.19 1.29 1.40 1.44 1.51 1.61 1.72 1.83 1.93 2.04 2.15
250 1.09 1.20 1.30 1.41 1.45 1.52 1.63 1.73 1.84 1.95 2.06 2.16
200 1.10 1.21 1.32 1.42 1.46 1.53 1.64 1.75 1.86 1.97 2.08 2.19
175 1.11 1.22 1.32 1.43 1.47 1.54 1.65 1.76 1.87 1.98 2.09 2.20
150 1.12 1.23 1.34 1.45 1.48 1.56 1.67 1.78 1.89 2.00 2.11 2.22
125 1.13 1.24 1.35 1.46 1.50 1.57 1.68 1.80 1.91 2.02 2.13 2.24
100 1.15 1.26 1.37 1.48 1.52 1.60 1.71 1.82 1.93 2.05 2.16 2.27
90 1.16 1.27 1.38 1.49 1.53 1.61 1.72 1.84 1.95 2.06 2.18 2.29
80 1.17 1.28 1.39 1.51 1.55 1.62 1.74 1.85 1.97 2.08 2.20 2.31
70 1.18 1.29 1.41 1.53 1.56 1.64 1.76 1.87 1.99 2.10 2.22 2.34
60 1.20 1.31 1.43 1.55 1.59 1.66 1.78 1.90 2.02 2.13 2.25 2.37
50 1.22 1.34 1.46 1.58 1.62 1.70 1.81 1.93 2.05 2.17 2.29 2.41
46 1.23 1.35 1.47 1.59 1.63 1.71 1.83 1.95 2.07 2.19 2.31 2.43
42 1.24 1.37 1.49 1.61 1.65 1.73 1.85 1.97 2.09 2.22 2.34 2.46
38 1.26 1.38 1.50 1.63 1.67 1.75 1.87 2.00 2.12 2.24 2.37 2.49
34 1.28 1.40 1.53 1.65 1.69 1.78 1.90 2.03 2.15 2.28 2.40 2.53
30 1.30 1.43 1.56 1.68 1.72 1.81 1.94 2.06 2.19 2.32 2.44 2.57
28 1.32 1.44 1.57 1.70 1.74 1.83 1.96 2.08 2.21 2.34 2.47 2.60
26 1.33 1.46 1.59 1.72 1.76 1.85 1.98 2.11 2.24 2.37 2.50 2.63
24 1.35 1.48 1.61 1.74 1.79 1.87 2.01 2.14 2.27 2.40 2.53 2.66
22 1.37 1.51 1.64 1.77 1.82 1.90 2.04 2.17 2.30 2.44 2.57 2.71
20 1.40 1.53 1.67 1.80 1.85 1.94 2.08 2.21 2.35 2.48 2.62 2.76
19 1.41 1.55 1.69 1.82 1.87 1.96 2.10 2.23 2.37 2.51 2.65 2.78
18 1.43 1.57 1.71 1.84 1.89 1.98 2.12 2.26 2.40 2.54 2.68 2.82
17 1.45 1.59 1.73 1.87 1.91 2.01 2.15 2.29 2.43 2.57 2.71 2.85
16 1.47 1.61 1.75 1.89 1.94 2.04 2.18 2.32 2.46 2.61 2.75 2.89
15 1.49 1.64 1.78 1.92 1.97 2.07 2.21 2.36 2.50 2.65 2.79 2.94
14 1.52 1.67 1.81 1.96 2.01 2.10 2.25 2.40 2.55 2.69 2.84 2.99
13 1.55 1.70 1.85 2.00 2.05 2.15 2.30 2.45 2.60 2.75 2.90 3.05
12 1.59 1.74 1.89 2.04 2.10 2.20 2.35 2.50 2.66 2.81 2.97 3.12
11 1.63 1.79 1.94 2.10 2.15 2.26 2.42 2.57 2.73 2.89 3.05 3.21
10 1.69 1.85 2.01 2.17 2.22 2.33 2.50 2.66 2.82 2.98 3.15 3.31
9 1.75 1.92 2.09 2.26 2.31 2.43 2.60 2.77 2.93 3.10 3.27 3.44
8 1.84 2.02 2.20 2.37 2.43 2.55 2.73 2.90 3.08 3.26 3.44 3.62
7 1.96 2.15 2.34 2.53 2.59 2.72 2.91 3.10 3.29 3.48 3.67 3.86
6 2.14 2.35 2.55 2.76 2.83 2.96 3.17 3.38 3.58 3.79 4.00 4.21
5 2.43 2.66 2.90 3.13 3.21 3.36 3.60 3.83 4.07 4.30 4.54 4.77
4 2.99 3.27 3.56 3.85 3.94 4.14 4.42 4.71 5.00 5.29 5.58 5.87
3 4.49 4.92 5.36 5.80 5.94 6.23 6.67 7.11 7.55 7.99 8.43 8.87
2 15.9 17.5 19.1 20.7 21.3 22.3 23.9 25.5 27.1 28.7 30.3 31.9
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Table 24.4: α = .01 or 99% confidence

Critical Values C�

α = .01

sample C0

size
1.00 1.10 1.20 1.30 1.33 1.40 1.50 1.60 1.70 1.80 1.90 2.00

500 1.09 1.19 1.30 1.41 1.44 1.52 1.62 1.73 1.84 1.95 2.05 2.16
300 1.11 1.22 1.33 1.44 1.48 1.55 1.66 1.77 1.88 1.99 2.10 2.21
250 1.13 1.24 1.35 1.46 1.50 1.57 1.68 1.79 1.90 2.01 2.13 2.24
200 1.14 1.26 1.37 1.48 1.52 1.59 1.71 1.82 1.93 2.04 2.16 2.27
175 1.15 1.27 1.38 1.49 1.53 1.61 1.72 1.83 1.95 2.06 2.18 2.29
150 1.17 1.28 1.40 1.51 1.55 1.63 1.74 1.86 1.97 2.09 2.20 2.32
125 1.19 1.30 1.42 1.54 1.57 1.65 1.77 1.89 2.00 2.12 2.23 2.35
100 1.21 1.33 1.45 1.57 1.61 1.69 1.81 1.93 2.04 2.16 2.28 2.40
90 1.23 1.35 1.47 1.59 1.63 1.71 1.83 1.95 2.07 2.19 2.31 2.43
80 1.24 1.37 1.49 1.61 1.65 1.73 1.85 1.97 2.09 2.22 2.34 2.46
70 1.27 1.39 1.51 1.63 1.67 1.76 1.88 2.00 2.13 2.25 2.37 2.50
60 1.29 1.42 1.54 1.67 1.71 1.79 1.92 2.04 2.17 2.30 2.42 2.55
50 1.33 1.46 1.58 1.71 1.75 1.84 1.97 2.10 2.23 2.36 2.49 2.62
46 1.35 1.47 1.60 1.73 1.78 1.87 2.00 2.13 2.26 2.39 2.52 2.65
42 1.37 1.50 1.63 1.76 1.81 1.89 2.03 2.16 2.29 2.42 2.56 2.69
38 1.39 1.53 1.66 1.79 1.84 1.93 2.06 2.20 2.33 2.47 2.60 2.74
34 1.42 1.56 1.70 1.83 1.88 1.97 2.11 2.25 2.38 2.52 2.66 2.80
30 1.46 1.60 1.74 1.88 1.93 2.02 2.16 2.30 2.45 2.59 2.73 2.87
28 1.48 1.63 1.77 1.91 1.96 2.05 2.20 2.34 2.48 2.63 2.77 2.91
26 1.51 1.65 1.80 1.94 1.99 2.09 2.23 2.38 2.53 2.67 2.82 2.97
24 1.54 1.69 1.84 1.98 2.03 2.13 2.28 2.43 2.58 2.73 2.87 3.02
22 1.58 1.73 1.88 2.03 2.08 2.18 2.33 2.48 2.64 2.79 2.94 3.09
20 1.62 1.77 1.93 2.08 2.14 2.24 2.40 2.55 2.71 2.86 3.02 3.18
19 1.65 1.80 1.96 2.12 2.17 2.28 2.43 2.59 2.75 2.91 3.07 3.23
18 1.67 1.83 1.99 2.15 2.21 2.31 2.47 2.64 2.80 2.96 3.12 3.28
17 1.71 1.87 2.03 2.19 2.25 2.36 2.52 2.69 2.85 3.01 3.18 3.34
16 1.74 1.91 2.07 2.24 2.30 2.41 2.57 2.74 2.91 3.08 3.24 3.41
15 1.78 1.95 2.12 2.29 2.35 2.46 2.63 2.81 2.98 3.15 3.32 3.49
14 1.83 2.01 2.18 2.35 2.41 2.53 2.70 2.88 3.06 3.23 3.41 3.59
13 1.89 2.07 2.25 2.43 2.49 2.61 2.79 2.97 3.15 3.33 3.51 3.70
12 1.96 2.14 2.33 2.51 2.57 2.70 2.89 3.07 3.26 3.45 3.64 3.83
11 2.04 2.23 2.42 2.62 2.68 2.81 3.01 3.20 3.40 3.59 3.79 3.99
10 2.14 2.34 2.55 2.75 2.82 2.95 3.16 3.36 3.57 3.77 3.98 4.19
9 2.27 2.49 2.70 2.92 2.99 3.14 3.35 3.57 3.79 4.01 4.23 4.44
8 2.45 2.68 2.92 3.15 3.23 3.38 3.62 3.85 4.09 4.32 4.56 4.79
7 2.71 2.96 3.22 3.47 3.56 3.73 3.99 4.25 4.51 4.77 5.03 5.29
6 3.10 3.39 3.68 3.98 4.07 4.27 4.57 4.86 5.16 5.46 5.76 6.05
5 3.78 4.13 4.49 4.85 4.97 5.21 5.58 5.94 6.30 6.67 7.03 7.39
4 5.24 5.74 6.24 6.75 6.91 7.25 7.76 8.26 8.77 9.27 9.78 10.3
3 10.1 11.1 12.1 13.1 13.4 14.1 15.1 16.1 17.1 18.1 19.1 20.0
2 79.8 87.8 95.7 103. 106. 112. 120. 128. 136. 144. 152. 160.
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24.5 Validation

For α = .10 the above procedure was validated through simulation as follows.
Normal batch random samples were generated according to the assumed model
for various values of ρ, using µ = 0, σ2 = 1 = ρ + (1 − ρ), i.e., σ2

b = ρ and
σ2

e = 1 − ρ. The known value of CL was assumed to be 1, i.e., L = −3. For
each generated collection of B batch samples we computed the observed Ĉpk and
compared it against the value CAdj �(N) and also against the value C� that would
be correct if σb = 0 were correct. Repeating this 1000 times for each configuration
of ρ, B and (n1, . . . , nB) we recorded the observed rates of exceeding the respective
critical points. This was done for B = 10, 20, 30, 40 batches of same size n = 2, 3, 5
each for ρ = 0, .2, .4, .6, .8, 1. To study the sample size imbalance effect we also
simulated B = 10, 20, 30, 40 batches, half of the batch samples of size n1 and half
of size n2 for (n1, n2) = (2, 3), (2, 5) and (3, 5).

The resulting observed confidence levels are summarized graphically in Fig-
ures 1-2. The three horizontal lines centered on 1 − α = .9 represent the target
confidence for this simulation and 95% uncertainty limits for 1000 replications.
The dotted curves represent the observed confidence for the proposed procedure
whereas the dashed curves represent the observed confidence of the procedure that
ignores batch effects, i.e., treats all observations as mutually independent.

It is quite obvious from the figures that the degradation of the latter pro-
cedure can be quite serious even with moderate batch effects, especially for few
batches (B = 10) of ”large” size (n = 5). The proposed procedure appears to hold
its intended confidence level quite well, being slightly conservative when it is off
by a small amount. Also given in these plots are the observed average effective
sample sizes for each ρ.

24.6 Sample Calculation

The data Table 24.5 represent data on 21 batches of some composite material
property data with lower specification value L = 45. From the data in this table
we obtain:

X̄ = 49.638 , S = 1.320 , thus ĈL = 1.17 .

Ignoring the batch effects and assuming that we deal with N = 63 independent
observations we obtain from our Table 3 (using the column corresponding to C0 = 1
and interpolating at the row corresponding to N = 63) the critical value 1.147,
i.e., we would then conclude with 90% confidence that the true Cpk is at least 1
since 1.17 > 1.147.
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Figure 24.1: 1000 Simulations with Batches of Sizes 2 & 5

10 batches of size  2

ob
se

rv
ed

 c
on

fid
en

ce

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
80

0.
90

1.
00

rho

average effective total sample size

18.1 16.6 14.9 13.2 11.5 10

20 batches of size  2

ob
se

rv
ed

 c
on

fid
en

ce

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
80

0.
90

1.
00

rho

average effective total sample size

37.1 33.5 29.2 25.4 22.4 20

30 batches of size  2

ob
se

rv
ed

 c
on

fid
en

ce

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
80

0.
90

1.
00

rho

average effective total sample size

56.6 50.9 44.2 38.3 33.7 30

40 batches of size  2

ob
se

rv
ed

 c
on

fid
en

ce

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
80

0.
90

1.
00

rho

average effective total sample size

75.7 67.2 58 50.5 44.7 40

10 batches of size  5

ob
se

rv
ed

 c
on

fid
en

ce

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
80

0.
90

1.
00

rho

average effective total sample size

44.3 31.1 21.6 16 12.5 10

20 batches of size  5

ob
se

rv
ed

 c
on

fid
en

ce

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
80

0.
90

1.
00

rho

average effective total sample size

91.2 58.9 40.4 30.4 24.2 20

30 batches of size  5

ob
se

rv
ed

 c
on

fid
en

ce

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
80

0.
90

1.
00

rho

average effective total sample size

139.3 86.3 59.4 45 36.1 30

40 batches of size  5

ob
se

rv
ed

 c
on

fid
en

ce

0.0 0.2 0.4 0.6 0.8 1.0

0.
70

0.
80

0.
90

1.
00

rho

average effective total sample size

187.1 113.9 78.3 59.5 47.9 40



24.6. SAMPLE CALCULATION 15

Figure 24.2: 1000 Simulations with Batches of Size 2 & 3 and 3 & 5
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Table 24.5: Example Batch Data

batch ni sample sample
data average

1 1 50.5 50.5
2 1 50.2 50.2
3 4 50.7, 50.8, 51.4, 51.3 51.05
4 1 49.3 49.3
5 3 51.0, 51.2, 53.4 51.867
6 3 50.9, 51.6, 51.8 51.433
7 1 49.3 49.3
8 3 48.6, 48.2, 46.6 47.8
9 2 50.4, 49.9 50.15
10 2 48.2, 47.5 47.85
11 3 50.5, 48.2, 49.5 49.4
12 3 49.7, 51.4, 50.6 50.567
13 4 49.6, 51.1, 51.1, 52.5 51.075
14 4 48.4, 50.2, 48.8, 49.1 49.125
15 4 48.8, 49.8, 50.0, 50.5 49.775
16 5 49.3, 50.2, 49.8, 48.9, 48.7 49.38
17 4 49.3, 47.5, 49.4, 48.4 48.65
18 4 47.8, 47.7, 48.8, 49.9 48.55
19 3 50.0, 49.5, 49.3 49.6
20 4 48.5, 49.2, 48.3, 47.8 48.45
21 4 47.9, 49.6, 49.8, 49.0 49.075

However, the given data show strong batch effects and the above conclusion
is not warranted as we will see when adjusting by the ”effective” sample size. For
the data above we obtain

SSb = 78.921 , SSe = 29.148 , f = 17.123 , σ̂2
e = .6939 , σ̂2

b = 1.093

and thus ρ̂ = .6116 and N� = 25.056. Again interpolating from Table 3, this time
at the row corresponding to N� = 25.056, we obtain

CTable �(25.056) = 1.255 and thus CAdj �(63) = 1.0122 · 1.255 = 1.27

as the appropriately adjusted critical value. Since 1.17 < 1.27 we cannot conclude
with 90% confidence that the true Cpk is at least 1.
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24.7 Concluding Remarks

The effective sample size device, in the two situations of tolerance and Cpk bounds
examined here, provides a simple way of “approximating” the complex batch ef-
fect scenario by the better understood i.i.d. case. For Cpk confidence bounds the
solution provided is apparently the first such treatment. Quality assurance prac-
titioners, who tend to deal more often than not with such complications in data
and who understand the statistical analysis solutions for the idealistic i.i.d. case,
will welcome the simple modifications required by the approach presented here.
From the simulations it appears that any error in coverage performance is mildly
conservative. Whether this error can be reduced while maintaining the simplic-
ity is not clear. It is more tempting to systematically examine many other data
scenarios, well understood in the i.i.d. case but difficult in the context of random
or batch effects, in the light of similar modifications using the effective sample
size device. Our scheme of finding the effective sample size was based on match-
ing the variances of sample means under the given data scenario and under the
i.i.d. approximation. Other criteria for matching, such as information indices, may
be examined. Much more broadly but also vaguely at this point, one could contem-
plate how much inferences of any type under some i.i.d. approximation may differ
from the corresponding inferences under the given data situation. One simple but
deficient approximation is to randomly select one representative from each batch.
What could be gained by resampling this process?

24.8 Appendix

Here we present the rationale for the approximation g ≈ f . Let wi = ni/N and
observe

∑B
i=1 wi = 1. Further let

A =
B∑

i=1

w2
i and U =

B∑
i=1

wi (wi −A)2 =
B∑

i=1

w3
i −A2 .

Then
(1 −∑w2

i )2∑
w2

i − 2
∑

w3
i + (

∑
w2

i )2
=

1 −A

A

1 −A

1 −A− 2U/A
≈ 1 −A

A
,

where in the approximation step we assume that

U

A
=

B∑
i=1

wi

(wi

A
− 1
)2

A 
 1 , since wi ≈ 1
B

, A ≈ 1
B

,
wi

A
≈ 1 .

Note that U/A = 0, when the ni are all the same. In that case the above approxi-
mation is exact.
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