Tolerance Bounds and €, Confidence Bounds
Under Batch Effects

Fritz Scholz
Boeing Shared Services Group *

Mark Vangel
National Institute of Standards and Technology 2

published in

Advances in Stochastic Models for Reliability, Quality and Safety
edited by W. Kahle, E. von Collani, J. Franz, and U. Jensen
Birkauser, Boston, 1998, pp. 361-379.

'Research and Technology, P.O. Box 3707, MS 7L-22,
Seattle WA 98124-2207, e-mail: fritz.scholz@boeing.com

ZStatistical Engineering Division, Building 820/Room 353,
Gaithersburg, MD-20899-0001 e-mail: vangel@cam.nist.gov



Abstract

The capability index Cpy for a process, that produces parts with normally dis-
tributed characteristic X, is defined as Cpr = min(U — p, u— L)/ (30) = (T — | —
v|)/(30), where U and L are upper and lower specification limits for X, y and o
are process mean and standard deviation, and v = (U + L)/2, T = (U — L)/2.
Using a sample X1, ..., X,, of independent observations from A (x, o%) Chou et al.
(1990) (with clarification by Kushler and Hurley (1992)) showed how to get lower
confidence bounds for Cpy,. Here we extend this methodology to cover the situation
where samples come in batches and the intra batch correlation reduces the amount
of independent information. In parallel we also apply this extension to the closely
related tolerance bounds or confidence bounds for quantiles. Introducing the sim-
ple trick of effective sample size these problems are linked quite successfully to
existing tables for tolerance bounds or Cpy confidence bounds. The basic idea is to
“approximate” the complicated data situation with an i.i.d. scenario with reduced
overall sample size. The approximation is anchored by analysis to the two extreme
situations where the within batch correlation is zero or one. For the in-between
cases the effective sample size is chosen on a simple heuristic basis, namely by
matching the variances of the sample mean under the batch effect model and its
i.i.d. approximation. The coverage properties of the resulting method, examined
by simulation, were found to be reasonably accurate near the extreme cases and
mildly conservative in-between.
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Chapter 24

24.1 Introduction and Overview

It is assumed that we deal with data from a normal population N (u,0?) with
mean u and standard deviation ¢. For i.i.d. samples it has long been known how
to construct tolerance bounds or confidence bounds for normal p-quantiles z,+0z,
based on the noncentral ¢-distribution. The earliest reference we found was Jennett
and Welch (1939), but also see Johnson and Welch (1940), Owen (1968, 1985), and
Odeh and Owen (1980) for extensive tables.

Closely related to such quantiles is the process capability index Cpy, intro-
duced by Kane (1986), and defined as

U p=L) 3D 30+ D)
30 7 30 30 ’

Cpr, = min {

where U and L are given upper and lower product specification limits. Confidence
bounds for Cyy, again for the i.i.d. case, were given by Chou et. al (1990) with clar-
ification by Kushler and Hurley (1992). For a comprehensive overview of capability
indices see Kotz and Johnson (1993).

Often the data of a production process arrive in batches with significant
within batch correlation. A popular model for such batch data is {X;;, j =
1,...,n;, i = 1,...,B}, where B is the number of batches and n; is the size
of the *® batch. It is then assumed that Xij = 1+ b; + ey, where b; is normal
with mean zero and variance ag and e;; is normal with mean zero and variance
02. The effects b; and {e;;} are assumed to be mutually independent. Hence X;;
is normally distributed with mean p and variance 0? = o + 2. The correlation
of two different observations within the same batch is p = o7 /(0? + 02) which can
range anywhere within [0, 1]. Under such a scenario one usually still wants to char-
acterize aspects of the overall N'(u, 0?) population and not of individual batches.
Hence it is desirable to extend the methodology for constructing tolerance bounds
or Cpy, confidence bounds to such batch data.

Although this sampling model reflects greater realism of the industrial data
experience, it also makes it impossible to construct exact confidence bounds for
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zp and Cpy. For the latter we are aware of no attempts. For tolerance bounds
several attempts have been made, with various degrees of numerical complexity,
see Seeger and Thorsson (1972), Mee and Owen (1983), and Vangel (1995) who
also treats additional regression covariates.

Our intent here is to “reduce” the problem to the i.i.d. case by the sim-
ple device of effective sample size. As with other methods we can only hope for
achieved confidence levels that are approximate. The validity of this approximation
is checked via simulations and contrasted with the treatment that ignores batch
effects altogether. The appeal of this method is its conceptual simplicity and the
reduction to a methodology with available tables and that already is widely spread
in the industrial quality assurance practice.

We start out by giving the rationale for the effective sample size, which de-
pends on the within batch correlation p, and show how to estimate it in straight-
forward fashion. This is followed by confidence bound construction for z,, either
exactly or approximately, for the two extreme cases: (0. > 0,0, = 0) or p = 0
and (o, = 0,05 > 0) or p = 1. The resulting bounds are further simplified so that
they only differ in one parameter which can be identified with the effective sample
size N*. The cases between these two extremes can then be interpolated using the
effective sample size and using the existing tables from the i.i.d. case. This process
is repeated, but more from a testing perspective, for Cpi. For this latter case we
present some simulation results for validation and give a sample calculation using
a composite material strength data set.

24.2 Effective Sample Size and its Estimation

The extreme case (o, > 0, o, = 0) or p = 0 reduces the assumed batch data
structure to N = ny + ... + np i.i.d. observations, i.e., the effective sample size
is N* = N. The other extreme case (0, = 0, o, > 0) or p = 1 leaves us with
effectively N* = B i.i.d. observations X171, X21, ..., Xp1, since the remaining ob-
servations are just copies of those in this independent set and are of no use.

This suggests that we use an effective sample size N* € [B, N] for the inter-
mediate cases 0 < p < 1 in the following sense. We aim to approximate the given
batch data set by a fictitious i.i.d. data set X{,..., X%., with X} ~ N(u,0?),
that in some sense carries the same amount of information. Hence each individ-
ual observation in either sample has the same distribution but whereas {X;;} has
sample size N with complex batch structure, the fictitious sample has the simple
i.i.d. structure but with effective sample size N*.

The above vague notion of “carrying the same amount of information” could
be made precise in several different ways. Here we choose N* to match the variances
of X = Y7, 3" Xi;/N and X* = Y, X7/N*, ie., find N* such that

B ] 2 2
var (X) = o} Z(%)Q—f—ag = = var (X*) = % T i
i=1



24.2. EFFECTIVE SAMPLE SIZE AND ITS ESTIMATION 3

This leads to the following formula for N* = N*(p)

-1

2 1 1
—[per(l—p)N ;

o? BN 1 o
7b2<_1) 4 ——_"e
op +02 &= \N N o? + o2

where we write 1/(f +1) = Zil(ni/N)Q for reasons to become clear later. For
p = 0 this becomes N* = N and for p = 1 we get N* = f + 1 which matches
B when n; = ... = npg. Thus in the latter case of equal batch sizes this effective
sample size formula agrees with our previous notion. We will not bother with the
fact that N* may not be an integer. An actual fictitious sample X7,..., X7 is
never used in our procedure and all calculations are based on the actual batch
data {X”}

In practice the within batch correlation p is unknown but one may find rea-
sonable estimates from the data as follows. Compute the between batch and error
sums of squares

*

B B n;
SSy = an(Xz - X)Q and SSe = ZZ(XM - X;)%.
=1

i=1 j=1

Take 62 = SS./(N — B) as unbiased estimate of o2 and &% = SS,/(B — 1) as
unbiased estimate of

B
N ni\2 N
RO (1_Z<N)>:Uﬁ+"’33—1 ffu'

i=1

Combining these two estimates we get 67 = (A% —62) (B — 1)(f + 1)/(N f) as
unbiased estimate for o2. Unfortunately, this latter estimate may be negative. If
that happens it is suggested to set the estimate to zero. We denote this modification
again by &% but it will no longer be unbiased. The estimate of p is then computed
as p = 67/(6% +62). It is this estimate that is used in place of p in estimating N*
by N* = N*(p).

The notion of “effective sample size” is not new although it is not clear
whether we have the earliest references. A recent one is Fisher and Van Belle
(1993) (p. 828) when interpreting the information loss in the Kaplan-Meier es-
timate due to censoring. Earlier references, provided kindly by Thomas Lumley,
are Kish (1965) (p. 162, p. 259) interpreting design effects with simple random
sampling and Skinner, et al. (1989) who view the same issue from the perspective
of misspecification.
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24.3 Tolerance Bounds

Let ¥, = p+ 2, o denote the p-quantile of the sampled N (u, 0?) population. Here
z, = ®71(p) is the p-quantile of the standard normal population. It is desired to
find lower confidence or lower tolerance bounds for x, based on the batch data
{Xi;}. We will approach this problem by first examining two extreme situations,
namely (o, = 0,0, > 0), i.e., no between batch variation, and (o, > 0,0, = 0), i.e.,
no within batch variation, and then interpolate all intermediate situations using
the effective sample size.

24.3.1 No Between Batch Variation

Here we assume 0, = 0 and 0. > 0, i.e, p = 0, and thus all observations X;; are
mutually independent. X ~ A(u,02/N) and SSy = SS, + SS. ~ % - x%_, and
both are independent of each other. In the following let

X —
Z =vN B and V:§, where S = 551 .
o o N -1

We consider 1007% lower tolerance bounds of the form X — k S, where the
factor k is determined such that

_ Z — z,V'N
'y—P(X—kS<xp)—P<+<k\/N>—P(TN_L_ZP\/N<k\/N) ,

where T, _ VN represents a noncentral Student ¢ random variable with non-

centrality parameter —z,v /N and N — 1 degrees of freedom. This results in the
following expression for the factor k:

1 N -1 1
k= kO(N) = \/—N tN—l,—zp\/N,fy = N m tN—l,—zp\/N,fy s

where ¢, _, Ny is the v quantile of TN_l__Zp\/N-

24.3.2 No Within Batch Variation

Here we assume o3, > 0 and 0. = 0, i.e, p = 1, and thus 02 = og and all observa-
tions within each batch are identical. Hence SS, = 0, and thus S? = SS,/(N —1).
Using Satterthwaite’s method we will approximate the distribution of SS7 = S5
by a chi-square multiple with g degrees of freedom, i.e., SST = 5SS} ~ a-Xf], where
a and g are determined to match the first two moments on either side. This leads
to
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where w; = n;/N. In the Appendix it is shown that this complicated expression
for g can be approximated very well by a much simpler expression, namely by

f= (Z w%)_1 — 1, and the approximation is exact when the n; are all the same.
We will use this simplification (f replacing g) from now on since it leads to a
convenient similarity of the formulas for the factor k£ in the two cases studied.
With this simplification we have a &~ N o2/(f + 1) and we can treat

S _ g (W =1)(f +1)

V2= =
af [ N o}

as an approximate X?c /f random variable. Further, X ~ N(u,72) with 72 =
o? - Zil w? ~ ol /(f+1),ie, Z=+F+1(X — p)/op has a standard normal
distribution.

Note that when all samples sizes n; are the same (= n), then the above
complicated expressions for f and a (and their approximations) reduce to f = B—1
and a = naf. In that case S5, actually is exactly distributed like nag -x%_, and
then SSp = S8, is independent of X. When the samples sizes are not the same,
then SS7 is approximately distributed like the above chi-square multiple and the
strict independence property no longer holds. We will ignore this latter flaw in our
derivation below. The simulations show that this is of no serious consequence.

Again we have

. 7 — 2T 1 N
y=P(X-kS<uz,) = p(%ﬂ@ﬂ%)

_ N

N-11
FE RN =V TR 77 e

24.3.3 The Interpolation Step

leading to

We note that the two expressions for kqo(N) and ki (N) share the common factor
V(N —1)/N and the remainder can be matched if we match f + 1 and N. We

propose to use the previously developed estimated effective sample size N* as a
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simple interpolation between f 4+ 1 and N and use as k-factor in the general case

ey =YL,
B N /N*—l N*—l,—zp\/N*,y.

24.4 Confidence Bounds for C;, Cy and Cy

For lower and upper specification limits L and U define

U—p
Cp = Cy = ——
L 30 v 30

These process capability indices are unknown but can be estimated respectively

_p-L

and Cpk = min(CL, CU) .

~ X—-L N U-X
Cv="33
Here S is again the sample standard deviation of all the data, i.e, S = (SS} +
5S.)/(N —1). We want to use these estimates Cp,, Cy, and @,k in order to decide
whether the corresponding population parameters exceed a given threshold Cj.
This can be accomplished either by constructing lower confidence bounds based
on these estimates or by testing of appropriate hypotheses. Since the available
tables so far favor the testing framework we will stay with that preference, but we
will indicate confidence bounds at the appropriate places.

We focus on Cp, (Cy is handled the same way) and then combine the results
for Cp. Consider the problem of testing the hypothesis Hr,(Cy) : Cr, < Cp against
the alternative K1,(Cp) : Cr > Cy. We will reject Hr(Cp) at level o whenever
c 1 > Cy, where C, = Cy(a, Cp) is determined such that the maximal chance of c T,
exceeding C, is @ when the hypothesis is true. Clearly Cy(«, Cp) is an increasing

and C*pk = min (GL,6U> .

function of Cy and thus has an inverse C;!(a,-). Solving C,(a,Cp) = Cy, for
Co=C(a, éL) will give us a 100(1 — &)% lower confidence bound Cf(1 — a) =
CY(a,Cy) for Cp. By this construction Cp(1 — ) > Cy means that we should
reject Hy,(Cp). Similarly Cp(1—a) = C Yo, GU) is a 100(1—a)% lower confidence
bound for Cy and Cpi(1 — a) = min(CL (1 — ), Cy (1 —a)) is a 100(1 — )% lower
confidence bound for Cp. The latter is easily seen by letting o get arbitrarily small
so that the two-sided problem reduces to the one-sided one, see also Kushler and
Hurley (1992).

The main problem now is to find the proper critical value C,. We will do this
again by examining the two extreme situations (o > 0,0, = 0) and (0, = 0,0, >
0). All other situations will then be dealt with by a simple interpolation scheme.
Finally, the resulting procedure is examined via simulations.

24.4.1 No Between Batch Variation

Here we assume again (op =0, e > 0). Thus 0 = o, and all X;; are mutally
independent. X is normally distributed with mean p and variance o2 /N, SSt is
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distributed as o2 - x3,_; and both are independent of each other. Adopting the
notation that Pc, denotes a probability distribution under (u, o) with Cp = Cy
we find C, by solving
~ X-L JN
a =P, (Co 2 C.) = Pe, (“5g= 2 O ) = P (Tyy_y 50,y = 3C.VN)

which yields

C. — 1 N -1 1
* 3vVN tN—173Cox/N71—a - N 3/N-1 tN—l,BCox/N,l—a .

24.4.2 No Within Batch Variation

Here we assume again (0, > 0, 0. = 0) and use the same notation and ap-
proximations developed in the corresponding section on tolerance bounds. The «
requirement on C, leads to

Pe, (éL > c*) — Pe, (u > c*)

Q
Il

35

= P (55 230 /AT - DVF) ~ P (175 2 30 /NN - IVF) |

where T s is a noncentral Student ¢ random variable with f degrees of freedom
and noncentrality parameter § = 3Cy+/f + 1. This yields the following expression

for C,
N-1 1
Ci = VN ENGi tf,3Cm/f+1,1—(y ’

where t751_o represents the 1 — o percentile of that noncentral Student ¢ distri-
bution.

24.4.3 The Interpolation Step

Note that the two formulas for Cy, developed for the two extreme cases, share the
factor /(N —1)/N and the remainder can be matched if we match f+ 1 and N.
We propose to use the previously developed effective sample size N* as a simple
interpolation between f + 1 and N, namely

-1

1 1
N =|p—+(1-p) =
pf+1+( P
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and use as critical point in the general case

N—1 1
C= N 3J/N*_1 N —1,300VNF 10 -

Table 3 of Chou et al. (1990) gives the value of

N -1 1
Crable«(N) = \| =% 3UN T N-13C0VN.i-a for a = .05,

for various values of Cy = .7,.8,...,2.0 and N = 10,20, ...,50, 75,100, 125, 150,
200, 300, 350, 400. These tabled values are correct when o, = 0, i.e, in the i.i.d. case,
which was addressed by Chou et al. and then clarified by Kushler and Hurley
(1992). The same table, covering a somewhat different grid, and additional tables
for a = .20,.10, .01 are given in Tables 24.1-24.4.

To allow for the possible batch effect we should, according to the above
derivation, use instead the adjusted critical value

N -1 *
CAdj*(N) = \/ N \/N* 1 CTable*(N*)~

This concludes the derivation of the critical point C for our hypothesis testing
problem concerning Cy,. The same C, in conjunction with Cyy works for the testing
the hypothesis Hy : Cy < Cj against the alternative Ky : Cy > Cy.

To combine these two procedures into one for testing the corresponding hy-
pothesis for Cp, namely H : Cp, < Cy versus K : Cp, > Cp, we simply reject H
when @,k > C, with C, = Cagj«(N) as developed previously. Upon rejection of
H we can be at least 100(1 — a))% confident that Cpr, > Cy. When C, = Cy the
confidence will be slightly higher than the target of 100(1 — )% but when Cf, and
Cy are quite different, the confidence will be approximately equal to 100(1 — «)%.
Not knowing the actual values of C, and Cy and wanting to use the simple es-
timated value C as a decision criterion, this procedure should serve its purpose
reasonably well.
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Table 24.1: @ = .20 or 80% confidence

Critical Values C,
a=.20
sample Co
size
1.00 110 1.20 1.30 1.33 1.40 150 1.60 1.70 1.80 1.90 2.00
500 1.03 1.13 1.24 1.34 1.37 1.44 154 165 1.75 1.85 1.95 2.06
300 1.04 1.14 125 1.35 1.38 1.45 1.56 1.66 1.76 1.87 1.97 2.08
250 1.04 1.15 1.25 1.36 1.39 1.46 1.56 1.67 1.77 1.87 1.98 2.08
200 1.05 1.15 1.26 1.36 1.40 1.47 1.57 1.68 1.78 1.88 1.99 2.09
175 1.05 1.16 1.26 1.37 1.40 1.47 158 1.68 1.79 1.89 2.00 2.10
150 1.06 1.16 1.27 1.37 1.41 1.48 1.58 1.69 1.79 1.90 2.00 2.11
125 1.06 1.17 1.28 1.38 1.42 149 159 1.70 1.80 1.91 201 2.12
100 1.07 1.18 1.29 1.39 1.43 150 1.60 1.71  1.82 1.92 203 2.14
90 1.08 1.18 1.29 1.40 1.43 1.50 1.61 1.72  1.82 1.93 2.04 2.14
80 1.08 1.19 1.30 1.40 1.44 151 1.62 1.73 1.83 1.94 205 2.5
70 1.09 1.20 1.30 1.41 1.45 152 1.63 1.74 184 1.95 206 2.17
60 1.10  1.21  1.31 142 146 153 1.64 1.75 1.86 1.97 207 2.18
50 1.11  1.22  1.33 1.44 147 155 1.66 1.76  1.87 1.98 2.09 2.20
46 111 1.22  1.33 144 1.48 155 1.66 1.77 1.88 1.99 210 2.21
42 1.12  1.23 1.34 145 1.49 156 1.67 1.78 1.89 2.00 2.11 2.23
38 1.13  1.24 1.35 146 1.50 1.57 1.68 1.79 1.91 202 213 224
34 1.14 1.25 1.36 1.47 151 1.58 1.70 1.81  1.92 203 214 2.26
30 1.15 1.26 1.37 149 152 1.60 1.71 1.82 1.94 205 216 2.28
28 1.15 1.27 1.38 149 1.53 1.61 1.72 1.83 1.95 2.06 2.18 2.29
26 1.16  1.27 1.39 150 1.54 1.62 1.73 1.85 1.96 2.07 219 2.30
24 1.17  1.28 1.40 1.51 1.55 1.63 1.74 1.86 1.97 209 220 2.32
22 1.18 1.29 1.41 153 1.56 1.64 1.76 1.87 1.99 211 222 234
20 1.19  1.31 1.42 154 158 1.66 1.77 1.89  2.01 213 224 2.36
19 1.20  1.31 143 155 1.59 1.67 1.78 1.90 2.02 214 226 2.37
18 1.20  1.32 144 156 1.60 1.68 1.79 1.91 203 2.15 227 2.39
17 1.21  1.33 1.45 157 1.61 1.69 1.81 1.93 2.04 216 228 240
16 1.22  1.34 146 158 1.62 1.70 1.82 1.94 206 218 230 2.42
15 1.23  1.35 1.47 159 1.63 1.71 1.83 1.96 2.08 220 2.32 244
14 1.24 1.36 1.49 1.61 1.65 1.73 1.85 1.97 210 2.22 234 2.46
13 1.26  1.38 1.50 1.62 1.67 1.75 1.87 1.99 212 224 236 2.49
12 1.27 140 152 1.64 1.69 1.77 1.89 202 214 227 239 252
11 1.29 142 154 1.67 1.71 179 1.92 205 217 230 243 255
10 1.31 144 157 170 1.74 1.82 1.95 2.08 221 234 247 2.60
9 1.34 147 1.60 1.73 1.77 1.86 1.99 212 225 239 252 2.65
8 1.37 151 1.64 1.77 1.82 1.91 2.04 218 231 245 258 2.72
7 1.42 1.56 1.70 1.83 1.88 1.97 211 225 239 253 267 281
6 1.48 1.63 1.77 1.92 1.96 2.06 221 235 250 264 279 2093
5 1.58 1.73 1.89 2.04 2.09 220 2.35 251 266 2.82 297 3.13
4 1.75  1.92 2,09 2.26 2.32 244 261 278 295 3.12 329 3.47
3 2,14 235 256 277 2.84 298 3.19 340 3.61 3.82 4.03 4.24
2 3.94 434 473 513 526 552 592 6.31 671 7.0 7.50 7.89
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Table 24.2: o = .10 or 90% confidence
Critical Values C,
a=.10
sample Co
size
1.00 1.0 120 1.30 1.33 140 1.50 1.60 1.70 1.80 1.90 2.00
500 1.05 1.15 125 136 1.39 146 1.57 1.67 1.78 188 1.08 2.09
300 1.06 1.17 127 1.38 141 148 1.59 1.69 1.80 1.90 2.01 2.11
250 1.07  1.17 128 1.39 142 149 1.60 1.70 181 1.91 202 213
200 1.08 1.18 129 1.40 143 150 1.61 1.72 182 1.93 204 214
175 1.08 1.19 130 1.40 144 151 1.62 1.72 183 194 205 215
150 1.09 1.20 130 1.41 145 152 1.63 1.74 184 1.95 206 2.17
125 1.10 1.21 132 142 146 153 1.64 1.75 186 1.97 208 2.19
100 111 1.22 133 1.44 148 155 1.66 1.77 188 1.99 210 221
90 1.12  1.23 134 145 149 156 1.67 1.78 189 200 211 222
80 1.13  1.24 135 146 150 157 1.68 1.79 190 202 213 224
70 1.14 1.25 136 147 151 158 1.70 1.81 192 203 215 226
60 1.15 1.26 1.38 1.49 153 160 1.72 1.83 194 206 217 228
50 1.17  1.28 140 1.51 155 1.63 1.74 1.85 197 208 220 231
46 1.18  1.29 141 1.52 156 164 1.75 1.87 198 210 221 233
42 1.19  1.30 142 1.53 157 165 1.77 1.88 200 2.12 223 235
38 1.20 1.31 143 155 159 1.67 1.78 1.90 202 214 225 237
34 1.21  1.33 145 1.57 1.61 169 1.80 1.92 204 216 228 2.40
30 1.23 1.35 147 1.59 1.63 1.71 1.83 1.95 207 219 231 243
28 1.24 1.36 148 1.60 1.64 1.72 1.84 1.97 209 221 233 245
26 1.25 1.37 149 1.62 1.66 1.74 1.86 1.98 211 223 235 247
24 1.26 1.39 151 1.63 1.67 1.76 1.88 2.00 2.13 225 238 250
22 1.28 140 153 1.65 1.69 1.78 1.90 2.03 215 228 240 253
20 1.30 142 155 1.68 1.72 1.80 1.93 2.06 218 231 244 257
19 1.31 144 156 1.69 1.73 1.82 1.95 207 220 233 246 259
18 1.32 145 158 1.71 1.75 1.83 1.96 2.09 222 235 248 261
17 1.33 146 159 1.72 1.77 185 1.98 211 224 237 250 263
16 1.35 148 161 1.74 1.78 1.87 2.00 214 227 240 253 266
15 1.37 150 163 1.76 1.81 1.89 2.03 216 229 243 256 2.69
14 1.38 152 165 1.79 1.83 192 2.06 219 233 246 260 2.73
13 1.41 154 168 1.81 1.86 1.95 2.09 222 236 250 264 2.77
12 1.43 157 171 1.85 1.89 199 2.13 226 240 254 268 2.82
11 1.46 1.60 1.74 1.89 1.93 203 2.17 231 245 260 274 288
10 1.50 1.64 1.79 1.93 1.98 208 222 237 252 266 281 2095
9 1.55 1.69 1.84 1.99 2.04 214 229 244 259 274 289 3.04
8 1.61 1.76 191 2.07 212 222 238 254 269 285 3.00 3.16
7 1.69 1.85 201 2.17 223 234 250 266 283 299 3.15 3.32
6 1.80 1.97 215 2.32 238 249 2.67 284 302 3.19 3.37 354
5 1.98 217 236 255 262 274 294 313 332 351 371 3.90
4 231 253 276 298 3.05 320 3.43 3.65 388 4.10 4.33 4.55
3 3.13 3.43 373 4.04 414 435 465 496 526 557 588 6.18
2 795 875 955 10.3 106 11.1 11.9 12,7 135 143 151 159
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Table 24.3: o = .05 or 95% confidence
Critical Values C,
a = .05
sample Co
size
1.00 1.0 120 1.30 1.33 140 1.50 1.60 1.70 1.80 1.90 2.00
500 1.06 1.1v 127 138 141 148 159 1.69 180 1.00 2.01 211
300 1.08 1.19 129 1.40 144 151 1.61 1.72 183 1.93 204 215
250 1.09 1.20 130 1.41 145 152 1.63 1.73 184 195 206 2.16
200 1.10 1.21 132 142 146 153 1.64 1.75 186 1.97 208 2.19
175 111 1.22 132 143 147 154 1.65 1.76 1.87 1.98 209 2.20
150 1.12  1.23 134 145 148 156 1.67 1.78 1.89 200 211 222
125 1.13 1.24 135 1.46 150 157 1.68 1.80 191 202 213 224
100 1.15  1.26 1.37 1.48 152 160 1.71 1.82 193 205 216 2.27
90 1.16 1.27 1.38 1.49 153 161 1.72 1.84 195 206 218 229
80 1.17 128 139 1.51 155 162 1.74 1.85 197 208 220 231
70 1.18 1.29 141 1.53 156 1.64 1.76 1.87 199 210 222 234
60 1.20 1.31 143 1.55 159 1.66 1.78 1.90 2.02 213 225 237
50 1.22  1.34 146 1.58 1.62 1.70 1.81 1.93 205 217 229 241
46 1.23 1.35 147 159 1.63 1.71 1.83 1.95 207 2.19 231 243
42 1.24 137 149 1.61 1.65 1.73 1.85 1.97 209 222 234 246
38 1.26 1.38 150 1.63 1.67 1.75 1.87 2.00 2.12 224 237 249
34 1.28 140 153 1.65 1.69 1.78 1.90 2.03 2.15 228 240 253
30 1.30 143 156 1.68 1.72 181 1.94 206 219 232 244 257
28 1.32 144 157 1.70 1.74 1.83 1.96 208 221 234 247 260
26 1.33 146 159 1.72 1.76 1.85 1.98 211 224 237 250 263
24 1.35 148 161 1.74 1.79 1.87 2.01 214 227 240 253 266
22 1.37 151 164 1.77 1.82 190 2.04 217 230 244 257 271
20 1.40 153 167 1.80 1.85 194 208 221 235 248 262 2.76
19 1.41 155 169 1.82 1.87 196 2.10 223 237 251 265 2.78
18 1.43 157 171 1.84 1.89 198 2.12 226 240 254 268 2.82
17 1.45 1.59 1.73 1.87 1.91 201 2.15 229 243 257 271 285
16 1.47  1.61 175 1.89 1.94 204 218 232 246 261 275 289
15 1.49  1.64 178 1.92 1.97 207 221 236 250 265 279 294
14 1.52  1.67 181 1.96 2.01 210 225 240 255 269 284 299
13 1.55 1.70 1.85 2.00 2.05 215 230 245 260 275 290 3.05
12 1.59 1.74 189 2.04 210 220 2.35 250 266 281 297 3.12
11 1.63  1.79 194 210 215 226 242 257 273 289 3.05 3.21
10 1.69 1.85 201 217 222 233 250 266 282 298 3.15 3.31
9 1.75  1.92 209 226 231 243 260 277 293 310 3.27 3.44
8 1.84 202 220 237 243 255 273 290 3.08 326 3.44 3.62
7 1.96 215 234 253 259 272 291 310 329 348 3.67 3.86
6 214 235 255 276 283 296 3.17 3.38 358 3.79 4.00 4.21
5 243 266 290 3.13 321 336 3.60 3.83 407 4.30 454 477
4 299 327 356 3.85 394 414 442 471 500 529 558 587
3 449 492 536 580 594 623 6.67 7.1 7.55 7.99 843 887
2 159 175 19.1 20.7 21.3 223 239 255 27.1 287 30.3 31.9
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Table 24.4: o = .01 or 99% confidence
Critical Values C,
a = .01
sample Co
size
1.00 1.0 120 1.30 1.33 140 1.50 1.60 1.70 1.80 1.90 2.00
500 1.09 1.19 130 141 144 152 1.62 173 184 105 205 216
300 1.11  1.22  1.33 144 148 1.55 1.66 1.77 1.88 1.99 2.10 221
250 1.13  1.24 135 1.46 150 1.57 1.68 1.79 1.90 2.01 2.13 224
200 1.14 1.26 137 148 152 1.59 1.71 1.82 1.93 2.04 216 227
175 1.15 1.27 138 1.49 153 161 1.72 1.83 195 206 218 229
150 1.17  1.28 140 1.51 155 163 1.74 1.86 197 209 220 2.32
125 1.19 1.30 1.42 154 157 1.65 1.77 1.89 200 2.12 223 235
100 121 1.33 145 157 1.61 1.69 1.81 1.93 2.04 2.16 2.28 240
90 123 1.35 147 159 1.63 1.71 1.83 1.95 207 219 231 243
80 1.24 137 149 1.61 1.65 1.73 1.85 1.97 209 222 234 246
70 1.27 139 151 1.63 1.67 1.76 1.88 2.00 2.13 225 237 250
60 129 142 154 1.67 171 1.79 1.92 2.04 217 2.30 242 255
50 1.33 146 1.58 1.71 1.75 1.84 1.97 210 223 2.36 249 262
46 1.35 147 160 1.73 1.78 1.87 2.00 213 226 239 252 265
42 1.37 150 163 1.76 1.81 1.89 2.03 216 229 242 256 2.69
38 1.39 153 166 1.79 1.84 193 206 220 233 247 260 2.74
34 1.42 156 1.70 1.83 1.88 1.97 2.11 225 238 252 266 2.80
30 1.46 1.60 1.74 1.88 1.93 2.02 2.16 2.30 245 259 273 287
28 1.48 1.63 1.77 1.91 1.96 205 2.20 234 248 263 277 2091
26 1.51  1.65 1.80 1.94 1.99 209 223 238 253 267 282 2097
24 1.54  1.69 1.84 1.98 2.03 2.13 228 243 258 2.73 2.87 3.02
22 1.58 1.73 1.88 203 2.08 2.18 233 248 264 2.79 294 3.09
20 1.62  1.77 1.93 208 214 224 240 255 271 2.8 3.02 3.18
19 1.65 1.80 1.96 2.12 217 228 243 259 275 291 3.07 3.23
18 1.67 1.83 199 215 221 231 247 264 280 296 3.12 3.28
17 171 1.87 203 219 225 236 252 269 285 3.0l 3.18 3.34
16 1.74  1.91 2.07 224 230 241 257 274 291 3.08 3.24 3.41
15 1.78  1.95 212 229 235 246 263 2.81 298 3.15 3.32 3.49
14 1.83 201 218 235 241 253 270 288 3.06 323 341 3.59
13 1.89  2.07 225 243 249 261 279 297 3.15 3.33 351 3.70
12 1.96 2.14 233 251 257 270 289 3.07 326 3.45 3.64 3.83
11 2.04 223 242 262 268 2.81 301 320 340 359 3.79 3.99
10 214 234 255 275 282 295 3.16 3.36 357 3.77 3.98 4.19
9 227 249 270 292 299 3.14 3.35 357 379 4.01 423 4.44
8 245 268 292 315 323 338 3.62 3.85 409 432 456 4.79
7 2.71 296 3.22 3.47 356 3.73 3.99 425 451 477 5.03 5.29
6 3.10 3.39 3.68 3.98 4.07 4.27 457 4.86 516 546 576 6.05
5 3.78 4.13 449 485 497 521 558 594 630 6.67 7.03 7.39
4 5.24 574 624 6.75 691 7.25 7.76 826 877 9.27 9.78 10.3
3 101 111 121 131 134 141 151 161 171 181 19.1  20.0
2 79.8 87.8 957 103. 106. 112. 120. 128. 136. 144. 152. 160.
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24.5 Validation

For a = .10 the above procedure was validated through simulation as follows.
Normal batch random samples were generated according to the assumed model
for various values of p, using p = 0, 02 = 1 = p+ (1 — p), i.e., 07 = p and
02 = 1 — p. The known value of C, was assumed to be 1, i.e., L = —3. For
each generated collection of B batch samples we computed the observed @,k and
compared it against the value Cagj«(IN) and also against the value C, that would
be correct if o, = 0 were correct. Repeating this 1000 times for each configuration
of p, B and (ny,...,np) we recorded the observed rates of exceeding the respective
critical points. This was done for B = 10, 20, 30, 40 batches of same size n = 2,3,5
each for p = 0,.2, .4,.6,.8,1. To study the sample size imbalance effect we also
simulated B = 10, 20, 30, 40 batches, half of the batch samples of size n; and half
of size ng for (n1,n2) = (2,3),(2,5) and (3, 5).

The resulting observed confidence levels are summarized graphically in Fig-
ures 1-2. The three horizontal lines centered on 1 — o = .9 represent the target
confidence for this simulation and 95% uncertainty limits for 1000 replications.
The dotted curves represent the observed confidence for the proposed procedure
whereas the dashed curves represent the observed confidence of the procedure that
ignores batch effects, i.e., treats all observations as mutually independent.

It is quite obvious from the figures that the degradation of the latter pro-
cedure can be quite serious even with moderate batch effects, especially for few
batches (B = 10) of ”large” size (n = 5). The proposed procedure appears to hold
its intended confidence level quite well, being slightly conservative when it is off
by a small amount. Also given in these plots are the observed average effective
sample sizes for each p.

24.6 Sample Calculation

The data Table 24.5 represent data on 21 batches of some composite material
property data with lower specification value L = 45. From the data in this table
we obtain: R

X =49638, S=1.320, thus Cp =1.17.

Ignoring the batch effects and assuming that we deal with N = 63 independent
observations we obtain from our Table 3 (using the column corresponding to Cp = 1
and interpolating at the row corresponding to N = 63) the critical value 1.147,
i.e., we would then conclude with 90% confidence that the true Cpy is at least 1
since 1.17 > 1.147.
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Figure 24.1: 1000 Simulations with Batches of Sizes 2 & 5
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Figure 24.2: 1000 Simulations with Batches of Size 2 & 3 and 3 & 5

5 batches of sizes 2 & 3 each

10 batches of sizes 2 & 3 each

o
q S
average effective total sample size - average effective total sample size
1 226 196 16.5 13.6 11.3 9.6 46 38.7 317 26.2 222 192
@
,,,,,,,,,,,,,,,,,, e o
== - eeeeeseceeeees o &
~_ 2 o
~ < c
~ o
4 ~o o ~
S~ ° S .
~ [} ~
~o 2 Q N
Bl ~ o X S <
S~ 2 o RN
~ o © RN
i rho IS4 tho
T T T T T T o T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
15 batches of sizes 2 & 3 each " 20 batches of sizes 2 & 3 each
q S
average effective total sample size - average effective total sample size
1 699 578 46.8 38.9 332 288 939 776 62.5 51.9 442 385
B LT R @
g o [T
777777 L O e
—— g 3 =
— = <=
1 ~-- 3 S~
S~ - kel T~a
~ [9) ~
~< 2 9 So
i ~< o X S
T~ & ° So
=) S
i rho IS4 rho
. . . . . . c . . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
5 batches of sizes 3& 5 each o 10 batches of sizes 3& 5 each
q S
average effective total sample size - average effective total sample size
1 354 266 19.5 14.8 11.6 9.4 732 517 37 28.3 227 188
rrrrrrrrrrrrrrrrrr [
— g o =
- e 5 S - e
= g 3 ——
S < <
~ Q > ~
1 ~ © ~
N = <
~. g ~.
1 A s 8 SN
N o o S
N > ~ -8 N N
| < N
~ .
i rho S N IS tho N
. . . . . . c s . . . = .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
15 batches of sizes 3 &5 each o 20 batches of sizes 3 &5 each
q S
average effective total sample size - average effective total sample size
1 1109 761 54.1 41.7 337 282 149.1  100.2 71.4 55.2 448 376
e emmmmemenmssesseTTTTII o eI
S 2 o
= S & ==
= 2 3 —
< 15 N
~ o ~
4 N o SO
AN 3 ~.l
i AN £ g .~
AN 2 o RS
AN <] N
i rho \\\\\ 2 tho \\\\
T T T T T T S) T T T T T S
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

15



16 CHAPTER 24.

Table 24.5: Example Batch Data

batch n; sample sample
data average
1 1 50.5 50.5
2 1 50.2 50.2
3 4 50.7, 50.8, 51.4, 51.3 51.05
4 1 49.3 49.3
5 3 51.0, 51.2, 53.4 51.867
6 3 50.9, 51.6, 51.8 51.433
7 1 49.3 49.3
8 3 48.6, 48.2, 46.6 47.8
9 2 50.4, 49.9 50.15
10 2 48.2, 47.5 47.85
11 3 50.5, 48.2, 49.5 49.4
12 3 49.7, 51.4, 50.6 50.567
13 4 49.6, 51.1, 51.1, 52.5 51.075
14 4 484, 50.2, 48.8, 49.1 49.125
15 4 48.8, 49.8, 50.0, 50.5 49.775
16 5 49.3, 50.2, 49.8, 48.9, 48.7  49.38
17 4 49.3,47.5,49.4, 48.4 48.65
18 4 A7.8, 47.7, 48.8, 49.9 48.55
19 3 50.0, 49.5, 49.3 49.6
20 4 48.5,49.2, 48.3, 47.8 48.45
21 4 47.9, 49.6, 49.8, 49.0 49.075

However, the given data show strong batch effects and the above conclusion
is not warranted as we will see when adjusting by the ”effective” sample size. For
the data above we obtain

5SS, =78921, SS.=29.148, f=17.123, &> =.6939, &7 =1.093

and thus p = .6116 and N* = 25.056. Again interpolating from Table 3, this time
at the row corresponding to N* = 25.056, we obtain

Crable«(25.056) = 1.255 and thus Cagq;.(63) = 1.0122 - 1.255 = 1.27

as the appropriately adjusted critical value. Since 1.17 < 1.27 we cannot conclude
with 90% confidence that the true Cpy is at least 1.
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24.7 Concluding Remarks

The effective sample size device, in the two situations of tolerance and Cp bounds
examined here, provides a simple way of “approximating” the complex batch ef-
fect scenario by the better understood i.i.d. case. For Cy;, confidence bounds the
solution provided is apparently the first such treatment. Quality assurance prac-
titioners, who tend to deal more often than not with such complications in data
and who understand the statistical analysis solutions for the idealistic i.i.d. case,
will welcome the simple modifications required by the approach presented here.
From the simulations it appears that any error in coverage performance is mildly
conservative. Whether this error can be reduced while maintaining the simplic-
ity is not clear. It is more tempting to systematically examine many other data
scenarios, well understood in the i.i.d. case but difficult in the context of random
or batch effects, in the light of similar modifications using the effective sample
size device. Our scheme of finding the effective sample size was based on match-
ing the variances of sample means under the given data scenario and under the
i.i.d. approximation. Other criteria for matching, such as information indices, may
be examined. Much more broadly but also vaguely at this point, one could contem-
plate how much inferences of any type under some i.i.d. approximation may differ
from the corresponding inferences under the given data situation. One simple but
deficient approximation is to randomly select one representative from each batch.
What could be gained by resampling this process?

24.8 Appendix

Here we present the rationale for the approximation g ~ f. Let w; = n;/N and
observe 211'3:1 w; = 1. Further let

B B B
Azz:wi2 and U:Zwi(wi—A)sz:w?—AQ.
i=1 i=1 i=1
Then
(1- 3 w?)? 1-4 1-4 1-A

Suwf-2 - wl+(Suwd)? A T-A—2UjA° A

where in the approximation step we assume that

1

U 5 w; 2 w;
Z—;wi<z—1) A1, since wyr—=, A=~ —, Xml.

&=

B )

Note that U/A = 0, when the n; are all the same. In that case the above approxi-
mation is exact.
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