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Comparison of Optimal Location Estimators∗

Ph.D. Dissertation, December, 1971

by Friedrich-Wilhelm Scholz

Department of Statistics

University of California, Berkeley

Abstract

This study is concerned with the problem of estimating the center of a symmetric
distribution. Three classes of estimators have been considered in the literature: lin-
ear combinations of order statistics, estimators derived from rank tests and maximum
likelihood type estimators, which are referred to as L-, R- and M∗-estimators respec-
tively. Under regularity conditions these estimators are known to be asymptotically
normal, and their performance is judged by their asymptotic variances. From each of
the above classes we select estimators L(F ), R(F ) and M∗(F ), which are optimal for
a sample arising from a given underlying distribution F (satisfying certain regularity
conditions). They are optimal in the sense that their asymptotic variances cannot
be improved upon by any other location invariant estimator when the underlying
distribution is F . The principal aim of the present investigation is to compare these
three estimators for underlying distributions H 6= F . It is shown that the asymp-
totic variance of R(F ) is always less or equal to the asymptotic variance of L(F ) for
all underlying distributions H, satisfying certain regularity conditions. Under more
stringent conditions on F , it is shown that a similar statement holds in the comparison
of R(F ) and M∗(F ), where again R(F ) is the superior estimator.

For the special case where F is the normal distribution, a result of this kind
was given by Chernoff and Savage in the context of testing. They showed that the
asymptotic relative efficiency of the normal scores rank test relative to the t-test never
falls below one. Mikulski then showed that this result is specific to the normal dis-
tribution. For a given underlying distribution F he constructs a best parametric test
and a best nonparametric test and compares them for other underlying distributions.
Mikulski’s result depends strongly on the fact that his best parametric test does not

∗This research was partially supported by National Science Foundation Grant GP-8690 and by
the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force,
under AFOSR Grant AF-AFOSR-1312-67
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possess certain invariance properties. We construct best parametric tests which have
these invariance properties and obtain results similar to those of Chernoff and Savage.
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Comparison of Optimal Location Estimators∗

Ph.D. Dissertation, December, 1971

by Friedrich-Wilhelm Scholz

Department of Statistics

University of California, Berkeley

0. Introduction and Summary

The problem of estimating the center of symmetry of a distribution has been treated
quite extensively in the statistical literature. Various classes of estimators have found
a special interest and we will deal with three of them: linear combinations of order
statistics, estimators that are derived from rank tests, and maximum likelihood type
estimators, as outlined in Section 1.1. The performance of a given estimator depends
strongly on the underlying distribution of the given sample. Since it is difficult to
study the behavior of estimators for finite sample sizes, most research has focussed
on the asymptotic behavior of these estimators. It is hoped that the asymptotic
results provide useful approximations to the finite sample size case. Most of the
estimators commonly studied are, under suitable regularity conditions, normally dis-
tributed around the parameter to be estimated, with asymptotic variances depending
on the underlying distribution. We therefore have a simple criterion, the asymptotic
variance, for comparing the performance of different estimators. The usual approach
is then the following. One considers two interesting estimators, say for example the
sample mean and the sample median, and compares their asymptotic variances for
various underlying distributions. Typically one finds that neither one of them is uni-
formly better than the other. This will happen in particular if both estimators are in
some sense optimal at different underlying distributions, as is the case with the sample
mean and sample median, which are optimal for the normal and double exponential

∗This research was partially supported by National Science Foundation Grant GP-8690 and by
the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force,
under AFOSR Grant AF-AFOSR-1312-67
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distribution, respectively. Thus in comparing two such estimators a more differenti-
ated evaluation must be made and one must weigh the advantages and disadvantages
of the estimators.

It may of course happen that the performance of one estimator is never worse than
the performance of the other. Chernoff and Savage (1958) give one example of such
a comparison, even though they consider this problem in terms of testing. For the
problem of testing for shift in two samples, they showed that the asymptotic relative
efficiency of the normal scores test relative to the t-test never falls below one. Using
the results by Hodges and Lehmann (1963), one can rephrase this result as follows
for the estimation problem: The estimator derived from the normal scores rank test
has an asymptotic variance which is always less than or equal to the asymptotic
variance of the sample mean. Equality of the asymptotic variances occurs if and only
if the underlying distribution is normal, in which case both estimators are optimal in
some sense. This result and our previous remarks suggest that we take the following
approach in finding other examples of this kind.

We will compare only estimators with each other which are optimal for a fixed
given underlying distribution F . By ‘optimal’ we mean that the asymptotic variance
of these estimators cannot be improved upon by any other location invariant estima-
tor. In Section 1.2 we give the construction of three estimators which are optimal for
F . These are denoted by L(F ), R(F ) and M∗(F ) and they are respectively a particu-
lar linear combination of order statistics, the estimator derived from a particular rank
test and a particular maximum likelihood type estimator. In Chapter 2 we examine
the asymptotic variances of these three estimators when the underlying distribution
is different from F .

Section 2.1 deals with the comparison of L(F ) and R(F ) and it is seen that the
result of Chernoff and Savage (as it was rephrased for the estimation problem) is a
special case of Theorem 1, which roughly states the following: If F is sufficiently reg-
ular, then the asymptotic variance of R(F ) is always less or equal to the asymptotic
variance of L(F ) for all underlying distributions H satisfying certain regularity con-
ditions. Section 2.2 deals with the comparison of R(F ) and M∗(F ) and an analogous
result is obtained in Theorem 2. Again R(F ) turns out to be the superior one of the
two estimators. In Theorem 2 we impose a certain concavity condition on F . This
condition, a counterexample to Theorem 2 when certain regularity conditions are not
met, and the comparison of M∗(F ) and L(F ) are discussed in Section 2.3 and in the
Appendix.

2



In Chapter 3 we discuss a paper by Mikulski (1963). The main theorem of
this paper states that the result arrived at by Chernoff and Savage in the context
of hypothesis testing is specific to the normal distribution. Mikulski considers the
two-sample shift problem and constructs parametric and nonparametric tests which
are optimal for a given underlying distribution F . Then he studies the asymptotic
relative efficiency of the nonparametric test relative to the parametric test for other
underlying distributions H and finds that this efficiency can fall below one if F is
not the normal distribution. His method of proving this depends strongly on the fact
that his parametric test is not location and scale invariant. Since the rank tests and
the t-test have this invariance property, we propose a location and scale invariant
parametric test and obtain results similar to the one given by Chernoff and Savage.

1. Three Types of Location Estimators.

1.1 Definitions.

Let X1, . . . , Xn be independent identically distributed random variables with distri-
bution Hµ(x) = H(x − µ). We assume that H has a density h(x) and is symmet-
ric around zero., i.e., H(x) = 1 − H(−x), but that otherwise H is unknown. We
want to estimate the unknown location parameter µ, and the performance of various
estimators will be judged by their asymptotic variances. Under general regularity
conditions, each of the considered estimators is asymptotically normal with mean µ
and asymptotic variances given below.

We introduce the following notation:

Xn = (X1, . . . , Xn) and bXn + a = (bX1 + a, . . . , bXn + a)

for real numbers a and b. An estimator Tn(Xn) is location invariant if Tn(Xn +
a) = Tn(Xn) + a for all real numbers a. An estimator Tn(Xn) is scale invariant if
Tn(bXn) = bTn(Xn) for all real numbers b. The dependence of Tn(Xn) on the sample
Xn is usually understood and we shall simply write Tn whenever no confusion will
arise thereby. Since all estimators to be considered here will be translation invariant,
we shall study their asymptotic distribution without loss of generality in the case of
µ = 0.

One popular class of estimators is the class of linear combinations of order statis-
tics, which we shall call L-estimators. Let X(1) ≤ . . . ≤ X(n) be the order statistics of
the sample and let g be a function mapping the open interval (0, 1) into the set of real

3



numbers, R, such that g(t) = g(1− t) and
∫ 1

0
g(t)dt = 1. We define the L-estimator

corresponding to g by

Ln = Ln(g) =
1

n

n∑
i=1

g

(
i

n+ 1

)
X(i) .

Under general regularity conditions on g and H we have

√
n Ln(g)

L−→ N
(
0, σ2

g(H)
)
,

where

σ2
g(H) =

∫ 1

0

U2(t) dt with U(t) =

∫ t

1/2

[
g(u)

h(H−1(u))

]
du .

(cf. Chernoff, Gastwirth and Johns (1967)). Denote the class of distributions H for
which this asymptotic normality holds by CL(g). We observe that L-estimators are
location and scale invariant.

Another class of estimators was introduced by Hodges and Lehmann (1963).
These estimators, called R-estimators, are derived from rank tests or, more precisely,
from the rank statistics which are employed in these rank tests. Let J be a function
mapping the open interval (0, 1) into the set of real numbers such that J(t) = −J(1−
t). For r ∈ R denote by Si(r) the rank of |Xi − r| among |X1 − r|, . . ., |Xn − r|. We
then define the following linear rank statistic:

Tn(r) =
n∑
i=1

J

(
Si(r)

n+ 1

)
Ii(r) ,

where

Ii(r) =

 1 if Xi > r

0 if Xi ≤ r
.

Let
r∗n = sup{r : Tn(r) > 0} and r∗∗n = inf{r : Tn(r) < 0} .

The R-estimator corresponding to J is then defined by

Rn = Rn(J) =
r∗n + r∗∗n

2
.
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Under regularity conditions on J and H we have

√
n Rn(J)

L−→ N
(
0, σ2

J(H)
)
,

where

σ2
J(H) =

(∫ 1

0

J2(u) du

)(∫
d

dx
[J(H(x))] dH(x)

)−2

(cf. Hodges and Lehmann (1963) and Puri and Sen (1971)). Denote the class of dis-
tributions H for which this asymptotic normality holds by CR(J). Again we observe
that R-estimators are location and scale invariant.

A third type of estimator was studied by Huber (1964). Let ψ : R −→ R with
ψ(−x) = −ψ(x), let ψ be nondecreasing and let Mn(ψ) be defined to be the solution
M of

n∑
i=1

ψ(Xi −M) = 0 .

For particular choices of the function ψ the estimators Mn(ψ), called M-estimators,
are identical with maximum likelihood estimators of the location parameter of some
distribution. Under general regularity conditions on ψ and H (see Huber, 1967), we
have √

n Mn(ψ)
L−→ N

(
0, σ2

ψ(H)
)

where

σ2
ψ(H) =

∫
ψ2(x) dH(x)

(∫
ψ′(x) dH(x)

)−2

.

The M-estimators are location invariant, but in general not scale invariant. This is
not desirable, since with the choice of the ψ-function we also express some judgment
on the scale of the underlying distribution H. Since we do not assume any knowledge
about the scale of H, it seems advisable to construct a scale invariant version of the
M-estimator. Huber (1964) suggests a way of achieving this in the case of a special
ψ-function (Huber’s proposal two) and for more general ψ-functions in his 1970 paper.
We shall assume that ψ is continuously differentiable with ψ′(x) > 0 for all x ∈ R
and that ψ(x) = −ψ(−x).

Definition 1. Let M∗n(ψ) and S∗n(ψ) be the unique solutions M and S of the following
system of equations:

1

n

n∑
i=1

ψ

(
Xi −M

S

)
= 0 and

1

n

n∑
i=1

ψ2

(
Xi −M

S

)
= β(0)

5



where β is a fixed number satisfying: 0 < β < sup{ψ2(x) : x ∈ R}.
In order to justify this definition, we must show that the solutions M and S

exist and are unique. This is done in Appendix A. Huber’s paper (1967) establishes
the consistency and asymptotic normality of the estimates (M∗n(ψ), S∗n(ψ)) under
regularity conditions on ψ and H. In particular we have

√
n M∗n(ψ)

L−→ N
(
0, σ∗ψ

2(H)
)

where

σ∗ψ
2(H) =

∫
ψ2(x/τH) dH(x)(∫
ψ′(x/τH) dH(x)

)2 τ2
H

with τH determined by ∫
ψ2(x/τH) dH(x) = β .

We denote by CM∗(ψ) the class of distributions H for which this asymptotic normality
for M∗n(ψ) is valid. From the definition it is clear that M∗n(ψ) is location and scale
invariant. We will call these estimators M∗-estimators.

1.2 Optimal Estimators for F .

In the previous section we introduced three classes of location and scale invariant
estimators for the center of symmetry of an unknown distribution H. Now we will
assume that the sample arises from a distribution F ((x−µ)/σ), where F is completely
known, symmetric around zero and satisfies certain regularity conditions. The pa-
rameters µ and σ are unknown. We will construct L-, R- and M∗-estimators for µ
which are optimal at F in the following sense: among all location invariant estimators
for µ, they have the smallest possible asymptotic variance, whatever µ and σ may be.
The optimality and general correspondence between these estimators was shown by
Jaeckel (1971). We denote these three optimal estimators by L(F ), R(F ) and M∗(F ).
Since they are location and scale invariant, we may restrict ourselves without loss of
generality to the case µ = 0 and σ = 1.

We will impose the following regularity conditions on F :

i) F (x) has a density f(x) with the properties f(x) = f(−x) on R
and f(x) > 0 on R;

ii) f is continuously differentiable on R;
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iii) I(f) =
∫
ψ2
f (x)f(x) dx <∞, where ψf(x) = −f ′(x)/f(x).

The class of distributions F satisfying i)–iii) will be denoted by F .

Definition of M∗(F ): Let ψ(x) = ψf (x) and set β =
∫
ψ2(x) dF (x). Assume

that ψ(x) has a continuous derivative ψ′(x) > 0 on R and define: M∗(F ) = M?
n(ψ).

If F ∈ CM∗(ψ), then
√
n M∗(F ) is asymptotically normal with mean zero and

asymptotic variance

σ2
F (M∗(F )) = σ∗ψ

2(F ) =

(∫
ψ2(x/τF ) dF (x)

)(∫
ψ′(x/τF ) dF (x)

)−2

τ2
F ,

where τF satisfies ∫
ψ2(x/τF ) dF (x) = β =

∫
ψ2(x) dF (x) ,

i.e., τF = 1. Hence

σ2
F (M∗(F )) = I(f)

(∫
ψ′(x) dF (x)

)−2

= [I(f)]−1 .

It follows from results of LeCam (1953) and Hajek (1971) that [I(f)]−1 is the smallest
possible asymptotic variance that can be achieved by any asymptotically normal
location invariant estimator. Thus M∗(F ) is optimal at F .

Definition of L(F ): Assume that ψF (x) = ψ(x) has a continuous derivative ψ′

except at a finite number of points. Let g(t) = [I(f)]−1ψ′(F−1(t)) and define L(F ) =
Ln(g). If F ∈ CL(g), then

√
n L(F ) is asymptotically normal with mean zero and

asymptotic variance

σ2
F (L(F )) = σ2

g(F ) =

∫ 1

0

U2(t) dt ,

where

U(t) =

∫ t

1
2

ψ′(F−1(u))

f(F−1(u))
du [I(f)]−1 = ψ(F−1(t))[I(f)]−1,

hence

σ2
F (L(F )) =

∫ 1

0

ψ2(F−1(t)) dt [I(f)]−2 = [I(f)]−1 .

Thus L(F ) is also optimal at F .
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Definition of R(F ): Assume that ψf (x) = ψ(x) has a continuous derivative ψ′

except at a finite number of points. Let J(t) = ψ(F−1(t)) and define R(F ) = Rn(J).
If F ∈ CR(J), then

√
n R(F ) is asymptotically normal with mean zero and asymptotic

variance

σ2
F (R(F )) = σ2

J(F ) =

(∫ 1

0

ψ2(F−1(t)) dt

)(∫
ψ′(x) dF (x)

)−2

= [I(f)]−1

which implies that R(F ) is optimal at F .

2. Comparison of the Three Optimal Estimators for F

We will now investigate the relationship between the asymptotic variances of L(F ),
R(F ) and M∗(F ) when the sample comes from a symmetric distribution H different
from F . We also assume that H satisfies the various regularity conditions to ensure
the asymptotic normality of the estimators.

2.1. Comparison of R(F ) and L(F ).

We assume that the distribution F which defines R(F ) and L(F ) satisfies the condi-
tions:

A1: F ∈ F , where F is defined on p. 7

A2: ψf has a nonnegative continuous derivative except at a finite number of points;

A3: F ∈ CR(J) ∩ CL(g), where

J(t) = ψf (F−1(t)) and g(t) = [I(f)]−1ψ′f (F−1(t)) .

On H we will impose the following restrictions:

B1: H has a density h(x) and is symmetric around zero;

B2: h(x) > 0 for x ∈ {x : 0 < H(x) < 1};

B3: H ∈ CR(J) ∩ CL(g), where J and g are the same as in A3.

8



When H is the underlying distribution of the sample, the asymptotic variances
of
√
n R(F ) and

√
n L(F ) are given by:

σ2
H(R(F )) = I(f)

(∫
ψ′f(F

−1(H(x)))

f(F−1(H(x)))
h2(x) dx

)−2

and

σ2
H(L(F )) =

∫ 1

0

U2(t) dt with U(t) =

∫ t

1
2

ψ′f (F−1(u))

h(H−1(u))
du [I(f)]−1 .

In the special case where F is equal to the normal distribution Φ, it was shown by
Chernoff and Savage (1958) that σ2

H(R(Φ)) ≤ σ2
H(L(Φ)) and equality holds if and only

if H(x) = Φ(ax) for some a > 0. Gastwirth and Wolff (1968) gave a simpler proof
for the same result, and we will use their method to prove the following theorem.

Theorem 1. Let F satisfy conditions A1-A3. Then

σ2
H(R(F )) ≤ σ2

H(L(F ))(1)

for all H satisfying B1-B3. If further ψ′f > 0 where it is defined, then equality holds
in (1) if and only if H(x) = F (ax) for some a > 0.

Proof: Let ψ = ψf and observe that ψ′(F−1(t))[I(f)]−1 is a density on the interval
[0, 1], since ψ′ ≥ 0 and ∫ 1

0

ψ′(F−1(t)) dt = I(f) .

Using Jensen’s inequality, we obtain[∫
ψ′(F−1(H(x)))

f(F−1(H(x)))
h2(x) dx

]−1

=

[∫ 1

0

I(f)h(H−1(x))

f(F−1(t))

ψ′(F−1(t))

I(f)
dt

]−1

≤
∫ 1

0

f(F−1(t))

h(H−1(t))

ψ′(F−1(t))

[I(f)]2
dt

= [I(f)]−2 f(F−1(t))

∫ t

1
2

ψ′(F−1(u))

h(H−1(u))
du

∣∣∣∣∣
1

0

+ [I(f)]−2

∫ 1

0

I(f)U(t)ψ(F−1(t)) dt = E .

9



Since ∫ 1

1
2

U2(t) dt <∞ =⇒
∫ ∞

0

U(F (x))f(x) dx <∞

=⇒ U(F (xn))f(xn) −→ 0 for some sequence xn →∞

=⇒ U(tn)f(F−1(tn)) −→ 0 for some sequence tn −→ 1, we obtain

E = [I(f)]−1

∫ 1

0

U(t)ψ(F−1(t)) dt

≤ [I(f)]−1

(∫ 1

0

U2(t) dt

) 1
2
(∫ 1

0

ψ2(F−1(t)) dt

) 1
2

=

(∫ 1

0

U2(t) dt [I(f)]−1

) 1
2

,

thus

σ2
H(R(F )) ≤ σ2

H(L(F )) .(1)

If in addition we know that ψ′ > 0 where it exists then it is seen immediately
from the above inequalities that equality in (1) holds if and only if H(x) = F (ax) for
some a > 0. This concludes the proof.

The last assertion of Theorem 1 is not necessarily true without the condition
ψ′ > 0, as can be seen by the following example. Let

ψk(x) = x for |x| ≤ k and ψk(x) = k sign(x) otherwise (k > 0) .

This ψk-function plays an important role in Huber’s paper (1964). It corresponds
to a distribution Fk which is normal in the middle but has double exponential tails.
Since ψ′k(x) = 0 for |x| > k, it is seen that the asymptotic variance σ2

H(R(Fk)) is not
changed if one modifies H(x) for those x for which H(|x|) > Fk(k). A similar remark
applies to σ2

H(L(Fk)). Thus

σ2
H(R(Fk)) = σ2

H(L(Fk)) for all H which satisfy H(x) = Fk(x) for |x| ≤ k.
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2.2 Comparison of R(F ) and M�(F ).

We assume that the distribution F , which defines R(F ) and M∗(F ), satisfies the
following conditions:

A′1: F ∈ F , where F is defined on page 7;

A′2: ψf (x) = ψ(x) = −f ′(x)/f(x) is twice continuously differentiable for x > 0
and ψ′(x) > 0 for x > 0;

A′3: F ∈ CM∗(ψ) ∩ CR(J), where J(t) = Jf(t) = ψ(F−1(t));

A′4: 1/J ′(t)) is concave on the interval (1
2
, 1).

On the distribution H of the underlying sample we will impose the following restric-
tions:

B′1: H has a density h(x) and is symmetric around zero;

B′2: H ∈ CR(Jf) ∩ CM∗(ψf );

B′3:
∫∞

0
|(ψ′′f (x) + ψ′f (x)ψf (x))(H(x)− F (x))| dx <∞.

Under these conditions the asymptotic variances of
√
n M∗(F ) and

√
n R(F ) are

given by:

σ2
H(M∗(F )) = τ2

H

∫
ψ2(x/τH) dH(x)[∫
ψ′(x/τH) dH(x)

]2
where τH satisfies

∫
ψ2(x/τH) dH(x) =

∫
ψ2(x) dF (x), and

σ2
H(R(F )) =

∫ 1

0
J2(t) dt[∫

J ′(H(x))h2(x) dx
]2 .

The relationship between these asymptotic variances for varying underlying distribu-
tions H is given by the following theorem.

Theorem 2: Let F satisfy conditions A′1-A′4. Then

σ2
H(M∗(F )) ≥ σ2

H(R(F ))(2)

11



for all distributions H satisfying B′1-B′3 and equality in (2) holds if and only if
H(x) = F (ax) for some a > 0.

Before we prove Theorem 2 we have to state and prove several Lemmas.

Lemma 1. If θ1, θ2 are two nonnegative real numbers, satisfying
θ1 + θ2 ≤ 1, then

(θ1x+ θ2y)2 ≤ θ1x
2 + θ2y

2 for all x, y ∈ R.(3)

If θ1, θ2 > 0, then equality in (3) implies x = y.

Proof:

(θ1x+ θ2y)2 = θ1x
2 + θ2y

2 − θ1θ2(x− y)2 − (1− θ1 − θ2)(θ1x
2 + θ2y

2) .

Lemma 2. Let ϕ be a function mapping the open interval (1
2
, 1) into the set of

positive real numbers. Let 1/ϕ(t) be concave on (1
2
, 1). Then

ϕ(λU1 + (1− λ)U2) (λh1 + (1− λ)h2)2 ≤ λϕ(U1)h2
1 + (1− λ)ϕ(U2)h2

2

for all 0 ≤ λ ≤ 1, U1, U2 ∈ (1
2
, 1), h1, h2 ∈ R.

Proof: Set Vλ = [ϕ(λU1 + (1 − λ)U2)]−1 and let 0 ≤ λ ≤ 1. Then concavity of 1/ϕ
implies Vλ ≥ λV1 + (1− λ)V0. Setting θ1 = λV1/Vλ and θ2 = (1− λ)V0/Vλ, we obtain
θ1 + θ2 ≤ 1. Thus Lemma 1 implies

ϕ(λU1 + (1− λ)U2)(λh1 + (1− λ)h2)2 = Vλ

(
λV1

Vλ

h1

V1
+

(1− λ)V0

Vλ

h2

V0

)2

≤ Vλ

(
λV1

Vλ

h2
1

V 2
1

+
(1− λ)V0

Vλ

h2
2

V 2
0

)
= λϕ(U1)h2

1 + (1− λ)ϕ(U2)h2
2

Q.E.D.

Remark 1: The limits ϕ(1) = limU↑1 ϕ(U) and ϕ(1
2
) = limU↓ 1

2
ϕ(U) exist under the

assumptions of Lemma 2, with 0 < ϕ(1
2
), ϕ(1) ≤ ∞. Thus by taking limits the

convexity inequality of Lemma 2 can be extended to hold for U1, U2 ∈ [1
2
, 1].
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Remark 2: For 0 < λ < 1 equality in the convexity inequality of Lemma 2 implies
h1 = h2.

Definition 2: Let ϕ satisfy the assumptions of Lemma 2. Define Kϕ to be the class
of all distributions H which satisfy the following conditions:

i) H has a density h(x) and h(x) = h(−x).

ii) A(H) =
∫∞

0
ϕ(H(x))h2(x) dx <∞.

Lemma 3: Let H1, H2 ∈ Kϕ and set Hλ(x) = λH1(x) + (1− λ)H2(x) for 0 ≤ λ ≤ 1.
Then

A(Hλ) ≤ λA(H1) + (1− λ)A(H2) .(4)

If 0 < λ < 1, H1 6= H2 and 1
2
< H2(x) < 1 for 0 < x < ∞, then inequality (4) is a

strict inequality.

Proof: From Lemma 2 and Remark 1, we obtain for all x ≥ 0:

ϕ(Hλ(x))h2
λ(x) ≤ λϕ(H1(x))h2

1(x) + (1− λ)ϕ(H2(x))h2
2(x) .(5)

Taking integrals on both sides of (5), one obtains the asserted inequality. Now let
0 < λ < 1 and let x be such that 0 < x < ∞ and 1

2
< H1(x), H2(x) < 1. Then

equality in (5) implies h1(x) = h2(x) by Lemma 2 and Remark 2. Let

D1 = {x : 1
2
< H1(x) < 1} and let D2 = {x : h1(x) 6= h2(x), x > 0} .

If H2(x) is such that 1
2
< H2(x) < 1 for 0 < x <∞, we see that

A(Hλ) < λA(H1) + (1− λ)A(H2) provided that µ(D1 ∩D2) 6= 0 ,

where µ is Lebesgue measure on R. But µ(D1 ∩D2) = 0 implies h1(x) = h2(x) a.e.
[µ] for x ≥ 0. Thus

A(Hλ) < λA(H1) + (1− λ)A(H2) for 0 < λ < 1

if H1 6= H2 and if H2 satisfies 1
2
< H2(x) < 1 for 0 < x <∞.

Q.E.D.

Lemma 4: Let E be a convex class of distributions on R and let the functional B(H)
be convex in H ∈ E , i.e.,

B(λH1 + (1− λ)H2) ≤ λB(H1) + (1− λ)B(H2)

13



for all H1, H2 ∈ E and 0 ≤ λ ≤ 1. Let H0 ∈ E be fixed and set BH(λ) = B(λH +
(1− λ)H0) for H ∈ E . If

lim
λ↓0

BH(λ)−BH(0)

λ
≥ 0 for all H ∈ E

then B(H) ≥ B(H0) for all H ∈ E .

Proof: By convexity of B we have

BH(λ)−BH(0)

λ
≤ B(H)−B(H0)

and the assertion follows.

Remark 3: If B(H) is strictly convex at H0, i.e.,

B(λH + (1− λ)H0) < λB(H) + (1− λ)B(H0)

for all 0 < λ < 1 and all H ∈ E with H 6= H0, then B(H0) < B(H) for all H ∈ E
with H 6= H0.

Lemma 5: Let A be a class of objects a with the property: if a1, a2 ∈ A then
λa1 + (1− λ)a2 is defined and in A for 0 ≤ λ ≤ 1. Let K : A −→ R be convex, i.e.,

K(λa1 + (1− λ)a2) ≤ λK(a1) + (1− λ)K(a2) for 0 ≤ λ ≤ 1 and a1, a2 ∈ A .

Fix a1, a2 ∈ A and set K(λ) = K(λa1 + (1− λ)a2), then K(λ) is convex on [0, 1].

Proof: Let ν, λ1, λ2 ∈ [0, 1], then

K(νλ1 + (1− ν)λ2) = K (ν[λ1a1 + (1− λ1)a2] + (1− ν)[λ2a1 + (1− λ2)a2])

≤ νK(λ1) + (1− ν)K(λ2)

Q.E.D.

Definition 3: Let ϕ1 : (0,∞) −→ R and define

K(ϕ, ϕ1) =

{
H : H ∈ Kϕ and

∫ ∞
0

|ϕ1(x)| h(x) dx <∞
}
.
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Lemma 6: Let ϕ satisfy the conditions of Lemma 2 and let H0 ∈ K(ϕ, ϕ1) be a
strictly increasing distribution function. Let H ∈ K(ϕ, ϕ1) be such that

0 ≤ D0(H) =

∫ ∞
0

[
ϕ′(H0(x))(H(x)−H0(x))h2

0(x)

+ 2ϕ(H0(x))[h(x)− h0(x)]h0(x)− ϕ1(x)[h(x)− h0(x)]
]
dx <∞ .

Then

lim
λ↓0

B(λH + (1− λ)H0)−B(H0)

λ
∃ = D0(H) ≥ 0 ,

where

B(H) =

∫ ∞
0

ϕ(H(x))h2(x)− ϕ1(x)h(x) dx .

Proof: Let Hλ(x) = λH(x) + (1 − λ)H0(x) and let hλ be the density of Hλ. By
Lemma 2 we have for all x > 0 :

ax(λ) = ϕ(Hλ(x))h2
λ(x)− ϕ1(x)hλ(x) ≤ λax(1) + (1− λ)ax(0) ,

thus
ax(λ)− ax(0)

λ
≤ ax(1)− ax(0) .

The functions ax(1) and ax(0) are integrable over the interval (0,∞) by assumption,
and Lemma 5 establishes the convexity of ax(λ) in λ. Therefore (ax(λ) − ax(0))/λ
decreases as λ decreases to zero.

ax(λ)− ax(0)

λ
↘ ϕ′(H0(x))(H(x)−H0(x))h2

0(x)

+2ϕ(H0(x))(h(x)− h0(x))h0(x)− ϕ1(x)(h(x)− h0(x))

a.e. [µ] for x > 0. The assertion follows from the monotone convergence theorem.
Q.E.D.

Proof of Theorem 2. Letting H∗(x) = H(τHx), we obtain for the ratio of the
two variances:

r(H) =
σ2
H(M∗(F ))

σ2
H(R(F ))

=

∫
ψ2(x) dH∗(x)∫ 1

0
J2(t) dt

[∫
J ′(H∗(x))h∗2(x) dx∫
ψ′(x)h∗(x) dx

]2

,
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with

H∗ satisfying

∫
ψ2(x) dH∗(x) =

∫
ψ2(x) dF (x) .

The efficiency r(H) is independent of the scale ofH. Since
∫ 1

0
J2(t) dt =

∫
ψ2(x) dF (x),

this efficiency r(H) reduces to

r(H) =

(∫
J ′(H∗(x))h∗2(x) dx∫
ψ′(x)h∗(x) dx

)2

.

We will show that r(H) ≥ 1 and that equality holds if and only if H(x) = F (ax) for
some a > 0. It suffices to show that∫

J ′(H∗(x))h∗2(x) dx ≥
∫

ψ′(x)h∗(x) dx ,(6)

subject to the condition∫
ψ2(x)h∗(x) dx =

∫
ψ2(x)f(x) dx

and that (6) becomes an equality if and only if F = H∗. We observe that

J ′′(F (x))f 2(x) = ψ′′(x) + ψ′(x)ψ(x) and J ′(F (x))f(x) = ψ′(x) for x > 0.

Condition B′2 implies
∫∞

0
ψ′ dH(x) <∞ and

∫∞
0

ψ2(x) dH(x) <∞. With this and
condition B′3 we obtain by integration by parts:∫ ∞

0

J ′′(F (x))f 2(x)[H(x)−F (x)]+f(x)J ′(F (x))[h(x)−f(x)] dx

=

∫ ∞
0

[ψ′′(x) + ψ′(x)ψ(x)][H(x)− F (x)] + ψ′(x)[h(x)− f(x)] dx

=
[(

1
2
ψ2(x) + ψ′(x)

)
(H(x)− F (x))

]∞
0
−
∫ ∞

0

1
2
ψ2(x)[h(x)− f(x)] dx

= − 1
2

∫ ∞
0

ψ2(x)(h(x)− f(x)) dx .

We will use Lemma 6 with the following identifications:

ϕ(t) = J ′(t), H0(x) = F (x) and ϕ1(x) = f(x)J ′(F (x))− 1
2
ϕ2(x) .
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Then ϕ(t) satisfies the assumptions of Lemma 2 and has a continuous derivative on
the interval (1

2
, 1). With the above, we obtain

D0(H) =

∫ ∞
0

(
J ′′(F (x))f 2(x)[H(x)− F (x)] + 2f(x)J ′(F (x))[h(x)− f(x)]

− [f(x)J ′(F (x))− 1
2
ψ2(x)][h(x) − f(x)]

)
dx = 0

Setting

B(H) =

∫ ∞
0

J ′(H(x))h2(x)− (ψ′(x)− 1
2
ψ2(x))h(x) dx ,

it follows from Lemma 6 that B(λ) = B(λH + (1 − λ)F ) has derivative zero at
λ = 0. Since B(H) is strictly convex at F by Lemma 3, it follows from Lemma 4 and
Remark 3 that

B(F ) < B(H) for H 6= F .(7)

For H = H∗, where H∗ satisfies∫
ψ2(x) dH∗(x) =

∫
ψ2(x) dF (x) ,

we see that (7) implies (6). Q.E.D.

2.3 Discussion of Results.

Whereas most conditions which are imposed on F are regularity conditions, there
is one, A′4, which is not of that type. Condition A′4 is used quite strongly in the
proof of Theorem 2, since through it one obtains certain convexity properties of the
functional that is to be minimized. This enables us to bypass the variational approach,
which seems to suggest that Theorem 2 may be true without condition A′4. On the
other hand there may be some doubts as to the direct applicability of the calculus of
variations to this problem, since the distributions H have certain conditions attached
to them. Furthermore, the calculus of variations usually yields criteria only for local
extrema and it seems to be difficult to see whether a local extremum is also a global
one.

Now we will mention a few distributions F which satisfy condition A′4.

1. The logistic distribution F (x) = (1 + exp(−x))−1. Here ψ(F−1(u)) = J(u) =
2u− 1, thus [J ′(u)]−1 is concave on the interval (1/2, 1).
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2. The normal distribution F (x) = Φ(x). Here, ψ(F−1(u)) = Φ−1(u) = J(u)
with J ′(u) = [f(F−1(u))]−1 and [J ′(u)]−1 = f(F−1(u)) is concave, as is seen by
differentiation.

3. Let F be a distribution with density

f(x) = C · exp(−|x|α), 1 < α ≤ 2;

for x > 0 we have:

ψ(x) = αxα−1, ψ′(x) = α(α− 1)xα−2

and
ψ′′(x) = α(α− 1)(α− 2)xα−3.

Thus

(ψ′(x)ψ(x) + ψ′′(x))(ψ′(x))−2 = (α− 1)−1x+ (α(α− 1))−1(α− 2)x1−α

is increasing in x > 0. Since

[J ′(u)]−1 = f(F−1(u))[ψ′(F−1(u))]−1

is concave if

− d
du

[J ′(u)]−1 =
ψ′(F−1(u))ψ(F−1(u)) + ψ′′(F−1(u))

(ψ′(F−1(u)))2

is increasing, it follows that A′4 is satisfied.

In the case where F is the logistic distribution, we give a simpler proof for Theo-
rem 2 in the Appendix B. In the case where F is the normal distribution, the estimator
M∗(F ) is the ordinary sample mean; the result of Theorem 2 in this case was already
proved by Chernoff and Savage (1958) and later by Gastwirth and Wolff (1968).

The above comparison is subject to the following criticism. There is a certain
arbitrariness in the construction of M∗(F ) as far as the estimation of scale is con-
cerned. In order to obtain scale invariant location estimators, many other ways of
estimating scale could have been employed. Thus one could construct many scale
invariant location estimators which would be asymptotically optimal for F , but if
the underlying distribution of the sample is H 6= F , these estimators behave quite
differently from each other, and the statement of Theorem 2 may no longer be true
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if M∗(F ) is replaced by any other such scale invariant estimator. We chose M∗(F )
because Huber (1964) showed for a particular ψ-function ψf that the estimator of
scale involved here is in some sense minimax and hence robust over a certain class of
distributions. From Definition 1 it can be seen that the estimator of scale S∗n(ψ) con-
tinues to be robust if the involved ψ-function is bounded; i.e., outlying observations
do not influence the estimator S∗n(ψ) too much. This phenomenon (that the behavior
of the M∗-estimator depends very strongly on the employed scale estimator) appears
neither with L- and R-estimators nor in the case of M∗(Φ). M∗(Φ) will always be
the sample mean, no matter which way the scale is estimated.

A counterexample to Theorem 2 is presented in Appendix C. In this example
some of the regularity conditions for F are violated and so is A′4, but the violation
of A′4 does not seem to be an essential feature of the example.

After comparing R(F ) with L(F ) and M∗(F ) and showing that as far as asymp-
totic variances are concerned, the first estimator is better than the latter two (at least
under certain conditions), let us next consider the comparison of L(F ) with M∗(F ).
In Appendix D it is shown that for F (x) = (1 + exp(−x))−1 neither of the estimators
L(F ) and M∗(F ) is better than the other; i.e., there exist distributions H1 and H2

such that σ2
H1

(L(F )) < σ2
H1

(M∗(F )) and σ2
H2

(L(F )) > σ2
H2

(M∗(F )). Thus it does not
seem feasible to look for results like Theorem 1 and Theorem 2 in the comparison of
L(F ) and M∗(F ).

3. Discussion of a Result by Mikulski.

Mikulski (1963) treated a problem similar to the estimation problem considered here
in terms of testing. He investigated the following problem, first mentioned by Chernoff
and Savage (1958). Let X1, . . . , Xm and Y1, . . . , Yn be two independent samples from
distributions H((x−µ)/σ) and H((x−µ−∆)/σ) respectively. If H(x) = F (x), where
F is a known distribution function which is sufficiently regular, “asymptotically best”
linear rank tests, say ϕF , can be constructed for the hypothesis H : ∆ ≤ 0 against
the alternative K : ∆ > 0; see Chernoff and Savage (1958). We will specify below
what is meant by “asymptotically best”. If F = Φ, where Φ is the standard normal
distribution function, asymptotically best tests are the Fisher-Yates test ϕΦ and the
van der Waerden x-test. When F = Φ, we can also use the two sample t-test for
this testing problem, the t-test being the uniformly most powerful invariant test for
finite sample sizes, thus also “asymptotically best”. Denote this test by tΦ. Let
e(ϕΦ, tΦ, H

∗) denote the asymptotic relative efficiency (Pitman) of ϕΦ relative to tΦ
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when the underlying distributions of the samples are H∗(x) = H((x − µ)/σ) and
H∗(x−∆N ) respectively, with ∆N converging to zero at a certain rate. Chernoff and
Savage show that e(ϕΦ, tΦ, H

∗) ≥ 1 for all H∗, subject to certain regularity conditions,
and that equality holds if and only if H∗(x) = Φ((x−m)/a) for some m and a > 0.

The question they pose is: Can a similar statement be made about e(ϕF , tF , H
∗),

where ϕF is an “asymptotically best” rank test for F , and tF is a parametric test
that is “asymptotically best” for F? Mikulski shows that for any F 6= Φ satisfying
certain regularity conditions, this is not possible; i.e., e(ϕF , tF , H

∗) < 1 for some
H∗. There is a certain vagueness in this problem, since it is not at all clear which
parametric test tF should be used. It seems reasonable, though, to use a test tF which
shares certain properties with tΦ, since one is interested in a comparable situation
to the one for which Chernoff and Savage obtained their result. Such properties of
the t-test tΦ are the invariance of this test under a common shift and a common
change in scale in both samples. One more reason to require this property is that
it is a property of the rank tests, and it thus seems only fair to require it from
any competing parametric test. Mikulski did not impose this restriction and in fact
his best parametric test is neither location nor scale invariant. This fact plays an
important role in the variational argument of his proof. Hájek (1962) recognized the
role of invariance in this problem and conjectured that the answer to the proposed
problem may be positive; i.e., e(ϕF , tF , H

∗) ≥ 1, if tF has these invariance properties.
Under certain restrictions we shall in the following prove Hájek’s conjecture.

Let us now consider independent samples X1, . . . , Xm and Y1, . . . , Yn from distri-
butions F ((x − µ)/σ) and F ((x − ν)/σ) respectively, where F is known to us, and
construct an “asymptotically best” test which is location and scale invariant. Previ-
ously we had constructed M?- and S?-estimators for the location and scale parameters
of such samples. Here we will denote the corresponding estimators for µ and σ from
the X-sample by µ̂ and σ̂1 and for ν and σ from the Y -sample by ν̂ and σ̂2. These
estimators have the following invariance properties:

i) µ̂(bXm + a) = b µ̂(Xm) + a and similarly for ν̂(Y n);

ii) σ̂1(bXm + a) = |b| σ̂1(Xm) and similarly for σ̂2(Xm).

To be more precise, one should write ν̂F instead of ν̂ and similarly for the other
estimators, since they were constructed with reference to F , but we will drop this
index F whenever no confusion will arise thereby.
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In analogy to the t-test tΦ we now propose the following test statistic

tF =
(ν̂ − µ̂)

√
mn/N√

((m− 1)/(N − 2))σ̂2
1 + ((n− 1)/(N − 2))σ̂2

2

, N = m+ n

and our tF -test will reject when tF is too large.

In what sense is this test “asymptotically best”? Let X1, . . . , Xm and Y1, . . . , Yn
be two independent samples from F ((x − µ)/σ) and F ((x − µ −∆)/σ) respectively
and consider the hypotheses HF : ∆ ≤ 0 and KF : ∆ > 0. Let βN(∆) denote the
power function of any test for the problem of testing HF against KF . If this test is
consistent, then βN(∆) → 1 as N → ∞ for any ∆ > 0, where we assume that as
N →∞, the ratio λN = m/N → λ with 0 < λ < 1. For comparing two sequences of
tests, we consider alternatives of the form

∆N (δ) = δ
√
N/(mn), δ > 0.

We proceed with the following definitions:

Definition 4. A two sample test ϕ for testing HF is asymptotically level α (0 ≤ α ≤
1) if its power function βN (∆) satisfies

lim sup
N→∞

βN(∆) ≤ α for all ∆ ≤ 0 .

The class of such tests will be denoted by Cα.

Definition 5. A two sample test ϕ for testing HF against KF will be called invariant
if it is invariant under a common change of location and scale in both samples. The
class of such tests will be denoted by I.

The test statistic tF is obviously invariant.

Definition 6. A two sample test ϕ? ∈ I ∩Cα for testing HF against KF is “asymp-
totically best at level α among invariant tests” if

lim
N→∞

βϕ?,N(∆N (δ)) ≥ lim
N→∞

βϕ,N(∆N (δ))

for all ϕ ∈ I ∩Cα and for all δ > 0. Here βϕ,N(∆) denotes the power of the test ϕ at
∆.

Such a test ϕ? will now simply be called “asymptotically best” for F . We will
show that the test tF is asymptotically best for F , where F satisfies the regularity
conditions which were imposed in the comparison of M?(F ) and R(F ).

21



First let us consider the following auxiliary problem: A) Let X1, . . . , Xm and
Y1, . . . , Yn be independent samples from distributions F ?(x) = F ((x − µ)/σ) and
F ?(x−∆) respectively. Let µ and σ be fixed and consider testing the simple hypothesis
H1 : ∆ = 0 against the simple alternative K1 : ∆ = ∆N(δ) (δ > 0 fixed). Let ϕ be an
invariant test for this problem which is asymptotically level α and denote its power
by βN(∆N(δ)). We are interested in finding the highest possible value which the
limit of βN(∆N (δ)) (as N → ∞) can achieve among all such tests ϕ. Since we are
considering invariant tests, we can equivalently study the following modified problem:
B) Let X1, . . . , Xm and Y1, . . . , Yn be independent samples from distributions F ?(x) =
F (x + (1 − λN )∆) and F ?(x − λN∆) respectively and test the simple hypothesis
H2 : ∆ = 0 against the simple alternative K2 : ∆ = ∆N (δ) (δ > 0 fixed). It is
clear that any test which is invariant and asymptotically of level α for problem B) is
also invariant and asymptotically of level α for problem A) and vice versa. Also the
power of the test is the same in these two models. For problem B) the most powerful
level α test among all tests can be constructed by means of the Neyman-Pearson
lemma and it is seen that the highest asymptotic power that can be achieved by any
asymptotically level α test is

β?(δ) = 1− Φ(uα − κ(δ)),

where uα is such that Φ(uα) = 1− α and κ2(δ) = (δ/σ)2I(f) with

I(f) =

∫
(f ′(x)/f(x))2 f(x) dx,

f being the density of F . For the derivation of this result we refer to Witting and
Nölle (1970), pp 66-68.

In order to show that the test tF is asymptotically best for F , it remains to show
that tF achieves this power asymptotically. In the further study of the asymptotic
behavior of tF we shall, for the sake of simplicity, restrict ourselves to samples which
arise from distributions that are symmetric around their respective medians. Let
X1, . . . , Xm and Y1, . . . , Yn be two independent samples from symmetric distributions
H(x) and H(x−∆) respectively. For the following discussion it is immaterial whether
δ is fixed or depends on N . We may also assume without loss of generality that H is
symmetric around zero.

Under suitable regularity conditions on H (see Section 1.1) we have that:

√
n (ν̂n −∆)

L−→ N(0, α(H)/a2(H))
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and √
m µ̂m

L−→ N(0, α(H)/a2(H))

and that

σ̂1m −→ τH and σ̂2m −→ τH in probability as m,n→∞ ,

where τH is such that∫
ψ2(x/τH) dH(x) =

∫
ψ2(x) dF (x) with ψ(x) = −f ′(x)/f(x) ,

and

α(H) =

∫
ψ2(x/τH) dH(x) and a(H) = τ−1

H

∫
ψ′(x/τH) dH(x) .

With the convention that P∆ denotes the probability law of the joint samples X1, . . . , Xm

and Y1, . . . , Yn, it then follows that

tF (∆) =

√
mn/N (ν̂ − µ̂−∆)√

[(m− 1)/(N − 2)]σ̂2
1 + [(n− 1)/(N − 2)]σ̂2

2

LP∆−→ N(0, α(H)/[a(H)τH]2)

where tF (0) = tF .

Because of the location invariance we also have

P∆(tF (∆) ≤ t) = P0(tF ≤ t) .

Let σ2(H) = α(H)/[a(H)τH]2 and let the tF test reject if tF ≥ uασ(H). Then
for any sequence ∆N

AN (∆N ) = P∆N
(tF ≥ uασ(H))

= P0

(
tF ≥ uασ(H)− ∆N

√
mn/N√

[(m− 1)/(N − 2)]σ̂2
1 + [(n− 1)/(N − 2)]σ̂2

2

)
.

For
∆N ≡ 0 : AN (∆N ) −→ 1− Φ(uα) = α .
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For
∆N ≤ 0 : lim sup

N→∞
AN (∆N) ≤ α .

If

∆N = ∆N (δ) = δ

√
N

mn
, δ > 0 ,

we have
AN (∆N (δ)) −→ 1− Φ(uα − δ/[σ(H)τH ]) .

Thus the tF test is asymptotically of level α and its asymptotic power at the sequence
∆N (δ) is 1−Φ(uα− δ/[σ(H)τH ]). If H(x) = F (x/σ) with F symmetric around zero,
then τH = σ,

α(H) =

∫
ψ2(x) dF (x) = I(f), and a(H) =

1

σ

∫
ψ′(x) dF (x) =

I(f)

σ
;

hence in this case the asymptotic power is

1−Φ

(
uα −

δ

σ

√
I(f)

)
,

which in the light of the previous remarks establishes that tF is asymptotically best
at F .

According to Chernoff and Savage there also exists an asymptotically best linear
rank test ϕF with score function J(u) = ψ(F−1(u)). The asymptotic power of the
level α ϕF -test against the sequence ∆N (δ) = δ

√
N/(mn) is

1− Φ

(
uα −

δ√
I(f)

∫
J ′(H(x))h2(x) dx

)
.

Hence the asymptotic relative efficiency of ϕF relative to tF for samples X1, . . . , Xm

and Y1, . . . , Yn arising from distributions H(x) and H(x−∆N (δ)) respectively is:

e(ϕF , tF , H) =
α(H)

a2(H)I(f)

(∫
J ′(H(x))h2(x) dx

)2

.

This expression is the same as the one which was studied in the comparison of the
estimates R(F ) and M?(F ) in Section 2.2. Imposing the same conditions on F and H
as in that former comparison, we obtain e(ϕF , tF , H) ≥ 1 with equality if and only if
H(x) = F (ax) for some a > 0. In view of the restriction to symmetric distributions,
this result is not quite as general as the one presented by Chernoff and Savage in the
normal case. In conclusion we emphasize that the result does not contradict those of
Mikulski. It uses a different approach to the same problem.
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APPENDIX

A. Existence and Uniqueness of M?

n
(ψ) and S?

n
(ψ).

In Definition 1, Section 1.1, M?
n(ψ) and S?n(ψ) were defined as the solutions of

the equations (0). It remains to show that these solutions exist and are unique.

Let G be the empirical distribution function of the sample X1, . . . , Xn; the equa-
tions (0) can be written:

EG ψ

(
x−m
s

)
= 0 and EG ψ

2

(
x−m
s

)
= β ,

where β satisfies 0 < β < sup{ψ2(x) : x ∈ R}. Here EG denotes the expectation with
respect to the distribution G. Since X1, . . . , Xn is fixed throughout this argument,
we write E instead of EG. It is assumed that ψ is continuously differentiable with
ψ′(x) > 0 and ψ(x) = −ψ(−x) for all x ∈ R. Let ϕ(m, s) : R × R+ −→ R × R+ be
the following map:

ϕ(m, s) =

 E ψ
(
x−m
s

)
E ψ2

(
x−m
s

)
 .

The Jacobian of this map is:

Jϕ = −1

s

 E ψ′
(
x−m
s

)
E
[
x−m
s

ψ′
(
x−m
s

)]
2E

[
ψ′
(
x−m
s

)
ψ
(
x−m
s

)]
2E

[
x−m
s

ψ′
(
x−m
s

)
ψ
(
x−m
s

)]
 .

Letting y = (x−m)/s, we obtain for the determinant of Jϕ

det Jϕ = −(2/s) [E (ψ′(y))E (yψ′(y)ψ(y))− E (yψ′(y))E (ψ′(y)ψ(y))]

= − (2/s)E2(ψ′(y))

[
E(yψ(y)ψ′(y)

Eψ′(y)
− E(yψ′(y))

Eψ′(y)

E(ψ(y)ψ′(y))

Eψ′(y)

]
.

Since ψ′ > 0 implies Eψ′(y) > 0, one can define the new probability measure G? by

dG? =
ψ′

EG ψ′(y)
dG

so that

det Jϕ = −(2/s)E2(ψ′(y)) [EG?(yψ(y))− EG?(y)EG?(ψ(y))]

= − (2/s)E2ψ′(y) covG?(y, ψ(y)) < 0 .
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The last inequality follows from

Lemma 7: If EY 2 < ∞ and Eψ2(Y ) < ∞ and if ψ(x) > ψ(y) for x > y, then
cov(Y, ψ(Y )) > 0 for any distribution of Y that does not concentrate on one point.

Proof: Let Y1, Y2 be two independent identically distributed random variables, then
(Y1 − Y2)(ψ(Y1)− ψ(Y2)) > 0 for Y1 6= Y2. Since P (Y1 6= Y2) > 0, we have

E[(Y1 − Y2)(ψ(Y1)− ψ(Y2))] > 0 , hence cov(Y1, ψ(Y1)) > 0

Q.E.D.

Thus the Jacobian of ϕ has a determinant which is always negative and so are
the two main diagonal elements of the Jacobian. Theorem 4 of a paper by Gale and
Nikaidô (1965) enables us to conclude that ϕ is a one to one map. This establishes
the uniqueness of the solutions of the above equations. In order to prove the existence
of the solutions we observe that for each s there exists an m(s) such that

1

n

n∑
i=1

ψ

(
Xi −m(s)

s

)
= 0 ,

and m(s) satisfies: min1≤i≤nXi ≤ m(s) ≤ max1≤i≤nXi. As s varies from zero to
infinity, it is seen that

1

n

n∑
i=1

ψ2

(
Xi −m(s)

s

)
ranges from sup{ψ2(x) : x ∈ R} to zero. Q.E.D.

B. A simpler Proof of Theorem 2 for the Case that F is the Logistic
Distribution.

Let F (x) = (1 + exp(−x))−1; then f(x) = exp(−x)(1 + exp(−x))−2 and

ψF (x) = ψ(x) = −f
′(x)

f(x)
=

1− exp(−x)

1 + exp(−x)
.

One observes the following relations: ψ′(x) = (1 − ψ2(x))/2 = 2f(x) and J(t) =
ψ(F−1(t)) = 2t− 1.

Let h0(x) be a density satisfying∫
ψ2(x)h0(x) dx =

∫
ψ2(x)f(x) dx (= 1/3) .
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Since

3

∫
ψ′(x)h0(x) dx = 3

∫
1
2
(1− ψ2(x))h0(x) dx = 1 ,

we obtain by Jensen’s inequality∫
h2

0(x)dx =

∫
h0(x)

3ψ′(x)
3ψ′(x)h0(x) dx

≥ 1

9

1∫
(ψ′(x))2 dx

=
1

9

1∫
4f 2(x) dx

=
1

6
.

The ratio of the asymptotic variances of M?(F ) and R(F ) is

σ2
H(M?(F ))

σ2
H(R(F ))

=

(∫
2h2(x) dx

)2∫ 1

0
J2(t) dt

∫
ψ2(x/τH) dH(x)(∫
ψ′(x/τH) dH(x)

)2 τ
2
H ,

where τH satisfies
∫
ψ2(x/τH) dH(x) =

∫
ψ2(x) dF (x). Setting H0(x) = H(xτH),

we have
∫
ψ2(x) dH0(x) =

∫
ψ2(x) dF (x) and the above inequality implies

σ2
H(M?(F ))

σ2
H(R(F ))

=

(∫
2h2

0(x) dx
)2∫ 1

0
J2(t) dt

∫
ψ2(x) dH0(x)(∫
ψ′(x) dH0(x)

)2 ≥ 1 .

It is also seen that equality holds if and only if H(x) = F (ax) for some a > 0.

C. A Counter Example to Theorem 2.

Let

f(t) = (1− ε) 1√
2π

exp(−ρ(t)) ,

where

ρ(t) =

 t2/2 for |t| ≤ k

k|t| − k2/2 for |t| > k

and where ε and k satisfy the relation

1

1− ε = 2Φ(k)− 1 + 2ϕ(k)/k .

Here Φ is the standard normal distribution function and ϕ its density. Then

ψf (x) = ψ(x) =

 x for |x| ≤ k

k sign(x) for |x| > k
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The corresponding estimators M?(F ) are those of Huber’s (1964) proposal two. Con-
ditions for their asymptotic normality are given by Huber (1967).

Let R(F ) be the corresponding R-estimator. It was seen in the proof of Theorem 2
that the statement:

σ2
H(M?(F )) ≥ σ2

H(R(F )) for all H in some class(8)

is equivalent to:∫
d

dx

[
ψ
(
F−1(H(x))

)]
dH(x) ≥

∫
ψ′(x) dH(x) for all H in that class(9)

which satisfy the constraint∫
ψ2(x) dH(x) =

∫
ψ2(x) dF (x) .(10)

It will be shown that there exists an H0 satisfying (10) for which the inequality (9)
is not satisfied.

Since we consider only distributions H which have a density h(x) and which are
symmetric around zero one may write (9) and (10) as follows:∫ α

0

[F−1(H(x))]′ dH(x) ≥ H(k)− 1/2 , where α = H−1(F (k))(11)

and

∫ k

0

x2h(x) dx+ k2(1−H(k)) =

∫ k

0

x2f(x)dx+ k2(1− F (k))(12)

or equivalently after integration by parts

∫ k

0

x(H(x)− F (x)) dx = 0 .(13)

Let Kα be the class of distributions H that satisfy the following conditions:

i) H has a density h(x) with h(x) = h(−x);

ii) H ∈ CR(J) ∩ CM?(ψ) with J(t) = ψ(F−1(t));
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iii)
∫ k

0
x(H(x)− F (x)) dx = 0 and H(α) = F (k).

Kα is a convex class of distributions. Assume α ≥ k and let

C(H) =

∫ α

0

[F−1(H(x))]′ dH(x) for H ∈ Kα

and set C(λ) = C(λH1 + (1 − λ)H2), where H1 ∈ Kα and H2 be the distribution
function corresponding to the density:

h2(x) =

 f(x) for |x| ≤ k

0 for k < |x| ≤ α

and complete the definition of h2 in such a way that h2 is a symmetric bounded
density. Thus we also have H2 ∈ Kα. Let

Hλ(x) = λH1(x) + (1− λ)H2(x) and hλ(x) = λh1(x) + (1− λ)h2(x).

We will study the derivative of C(λ) with respect to λ at λ = 0.

C(λ)− C(0) =

∫ α

0

J ′(Hλ(x))h2
λ(x) dx−

∫ α

0

J ′(H2(x))h2
2(x) dx

=

∫ k

0

[
J ′(Hλ(x))h2

λ(x)− J ′(H2(x))h2
2(x)

]
dx

+

∫ α

k

J ′(Hλ(x))λ2h2
1(x) dx .

The first summand on the right shall be denoted by B(λ) and the second by A(λ).
Then

A(λ)

λ
−→ 0 as λ→ 0

and

B(λ)

λ
λ→0−→

∫ k

0

[
J ′′(H2(x))(H1(x)−H2(x))h2

2(x)

+ J ′(H2(x)) · 2 · h2(x)(h1(x)− h2(x))
]
dx

=

∫ k

0

x(H1(x)− F (x)) + 2(h1(x)− f(x)) dx

= 2(H1(k)− F (k)) since H1 ∈ Kα .
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Thus
C(λ)

dλ

∣∣∣∣
λ=0

= 2(H1(k)− F (k)) .

Let C?(H) = C(H)−H(k) + 1/2 and C?(λ) = C?(Hλ). We observe that C?(0) = 0
and

C?′(0) =
dC?(λ)

dλ

∣∣∣∣
λ=0

= H1(k)− F (k) .

If there exists an H1 ∈ Kα (for α > k) which satisfies H1(k) < F (k), then C?′(0) < 0.
This implies that C?(λ) < 0 for some λ > 0, which in turn implies that there exists
an H0 ∈ Kα (α > k) with σ2

H0
(M?(F )) > σ2

H0
(R(F )). It remains to show that

there exists an H1 ∈ Kα (α > k) with H1(k) < F (k). Since we have to satisfy∫ k
0
x(H1(x)−F (x)) dx = 0, we can restrict attention to the interval [0, k]. It is easily

seen that
∫ k

0
2xH1(x) dx can take on any value in the interval (k2/2, H1(k)k2), as H1

varies on the interval [0, k] subject to the conditions H1(0) = 1/2 and H1(k) < F (k).

Since k2/2 <
∫ k

0
2xF (x) dx < F (k)k2, one can clearly find a distribution H1 with

bounded density such that H1(k) < F (k) and
∫ k

0
x(F (x)−H1(x)) dx = 0. Q.E.D.

D. Examples for the Comparison of M?(F ) and L(F ).

Consider the case of the logistic distribution F (x) = (1+exp(−x))−1 and observe
the following relations:

ψ(x) = −f ′(x)/f(x) = tanh(x/2) =
1− exp(−x)

1 + exp(−x)
, ψ(F−1(t)) = 2t− 1,

ψ′(F−1(t)) = 2t(1− t), I(f) =

∫
ψ2(x) dF (x) = 1/3 and ψ′(x) = (1− ψ2(x))/2.

We have σ2
H(L(F )) =

∫ 1

0
U2(t) dt, where

U(t) =

∫ t

1/2

[
ψ′(F−1(u))/h(H−1(u))

]
du [I(f)]−1 .

Let H(x) = Ha(x) be the uniform distribution on the interval [−a,+a], then

U(t) = 4a

∫ t

1/2

u(1− u) du = 4a(t2/2− t3/3− 1/12)
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and thus σ2
H(L(F )) = a2 17/35. Now we choose a such that

∫
ψ2(x) dHa(x) =∫

ψ2(x) dF (x); i.e., let a = a0 where ψ(a0)/a0 = 1/3. Using tables of the tanh-
function, one obtains ψ(2.56)/2.56 > 1/3, hence a0 > 2.56. Since σ2

Ha0
(M?(F )) = 3,

we have
σ2
Ha0

(M?(F )) = 3 < (2.56)2 17/35 < σ2
Ha0

(L(F )) .

Now let Ha be the double exponential distribution; i.e., Ha has a density ha(x) =
(a/2) exp(−a|x|). Determine a0 such that∫

ψ′(x) dHa0(x) =

∫
ψ2(x) dF (x) = 1/3 .

For a = 1 one has ∫
ψ′(x) dHa = 2 log 2− 1 > 1/3 ,

hence a0 > 1. Since ha(H
−1
a (t)) = (1− t)a for t ≥ 1/2, we have

U(t) = 3

∫ t

1/2

2u(1− u)

(1− u)a
du = (3/a)(t2 − 1/4)

for t ≥ 1/2 and hence obtain for a = a0 > 1∫ 1

0

U2(t) dt =
2

a2
0

9

∫ 1

1/2

(t2 − 1/4)2 dt =
57

40a2
0

< 3 ,

which implies σ2
Ha0

(L(F )) < σ2
Ha0

(M?(F )). Thus neither of the two estimates L(F )

and M?(F ) is uniformly better than the other as far as asymptotic variances are
concerned.
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