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1 Introduction and Overview

We present here by direct argument the classical Clopper-Pearson (1934) “exact” confidence
bounds and corresponding intervals for the binomial or negative binomial parameter p, for the
Poisson parameter λ, and for the ratio of two Poisson parameters, ρ = λ1/λ2. The bounds
presented here are exact in the sense that their confidence level of covering the unknown
parameters is at least the specified and targeted value γ, 0 < γ < 1. The qualifier “at least”
means that the minimum coverage probability of these bounds equals the desired confidence
level, i.e., for some parameters the coverage probability of these bounds is equal to the
desired confidence level. Because of the discrete nature of the underlying distributions the
actual confidence varies with the unknown parameter and can, for some parameter ranges,
be considerably higher than the stated value γ. In that sense these bounds are conservative
in their coverage.

Agresti and Coull (1998) have recently discussed advantages of alternate methods, where
the actual coverage oscillates more or less around the target value γ, and not above it. The
advantage of such intervals is that they are somewhat shorter than the Clopper-Pearson
intervals. Given that we often deal with confidence bounds concerning rare events we take
the conservative approach of Clopper and Pearson. A recent discussion for the Poisson
parameter can found in Barker (2002).

It is shown how such “exact” bounds can be computed quite easily using either the Excel
spread sheet or the statistical packages R or S-Plus. However, the GAMMAINV function in the
Excel spread sheet is not always stable in older versions of Excel. Thus care needs to be
exercised.

1MC: 7L-22, Phone: (425) 865-3623, e-mail: fritz.scholz@boeing.com,
http://www.rt.cs.boeing.com/MEA/stat/scholz/ for the latest version of this document
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We first give the argument for confidence bounds for a Poisson parameter λ. The arguments
for lower and upper bounds are completely parallel and it suffices to get a complete grasp of
only one such derivation. This is followed by the corresponding argument for the binomial
or negative binomial parameter p. For very small p it is pointed out how to use the very
effective Poisson approximation to get bounds on p. Finally we give the classical method for
constructing confidence bounds on the ratio ρ = λ1/λ2 based on two independent Poisson
counts X and Y from Poisson distributions with parameters λ1 and λ2, respectively. This
latter method nicely ties in with our earlier binomial confidence bounds and is quite useful
in assessing relative accident or incident rates.

In the next to last section we show how lower and upper bounds can be combined into
confidence intervals with the desired confidence level. We do this here in a generic sense that
applies to all previous situations. This makes it unnecessary to repeat the same argument
each time. However, for these intervals it is no longer clear whether the minimum coverage
probability is in fact equal to the desired level but it is at least as large as the targeted level.

The last section deals with the topic of inverse probability solving for the binomial and
Poisson distributions and shows how to accomplish this in Excel.

2 Poisson Parameter Upper and Lower Bounds

Suppose X is a Poisson random variable with mean λ (λ > 0), i.e.,

Pλ(X ≤ k) =
k∑

i=0

exp(−λ)λi

i!
.

2.1 Upper Bounds for λ

Small values of X can be viewed as evidence against the hypothesis

H(λ0) : λ ≥ λ0 .

Upon observing X = k we ask: is this value k small enough to reject H(λ0) with sufficient
confidence? That depends on λ0 and the desired confidence level γ, 0 < γ < 1. Suppose we
choose λ0 such that

Pλ0(X ≤ k) =
k∑

i=0

exp(−λ0)λ
i
0

i!
= 1− γ . (1)

Then for all λ ≥ λ0 we have

Pλ(X ≤ k) ≤ Pλ0(X ≤ k) = 1− γ .
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If this value 1−γ is small we have the choice to either believe that we saw a rare event under
the hypothesis (namely X ≤ k with probability at most 1 − γ) or to reject the hypothesis
with confidence γ and thus state λ < λ0. This confidence means that there is at most a 1−γ
chance of having made the wrong decision, namely rejecting H(λ0) when H(λ0) is true.

Thus we can treat λ0 as a 100γ% upper confidence bound for λ. As such we also denote it
by λ̂U(γ, k). It is found by solving equation (1) for λ0.

This value λ0 solves

γ = 1−
k∑

i=0

exp(−λ0)λ
i
0

i!
=
∫ λ0

0

tk exp(−t)

k!
dt

and can thus be obtained using the inverse of the incomplete gamma function.

In Excel one gets λ0 by invoking GAMMAINV(γ, k + 1, 1) and in R or S-Plus by the command
qgamma(γ,k + 1). As a check use the case k = 2 with γ = .95, then one gets λ̂U(.95, 2) =
6.295794 as 95% upper bound for λ.

For the special case k = 0 one can give an explicit formula for the upper bound, namely
λ̂U(γ, 0) = − log(1 − γ). For γ = .95 this amounts to λ̂U(.95, 0) = 2.995732 ≈ 3, which is
sometimes referred to as the Rule of Three, because of its mnemonic simplicity2.

2.2 Lower Bounds for λ

Large values of X can be viewed as evidence against the hypothesis

H(λ0) : λ ≤ λ0 .

Upon observing X = k we ask: is this value k large enough to reject H(λ0) with sufficient
confidence? That depends on λ0 and the desired confidence level γ, 0 < γ < 1. Suppose we
choose λ0 such that

Pλ0(X ≥ k) =
∞∑

i=k

exp(−λ0)λ
i
0

i!
= 1− γ . (2)

Then for all λ ≤ λ0 we have

Pλ(X ≥ k) ≤ Pλ0(X ≥ k) = 1− γ .

If this value 1−γ is small we have the choice to either believe that we saw a rare event under
the hypothesis (namely X ≥ k with probability at most 1 − γ) or to reject the hypothesis

2so called by Gerald van Belle in Statistical Rules of Thumb 2002, John Wiley & Sons, New York
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with confidence γ and thus state λ > λ0. This confidence means that there is at most a 1−γ
chance of having made the wrong decision, namely rejecting H(λ0) when H(λ0) is true.

Thus we can treat λ0 as a 100γ% lower confidence bound for λ. As such we also denote it
by λ̂L(γ, k). It is found by solving equation (2) for λ0. Of course, for γ > 0 this equation
can only have a solution when k > 0. When k = 0 one cannot give a positive lower bound
for λ. It is quite natural to state zero as the natural and trivial3 100% lower bound in the
case k = 0.

Equation(2) can be rewritten as

Pλ0(X ≤ k − 1) =
k−1∑
i=0

exp(−λ0)λ
i
0

i!
= γ .

This value λ0 can be obtained from Excel by invoking GAMMAINV(1−γ, k, 1) and in R or S-Plus
by the command qgamma(1− γ,k). For k = 1 one can give the formula for the lower bound
explicitly as λ̂L(γ, 1) = − log(γ).

As a check use the case k = 30 with γ = .95, then one gets λ̂L(.95, 30) = 21.59399 as 95%
lower bound for λ.

3 Binomial Parameter Upper and Lower Bounds

Suppose X is a binomial random variable, i.e., X counts successes in n independent trials
with success probability p (0 ≤ p ≤ 1) in each trial. Then we have

Pp(X ≤ k) =
k∑

i=0

(
n

i

)
pi(1− p)n−i .

3.1 Upper Bounds for p

Small values of X can be viewed as evidence against the hypothesis

H(p0) : p ≥ p0 .

Upon observing X = k we ask: is this value k small enough to reject H(p0) with sufficient
confidence? That depends on p0 and the desired confidence level γ, 0 < γ < 1. Suppose we
choose p0 such that

Pp0(X ≤ k) =
k∑

i=0

(
n

i

)
pi

0(1− p0)
n−i = 1− γ . (3)

3since λ > 0
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Then for all p ≥ p0 we have

Pp(X ≤ k) ≤ Pp0(X ≤ k) = 1− γ .

If this value 1−γ is small we have the choice to either believe that we saw a rare event under
the hypothesis (namely X ≤ k with probability at most 1 − γ) or to reject the hypothesis
with confidence γ and thus state p < p0. This confidence means that there is at most a 1−γ
chance of having made the wrong decision, namely rejecting H(p0) when H(p0) is true.

Thus we can treat p0 as a 100γ% upper confidence bound for p. As such we also denote it
by p̂U(γ, k, n). For k < n it is found by solving equation (3) for p0. This value p0 can be
obtained from Excel by invoking BETAINV(γ, k+1, n−k) and in R or S-Plus by the command
qbeta(γ,k + 1,n − k). For k = 0 one can give the upper bound explicitly as

p̂U(γ, 0, n) = 1− (1− γ)1/n .

For γ = .95 this becomes

p̂U(.95, 0, n) = 1− (.05)1/n = 1− exp

[
log(.05)

n

]
≈ 1− exp(−3/n) ≈ 3

n
,

which can be viewed as another instance of the Rule of Three. Here the last approximation
is valid only for large n.

For γ > 0 and k = n use the natural and trivial4 upper bound p̂U(γ, n, n) = 1 with 100γ%
confidence, since in that case the equation (3) has no solution.

As a check use the case k = 12 and n = 1600 with γ = .95, then one gets p̂U(.95, 12, 1600) =
.012123 as 95% upper bound for p.

Side Comment on Treatment of X = 0

When one observes X = 0 successes in n trials, especially when n is large, one is still not
inclined to estimate the success probability p by p̂(0) = 0/n = 0, since that is a very strong
statement. When p = 0 then we will never see a success in however many trials. Thus one
sometimes finds the following argument. Since p = 0 is such a strong statement, but one
still thinks that p is likely to be very small if X = 0 in a large number n of trials, one just
gets out of this dilemma by “conservatively” pretending that the first success is just around
the corner, i.e., happens on the next trial. With that one would estimate p by p̃ = 1/(n+1)
which is small but not zero. There are other (and statistically better) rationales for justifying

4since p ≤ 1
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p̃ = 1/(n+1) as an estimate of p but we won’t enter into that here, since they have no bearing
on the issue of confidence that some construe out of the above “conservative” step.

As an estimate of the true value of p the use of p̃ is not entirely unreasonable but somewhat
conservative. It is however quite different from our 95% upper confidence bound of 3/n,
namely by roughly a factor of 3. One could ask: what is the actual confidence associated
with p̃?

The same argument that was presented before shows that the hypothesis H(p0) : p ≥ p0

for a stipulated value of p0 = 1/(n + 1) gives us the following maximum probability for the
actually observed event

Pp(X ≤ 0) ≤ Pp0(X ≤ 0) = (1− p0)
n =

(
1− 1

n + 1

)n

≈ exp
(
− n

n + 1

)
≈ exp(−1) ≈ .3679

with approximations quite good for moderate to large n. Thus there is a good chance (up
to .3679) that X = 0 when H0 is true. Rejecting H0 on the basis of X = 0 has therefore an
up to 36.79% chance of leading to a wrong decision. In turn this means that we can treat
p̃ = 1/(n + 1) only as a 63.21% upper confidence bound for p. This is substantially lower
than the 95% which led to the factor 3 in 3/n as upper bound.

3.2 Lower Bounds for p

Large values of X can be viewed as evidence against the hypothesis

H(p0) : p ≤ p0 .

Upon observing X = k we ask: is this value k large enough to reject H(p0) with sufficient
confidence? That depends on p0 and the desired confidence level γ. Suppose we choose p0

such that

Pp0(X ≥ k) =
n∑

i=k

(
n

i

)
pi

0(1− p0)
n−i = 1− γ . (4)

Then for all p ≤ p0 we have

Pp(X ≥ k) ≤ Pp0(X ≥ k) = 1− γ .

If this value 1−γ is small we have the choice to either believe that we saw a rare event under
the hypothesis (namely X ≥ k with probability at most 1 − γ) or to reject the hypothesis
with confidence γ and thus state p > p0. This confidence means that there is at most a 1−γ
chance of having made the wrong decision, namely rejecting H(p0) when H(p0) is true.
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Thus we can treat p0 as a 100γ% lower confidence bound for p. As such we also denote it by
p̂L(γ, k, n). For k > 0 it is found by solving equation (4) for p0. This equation is equivalent
to

Pp0(X ≤ k − 1) =
k−1∑
i=0

(
n

i

)
pi

0(1− p0)
n−i = γ .

This value p0 can be obtained in Excel by invoking BETAINV(1 − γ, k, n − k + 1) and from
R or S-Plus by the command qbeta(1 − γ,k,n − k + 1). For k = n one can give the lower
bound explicitly as p̂L(γ, n, n) = (1− γ)1/n. For γ = .95 this becomes

p̂L(.95, n, n) = (1− .95)1/n ≈ exp(−3/n) ≈ 1− 3

n
,

another instance of the Rule of Three. Here the last approximation is only valid for large n.

For γ > 0 and k = 0 the above equation does not yield a solution and one takes p̂L(γ, 0, n) = 0
as natural and trivial5 100% lower bound for p.

As a check take k = 4 and n = 500 with γ = .95, then one gets p̂L(.95, 4, 500) = .002737 as
95% lower bound for p.

3.3 Poisson Approximation to Binomial

For very small p the binomial distribution of X can be well approximated by the Poisson
distribution with mean λ = np. Thus confidence bounds for p = λ/n can be based on those
obtained via the Poisson distribution, namely by using λ̂U(γ, k)/n and λ̂L(γ, k)/n.

A typical application would concern the number X of well defined, rare incidents (crashes
or part failures) in n flight cycles in a fleet of airplanes. Here p would denote the probability
of such an incident during a particular flight cycle. Typically p is very small and n, as
accumulated over the whole fleet, is very large.

4 Negative Binomial Parameter Upper and Lower Bounds

Suppose N is a negative binomial random variable, i.e., N counts the number of required
independent trials, with success probability p (0 ≤ p ≤ 1) in each trial, in order to obtain a
predetermined number k of successes. Then we have

Pp(N = n) =

(
n − 1

k − 1

)
pk(1− p)n−k, n = k, k + 1, . . .

5since 0 ≤ p
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or from a different angle and more useful for our purpose

Pp(N ≥ n) = P (at most k − 1 successes in the first n − 1 independent trials)

=
k−1∑
i=0

(
n − 1

i

)
pi(1− p)n−1−i .

4.1 Upper Bounds for p

Large values of N can be viewed as evidence against the hypothesis

H(p0) : p ≥ p0 .

Upon observing N = n we ask: is this value n large enough to reject H(p0) with sufficient
confidence? That depends on p0 and the desired confidence level γ, 0 < γ < 1. Suppose we
choose p0 such that

Pp0(N ≥ n) =
k−1∑
i=0

(
n − 1

i

)
pi

0(1− p0)
n−1−i = 1− γ . (5)

Then for all p ≥ p0 we have

Pp(N ≥ n) ≤ Pp0(N ≥ n) = 1− γ .

If this value 1−γ is small we have the choice to either believe that we saw a rare event under
the hypothesis (namely N ≥ n with probability at most 1 − γ) or to reject the hypothesis
with confidence γ and thus state p < p0. This confidence means that there is at most a 1−γ
chance of having made the wrong decision, namely rejecting H(p0) when H(p0) is true.

Thus we can treat p0 as a 100γ% upper confidence bound for p. As such we also denote
it by p̃U(γ, k, n) (the tilde over the p is used to distinguish it from the binomial upper
confidence bound). For k < n it is found by solving equation (5) for p0. This value p0 can
be obtained from Excel by invoking BETAINV(γ, k, n− k) and in R or S-Plus by the command
qbeta(γ,k,n − k). For k = 1 one can give the upper bound explicitly as

p̃U(γ, 1, n) = 1− (1− γ)1/(n−1) .

For γ = .95 this becomes

p̃U(.95, 1, n) = 1− (.05)1/(n−1) = 1− exp

[
log(.05)

n − 1

]
≈ 1− exp

[
− 3

n − 1

]
≈ 3

n − 1
,

which can be viewed as another instance of the Rule of Three. The last invoked approxima-
tion is only valid for large n.

For γ > 0 and k = n use the natural and trivial6 upper bound p̃U(γ, n, n) = 1 with 100γ%
6since p ≤ 1
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confidence, since in that case the equation (5) has no solution.

As a check take k = 25 and n = 1200 with γ = .95, then p̃U(.95, 25, 1200) = .028036 is the
95% upper confidence bound for p.

4.2 Lower Bounds for p

Small values of N can be viewed as evidence against the hypothesis

H(p0) : p ≤ p0 .

Upon observing N = n we ask: is this value n small enough to reject H(p0) with sufficient
confidence? That depends on p0 and the desired confidence level γ. Suppose we choose p0

such that

Pp0(N ≤ n) = 1− Pp0(N ≥ n + 1) = 1−
k−1∑
i=0

(
n

i

)
pi

0(1− p0)
n−i = 1− γ . (6)

Then for all p ≤ p0 we have

Pp(N ≤ n) ≤ Pp0(N ≤ n) = 1− γ .

If this value 1−γ is small we have the choice to either believe that we saw a rare event under
the hypothesis (namely N ≤ n with probability at most 1 − γ) or to reject the hypothesis
with confidence γ and thus state p > p0. This confidence means that there is at most a 1−γ
chance of having made the wrong decision, namely rejecting H(p0) when H(p0) is true.

Thus we can treat p0 as a 100γ% lower confidence bound for p. As such we also denote
it by p̃L(γ, k, n). It is found by solving equation (6) for p0. This value p0 can be obtained
in Excel by invoking BETAINV(1 − γ, k, n − k + 1) and from R or S-Plus by the command
qbeta(1−γ,k,n−k+1). For k = n one can give the lower bound explicitly as p̂L(γ, n, n) =
(1− γ)1/n. For γ = .95 this becomes

p̃L(.95, n, n) = (1− .95)1/n ≈ exp(−3/n) ≈ 1− 3

n
,

another instance of the Rule of Three. Here the last approximation is only valid for large n.

As a check take k = 5 and n = 30 with γ = .95, then p̃L(.95, 5, 30) = .068056 is the 95%
lower confidence bound for p.
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5 Comparing Two Poisson Means

Suppose X and Y are independent Poisson random variables with respective means λ and µ.
We are interested in confidence bounds for ρ = λ/µ. If these Poisson distributions represent
approximations of binomials for small “success” probabilities π1 and π2, i.e., λ = n1π1 and
µ = n2π2, then confidence bounds for the ratio ρ = λ/µ = (n1π1)/(n2π2) are equivalent to
confidence bounds for π1/π2, since n1 and n2 are typically known.

The classical method for getting confidence bounds for ρ is to consider the conditional
distribution of Y given T = X + Y = t, which is

P (Y = k|X + Y = t) =

(
t

k

)
pi(1− p)t−i ,

where p = µ/(λ + µ) = 1/(1 + ρ). Hence this is a binomial distribution with parameters t
trials and success probability p = 1/(1 + ρ), which is a monotone function of ρ.

Given the previous treatment we can get binomial upper confidence bounds p̂U(γ, k, t) for p.
By inverting the monotone relationship p = 1/(1 + ρ) we get from this a lower confidence
bound for ρ in

ρ̂L(γ, k, t) =
1

p̂U(γ, k, t)
− 1 .

Similarly one gets upper confidence bounds for ρ in

ρ̂U(γ, k, t) =
1

p̂L(γ, k, t)
− 1 .

In the context of the above Poisson approximations to binomial distributions one gets a
lower confidence bound for κ = π1/π2 in

κ̂L(γ, k, t) =
n2

n1

× ρ̂L(γ, k, t) =
n2

n1

×
(

1

p̂U(γ, k, t)
− 1

)
.

Similarly one gets upper bounds for κ = π1/π2 in

κ̂U(γ, k, t) =
n2

n1
× ρ̂U (γ, k, t) =

n2

n1
×
(

1

p̂L(γ, k, t)
− 1

)
.

As an example consider some accident data. Among Modern Wide Body Airplanes we had
0 accidents (substantial damage, hull loss, or hull loss with fatalities) during 11.128 × 106

flights. Among Modern Narrow Body Airplanes we had 5 such accidents during 55.6× 106
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flights. Thus we have Y = k = 5 and T = X + Y = t = 0 + 5 and n1 = 11.128× 106 and
n2 = 55.6× 106. We find

p̂U(.95, 5, 5) = 1

and thus

κ̂L(.95, 5, 5) =
n2

n1
×
(
1

1
− 1

)
= 0

and
p̂L(.95, 5, 5) = qbeta(.05, 5, 1) = (1− .95)1/5 = 0.5492803

resulting in

κ̂U(.95, 5, 5) =
n2

n1
×
(

1

0.5492803
− 1

)
= 4.099871

Thus we can view 4.099871 as a 95% upper confidence bound for π1/π2, the ratio of rates for
the two groups. Since this bound is above 1, one cannot rule out that the rates in the two
groups may be the same. This is not surprising since the group with 5 accidents had about
five times the exposure of the other group. Thus for a fifth of the exposures one might have
expected to see one such accident in the second group. That is not all that different from
zero in the realm of counting rare events.

6 Confidence Intervals

Suppose L̂(γ) is a 100γ% lower confidence bound for a parameter θ such that the minimum
probablity of correct coverage is indeed γ. Similarly, suppose that Û(γ) is a 100γ% upper
confidence bound for a parameter θ such that the minimum probablity of correct coverage
is indeed γ. The probability that either one of these respective bounds falls on the wrong
side of θ is at most 1− γ in each case. Assuming γ > .5 we typically have L̂(γ) ≤ Û(γ). It
follows that Û(γ) < θ and L̂(γ) > θ are mutally exclusive events so that the probability of
θ /∈ [L̂(γ), Û(γ)] is at most 2(1− γ) and thus the probability of θ ∈ [L̂(γ), Û(γ)] is at least
1− 2(1− γ) = 2γ − 1 > 0.

If the desired interval coverage probability is γ̃ we equate γ̃ = 2γ−1 and find that we should
use γ = (γ̃ + 1)/2 in the construction of the bounds, i.e., use [L̂((γ̃ + 1)/2), Û((γ̃ + 1)/2)]
as the interval with coverage probability at least γ̃.

The reason why the minimum coverage probability for this interval may be higher than the
targeted value γ̃ is that the θ values at which the respective bounds achieve their minimum
coverage probability of γ may not be the same for both bounds.
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7 Inverse Probability Solving

At times the question is asked: what is the smallest k such that P (X ≤ k) ≥ γ, where X
is a binomial random variable with parameters n and p and γ is a desired probability level.
Clearly P (X ≤ k) increases to one as k reaches n, so there is a smallest such number k.
The question was asked7 whether one can solve this problem quickly in Excel without much
iteration.

A similar problem arises when Y is a Poisson random variable with mean λ. What is the
smallest k such that P (Y ≤ k) ≥ γ.

The answer to the binomial problem is simple: yes, there is such a function in Excel. It is
called CRITBINOM and

CRITBINOM(n, p, γ)

gives the smallest k such that P (X ≤ k) ≥ γ. For example,

CRITBINOM(100, .1, .8) = 12

and one verifies that
BINOMDIST(12, 100, .1, TRUE) = .80182

while
BINOMDIST(11, 100, .1, TRUE) = .70303 .

The answer to the Poisson problem using Excel is not so direct but can be finessed by
using CRITBINOM. This is possible since the Poisson distribution with mean λ is a very good
approximation to the binomial distribution with parameters n and p with λ = np, provided
p is very small. For fixed λ this means that we should choose n very large, say n = 1000 or
n = 10000 and p = λ/n. Since this is an approximation it may not yield the exact solution
k but one can then check the actual probability using POISSON in Excel.

As an example, suppose we have λ = 4 and γ = .8. Then

CRITBINOM(n, λ/n, γ) = CRITBINOM(1000, 4/1000, .8) = 6 .

We check the actual probability using the cumulative distribution function POISSON in Excel,
namely:

POISSON(6, 4, TRUE) = .889326

while
POISSON(5, 4, TRUE) = .78513 .

Thus we were successful with the initial value given by CRITBINOM.
7by Dale E. Robinson
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