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Abstract

The purpose of this report is to describe various tolerance stacking
methods without going into the theoretical details and derivations
behind them. For those the reader is referred to Scholz (1995). For
each method we present the assumptions and then give the tolerance
stacking formulas. This will allow the user to make an informed choice
among the many available methods.

The methods covered are: worst case or arithmetic tolerancing,
simple statistical tolerancing or the RSS method, RSS methods with
inflation factors which account for nonnormal distributions, toleranc-
ing with mean shifts, where the latter are stacked arithmetically or
statistically in different ways, depending on how one views the trade-
off between part to part variation and mean shifts.
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Glossary of Notation by Page of First Occurrence

term meaning page

σ, σi standard deviation, describes spread of a statistical 2, 15
distribution for part to part variation

Li actual value of ith detail part length dimension 4

G gap, assembly criterion of interest, 4
usually a function (sum) of detail dimensions

λi nominal value of ith detail part dimension 4

Ti tolerance value for ith detail part dimension 6

γ nominal gap value, assembly criterion of interest 6

εi difference between actual and mean (nominal) value 6
of ith detail part dimension: εi = Li − λi if
mean µi = nominal λi, and εi = Li − µi if µi �= λi

ai coefficient for the ith term in the linear 7
tolerance stack: G = a1L1 + . . .+ anLn,
often we have ai = ±1

Xi actual value of ith input to sensitivity analysis; 7
in length stacking Xi and Li are equivalent

Y output from sensitivity analysis; 7
in length stacking Y and G are equivalent
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Glossary of Notation by Page of First Occurrence

term meaning page

f smooth function relating output to inputs 7
in sensitivity analysis: Y = f(X1, . . . , Xn)

Y = f(X1, . . . , Xn) ≈ a0 + a1X1 + . . .+ anXn

ai = ∂f(ν1, . . . , νn)/∂νi, i = 1, . . . , n

a0 = f(ν1, . . . , νn)− a1ν1 − . . .− anνn

νi nominal value of ith input to sensitivity analysis 8
in length stacking νi and λi are equivalent

ν nominal output value from a sensitivity analysis 8
in length stacking ν and γ are equivalent

Tassy generic assembly tolerance derived by any method 9

T arith
assy assembly tolerance derived by arithmetic 11

tolerance stacking (worst case method)

T arith
assy = |a1| T1 + . . .+ |an| Tn

Tdetail tolerance common to all parts 11

ρi tolerance ratio ρi = Ti/T1 11

T stat
assy assembly tolerance derived by statistical 14

tolerance stacking (RSS method)

T stat
assy =

√
a2

1T
2
1 + . . .+ a2

nT
2
n
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Glossary of Notation by Page of First Occurrence

term meaning page

T stat
assy(Bender) assembly tolerance derived by statistical 16

tolerance stacking (RSS method)
using Bender’s inflation factor of 1.5

T stat
assy = 1.5

√
a2

1T
2
1 + . . .+ a2

nT
2
n

ci, c, c inflation factor for part variation distribution 17

T stat
assy(c) assembly tolerance derived by statistical 19

tolerance stacking (RSS method) using
distributional inflation factors

T stat
assy(c) = T stat

assy(c1, . . . , cn)

=
√
(c1a1T1)2 + . . .+ (cnanTn)2

k delimiter for the rectangular portion of the 21
trapezoidal density

p area of middle box of DIN-histogram density 23

g half width of middle box of DIN-histogram density 23

µi actual process mean for ith detail part dimension 25

∆i shift of process mean from nominal: ∆i = µi − λi 25

ηi, η fraction of absolute mean shift in relation to Ti 25, 26

ηi = |∆i|/Ti , η = (η1, . . . , ηn)
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Glossary of Notation by Page of First Occurrence

term meaning page

Li, Ui lower and upper tolerance/specification limits: 25

Li = λi − Ti, Ui = λi + Ti

Cpk a process capability index which accounts for 25
mean shifts

T∆,arith,1
assy (η) assembly tolerance derived by arithmetic 26

stacking of mean shifts and RSS stacking of
remaining normal variation; fixed Ti with
tradeoff between mean shift and part variation

T∆,arith,1
assy (η) = T∆,arith,1

assy (η1, . . . , ηn)

= η1|a1|T1 + . . .+ ηn|an|Tn

+
√
[(1− η1)a1T1]2 + . . .+ [(1− ηn)anTn]2

T ′
i part tolerance based on part to part variation, 28, 31

either T ′
i = 3σi or T ′

i = half width
of distribution interval

T∆,arith,2
assy (η) assembly tolerance derived by arithmetic 28

stacking of mean shifts and RSS stacking of
remaining normal variation; inflated Ti

to accommodate mean shifts (≤ ηiTi) under
fixed T ′

i = 3σi = Ti/(1− ηi) part variation

T∆,arith,2
assy (η) = T∆,arith,2

assy (η1, . . . , ηn)

= η1|a1|T ′
1/(1− η1) + . . .+ ηn|an|T ′

n/(1− ηn)

+
√
(a1T ′

1)
2 + . . .+ (anT ′

n)
2
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Glossary of Notation by Page of First Occurrence

term meaning page

T∆,arith
assy (η, c) assembly tolerance derived by statistical 29

stacking (RSS method) using distributional
inflation factors and arithmetic stacking of
mean shifts

T∆,arith
assy (η, c) = η1|a1| T1 + . . .+ ηn|an| Tn

+
√
[(1− η1)c1a1T1]2 + . . .+ [(1− ηn)cnanTn]2

σµ standard deviation for mean shift distribution 33

cµ,i, cµ, cµ, inflation factors for mean shift distributions 33, 33, 35

T∆,stat,1
assy (η, c, cµ) assembly tolerance derived by RSS stacking 34

of mean shifts, RSS stacking of part variation
and arithmetically stacking these two,
assuming fixed part variation expressed through T ′

i

T∆,stat,1
assy (η, c, cµ) =

√
c2
1a

2
1T

′2
1 + . . .+ c2

na
2
n(1− ηn)2T ′2

n

+
√

c2
µ,1a

2
1η

2
1T

′2
1 /(1− η1)2 + . . .+ c2

µ,na
2
nη

2
nT

′2
n /(1− ηn)2

Ri, R relative mean shift R = (R1, . . . , Rn) 37

Ri = ∆i/(ηiTi), −1 ≤ Ri ≤ 1

σ(Ri) standard deviation of Ri 37
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Glossary of Notation by Page of First Occurrence

term meaning page

wi a tolerance weight factor 38

wi = aiTi/
√∑n

j=1 a
2
jT

2
j ,

∑n
i=1 w

2
i = 1

F (R) inflation factor for given mean shift factor R 38

T∆,stat,2
assy (η) assembly tolerance derived by RSS stacking of 39

mean shifts and RSS stacking of part variation
which can increase with decrease in mean shifts;
η is the common bound on all part
mean shift fractions

T∆,stat,2
assy (η) =

(√
1− η + η2/2 + η

√
3
)

×
√

a2
1T

2
1 + . . .+ a2

nT
2
n

T∆,arith,r
assy (η, c) reduced assembly tolerance using the factor .927 41

on the RSS part of T∆,arith
assy (η, c)

T∆,arith,r
assy (η, c) = η1|a1| T1 + . . .+ ηn|an| Tn

+.927
√
[(1− η1)c1a1T1]2 + . . .+ [(1− ηn)cnanTn]2
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1 Introduction and Overview

Tolerance stack analysis methods are described in various books and pa-
pers, see for example Gilson (1951), Mansoor (1963), Fortini (1967), Wade
(1967), Evans (1975), Cox (1986), Greenwood and Chase (1987), Kirschling
(1988), Bjørke (1989), Henzold (1995), and Nigam and Turner (1995). Un-
fortunately, the notation is often not standard and not uniform, making the
understanding of the material at times difficult. For a critical review of these
and some new methods and the mathematical derivation behind them see
Scholz (1995).

Although the above cited references date back as far as Gilson’s 1951
monograph, he provides several older references, namely Gramenz (1925),
Ettinger and Bartky (1936), Rice (1944), Epstein (1946), Bates (1947, 1949),
Nielson (1948), Gladman (1945), Loxham (1947) and some not associated
with a person and thus omitted here. So far we have not been able to
obtain any of these references, but it appears doubtful that anything beyond
straight arithmetic or statistical tolerancing is contained in these. However,
it would be of interest to find out who first proposed these two cornerstones
of tolerancing and the various nuances that have followed.

There are no doubt many other sources which are internal to various
companies and thus not very accessible to most people. For example, Wade
(1967) mentions an article on statistical tolerancing by Backhaus and Fielden
that appeared in an I.B.M. Corporation in-house publication. So far we
have not been able to get a copy of this article. Other in-house writings on
the subject are protected, such as Boeing’s “proprietary” Tolerancing-Design
Guide (1990) by Griess. Other companies have made their tolerancing guides
widely available. As an example we cite the Motorola guide, authored by
Harry and Stewart (1988). Unfortunately we have not been able to come up
with sound, theoretical underpinnings for their proposed methods for dealing
with mean shifts and thus we will omit them here. See Scholz (1995) for some
discussion.

It is of interest to examine how the ASME Y14.5M-1994 standard and
its companion ASME Y14.5.1M-1994 treat this subject. The former contains
a very short Section 2.16, pp 38-39, which briefly mentions the basic forms
of arithmetic and statistical tolerancing in connection with a new drawing
symbol indicating a statistical tolerance, namely ·················································································································································································································································································································· ST . This symbol is intro-
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duced there for the first time and it is to be expected that future editions
of this standard will move toward taking advantage of statistical tolerance
stacking. At this point the above symbol indicates that tolerances set with
this symbol are to be monitored by statistical process control methods. How
that is done is still left up to the user. Other symbols with similar intent are
already in use in various companies.

Typically any exposition on tolerancing will include the two cornerstones,
arithmetic and statistical tolerancing. We will make no exception, since these
two methods provide conservative and optimistic benchmarks, respectively.

Under arithmetic tolerancing it is assumed that the detail part dimen-
sions can have any value within the tolerance range and the arithmetically
stacked tolerances describe the range of all possible variations for the assem-
bly criterion of interest.

In the basic statistical tolerancing scheme it is assumed that detail part
dimensions vary randomly according to a normal distribution, centered at
the midpoint of the tolerance range and with its ±3σ spread covering the
tolerance interval. For given part dimension tolerances this kind of statistical
analysis typically leads to much tighter assembly tolerances, or for given
assembly tolerance it requires considerably less stringent tolerances for detail
part dimensions, resulting in significant savings in cost or even making the
difference between feasibility or infeasibility of a proposed design.

Practice has shown that the results are usually not quite as good as ad-
vertised. Assemblies often show more variation in the toleranced dimension
than predicted by the statistical tolerancing method. The causes for this
lie mainly in the violation of various distributional assumptions, but some-
times also in the misapplication of the method by not understanding the
assumptions. Not wanting to give up on the intrinsic gains of the statistical
tolerancing method one has tried to relax these distributional assumptions
in a variety of ways. As a consequence such assumptions are more likely to
be met in practice.

One such relaxation is to allow other than normal distributions. Such dis-
tributions essentially cover the tolerance interval with a wider spread, but are
still centered on the tolerance interval midpoint. This results in somewhat
less optimistic gains than those obtained under the normality assumption,
but it usually still yields better results than those given by arithmetic toler-
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ancing, especially for tolerance chains involving many detail parts.

Another relaxation of assumptions concerns the centering of the distribu-
tion on the tolerance interval midpoint. The realization that it is difficult to
center any process exactly where one wants it to be has led to several mean
shift models. In these the distribution may be centered anywhere within a
certain small neighborhood around the nominal tolerance interval midpoint,
but usually it is still assumed that the distribution is normal and its ±3σ
spread is within the tolerance limits. This means that while we allow some
shift in the detail process mean we either require a simultaneous reduction in
part variability or we have to widen the tolerance interval. The mean shifts
are then stacked in worst case fashion. The variation of the shifted distri-
butions is stacked statistically. The overall assembly tolerance then becomes
(in worst case fashion) a sum of two parts, consisting of an arithmetically
stacked mean shift contribution and a term reflecting the statistically stacked
part variation distributions. It turns out that our cornerstones of arithmetic
and statistical tolerancing are special cases of this more general model, which
has been claimed (Greenwood and Chase, 1987) to unify matters.

However, there is another way of dealing with mean shifts which appears
to be new, at least in the form presented here. It takes advantage of statistical
stacking of mean shifts and stacking that aggregate in worst case fashion with
the statistical stacking of the part variation distributions. A precursor to this
can be found in Desmond’s discussion of Mansoor’s (1963) paper. However,
there it was pointed out that it leads to optimistic results. We discuss the
issues involved and present several variations on that theme.

Other fixes augment the statistical tolerancing method with blanket tol-
erance inflation factors with more or less compelling reasons. It turns out
that one of the above mentioned mean shift treatments results in just such
an inflation factor, with the size of the factor linked explicitly to the amount
of tolerated mean shift.

When dealing with tolerance stacking under mean shifts one has to take
special care in assessing the risk of nonassembly. Typically only one tail of
the assembly stack distribution is significant when operating at one of the
two worst possible assembly mean shifts. One can take advantage of this by
reducing the assembly tolerance by some small amount. We indicate briefly
how this is done but refer to Scholz (1995) for more details.
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2 Notation and Problem Formulation

The tolerance stacking problem arises in the context of assemblies from in-
terchangeable parts because of the inability to produce or join parts exactly
according to nominal. Either the relevant part dimension varies around some
nominal value from part to part or it is the act of assembly that leads to vari-
ation.

For example, as two parts are joined via matching hole pairs there is not
only variation in the location of the holes relative to nominal centers on the
parts but also the slippage variation of matching holes relative to each other
when fastened.

Thus there is the possibility that the assembly of such interacting parts
will not function or won’t come together as planned. This can usually be
judged by one or more assembly criteria, say G1, G2, . . ..

Here we will be concerned with just one such assembly criterion, say G,
which can be viewed as a function of the part dimensions L1, . . . , Ln. A
simple example is illustrated in Figure 1, where n = 6 and

G = L1 − (L2 + L3 + L4 + L5 + L6)

= L1 − L2 − L3 − L4 − L5 − L6 (1)

is the clearance gap of interest. It determines whether the stack of cogwheels
will fit within the case or not. Thus it is desired to have G > 0, but for
functional performance reasons one may also want to limit G from above.

A graphical representation of equation (1) is given in Figure 2, where the
various dimensions L1, L6, L5, L4, L3, and L2 are represented by vectors
chained together, L1 butting into L6, L6 butting into L5 (after changing
direction), L5 butting into L4, L4 butting into L3, and L3 butting into L2.
The remaining gap to make L2 butt up to L1 is the assembly tolerance gap
of interest, namely G. This type of linkage is called a tolerance path or
tolerance chain. Note that the arrows point right for positive contributions
and left for negative ones.

As was pointed out before, the actual lengths Li may differ from the
nominal lengths λi by some amount. If there is too much variation in the
Li there may well be significant problems in satisfying G > 0. Thus it is
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Figure 1: Tolerance Stack Example
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Figure 2: Tolerance Chain Graph
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prudent to limit these variations through tolerances. Such tolerances, Ti,
represent an “upper limit” on the absolute difference between actual and
nominal values of the ith detail part dimension, i.e., |Li − λi| ≤ Ti. It is
mainly in the interpretation of this last inequality that the various methods
of tolerance stacking differ.

The nominal value γ of G is usually found by replacing in equation (1)
the actual Li’s by the corresponding nominal values λi, i.e.,

γ = λ1 − λ2 − λ3 − λ4 − λ5 − λ6 .

If the objective is to achieve a gap G that is positive and not too large (for
other functional reasons) then one would presumably design the assembly in
such a way that the nominal gap γ satisfies this goal, with the hope that
the actual gap G be not too different from γ. Thus the quantity G− γ is of
considerable interest. It can be expressed as follows in terms of εi = Li − λi,
the detail deviations from nominal,

G− γ = (L1 − λ1)− (L2 − λ2)− (L3 − λ3)

− (L4 − λ4)− (L5 − λ5)− (L6 − λ6)

= ε1 − ε2 − ε3 − ε4 − ε5 − ε6 .

The main question of tolerance stacking is the bounding of the assembly
error or assembly misfit G− γ when given tolerance bounds Ti on the detail
part errors, i.e. |εi| = |Li − λi| ≤ Ti. In the following we will present several
such bounds and state under what assumptions they are valid. Before doing
so we generalize the above example to a generic tolerance chain and in the
process widen the scope to smooth sensitivity analysis problems.

Above we had an assembly with a stack of six parts that involved one pos-
itive and five negative contributions. This can obviously be generalized to n
detail parts with various configurations of positive and negative contributory
directions in the tolerance chain. Hence in general we have:

G = a1L1 + a2L2 + a3L3 + . . .+ anLn ,
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Figure 3: Function Box
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X1

X2

X3

X4

X5

X6

X7

Yf(X1, X2, . . . , X7) = Y

where the coefficients a1, . . . , an are either +1 or −1, independently of each
other. Our introductory example had n = 6 and a1 = 1, a2 = . . . = a6 = −1.
This then leads to

G− γ = a1(L1 − λ1) + a2(L2 − λ2) + . . .+ an(Ln − λn)

= a1ε1 + a2ε2 + . . .+ anεn

as the primary object of tolerance stack analysis.

From here it is only a small step to extending these methods to sensitivity
analysis in general. Those not interested in this generalization can skip to
the beginning of the next section.

Rather than butting parts end to end and forming an arithmetic sum of
± terms with some resultant output G, we can view this relation as a more
general input/output relation. To get away from the restrictive notion of
lengths we will use X1, . . . , Xn as our inputs (in place of L1, . . . , Ln) and Y
(in place of the gap G) as our output. However, here we allow more general
rules of composition, namely

Y = f(X1, . . . , Xn) ,

where f is some known, smooth function which converts the inputsX1, . . . , Xn

into the output Y . This is graphically depicted in Figure 3. As an example
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of such a more general relationship consider some electronic device with com-
ponents (capacitors, resistances, etc.) of various types. There may be several
performance measures for such a device and Y may be any one of them. Given
the performance ratings X1, . . . , Xn of the various components, physical laws
describe the output Y in some functional form, which typically is not linear.
The design of such an electronic device is based on nominal values, ν1, . . . , νn,
for the component ratings. However, the actual characteristics X1, . . . , Xn

will typically be slightly different from nominal, resulting in slight deviations
for the actual Y = f(X1, . . . , Xn) from the nominal ν = f(ν1, . . . , νn). Since
these component deviations are usually small we can reduce this problem to
the previous one of mechanically stacked parts by linearizing f , namely use

Y = f(X1, . . . , Xn) ≈ f(ν1, . . . , νn) + a1(X1 − ν1) + . . . an(Xn − νn)

= a0 + a1X1 + . . .+ anXn

where ai = ∂f(ν1, . . . , νn)/∂νi, i = 1, . . . , n and

a0 = f(ν1, . . . , νn)− a1ν1 − . . .− anνn .

Note: for this linearization to work we have to assume that f has continuous
first partial derivatives at (ν1, . . . , νn).

Aside from the term a0 we have again the same type of arithmetic sum
for our “assembly” criterion Y as we had in the mechanical tolerance stack.
However, here the ai are not restricted to the values ±1. The additional term
a0

1 does not present a problem as far as variation analysis is concerned, since
it is constant and known.

Again we like to understand how far Y may vary from the nominal ν =
f(ν1, . . . , νn). From the above we have

Y − ν ≈ a1(X1 − ν1) + . . . an(Xn − νn)

= a1ε1 + . . .+ anεn ,

i.e., just as before, the only difference being that the ai are not restricted to
±1. Since all the tolerance stacking formulas to be presented below will be

1it is based on the nominal and known quantities ν1, . . . , νn
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given in terms of these ai and since nowhere use was made of ai = ±1, it
follows that they are valid for general ai and thus for the sensitivity problem.

There are situations in which a functional relation Y = f(X1, . . . , Xn),
although smooth, is not very well approximated by a linear function, at least
not over the range of variation envisioned for the Xi. In that case one could
use a quadratic approximation to capture any relevant curvature in f . Toler-
ance stacking methods using this approach are covered in Cox (1986). These
methods are fairly complex and still quite restrictive in the assumptions un-
der which they are valid. Of course, it may be possible to extend these
methods along the same lines as presented here for linear tolerance stacks.

As noted above, the linearization will work only for smooth functions f .
To illustrate this with a counterexample, where linearization fails completely,
consider the function

f(X1, X2) =
√

X2
1 +X2

2

which can be viewed as the distance of a hole center from the nominal origin
(0, 0). This function does not have derivatives at (0, 0), its graph in 3-space
looks like an upside cone with its tip at (0, 0, 0). There can be no tangent
plane at the tip of that cone and thus no linearization. Another example
where such linearization fails is discussed in Altschul and Scholz (1994). It
involves hinge mating and the problem arises due to simultaneous and thus
minimum gap requirements.

In presenting the tolerance stacking formulas we will return to using Li

and λi for the part dimensions and nominals. Those that wish to apply these
concepts to sensitivity analysis should have no problem replacing Li, G, λi by
Xi, Y, νi, respectively.

3 Tolerance Stacking Formulas

In this section we will present various formulas for tolerance stacking. By
tolerance stacking we mean a rule that combines the detail tolerances Ti

into an assembly tolerance Tassy. Typically Tassy is a monotone increasing
function of the Ti. Thus, if the resulting Tassy is too large, one can counteract
that by reducing all or some of the Ti, which usually makes for costlier
part production. On the other hand, if Tassy is smaller than required for
successful assembly fit, then one can loosen the detail tolerances Ti, with
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some possibility of cost reduction.

Why do we have more than one formula for tolerance stacking and why
so many? One reason for this is that these methods have evolved and are
still evolving, partly responding to economic pressures and partly because of
the nature of the problem. Namely, it all depends on what assumptions one
is willing to make.

Fewer assumptions entail broader applicability but one also will get less
out of a tolerance stack analysis, i.e., one will wind up with fairly wide
assembly tolerance limits or, when trying to counteract that through the Ti,
with very tight and thus costly detail tolerance requirements.

With more knowledge about the manufacturing processes one may feel
comfortable with more assumptions, resulting in tighter assembly tolerance
limits or, if those can be relaxed, with looser detail tolerance requirements.

Thus it is very important to be aware of the assumptions behind the var-
ious methods. We will begin the presentation of stacking methods with the
worst case or arithmetic method, which tends to be most conservative. This
is followed by the conventional RSS or statistical tolerance stacking method,
which tends to be on the optimistic side. This results from imposing some
rather stringent assumptions. If the arithmetic stacking method gives satis-
factory assembly tolerance results, then there is little motivation to try any
of the other methods, except possibly to relax detail tolerances to achieve
cost reduction. If the RSS method does not give satisfactory assembly tol-
erance results, then any of the other methods will not make matters any
better. Then the only recourse is to tighten detail tolerances or, if that is
not feasible, change the design.

After discussing these two basic and well known methods we will discuss
several hybrid tolerance stacking methods which impose assumptions which
are more likely to be met in practice. As a result the assembly tolerances lie
somewhere between those corresponding to the two classical methods.
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3.1 Arithmetic or Worst Case Tolerance Stacking

Assuming |εi| = |Li − λi| ≤ Ti for all i = 1, 2, . . . , n we can bound |G− γ| by

T arith
assy = |a1|T1 + |a2|T2 + . . .+ |an|Tn . (2)

If |ai| = 1 for all i, this simplifies to

T arith
assy = T1 + T2 + . . .+ Tn .

The validity hinges solely on the above assumption. Thus, no matter how
the detail dimensions Li deviate from their nominal values λi within the
constraint |Li − λi| ≤ Ti, the difference |G− γ| is guaranteed to be bounded
by T arith

assy . This guarantee is the main strength of this method. However, one
should not neglect to make sure that the assumptions are met, i.e., detail
parts need to be inspected to see whether |Li − λi| ≤ Ti or not.

The main weakness of the method is that T arith
assy grows more or less linearly

with n. This is most easily seen when the detail part tolerance contributions
|ai|Ti are all the same, i.e., |ai|Ti ≡ Tdetail in which case

T arith
assy = n · Tdetail .

By inverting this we get

Tdetail =
T arith

assy

n
,

which tells us how to specify detail tolerances from assembly tolerances.
As assemblies grow, i.e., as n gets large, these requirements on the detail
tolerances can get quite severe.

The linear growth of T arith
assy results from assuming a devil’s advocate po-

sition in deriving the formula for T arith
assy , namely by always taking the detail

part variation in such a way as to make the assembly criterion G differ as
much as possible from γ. This is the reason for the method’s alternate name:
worst case tolerancing.

If the detail tolerances are not all the same, it is more complicated to
arrive at appropriate detail tolerances satisfying a given assembly tolerance
requirement. For example, suppose Ti = ρiT1 for i = 2, . . . , n. Then

T arith
assy = T1 + ρ2T1 + . . .+ ρnT1 = T1(1 + ρ2 + . . .+ ρn)

11



so that

T1 =
T arith

assy

1 + ρ2 + . . .+ ρn

, and Ti =
ρiT

arith
assy

1 + ρ2 + . . .+ ρn

for i = 2, . . . , n. Thus relaxing or tightening T arith
assy by some factor affects all

detail tolerances Ti by the same factor.

One may also want to treat the detail tolerances Ti in a more differentiated
manner, i.e., leave some as they are and reduce other significantly in order to
achieve the desired assembly tolerance. This easily done in iterative fashion
using the forward formula (2).

The above considerations on how to set detail tolerances based on assem-
bly tolerance requirements can be carried out for the other types of tolerance
stacking as well and we leave it up to the reader to similarly use the various
tolerance stacking formulas in reverse.

3.2 RSS Method or Statistical Tolerancing

Under this method of tolerance stacking a very important new element is
added to the assumptions, namely that the detail variations from nominal
are random and independent from part to part. In some sense this is a
reaction to the worst case paradigm of the previous section which many feel
is overly conservative. It is costly in the sense that it often mandates very
tight detail tolerances.

That all deviations from nominal should arrange themselves in worst case
fashion to yield the most extreme assembly tolerance is a rather unlikely
proposition. However, it had the benefit of guaranteeing the resulting assem-
bly tolerance. Statistical tolerancing in its classical form operates under two
basic assumptions:

Centered Normal Distribution: Rather than assuming that the Li can
fall anywhere within the tolerance interval [λi − Ti, λi + Ti], even to
the point that someone maliciously and deliberately selects parts for
worst case assemblies, we assume here that the Li are normal random
variables, i.e., vary randomly according to a normal distribution, cen-
tered on that same interval and with a ±3σ spread equal to the span

12



Figure 4: Normal Distribution Over Tolerance Interval

λ λT Ti ii i- +λ i

of that interval, so that 99.73% of all Li values fall within this inter-
val, see Figure 4. The nature of the normal distribution is such that
the Li occur with higher frequency in the middle near λi and with less
frequency near the interval endpoints. The match of the ±3σ spread
with the span of the detail tolerance span is supposed to express that
almost all parts will satisfy the detail tolerance limits.

Deviations from nominal are not a deliberate act but inadvertant and
due to forces not under our control. If these forces are several and
influence the final deviation from the nominal value in independent
fashion, then there are theoretical reasons (the central limit theorem of
probability theory) supporting a normal distribution for Li. However,
it may not always be reasonable to assume that this normal distribution
is exactly centered on the nominal value. This objection is the starting
point for some of the hybrids to be discussed later.

Independent Detail Variation: The independence assumption is proba-
bly the most essential cornerstone of statistical tolerancing. It allows
for some cancellation of variation from nominal.

Treating the Li as random variables, we also demand that these random
variables are (statistically) independent. This roughly means that the
deviation Li − λi has nothing to do with the deviation Lj − λj for
i �= j. In particular, the deviations will not be mostly positive or mostly

13



negative. Under independence we expect to get a mixed bag of negative
and positive deviations of various sizes which essentially leads to some
variation cancellation in the adding process. Randomness alone does
not guarantee such cancellation, especially not when all part dimension
show random variation in the same direction. This latter phenomenon
is exactly what the independence assumption intends to exclude.

Typically the independence assumption is reasonable when part dimen-
sions pertain to different manufacturing/machining processes. How-
ever, situations can arise where this assumption is questionable. For
example, several similar/same parts (coming from the same process)
could be used in the same assembly. If this process is affected by a
mean shift, then this mean shift will accumulate in worst case fashion
for all parts coming from that process. Thermal expansion also tends
to affect different parts similarly.

Under the above assumptions of centered normality and independence we
can give the following statistical tolerance stacking formula

T stat
assy =

√
a2

1T
2
1 + a2

2T
2
2 + . . .+ a2

nT
2
n (3)

=
√

T 2
1 + T 2

2 + . . .+ T 2
n

where the latter formulation holds when ai = ±1 for all i = 1, . . . , n. The
term RSS for this type of stacking stems from its abbreviation for Root Sum
of Squares.

Typically T stat
assy is significantly smaller than T arith

assy . For n = 3 the magni-
tude of this difference is easily visualized and appreciated by a rectangular
box with side lengths T1, T2 and T3. To get from one corner of the box to

the diagonally opposite corner, one can traverse the distance
√

T 2
1 + T 2

2 + T 2
3

along that diagonal or one can go the long way and follow the three edges
with lengths T1, T2, and T3 for a total length T arith

assy = T1 + T2 + T3 as in
Figure 5.

This reduction in assembly tolerance comes at a small price. Whereas
T arith

assy bounds the assembly deviation |G − γ| with absolute certainty, the

14



Figure 5: Pythagorean Shortcut
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T1

T2

T3

√
T 2

1 + T 2
2 + T 2

3

T1 + T2 + T3 >
√

T 2
1 + T 2

2 + T 2
3

statistical tolerance stack T stat
assy bounds |G−γ| only with some high assurance,

namely with .9973 probability. The crookedness of .9973 results from the fact
that the variation of G around γ is again normal2 and that ±T stat

assy represents
a ±3σ range for that variation. The 3 in 3σ is a nice round number, but
the probability content (.9973) associated with it is not. One cannot have it
both ways.

The small price, going from absolute certainty down to 99.73%, is not all.
Recall that normal part variation, centered on the tolerance interval with
Ti ≡ 3σi, and independence of variation from part to part are assumed as
well.

3.3 RSS Method With Inflation Factors

Practice has shown that arithmetic tolerancing tends to give overly conser-
vative results and that the RSS method is too optimistic, i.e., is not living up
to the proclaimed 99.73% assembly fit rate. This means that actual assembly
stack variations are wider than indicated by the γ±T stat

assy range. The reasons

2being a sum of independent, normally distributed length dimensions, without appeal
to the central limit theorem

15



for this have been examined from various angles. We list here

independence: An important aspect of statistical tolerance stacking is the
independence of variations from nominal for the detail parts partici-
pating in an assembly.

3σi = T i: Does the ±Ti range really represent most or all of the detail part
variation?

normality: Is the detail part variation reasonably represented by the normal
distribution?

centered process: Is the process of part variation centered on the nominal,
the midpoint of the tolerance interval?

One reason for a reduction in the efficacy of statistical tolerance stacking
could be that the independence assumption is violated. We will not dwell
on that issue too much except for some very specific modes of dependence
such as random mean shifts or tooling errors. Dependence can take so many
forms that it is difficult to cope with it in any systematic way. However, we
will return to this later when we discuss mean shifts that are random.

One other possible reason for the optimism of the RSS method is that one
basic premise, namely Ti ≡ 3σi, is not fulfilled. This can come about when
manufacturing process owners, asked for the kind of tolerances they can hold,
sometimes will respond with a ±Ti value which corresponds to a ±2σi range.
Reasons for this could be limited exposure to actual data. Values outside the
±2σi range are hardly ever experienced3 and if they do occur they may be
rationalized away as an abnormality and then disappear from the conscious
record. Thus, if Ti is specified with the misconception Ti ≡ 2σi, then Ti is too
small by a factor 1.5. To correct for this, Bender (1962) suggests to multiply
the ±T stat

assy value by 1.5 and calls this process “benderizing,” i.e.,

T stat
assy(Bender) = 1.5

√
a2

1T
2
1 + . . .+ a2

nT
2
n = 1.5 T stat

assy . (4)

3The ±2σi range contains about 95% of all variation under a normal curve.
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The assumptions behind this formula are the same as those for (3) except that
detail part tolerances correspond to ±2σi rather than ±3σi normal variation
ranges.

This inflation factor 1.5 gives up a fair amount of the gain in T stat
assy. In

fact, for n = 2 it is more conservative than arithmetic tolerance stacking,
since

1.5
√

a2
1T

2
1 + a2

2T
2
2 ≥ |a1|T1 + |a2|T2 .

Of course, some may say that we should have used a 1.5 factor on the right
side as well, because those tolerances are also misinterpreted. The rationale
for the inflation factor is not altogether satisfactory, since it is based on
ignorance and suppositions about meanings of Ti. What we have here is
mainly a communications breakdown. If we do not have data about the part
process capabilities, any tolerance analysis will stand on weak legs. If we
have only limited data, then it should still be possible to avoid the mixup
of 2σi with 3σi variation ranges. In fact, upper confidence bounds on 3σi,
based on limited data, will be quite conservative and thus should lead to
conservative values T stat

assy when using such confidence bounds for Ti.

Although the normality assumption is well supported by the central limit
theorem4, there are processes producing detail part dimensions which are not
normally distributed. Some such processes come about through tool wear,
where part dimensions may start out at one end of the tolerance range and,
as the tool wears, eventually wind up at the other end. The collection of
such parts would then exhibit a more uniform distribution over the tolerance
range.

Some people have simply postulated a somewhat wider distribution over
the ±Ti tolerance range mainly for the purpose of obtaining an inflation fac-
tor to the RSS formula, see Gilson (1951), Mansoor (1963), Fortini (1967),
Kirschling (1988), Bjørke (1989), and Henzold (1995). Several such distri-
butions are illustrated in Figure 6 with the corresponding inflation factors c.
Of course, one may find that different detail part variations warrant different
inflation factors. Using such inflation factors c = (c1, . . . , cn) for the n detail
parts leads to the following modified statistical tolerance stacking formula:

4in the sense that a total detail part variation, made up more or less additively of many
small random contributions, is approximately normal
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Figure 6: Distribution Inflation Factors

normal density

c = 1

uniform density

c = 1.732

triangular density

c = 1.225

trapezoidal density: k = .5

c = 1.369

elliptical density

c = 1.5

half cosine wave density

c = 1.306

Student t density:   df = 4

c =  1

Student t density:   df = 10

c =  1

beta density

α = β = 3
c = 1.134

beta density

α = β = .6

c = 2.023

beta density (parabolic)

α = β = 2
c = 1.342

DIN - histogram density

c = 1.512

p = .7 ,     g = .4
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T stat
assy(c) = T stat

assy(c1, . . . , cn) (5)

=
√
(c1a1T1)2 + (c2a2T2)2 + . . .+ (cnanTn)2

The underlying assumptions are that the part variations are independent
and are characterized by possibly diverse distributions centered on the part
tolerance intervals. These distributions, not necessarily normal, mostly cover
the respective part tolerance intervals, either completely or by their ±3σi

ranges, see Figure 6.

The interpretation of this assembly tolerance stack is as before. Namely,
one can expect that 99.73% of all assembly G gap values fall within γ ±
T stat

assy(c). Although the individual contributors to the stack may no longer be
normally distributed we can still appeal to the central limit theorem to con-
clude that G is approximately normally distributed. Since the word “limit”
in central limit theorem implies that the number of terms being added should
be at least moderately large, it is worth noting that in many situations one
can get fairly reasonable normal approximations already for n = 2 or n = 3
stacking terms.

One notable problem case among the distributions featured in Figure 6 is
the uniform distribution. In that case the sum of two uniformly distributed
random variables will in general have a trapezoidal density, which on the
face of it cannot qualify as being approximately normal. If the two uniform
distributions have the same width then this trapezoidal density becomes
triangular. See the left side of Figure 7 where the top panel gives the cu-
mulative distribution and its normal approximation and the bottom panel
shows the corresponding densities for the sum of two random variables, uni-
formly distributed over the interval (0, 1). The right side of Figure 7 shows
the analogous comparisons for the sum of three such uniform random vari-
ables. Although the density comparison shows strong discrepancies for the
sum of two uniform random terms, there appears to be much less difference
for the cumulative distribution, since the undulating errors, visible for the
densities, cancel out in the probability accumulation process. Thus the cen-
tral limit theorem could be appealed to even in that case, if one is content
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with somewhat rougher probability approximations

Note also that the normal approximation spreads out further than the
approximated distribution. This would result in conservative assembly risk
assessment. Rather than .27% of assemblies falling out of tolerance (under
the normal approximation) it would be actually less under uniform detail
part variation.

Before using inflation factors based on specific distributions one should
make sure that such distributions are really more appropriate than the cus-
tomary normal distribution. Such judgments should be based on data. If
one has such validated concerns they may affect just one or two such con-
tributors in (5) and leaving most other c factors equal to one. Note that c
factors larger than one increase the assembly tolerance stack.

We view formula (5) mainly as a useful extension to formula (3) for just
such situations where normality does not hold for all detail part dimensions.
This way the behavior of one part process alone will not preclude us from
performing a valid statistical tolerance analysis.

If one uses such distributions solely for getting some sort of inflation or
protection factor without having any other justification, one should drop that
distribution pretense and just admit to using an inflation factor for just such
protection purpose.

Some of the distributions portrayed in Figure 6 require some comments
or explanation. The uniform distribution can in some sense be viewed as
a most conservative description of variation over a fixed interval. Among
all symmetric, unimodal5 distributions over such an interval it has the most
spread or the largest standard deviation σi.

The trapezoidal density is uniform on the interval [λi − kTi, λi + kTi],
where k is some number in [0, 1], and the density falls off linearly to zero
over [λi + kTi, λi + Ti] and [λi − Ti, λi − kTi]. The uniform and triangular
density are special cases of the trapezoidal one.

5A density f(x) is symmetric and unimodal about λi if f(x) has same values for x =
λi ±∆ and if these values are nonincreasing as ∆ moves away from zero. The beta density
with α = β = .6 is the only one in Figure 6 which is not unimodal. It is bimodal, since it
has two separate peaks.
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The elliptical density6 consists of half an ellipse and is characterized by
the requirement that one axis of the ellipse straddles the interval λi ±Ti and
its other half axis has length 2/(πTi).

Aside from the normal distribution the Student t-density is the only one
among the illustrated distributions which has an unbounded range. This
raises the issue of how to match up the range of such distributions with the
finite range [λi−Ti, λi+Ti]. In the normal case it has been traditional to take
Ti ≡ 3σi with the normal distribution centered on λi. With that identification
99.73% of all detail parts of type i will vary within [λi−Ti, λi+Ti]. In the case
of the Student t-distribution we have two options. We can either scale the
t-distribution to match the probability content of .9973 over [λi − Ti, λi +Ti]
or we can again let Ti ≡ 3σi. In the former approach we will wind up with
c-factors that are less than one, because each σi would typically be much
smaller than Ti/3. The trouble with this approach is that with limited data
it is very difficult to establish that [λi − Ti, λi + Ti] captures 99.73% of all
detail part dimensions.

The other approch, namely Ti ≡ 3σi, is much easier to implement with
limited data and it leads to a c-factor which is one. The ease derives from
the fact that standard deviations can be estimated with fairly limited data.
However, the smaller the data set, the less certain we can be about the
standard deviation estimate.

One detraction with using Ti ≡ 3σi is that we will tend to see more detail
parts out of tolerance. In using statistical tolerancing ideas there is no need
to guarantee that all detail parts are within tolerance as is required under
arithmetic tolerancing. In statistical tolerancing we only need to control the
amount of part variation. Occasional detail parts which fall out of tolerance
do not need to be sorted out. They actually may average out just fine in
the assembly. Note that the two t-distributions illustrated in Figure 6 have
different degrees of freedom and thus different detail fall-out rate.

The beta density comprises a rich family of shapes and for its mathemat-
ical form we refer to Scholz (1995). Here we only considered symmetric beta
densities with paramters α = β and standard deviation σi = Ti/

√
2α + 1.

6by some also called semicircular density, since the elliptical shape is the result of
normalizing the total area under the density to one
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Table 1: Distributional Inflation Factors

normal 1 uniform 1.732

triangular 1.225 trapezoidal
√
3(1 + k2)/2

cosine half wave 1.306 elliptical 1.5

Student-t 1

beta (symmetric) 3/
√
2α + 1

histogram density (DIN)
√
3

√
(1− p)(1 + g) + g2

Finally, the box shaped or DIN-histogram density given in the lower right
panel of Figure 6 is characterized by the two parameters (p, g), where p stands
for the probability content or area of the middle box sitting on the interval
[λi − gTi, λi + gTi]. The rest of the probability (1 − p)/2 is distributed
uniformly and in equal parts over the two other boxes filling up the rest of
the interval [λi−Ti, λi+Ti]. This density figures prominently in the German
attempts to standardize tolerance calculations, see Henzold (1995). However,
these proposals still appear to be preliminary. The appealing aspect of this
formulation of nonnormal variation is that one specifies two tolerance zones,
the outside one, given by λi ± Ti and containing all variation, and the inside
one, given by λi ± gTi and containing usually most or 100p% of all variation.
The assumption of uniformity within each range is in some sense a most
conservative stance, as pointed out above in connection with the uniform
distribution.

Table 1 gives the formulas or numerical expressions for the c-factors of
the distributions illustrated in Figure 6.

3.4 Normal RSS With Arithmetically Stacked Mean Shifts

One crucial assumption in the RSS method is that the normal distribution
characterizing the variation of the detail parts over tolerance ranges be cen-
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tered on the midpoint of such tolerance ranges. This may seem reasonable in
that such midpoints represent detail part nominal values and it would seem
plausible that most manufacturing process would aim for such nominals. Any
deviations from such aim should balance equally so that the processes would
then be centered on their respective nominals.

Unfortunately this may be wishful thinking. The manufacturing process
owner, when presented with the tolerance range λi ± Ti may not necessarily
set up the process with aim at λi. This could be for a variety of reasons.
For example, the variability of the process may be considerably smaller than
indicated by the given ±Ti tolerance range. In that case the process owner
may not have the motivation in spending much effort on centering the process
as long as the part variation stays within the tolerance interval. Furthermore,
the owner could try to take advantage of this wider tolerance interval by
moving the process off-center and thereby decreasing some other cost aspect,
e.g., cost of labor, material, etc. Of course such strategy does not work when
the process variability barely fits within the allotted λi ± Ti.

Another reason for expecting some amount of mean shift, i.e., the process
mean being shifted from the nominal center λi, is that even if one tries hard
to set up a process with mean centered on some particular value, one is never
fully successful. One will be off by some amount. A correction will suffer from
the same weakness and if one corrects too often, one only adds variability
to the process and thus making it only harder to discern mean shifts. Some
may view this as a solution, but it seems to be a questionable one.

The main aspect of mean shifts is that they are a systematic component
of detail part deviation from nominal. Their effect on assembly variation
is the same for assembly after assembly. Thus it is especially important to
control the possible negative impacts of such effects.

This is a good place to consider another aspect of assembly, namely that
of tooling. Tools are used to aid in putting an assembly together. These
are fixtures, jigs, or other devices that hold parts in place or are used in
positioning parts to be fastened to each other. Part of the assembly process
variation stems from the tool. Some of this variation happens anew each time
an assembly is made. For example, the error of positioning a part relative
to an index point is of this type. Such variation contributors should be
handled as though they constitute a “part” with part to part variation. Often
however, there are features of the tool that are more or less permanent, i.e., do
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not change from assembly to assembly. Examples are stops or index points.
Although one wishes such tool features to coincide exactly with nominal
positions, there are deviations from nominal which could be considered as
mean shifts in the positioning process.

In considering mean shifts as a possibility one has to settle on how much
mean shift one is willing to accept in a tolerance analysis. Of course, one also
has to make sure that such mean shift assumptions are reasonable in practice,
i.e., one will have to resort to statistical quality control methods to monitor
the relevant processes for these assumptions. To quantify the amount of
mean shift we introduce some notation. Let µi denote the process mean
for the ith detail part dimension and let ∆i = µi − λi be the corresponding
mean shift, i.e., the difference between process mean and nominal. It is
useful to characterize the absolute difference in relation to the tolerance Ti,
namely, |∆i| = ηiTi. Here the fraction ηi = |∆i|/Ti will typically be a number
between 0 and 1. Usually, values ηi = .10, .20, or .30 will be most common.
By focussing on the ratios ηi we want to control the mean shifts in relation to
the tolerances Ti, i.e., large tolerances usually permit also larger mean shifts
and it will be more reasonable to assume a common value for all the ηi.

While allowing some amount of mean shift we will however insist that
the total process variation will still be contained in the tolerance interval
[λi − Ti, λi + Ti] = [Li, Ui], i.e., be within the upper and lower part specifica-
tion/tolerance limits, and that the process variation be normal. In terms of
the process capability index Cpk this means

Cpk = min
(
Ui − µi

3σi

,
µi − Li

3σi

)
=

Ti − |∆i|
3σi

=
Ti − ηiTi

3σi

=
(1− ηi)Ti

3σi

≥ 1 .

Assuming the highest amount of variability within these constraints, i.e.,
Cpk = 1, we have 3σi = (1 − ηi)Ti and we see that increasing the mean
shift ratio ηi while holding Ti fixed entails that the process variability σi be
decreased, see Figure 8. This is also seen clearly from

Ti = (1− ηi)Ti + ηiTi = 3σi + |∆i|
where an increase in |∆i| needs to be traded off against a decrease in σi in
order to maintain a fixed Ti.

The difficulty caused by mean shifts is that these are persistent deviations
or biases from the nominal values. By persistent we mean that such a mean
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Figure 8: Shifted Normal Distributions

Over Tolerance Interval

shift is the same for all detail parts coming out of that process. If this mean
shift has a detrimental effect on one assembly it will tend to have a similarly
bad effect on all other assemblies, contingent on how it is offset by variations
in the other detail parts.

The sizes and directions of these detail part mean shifts could stack in
the worst possible way. A conservative approach would account for such
worst case mean shifts through arithmetic stacking and stack the remaining
random part to part variability via the RSS method and finally stack these
two contributions (arithmetic stack of mean shifts and RSS variability stack)
arithmetically. The result of this is the following tolerance stacking formula,
denoting by η = (η1, . . . , ηn) the set of all n mean shift ratios:

T∆,arith,1
assy (η) = η1|a1| T1 + . . .+ ηn|an| Tn (6)

+
√
(1− η1)2a

2
1T

2
1 + . . .+ (1− ηn)2a2

nT
2
n .
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This formula is valid under independent and normal part variation with mean
shifts bounded by |∆i| ≤ ηiTi and part to part variability controlled by
Cpk ≥ 1 for each part process.

The above combination of worst case stacking of mean shifts and RSS-
stacking of the remaining variability within each tolerance interval was pro-
posed by Mansoor (1963) and further enlarged on by Greenwood and Chase
(1987).

As one can easily see, formula (6) contains our previous arithmetic and
RSS stacking formulas as special cases. When η1 = . . . = ηn = 0 (no mean
shift) we get

T∆,arith,1
assy (0) = T stat

assy

and when η1 = . . . = ηn = 1 (mean shift all the way to the tolerance limits)
we get

T∆,arith,1
assy (1) = T arith

assy .

The latter occurs because in that case all deviations from nominal are rep-
resented by the mean shifts and no more part to part variation is allowed
because of the Cpk ≥ 1 requirement.

In general we have

T stat
assy ≤ T∆,arith,1

assy (η) ≤ T arith
assy

and it is worth pointing out that T∆,arith,1
assy (η) grows on the order of n, just

as T arith
assy , however with a reduction via the factors ηi.

Although the two main components to T∆,arith,1
assy (η), as given in (6), react

differently to increases in the fraction ηi (the one increases whereas the other
decreases as ηi increases) one can show (Scholz, 1995) that the overall net
effect is that T∆,arith,1

assy (η) increases with ηi. Thus we can use (6) also as an
upper bound for the assembly tolerance for all ηi values less than those used
in (6).

From an operational point of view we can say that at least 99.73% of
all assembly gaps G will fall within γ ± T∆,arith,1

assy (η). The reason for saying
“at least” is that G is normally distributed and in the worst case mean shift
configuration it has a mean shifted away from the nominal γ and only one
tail of its distribution will significantly stick out beyond γ ± T∆,arith,1

assy (η).
Figure 8 illustrates this point. By the method employed we have limited
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that tail probability to half of (100− 99.73)%, i.e., to .135%. The opposite
distribution tail will typically amount to much less than .135%. How much
so depends on the total amount of shift and the overall variability in G, see
Scholz (1995).

In the foregoing treatment of mean shifts we had Ti fixed and traded
mean shift off against part to part variability. Typically however, the ±3σi

range of the detail part process is more or less known and set and not so
easily changed. Rather than taking Ti = 3σi with no allowance for mean
shift we would accommodate such shifts not by insisting on a σi reduction
but by using an inflated value for Ti, namely

Ti = 3σi + ηiTi =⇒ (1− ηi)Ti = 3σi or Ti =
3σi

1− ηi
,

in order to absorb a mean shift of absolute size ≤ ηiTi while maintaining a
Cpk ≥ 1.

If we use the widened tolerances Ti = 3σi/(1− ηi), and write T ′
i = 3σi for

short, we can rewrite (6) as follows

T∆,arith,2
assy (η) =

η1

1− η1

|a1| T ′
1 + . . .+

ηn

1− ηn

|an| T ′
n (7)

+
√

a2
1T

′2
1 + . . .+ a2

nT
′2
n .

Note that the second term is the usual RSS stack of part to part vari-
ation and the first represents the arithmetic mean shift stack expressed in
terms of that part to part variability T ′

i = 3σi. This formula is valid un-
der independent and normal part variation with mean shifts bounded by
|∆i| ≤ ηiT

′
i/(1 − ηi) and T ′

i = 3σi characterizes the part to part variability
for the ith part.

Here it is quite obvious that T∆,arith,2
assy (η) increases with ηi since ηi/(1−ηi)

is increasing in ηi.

The discussion of the proportion of assemblies falling out of tolerance is
completely parallel to that for T∆,arith,1

assy (η) and is thus not repeated here for
T∆,arith,2

assy (η).
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3.5 Nonnormal RSS With Arithmetically Stacked Mean Shifts

The above method of accounting for mean shifts in conjunction with normal
part to part variation can be blended with our previous treatment of centered
nonnormal distributions. As pointed out before, when choosing a nonnormal
distribution for part to part variation one should have a good reason for
doing so. Usually such nonnormal distributions will only be invoked for a
few detail parts because of the accompanying penalty factors.

Above we allowed mean shifts as long as the total part variability includ-
ing the mean shift stays mostly within the tolerance limits. This was ex-
pressed by the requirement Cpk ≥ 1. The Cpk capability measure is strongly
linked to the normal distribution. In the case of the nonnormal distributions
considered previously we will thus have to reinterpret this requirement. For
distributions which spread over a fixed interval we require that these dis-
tributions, after being shifted, will at most spread to the nearest endpoint
of the tolerance interval. This will require that these distributions either
reduce their variability around their respective means µi, see Figure 9 for
illustrations7, or we have to increase Ti to accommodate both ∆i and the
given fixed distributional spread of the detail part dimensions. We first state
the tolerance stack formula for fixed Ti

T∆,arith,1
assy (η, c) = T∆,arith,1

assy (η1, . . . , ηn, c1, . . . , cn) (8)

= η1|a1| T1 + . . .+ ηn|an| Tn

+
√
[(1− η1)c1a1T1]2 + . . .+ [(1− ηn)cnanTn]2

where the factors c = (c1, . . . , cn) are the same as in the centered case and
can be found in Table 1. The assumption behind (8) are the same as those
behind (6), except that we now allow for nonnormal part to part variation,
as indicated by the choice of c.

7note that the distributions in Figure 9 correspond to the centered distributions of
Figure 6
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Figure 9: Distribution Inflation Factors

shifted normal density

c = 1

shifted uniform density

c = 1.732

shifted triangular density

c = 1.225

shifted trapezoidal density: a = .5

c = 1.369

shifted elliptical density

c = 1.5

shifted half cosine wave density

c = 1.306

shifted Student t density:   df = 4

c =  1

shifted Student t density:   df = 10

c =  1

shifted beta density

α = β = 3

c = 1.134

shifted beta density

α = β = .6
c = 2.023

shifted beta density (parabolic)

α = β = 2

c = 1.342

DIN - histogram density

p = .7 ,   g = .4

c = 1.512
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As remarked above, most of the ci will usually be one and formula (8)
should be viewed as a useful extension of (6) for the occasional situation
where some other than normal distribution is indicated for a detail part.

In the discussion of formula (6) we pointed out that the assembly tolerance
stack, given by (6), is an increasing function of each ηi. This allowed us to
treat (6) as an upper bound for all mean shift ratios which are less than
those used in (6). In the case of formula (8) such claims are not possible, i.e.,
increasing the amount of mean shift will not necessarily increase the assembly
tolerance stack T∆,arith,1

assy (η, c). The reason for this is not entirely clear and
this issue could benefit from some more research. It could be that having
a uniform distribution spread over λi ± Ti (i.e., ηi = 0) is more detrimental
to T∆,arith,1

assy (η, c) than having a shifted uniform distribution which is more
concentrated. Maybe the differences are generally small or in most situations
of practical importance one still can count on T∆,arith,1

assy (η, c) being increasing
in ηi so that we can again view it as upper bound for all smaller ηi. One easy
check on T∆,arith,1

assy (η, c) being increasing in ηi or not is to try out ηi = 0 and
see whether that results in a larger value than obtained under η.

Again we can claim that at least 99.73% of all assembly G values will fall
within γ±T∆,arith,1

assy (η, c). The explanation for “at least” is as in the context
of formula (6).

We now discuss the other point of view where the part variation is fixed
and given, i.e., lies mostly within µi ± T ′

i . Here T ′
i = 3σi (in the case of

the normal or Student t-distribution) or T ′
i = half width of the interval over

which a finite range distribution spreads out (e.g. uniform, triangular, etc.).
In order to accommodate not only that variation but also the permitted
amount of mean shift we will have to use a Ti that is inflated relative to T ′

i ,
namely

Ti = ηiTi + T ′
i or Ti =

T ′
i

1− ηi
.

The resulting assembly stack formula derives from (8) as
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T∆,arith
assy (η, c) = T∆,arith

assy (η1, . . . , ηn, c1, . . . , cn) (9)

=
η1

1− η1

|a1| T ′
1 + . . .+

ηn

1− ηn

|an| T ′
n

+
√
(c1a1T ′

1)
2 + . . .+ (cnanT ′

n)
2

where the second part bears a strong resemblance to the RSS stacking formula
(5) for nonnormal part to part variation and the first part is the arithmetically
stacked mean shift contribution. Note again that in this formulation the
assembly stack is an increasing function of the ηi.

The above stacking formula (9) is valid under the same assumptions as
formula (7), except that now we allow nonnormal part variation as indicated
by the c factors.

Yet another method of dealing with mean shifts in a worst case fashion
is presented in Srinivasan et al. (1995). However, their results are more
concerned with worst case risk for given part tolerances but still need trans-
lation into assembly tolerance stack form for given risk in order to make them
comparable with the methods presented here.

3.6 RSS Stacked Part Variation and Mean Shifts I

We have seen that the simple RSS method led to a significant reduction in
the assembly tolerance stack when compared to simple arithmetic stacking.
The latter grows at the rate of n whereas the former grows at the much
slower rate of

√
n. The RSS method was applicable under the assumption

that the part variations were centered on nominal, random and statistically
independent over the n parts in the assembly. This advantage was gained
from the realization that the deviations from nominals would cancel each
other out to some extent and were not likely to stack in the worst possible
way.

The same considerations could lead us to realize a similar gain by stacking
mean shifts via the RSS method and combine that arithmetically with the
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RSS stack of the part to part variation. The assumptions are that the mean
shifts are random over the specified intervals [λi − ηiTi, λi + ηiTi] and are
statistically independent from part process to part process. The randomness
of each mean shift is described by some distribution, such as a normal or
t-distribution with 3σµ = ηiTi, or a uniform, triangular or any of the other
finite range distributions with range width = 2ηiTi. The choice of distribution
for the mean shift is indicated by a c constant, denoted by cµ,i in this context
and chosen again from Table 1.

In this section we assume that the part variation is fixed and given by T ′
i

and that the maximum absolute mean shift is bounded by ηiTi, with Ti yet to
be determined to accommodate both part variation and maximum allowable
mean shift. We get again

Ti = ηiTi + T ′
i or Ti =

T ′
i

1− ηi

as the inflated tolerance. However, here the actual mean shift will typically
not attain its allowed maximum ηiTi but will vary randomly over the inter-
val ±ηiTi according to the distributions of choice as indicated by cµ,i taken
from Table 1. The crucial assumption is that this mean shift variation is
independent from part process to part process.

Under these assumptions and denoting by cµ = (cµ,1, . . . , cµ,n) the infla-
tion factors for the mean shift distributions we statistically stack these n
mean shifts to bound the aggregate mean shift, as it propagates through to
the assembly, by√

c2
µ,1a

2
1η

2
1T

2
1 + . . .+ c2

µ,na
2
nη

2
nT

2
n

=
√

c2
µ,1a

2
1η

2
1T

′2
1 /(1− η1)2 + . . .+ c2

µ,na
2
nη

2
nT

′2
n /(1− ηn)2 .

This should bound 99.73% of all assembly mean shifts. Assuming a worst
case stance, namely taking the above bound as the worst assembly mean shift,
and adding to that (in worst case fashion) the RSS stacked part variation

√
c2
1a

2
1(1− η1)2T

2
1 + . . .+ c2

na
2
n(1− ηn)2T 2

n

=
√

c2
1a

2
1T

′2
1 + . . .+ c2

na
2
n(1− ηn)2T ′2

n
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we get as assembly tolerance stack the following formula

T∆,stat,1
assy (η, c, cµ) (10)

=
√

c2
µ,1a

2
1η

2
1T

2
1 + . . .+ c2

µ,na
2
nη

2
nT

2
n

+
√

c2
1a

2
1(1− η1)2T

2
1 + . . .+ c2

na
2
n(1− ηn)2T 2

n

=
√

c2
µ,1a

2
1η

2
1T

′2
1 /(1− η1)2 + . . .+ c2

µ,na
2
nη

2
nT

′2
n /(1− ηn)2

+
√

c2
1a

2
1T

′2
1 + . . .+ c2

na
2
n(1− ηn)2T ′2

n .

Formula (10) is valid provided that i) the mean shifts can be viewed as in-
dependent, one-time random realizations from some distributions character-
ized by c constants cµ,1, . . . , cµ,n and mostly contained in the intervals ±ηiTi,
and ii) the not necessarily normal part to part variation around the realized
part process means µi is independent from part to part and is characterized
by c constants c1, . . . , cn. Here the means µi deviate from the nominals λi by
the mean shifts as controlled by i). Both cµ,i and ci can be found in Table 1
for the distributions appropriate in each case.

Typically we will mostly have ci = 1, but concerning cµ,i the error dis-
tribution for centering the part manufacturing process may be harder to
choose. The reason is that usually one can get many parts from a process
and measure their characteristics to establish a distribution for part to part
variability, but the number of times that such processes are set up and re-
sult in new mean shifts is usually too limited to establish some meaningful
distribution. Since such sparsity of hard data is a problem one may make
a subjective choice and either be somehat optimistic and assume a normal
distribution for all mean shifts, i.e., cµ,i = 1, or one may conservatively take a
uniform distribution over ±ηiTi, i.e., cµ,i =

√
3 = 1.732 for all part processes.

The nice part of formula (10) is that the mean shifts and the part variation
both contribute only on the order of

√
n.

We need to comment on the summing of the two square root terms in (10)
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as opposed to using the RSS method on all terms, i.e., summing all squares
under one square root. The variation due to mean shifts is a one time affair.
Once the part processes are set, with whatever random mean shifts they
experienced, it is assumed that they will stay at those mean shifts.8 The
part to part variations around these set means µi happen anew for each
part produced. The RSS part of the mean shifts bounds the total assembly
mean shift probabilistically with high assurance ≈ 99.73%. However, we do
not know where in that bounded range that assembly mean shift lies. It sits
there and no longer moves. It this is difficult to give it any long run frequency
interpretation within that assembly setup. To be conservative and safe we
assume the worst, namely that the assembly mean shift lies at one end of the
bounded range, namely at

γ ±
√

c2
µ,1a

2
1η

2
1T

2
1 + . . .+ c2

µ,na
2
nη

2
nT

2
n ,

and add to that the RSS bounded part to part variation. This step of adding
is a form of worst case analysis. We do not expect variation cancellation
between assembly mean shift and aggregate part variation, because that as-
sembly mean shift does not vary from assembly to assembly whereas the
aggregate part variation does vary.

Some insight into formula (10) is gained by setting ηi = η (same mean
shift fraction for all parts) and ci = c and cµ,i = cµ. Then

T∆,stat,1
assy (η, c, cµ) = [ηcµ/(1− η) + c]

√
a2

1T
′2
1 + . . .+ a2

nT
′2
n

= [ηcµ + c(1− η)]
√

a2
1T

2
1 + . . .+ a2

nT
2
n

where the RSS term in the first line is just as in the centered case (without
mean shift) and the multiplier (ηcµ/(1− η)+ c) adjusts not only for possible
nonnormality in part and mean shift variation but also for the presence of
a mean shift in itself. The latter becomes more apparent when we assume
c = cµ = 1 when that multiplier becomes (1+η/(1−η)). It is interesting that
in this simplified setup mean shifts also are compensated for by an inflation
factor. The second line of (10) expresses the tolerance stack in terms of the
inflated Ti, as they are used for part tolerance specification.

8this does not allow for part processes that have a drifting mean as the parts are
produced
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For later comparison we consider the following example scenario: ηi = .2,
ci = 1 and cµ,i =

√
3 for all i, i.e., common .2 mean shift ratio, common

normal part variation and common uniform mean shift distributions. Then

[ηcµ/(1− η) + c] = 1.433 or [ηcµ + c(1− η)] = .8× 1.433 = 1.146 .

The assembly tolerance stack in formula (10) is of order
√

n, i.e., similar to
the RSS method with an inflation factor, however the motivation is different
in that we allow and account for some amount of mean shift. Also, the
proportion of assembly gaps G falling within ±T∆,stat,1

assy (η, c, cµ) of γ is at
least .9973 and more likely at least .99865.

When speaking of at least 99.865% assurance for assembly gaps G to be
within tolerance of γ, we are assuming that the actual assembly mean shift∑n

i=1 ai∆i is within

±
√

c2
µ,1a

2
1η

2
1T

2
1 + . . .+ c2

µ,na
2
nη

2
nT

2
n .

However, this in itself is a chance event, namely it has .9973 chance of hap-
pening. The reason for not blending this probability with the previous one
is that these two chances have different operational meaning. The chance
concerning assembly mean shifts is not taken too often, thus we will rarely
see such mean shifts out of the assumed tolerance. However, the chance of
.99865 should be viewed against the fact that many assemblies will be pro-
duced with this particular setup of part processes. The fraction of out of
tolerance assemblies will become noticeable in the long run.

3.7 RSS Stacked Part Variation and Mean Shifts II

In the previous section we dealt with a variation model that treated part
to part variation as fixed and given, namely as T ′

i , and allowed a maximum
absolute mean shift ηiTi, where Ti was inflated to accommodate both require-
ments.

Here we take the view that Ti is given, with an allowed maximum absolute
mean shift of ηiTi and the part to part variation can vary depending on the
amount of mean shift realized for that particular part process. For example,
if the part process has no mean shift, then the part variation can use up
the entire ±Ti range, i.e., T ′

i = Ti. If the mean shift is at its maximal
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value, then the part variation has to be greatly reduced, namely T ′
i = Ti −

ηiTi = (1− ηi)Ti. We don’t say that this dynamic behavior of part variation
will happen, but if we specify the part processes through the mean shift
|∆i| ≤ ηiTi and Cpk ≥ 1 requirements, then we do leave ourselves open to
just such contingencies. The proper treatment of tolerance stacking in this
case is more complicated and not quite as broadly developed as the previous
methods.

Breaking mildly away from not burdening the reader with theoretical
details we will here give some theoretical insight into this particular tolerance
stacking method. To this end we introduce some useful notation, namely the
random fraction of mean shift:

Ri =
∆i

ηiTi

=
µi − λi

ηiTi

which is considered to vary randomly over the interval [−1, 1]. The random
values R = (R1, . . . , Rn) specify the realized relative amounts of mean shift
for the n parts. With this notation and recalling εi = Li−µi and ∆i = µi−λi

we can write

G− γ =
n∑

i=1

ai(Li − λi) =
n∑

i=1

ai∆i +
n∑

i=1

aiεi =
n∑

i=1

aiηiTiRi +
n∑

i=1

aiεi .

Here the first sum on the right reflects the assembly mean shift and the second
sum the assembly variation from part to part. We permit up to ±ηiTi mean
shift, but it may be far less depending on the mean shift reduction factors
Ri. Conservatively we allow that the maximal part variability could use
up as much as is made possible by the actually realized mean shift fraction.
Namely, for fixed Ri the variability of the εi terms can have maximal standard
deviation

σ(Ri) = ci(Ti − |∆i|)/3 = ci(1− |Ri|ηi)Ti/3.

Note that the maximal σ(Ri) becomes larger as |Ri| gets smaller. This means
that we permit more part to part variability the more centered the part
process turns out to be. We do not view this as cause and effect, but more
as a conservative stance of what is permitted under the rules.

For fixed values of R = (R1, . . . , Rn) we can again appeal to the central
limit theorem and consider G− γ to be approximately normally distributed
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with mean and standard deviation given respectively by

n∑
i=1

aiηiTiRi and
1

3

√√√√ n∑
i=1

a2
i T

2
i c

2
i (1− |Ri|ηi)2 .

Hence for fixed R we can capture 99.73% of the G− γ variability within

n∑
i=1

aiηiTiRi ±
√√√√ n∑

i=1

a2
i T

2
i c

2
i (1− |Ri|ηi)2 .

Note that this interval is not centered on γ. Its position and width depend
on R. To cover most contingencies we need to find out how far to the right
(left) the upper (lower) endpoint of this interval could typically reach as the
Ri values vary. Focussing on the upper endpoint we can write

n∑
i=1

aiηiTiRi +

√√√√ n∑
i=1

a2
iT

2
i c

2
i (1− |Ri|ηi)2

=


 n∑

i=1

wiηiRi +

√√√√ n∑
i=1

w2
i c

2
i (1− |Ri|ηi)2




√√√√ n∑
i=1

a2
iT

2
i

= F (R)

√√√√ n∑
i=1

a2
i T

2
i ,

where

F (R) =
n∑

i=1

wiηiRi +

√√√√ n∑
i=1

w2
i c

2
i (1− |Ri|ηi)2 and wi =

aiTi√∑n
i=1 a

2
jT

2
j

Note that this is just the ordinary simple RSS formula multiplied by some
allowance factor F (R). Unfortunately this latter factor depends on the un-
known R and it is not easy to bound this factor in simple form for all con-
tingencies. However, it is a very simple matter to write a small simulation
program that establishes such bounds for any assumptions one cares to make
about ηi, ci, Ti, ai, and the distributions governing Ri.
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For a special but also central case we can give explicit bounds for this
factor. Assuming that all Ri are independent random variables, uniformly9

distributed over [−1, 1] and assuming10 ci = 1 for all i and common mean
shift fraction bounds η1 = . . . = ηn = η, we can bound F (R) with high
probability, namely

P
(
F (R) ≤

√
1− η + η2/3 + η

√
3
)
= .99865 ,

resulting in the following tolerance stacking formula

T∆,stat,2
assy (η) =

(√
1− η + η2/3 + η

√
3
)

(11)

×
√

a2
1T

2
1 + . . .+ a2

nT
2
n .

For η = .2 formula (11) reduces to

T∆,stat,2
assy (.2) = 1.248

√
a2

1T
2
1 + . . .+ a2

nT
2
n .

Here the factor 1.248 is somewhat larger than the factor of 1.146 derived in
the previous section under the same distributional assumption, namely uni-
form mean shift distribution and normal part to part variation and common
.2 mean shift fraction.

If we make the additional assumption that the aiTi are all the same, say
equal to T , then we can compare the above also against the tolerance stacking
method (8) which stacks the mean shifts in worst case fashion.

T∆,arith,1
assy (η, 1) = .2 n T + .8 T

√
n

= (.2
√

n+ .8) T
√

n

= (.2
√

n+ .8)

√√√√ n∑
i=1

a2
iT

2
i .

9this is somewhat conservative, as outlined on previous occasions
10implied by a normal distribution for part to part variation
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Thus the comparable factor of interest is (.2
√

n + .8) which is 1.083, 1.146,
1.200, 1.247, . . . for n = 2, 3, 4, 5, . . .. By comparison these still look quite
favorable, but note that (.2

√
n+ .8) grows like

√
n without bounds, although

tempered by the mean shift fraction .2, whereas the factors in the other two
examples do not grow with n.

The above numbers should throw some light on the relative merits of these
methods. It should also be clear by now that it matters what assumptions
one makes concerning the various sources of variation. This still does not
make it easy to choose and one possible compromise is to calculate tolerance
stacks by two methods, say (8) and (10) or (11), and average the two results.

3.8 Risk Analysis

In all the above we have presented tolerance stacking formulas from various
points of view. We have not dwelled much on the associated risks except
for a few remarks made here and there. Typically the aim was to maintain
the traditional risk of .27% out of compliance assemblies. This was usually
related to a ±3σ normal distribution range based on a central limit theorem
approximation to the assembly gap. As mean shifts came into play there
was some gain in realizing that the excess over assembly tolerance bounds
would usually occur only at one end of the tolerance range, typically with
half the risk, namely .135%. One can take advantage of this risk reduction
by reducing the appropriate part of the assembly tolerance. Usually this
means that the RSS part of the part to part variation should be multiplied
by the factor .927. To illustrate this consider the tolerance stacking formula
(8) where we place the factor .927 in front of the part variation RSS term to
obtain
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T∆,arith,r
assy (η, c) = T∆,arith

assy,r (η1, . . . , ηn, c1, . . . , cn) (12)

= η1|a1| T1 + . . .+ ηn|an| Tn

+ .927
√
[(1− η1)c1a1T1]2 + . . .+ [(1− ηn)cnanTn]2 .

The factor .927 is motivated by 2.782/3 = .927, the fact that .27% of
the normal curve exceeds the value 2.782, and that the RSS term originally
stood for a 3σ value. For more details we refer the reader to Scholz (1995)
where some of these improvements are discussed.
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