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Abstract

Two parts, each with two holes, are to be pinned together by some type of fas-
tener. Nominally the holes on part 1 are to match the holes on part 2 and the fastener
diameters should be smaller than the hole diameters. Due to variation in hole diame-
ters, fastener diameters and hole center positions loose pinning of the two parts may
no longer be possible. The problem considered here is to define a pinning criterion
which, when nonpositive, expresses by how much we may have missed loose pinning,
and which, when positive indicates the amount of slack left over after pinning. The
problem is first reduced to a one-dimensional one by aligning the parts on the axes
connecting the actual hole centers on each part. The proposed citerion is the max-
imum of the minimum plays at the two matched hole pairs. By play is meant the
difference between the diameter of the biggest circle fitting inside an (overlapping)
hole pair and the corresponding fastener diameter. The criterion is definitely nonlinear
and traditional RSS methodology is inappropriate here. Worst case and statistical tol-
erancing are examined under the special scenario that a) the nominal hole diameters
are the same with diameter variations governed by a common uniform distribution,
b) the nominal fastener diameters are the same with diameter variations governed by
a common uniform distribution, and c) the nominal hole centers are matched for the
two parts with variation governed by a common circular symmetric, bivariate normal
distribution. The hole diameters on the same part are modeled to be identical. An
example calculation shows that under worst case tolerancing the required nominal hole
clearance is over 100% larger than under statistical tolerancing.

Further, the effect of deviations from perpendicularity of the hole center axes is
examined. Depending on the part thickness such deviations will reduce the effective
diameter of the hole. This effective diameter is the largest diameter of a cylinder that
will pass through the hole in perpendicular fashion. Deviations from perpendicularity
are again modeled by a circular symmetric, bivariate normal distribution for the lo-
cation (X,Y ) of the hole center exit location projected onto the entry plane. Again
an example calculation is given. Tables are provided for easy use of the statistical
tolerancing methods.
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Hole Pinning Clearance

1 Problem Description

The diagram in Figure 1 shows two parts to be pinned by two bolts, rivets, or expanding
temporary fasteners, referred to as pins from now on. At issue is whether the variations in
the hole diameters D1, . . . , D4, hole center locations, and minimum fastener diameters d1, d2

allow successful loose pinning of the two parts. The distance from hole center 1 to hole
center 2 is denoted by X1 and the distance from hole center 3 to hole center 4 is denoted by
X2. Here the holes are referenced by the same indices as the corresponding hole diameters.
Furthermore, it is assumed that the axis connecting hole centers 1 and 2 is aligned with
the axis connecting hole centers 3 and 4. Such alignment will give the best opportunity for
pinning and thus reduces the problem to a one-dimensional one along that alignment axis.
All motions of part 2, referred to below, will be along this axis.
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Figure 1. Pinning of two hole pairs

As shown in Figure 1, hole centers 1 and 3 are aligned, allowing for a maximum clearance
diameter of min(D1, D3) for pin 1. The hole centers 2 and 4 are therefore misaligned by the
amount ∆2. In Figure 1 we have ∆2 = |X1 −X2|, because of the alignment at the centers 1
and 3. However, the largest diameter of a pin that can pass through holes 2 and 4 depends
only on the misalignment distance ∆2, and on D2 and D4, regardless of whether holes 1 and
3 are aligned or not. In fact, that clearance diameter for pin 2 is

Q2(∆2) = min
(
D2, D4,

D2

2
+
D4

2
−∆2

)
,
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where ∆2 does not necessarily have to equal |X1 − X2|. Here (D2 + D4)/2 − ∆2 could
theoretically be negative, but typically it should be unlikely. A negative clearance diameter
indicates no clearance and says how far away one may be from any positive clearance.

The above expression for Q2(∆2) can be seen by distinguishing the following two cases.
Either one hole of the holes 2 and 4 is contained within the other, in which case the clearance
diameter is min(D2, D4), or the two holes overlap. In that latter case the clearance diameter
is (D2 +D4)/2−∆2, as is seen quite easily from Figure 1.

In a symmetrical fashion the clearance diameter at holes 1 and 3, when their hole centers
have distance ∆1, is given by

Q1(∆1) = min
(
D1, D3,

D1

2
+
D3

2
−∆1

)
.

In order to determine whether two such parts can be loosely pinned it would be useful to
develop a criterion that measures the slack or play left after pinning. Positive slack would
mean that the parts can be pinned and more easily so for larger slack. For nonpositive slack
loose pinning would not be possible. It is not immediately obvious how to define such a
measure of slack. We assume that pins 1 and 2 should not be interchangeable, i.e., pin 1 will
have to go through holes 1 and 3 and pin 2 will have to go through holes 2 and 4.

So far there have been no constraints on the dimensions Di, di and the hole centers.
Presumably the distances between the nominal hole centers should be equal. Also, the
nominal value for d1 should be smaller than the smaller of the nominal values for D1 and D3,
with similar relations holding between the nominals of d2, D2, and D4. In most situations
one may take the nominals for D1, . . . , D4 to be the same and also the nominals for d1 and
d2 to be equal. However, it is conceivable that D3 and D4 are significantly larger than
the counterparts D1 and D2. This could come about either through excessive variation or
differences in nominals for the Di’s. Furthermore, the pin diameters d1 and d2 may barely
clear D1 and D2, respectively. In that case one may have significant motion slack between
parts 1 and 2, but one barely is able to get the pins through holes 1 and 2. The question is:
Which of these two aspects matters with regard to the ability to pin this assembly?

2 Pinning Criterion

We propose the following approach. For any given position of the parts, aligned along the
hole center axes, one can determine by the above clearance diameters which of the two pins
will have less play, i.e., we can determine the minimum play for this position. By “play” we
mean the difference between maximum allowed pin diameter at that hole pair and in that
position and the actual pin diameter. Such play, if positive, allows us to move the loose pin
back and forth within the hole pair. As we move the parts relative to each other along the
alignment axis we affect this minimum play at the two hole pairs. The criterion we propose
is the maximum of the minimum plays one can achieve with such part motions.

When holes 1 and 3 are aligned on their centers, then pin 1 has the maximum play it
will ever get, namely min(D1, D3)−d1. At the same time pin 2 has play Q2(|X1 −X2|)−d2.

3



Thus the minimum play at this position is

P1 = min [min(D1, D3)− d1, Q2(|X1 −X2|)− d2] .

On the other hand, when holes 2 and 4 are aligned on their centers, then pin 2 has the
maximum play it will ever get, namely min(D2, D4) − d2. At the same time pin 1 has play
Q1(|X1 −X2|)− d1. Thus the minimum play at this position is

P2 = min [min(D2, D4)− d2, Q1(|X1 −X2|)− d1] .

Of these two minimum plays, P1 and P2, one is typically the larger, but the question is: Can
one find a position with even larger play? Usually the answer is yes and in Appendix A it is
shown that Pmax−min can be expressed as follows

Pmax−min =
|D1 −D3|+ |D2 −D4|

4
+

min(D1, D3) + min(D2, D4)

2
− d1 + d2

2

− 1
2
max

(
|X1 −X2|, |D1 −D3|+ |D2 −D4|

2
(1)

+ |min(D1, D3)− d1 − [min(D2, D4)− d2]|
)
.

Note that the form of this expression is hardly a linear stack of dimensions nor is it ap-
proximately linearizable because of the absolute value and minimum functions. The absolute
value function f(x) = |x| cannot be approximated well by a linear function near x = 0 and
the min(x, y) function suffers similarly for x ≈ y, since

min(x, y) =
x+ y

2
− |x− y|

2
, (2)

which is valid for all x and y.

3 Worst Case Tolerancing

Here we will consider worst case tolerancing in a special, yet important case. Namely, we
assume that the nominals and tolerances for the Di are all the same, and similarly for the di,
i.e., we assume a ≤ Di ≤ b for i = 1, 2, 3, 4, c ≤ di ≤ d for i = 1, 2. Furthermore, concerning
the hole center locations we assume that they are within r of the nominal centers and it is
assumed that the nominal centers for paired holes match. Through a series of steps we find
the smallest value for Pmax−min, i.e., the worst case that is possible under the above tolerance
constraints.

As a preliminary consideration note that under the above hole centering tolerance as-
sumptions it follows that the maximal allowed value of |X1 − X2| is 4r. This value can be
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achieved when the holes on one part are as close together as possible while on the other part
they are as far apart as possible.

Considering the form of Pmax−min given in (1) for fixed Di and di and for variable |X1−X2|
we see that Pmax−min is nonincreasing in |X1−X2|. Thus Pmax−min is smallest when |X1−X2|
is as large as allowed, namely 4r.

Next, keeping |X1 −X2| = 4r and holding min(D1, D3) = D�
1, min(D2, D4) = D�

2, d1, d2

fixed, while varying |D1−D3| and |D2−D4| we see that Pmax−min remains either constant or
decreases as |D1 −D3| and |D2 −D4| decrease. It follows that the lowest value for Pmax−min

is achieved by setting |D1 −D3| = 0 and |D2 −D4| = 0.
After the above minimizing steps the problem has been reduced to minimizing

Pmax−min =
D1 − d1 +D2 − d2

2
− 1

2
max (4r, |D1 − d1 − (D2 − d2)|)

over di ∈ [c, d] and Di ∈ [a, b]. For |D1 − d1 − (D2 − d2)| ≤ 4r that minimum value is
a− d− 2r and is attained when Di = a, di = d for i = 1, 2. For |D1 − d1 − (D2 − d2)| > 4r
that minimum value can be at most (using identity (2))

min(D1 − d1, D2 − d2) ≥ a− d

which is greater than in the previous case. Thus the absolute attainable minimum for
Pmax−min is a − d − 2r. This is intuitively quite obvious and on that basis could have
been arrived at more directly. Namely, mismatch the hole centers as much as possible and
make hole diameters as small as possible and pin diameters as large as possible (i.e. go for
maximum material condition in each case).

In order to guarantee loose pinning for all parts satisfying the given tolerances we have
to have a− d− 2r > 0.

4 Statistical Tolerancing

Under the statistical tolerancing view of the same problem one would treat the variation of
the dimensions |X1−X2|, D1, . . . , D4, and d1, d2 as random, varying mostly independently of
each other according to some distribution. The proper choice of distribution in each case is
not always obvious, especially in the absence of process control data. The assumptions made
below can be challenged and changed, but the basic approach to finding the distribution of
Pmax−min would remain the same. Here we are no longer interested in the worst (smallest)
possible value for Pmax−min but in its distribution as induced by the variations in |X1 −X2|,
D1, . . . , D4, and d1, d2. From this distribution we can derive the probability for positive play
at both hole pairs, i.e.,

p = P (Pmax−min > 0) .

If p < 1, we have a positive chance of no loose pinning. For small 1 − p this may well be
acceptable in view of other benefits gained, e.g., relaxed part tolerance requirements.

It was noted above that the expression (1) for Pmax−min is not linearizable. Thus the
traditional RSS methodolgy is not appropriate here. In principle, given the nature of the part
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variations, it should be possible to develop the distribution of Pmax−min, either analytically
or by simulation. Even when an analytical approach may be possible, it will usually still be
extremely messy.

4.1 Modeling Part Variation

We now discuss the assumptions made for the variation of parts. First, we assume that the
hole centers vary according to a circular symmetric, bivariate normal distribution around
the respective nominals, which are supposed to be identical for matched pairs. Denoting the
ith hole center location by (Ui, Vi) with nominal (µi, νi), where

(µ1, ν1) = (µ3, ν3) and (µ2, ν2) = (µ4, ν4) ,

we note that circular bivariate normality means that the Ui, Vi are all independent with
common standard deviation σ, where σ controls the variation of the hole centers around the
respective nominals. For example, if the hole centering accuracy is specified by

γ = P
(√

(U1 − µ1)2 + (V1 − ν1)2 ≤ r
)
= 1− exp

(
− r2

2σ2

)

then r relates to γ and σ as follows

r = σ
√
−2 loge(1− γ) (3)

which for γ = .9973 results in r = 3.4394σ. We can express the absolute hole center distance
mismatch |X1 −X2| as follows using U = (U1, U2, U3, U4) and V = (V1, V2, V3, V4)

|X1 −X2| =

∣∣∣∣
√
(U1 − U2)2 + (V1 − V2)2 −

√
(U3 − U4)2 + (V3 − V4)2

∣∣∣∣
= |f(U ,V )| , with f(U ,V ) = X1 −X2

and observe that under our assumptions the two square root expressions are independent
and have the same distribution, namely√

(U1 − U2)2 + (V1 − V2)2 = σ
√
2G2,δ

where the random variable G2,δ has a noncentral chi-distribution with 2 degrees of freedom
and with non-centrality parameter δ = �2/(2σ2). Here � denotes the common nominal
distance between the hole center pairs, i.e.,

� =
√
(µ1 − µ2)2 + (ν1 − ν2)2 =

√
(µ3 − µ4)2 + (ν3 − ν4)2 .

Thus the difference of these square roots, i.e., X1 −X2, will have a distribution symmetric
around zero, but not necessarily normal. However, since � is typically much larger than
σ, usually by orders of magnitude, one can linearize the expression for X1 − X2 quite well
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using a one term Taylor expansion of f(U ,V ) around (µ,ν) with µ = (ν1, . . . , ν4) and
ν = (ν1, . . . , ν4), namely

f(U ,V ) ≈ f(µ,ν) +
µ1 − µ2

�
[U1 − µ1 − (U2 − µ2)− (U3 − µ3) + (U4 − µ4)]

+
ν1 − ν2

�
[V1 − ν1 − (V2 − ν2)− (V3 − ν3) + (V4 − ν4)]

=
µ1 − µ2

�
[U1 − µ1 − (U2 − µ2)− (U3 − µ3) + (U4 − µ4)]

+
ν1 − ν2

�
[V1 − ν1 − (V2 − ν2)− (V3 − ν3) + (V4 − ν4)]

∼ N
(
0,

[
(µ1 − µ2)

2

�2
+

(ν1 − ν2)
2

�2

]
4σ2

)
= N

(
0, (2σ)2

)
.

Thus the linearized approximation of X1−X2 has a normal distribution with mean zero and
standard deviation 2σ. The quality of this approximation is illustrated in Figure 2. There
10,000 simulations of the actual values of X1 − X2 were generated, using σ = 1 and four
different values for �, namely � = 0, 2, 5, 20. The histograms in the left column of Figure 2
summarize these simulations. Superimposed in each case is the normal distribution resulting
from the linearization, with mean zero and standard deviation 2σ = 2. Note that for � ≥ 5σ
the approximation is quite good. The cases with � = 0 and � = 2σ are actually of little
interest, since the two hole pairs would never be drilled in such close proximity where they
almost coincide. These two cases are only given to show that the linearization approximation
can break down. The distribution of the absolute difference |X1 −X2| will be quite skewed.
This is illustrated in the right column of Figure 2. However, from our previous approximation
discussion it is clear that we can approximate these distributions for � ≥ 5σ quite well by the
distribution of the absolute value of a normal random variable with mean zero and standard
deviation 2σ. These approximations are again shown superimposed on the histograms on
the right side of Figure 2.

Above we assumed a circular symmetric, bivariate normal distribution for (Ui, Vi) around
the nominal hole centers (µi, νi). Often the hole centering process is biased, i.e., consistently
off target by the same bias vector. For holes drilled under simple translation on the same
part, i.e., without rotation of the axis connecting the two nominal hole centers relative to
the bias vector, such bias would be the same and thus the loose pinning issue would not be
affected, although the position of the pinned parts relative to each other would be changed
by such a bias vector.

For the common distribution of D1, . . . , D4 we could use a normal distribution, centered
over the interval [a, b] and containing 99.73% of that distribution in that interval. A more
realistic assumption is that the distributions be uniform over the range [a, b]. This seems to
reflect tool wear more accurately and it is the assumption with which we will proceed.
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It would seem that holes on the same part have hole diameters which are more or less the
same, since they were presumably drilled in succession. Thus we should not treat D1 and
D2 as independent, but instead use D1 = D2 in our modeling. Similarly we proceed with D3

and D4. However, the pairs (D1, D2) and (D3, D4) may well be considered as independent
of each other, unless indicated to the contrary by other information concerning the part
manufacture.

The diameters d1, d2 of the pins we will treat as independently varying according to a
uniform distribution over the range [c, d]. This again assumes that tool wear in producing
the fasteners is the major driver in the pin diameter variation. However here it seems
reasonable to assume that pins have been mixed sufficiently so that the pin diameter variation
is independent from pin to pin. Of course, it is possible that pins manufactured in close
succession have been kept paired for some reason, but we assume that this is not the case.

4.2 Distribution of Pmax−min

Under the above assumptions on part variation, in particular using D1 = D2 and D3 = D4,
the form of Pmax−min further simplifies to

Pmax−min =
|D1 −D3|

2
+ min(D1, D3)− d1 + d2

2

− 1
2
max (|X1 −X2|, |D1 −D3|+ |d1 − d2|)

=
D1 +D3

2
− d1 + d2

2
− 1

2
max (|X1 −X2|, |D1 −D3|+ |d1 − d2|)

where again the identity (2) was used. Even in this simplified form an analytical solution
for the distribution of Pmax−min appears to be very difficult to obtain. One component of
Pmax−min, namely the difference

D1 +D3

2
− d1 + d2

2

varies around the nominal hole to pin clearance

η =
a+ b

2
− c+ d

2
= D0 − d0 ,

where D0 = (a + b)/2 is the nominal hole diameter and d0 = (c + d)/2 is the nominal pin
diameter. However, Pmax−min is reduced consistently by the remaining component, namely
by the positive random variable

1
2
max (|X1 −X2|, |D1 −D3|+ |d1 − d2|) .

In understanding the variation of Pmax−min it simplifies matters to standardize it as follows

Pmax−min − η

r
=

D1 +D3 − (a+ b)

2r
− d1 + d2 − (c+ d)

2r

9



− 1
2
max

( |X1 −X2|
r

,
|D1 −D3|+ |d1 − d2|

r

)
.

Note that the distributions of the terms on the right depend only on the two parameters
ρ1 = (b− a)/r and ρ2 = (d− c)/r, since

Di −D0

r
=
Di − (a+ b)/2

r
=

1

2

Di − (a + b)/2

(b− a)/2

b− a

r
∼ Vi

b− a

r
= ρ1Vi

and
di − d0

r
=
di − (c+ d)/2

r
=

1

2

di − (c+ d)/2

(d− c)/2

d− c

r
∼ Ṽi

d− c

r
= ρ2Ṽi

with Vi and Ṽi independent and uniformly distributed over the interval [−1
2
, 1

2
], and

X1 −X2

r
=
X1 −X2

2σ

2σ

r
= Z

2σ

r

has the same distribution as (2/3.4394)Z = .5815Z, where Z is a standard normal random
variable. Here we used the relation r = 3.4394σ from (3) with γ = .9973.

Using this notation we find that (Pmax−min − η)/r has the same distribution as

T = 1
2
(V1 + V3) ρ1 − 1

2

(
Ṽ1 + Ṽ2

)
ρ2 − 1

2
max

(
.5815 |Z|, |V1 − V3|ρ1 + |Ṽ1 − Ṽ2|ρ2

)
.

The distribution of T can be simulated for various values of (ρ1, ρ2). Equivalently this can
be done for various values of (ρ, κ) with ρ = ρ1 and κ = ρ2/ρ1. Such simulated distributions
can then be compared against the corresponding standardized worst case value, namely

1

r

[
a− d− 2r −

(
a+ b

2
− c+ d

2

)]
= −2− 1

2
(ρ1 + ρ2) .

Figure 3 shows the histograms for four sets of 100, 000 such simulations of T , using κ = 1 and
ρ = .2, .5, 1, 2, i.e., ρ1 = ρ2 = .2, .5, 1, 2. The lowest 10 values of T are shown as individual
tickmarks below the histogram, since they are not represented well by the latter.

Note that these distributions do not look normal, which is further confirmation that
ordinary RSS tolerancing is not appropriate here. RSS tolerancing is based on approximately
linear tolerance stacking which also entails approximate normality for the tolerance stack via
the central limit theorem.

There appears to be a fair amount of separation between the lower ends of the simulated
distributions and the respective standardized worst case values. One may make use of this
gap by relaxing some or all of the tolerances that one has some control over or one may
want to reduce the nominal hole to pin clearance η in order to reduce undesirable slack after
loose pinning. In taking either of these measures one may even want to disregard the 10
low (or more) tickmark values, since they represent 1/10000th of all simulated cases. Such a
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defect rate for the inability to pin loosely may outweigh the corresponding gains in tolerance
relaxation.

In using these results systematically, with proper accounting of the risks involved, it is
best to find various low quantiles tp of T , where tp is defined by

P (T ≤ tp) = p .

Of interest here are the tp values for very small p, such as p = .001 or p = .0001. Since we
do not know the exact distribution of T , we can only estimate the tp by the corresponding
sample quantiles t̂p, which are loosely defined by

p =
#{Ti ≤ t̂p, i = 1, . . . , N}

N

where N = 100, 000 is the number of simulated Ti values and #{Ti ≤ t̂p, i = 1, . . . , N} is
the number of Ti which are ≤ t̂p.

When plotting t̂p against − log10(p) for small p one finds an almost linear pattern. See
Figure 4, which shows the estimated quantiles in relation the corresponding the − log10(p)
values for κ = 1 and ρ = .1, .3, .5, .75, .9, 1, 1.1, 1.2, 1.3, 1.4, 1.6, 1.8, 1.9, 2, (.25), 5, each based
on an independent set of 100, 000 simulations. The fluctuations in the t̂p values are due to
simulation variation in the tails of the distribution, which gets more pronounced the further
out one goes, i.e., for smaller p values. We summarize the − log10(p) to t̂p relationship by
fitting a straight line via ordinary least squares.

These fitted lines vary in slope and intercept with ρ. The intercepts decrease significantly
with increasing ρ, whereas the slopes show a less straightforward pattern. Both patterns with
superimposed spline curves are shown in Figure 5 for the lines fitted in Figure 4. Since these
point patterns still show considerable roughness they were replicated 10 times, with each ρ
value on each replication giving rise to 100,000 simulations. The intercepts and slopes from
these 10 replications were averaged and are shown in Figures 6-7 together with superimposed
smoothing spline curves. For ρ1 = ρ2 = ρ, Figures 6-7 may be used to read off appropriate
intercept and slope values α(ρ) and β(ρ). Then, for given risk p of no loose pinning, proceed
to calculate

t̂p(ρ) = α(ρ) + β(ρ) [− log10(p)]

and thus we have (subject to a small simulation error) that the maximal minimum play
Pmax−min exceeds

m0 = η + r t̂p(ρ) =
a+ b− c− d

2
+ r t̂p(ρ)

with probability 1 − p. Typically one would make this minimum value either m0 = 0 or
m0 = ε where ε > 0 is some small positive number that represents a subjective safe margin
deemed necessary to avoid binding while inserting the pins.

Covering a reasonably wide range of κ = ρ2/ρ1, similar simulations were run for κ =
.1, 1/3, .5, 2/3. The corresponding Figures are given in Appendix C. The intercept and slope
coefficients are presented in a more compact form in Table 1.
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Table 1. Coefficients for linear relationship
between − log10(p) and t̂p

intercepts α(ρ) slopes β(ρ)
κ

ρ 1/10 1/3 1/2 2/3 1 1/10 1/3 1/2 2/3 1
0.1 -0.432 -0.439 -0.424 -0.470 -0.455 -0.179 -0.171 -0.178 -0.162 -0.167
0.2 -0.425 -0.449 -0.437 -0.467 -0.448 -0.182 -0.174 -0.178 -0.169 -0.177
0.3 -0.421 -0.458 -0.450 -0.465 -0.448 -0.184 -0.176 -0.179 -0.175 -0.185
0.4 -0.425 -0.468 -0.462 -0.466 -0.459 -0.186 -0.179 -0.182 -0.182 -0.191
0.5 -0.438 -0.477 -0.474 -0.470 -0.479 -0.188 -0.183 -0.186 -0.188 -0.196
0.6 -0.460 -0.489 -0.487 -0.481 -0.505 -0.190 -0.186 -0.190 -0.194 -0.201
0.7 -0.488 -0.502 -0.503 -0.497 -0.539 -0.191 -0.190 -0.195 -0.200 -0.207
0.8 -0.516 -0.518 -0.521 -0.519 -0.580 -0.193 -0.194 -0.200 -0.205 -0.210
0.9 -0.541 -0.538 -0.542 -0.547 -0.625 -0.195 -0.198 -0.205 -0.210 -0.212
1.0 -0.563 -0.563 -0.566 -0.583 -0.670 -0.197 -0.202 -0.210 -0.215 -0.216
1.1 -0.585 -0.592 -0.593 -0.622 -0.712 -0.199 -0.206 -0.215 -0.219 -0.222
1.2 -0.607 -0.617 -0.621 -0.660 -0.750 -0.201 -0.210 -0.221 -0.224 -0.230
1.3 -0.635 -0.639 -0.654 -0.695 -0.786 -0.203 -0.214 -0.224 -0.230 -0.239
1.4 -0.666 -0.661 -0.689 -0.729 -0.820 -0.205 -0.218 -0.227 -0.236 -0.249
1.5 -0.699 -0.689 -0.727 -0.760 -0.855 -0.207 -0.222 -0.230 -0.243 -0.260
1.6 -0.734 -0.723 -0.765 -0.790 -0.895 -0.210 -0.225 -0.233 -0.250 -0.270
1.7 -0.768 -0.762 -0.802 -0.820 -0.942 -0.212 -0.227 -0.237 -0.256 -0.277
1.8 -0.801 -0.803 -0.840 -0.855 -1.001 -0.214 -0.229 -0.241 -0.262 -0.281
1.9 -0.832 -0.844 -0.878 -0.899 -1.076 -0.216 -0.232 -0.245 -0.267 -0.282
2.0 -0.861 -0.882 -0.914 -0.950 -1.172 -0.219 -0.234 -0.250 -0.270 -0.276
2.1 -0.893 -0.920 -0.951 -1.001 -1.291 -0.221 -0.237 -0.255 -0.271 -0.264
2.2 -0.926 -0.959 -0.988 -1.055 -1.429 -0.224 -0.241 -0.260 -0.271 -0.246
2.3 -0.959 -0.999 -1.027 -1.118 -1.583 -0.226 -0.245 -0.264 -0.268 -0.224
2.4 -0.991 -1.038 -1.067 -1.193 -1.748 -0.229 -0.249 -0.269 -0.262 -0.199
2.5 -1.025 -1.072 -1.109 -1.283 -1.915 -0.231 -0.254 -0.273 -0.254 -0.174
2.6 -1.061 -1.099 -1.156 -1.390 -2.081 -0.233 -0.260 -0.276 -0.243 -0.151
2.7 -1.100 -1.123 -1.207 -1.510 -2.240 -0.235 -0.265 -0.278 -0.229 -0.131
2.8 -1.137 -1.152 -1.266 -1.640 -2.390 -0.238 -0.271 -0.279 -0.213 -0.114
2.9 -1.174 -1.187 -1.337 -1.775 -2.530 -0.240 -0.275 -0.277 -0.197 -0.101
3.0 -1.211 -1.226 -1.423 -1.912 -2.660 -0.242 -0.278 -0.269 -0.179 -0.092
3.1 -1.251 -1.268 -1.526 -2.049 -2.781 -0.244 -0.280 -0.255 -0.162 -0.086
3.2 -1.290 -1.313 -1.644 -2.185 -2.895 -0.246 -0.281 -0.237 -0.144 -0.081
3.3 -1.327 -1.365 -1.768 -2.318 -3.007 -0.248 -0.280 -0.217 -0.128 -0.076
3.4 -1.361 -1.423 -1.894 -2.448 -3.116 -0.250 -0.277 -0.199 -0.114 -0.072
3.5 -1.397 -1.489 -2.019 -2.572 -3.222 -0.252 -0.272 -0.181 -0.101 -0.069
3.6 -1.435 -1.563 -2.142 -2.688 -3.323 -0.254 -0.266 -0.165 -0.090 -0.067
3.7 -1.476 -1.645 -2.262 -2.795 -3.419 -0.255 -0.257 -0.151 -0.081 -0.068
3.8 -1.519 -1.737 -2.380 -2.894 -3.513 -0.257 -0.247 -0.137 -0.075 -0.070
3.9 -1.562 -1.838 -2.496 -2.985 -3.605 -0.258 -0.235 -0.123 -0.070 -0.072
4.0 -1.605 -1.947 -2.608 -3.070 -3.698 -0.259 -0.222 -0.110 -0.067 -0.074
4.1 -1.648 -2.061 -2.716 -3.152 -3.792 -0.261 -0.209 -0.099 -0.066 -0.075
4.2 -1.689 -2.176 -2.820 -3.231 -3.886 -0.262 -0.194 -0.090 -0.066 -0.076
4.3 -1.725 -2.287 -2.919 -3.309 -3.981 -0.263 -0.180 -0.081 -0.066 -0.077
4.4 -1.758 -2.391 -3.013 -3.385 -4.076 -0.265 -0.167 -0.075 -0.067 -0.078
4.5 -1.793 -2.491 -3.102 -3.461 -4.170 -0.266 -0.154 -0.070 -0.069 -0.079
4.6 -1.834 -2.588 -3.184 -3.539 -4.263 -0.267 -0.142 -0.066 -0.070 -0.080
4.7 -1.880 -2.685 -3.262 -3.617 -4.356 -0.267 -0.130 -0.065 -0.072 -0.081
4.8 -1.931 -2.783 -3.334 -3.695 -4.448 -0.268 -0.118 -0.066 -0.073 -0.083
4.9 -1.984 -2.883 -3.402 -3.772 -4.538 -0.268 -0.107 -0.068 -0.075 -0.086
5.0 -2.038 -2.985 -3.468 -3.848 -4.627 -0.269 -0.095 -0.071 -0.077 -0.089
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4.3 An Example Calculation

Here we illustrate the use of the above results in a specific although artificial example with
ρ1 = ρ2. It is assumed the hole and pin diameters are toleranced respectively to the intervals
[a, b] = [.098, .101] and [c, d] = [.09375.09425] with nominal hole to pin clearance of

η =
a+ b

2
− c+ d

2
= .0055 .

For the hole centering accuracy we assume that r = .01, i.e., 99.73% of all hole centers are
located within radius r = .01 of target. We also specify a risk of p = .001 for no loose pinning
of the two parts.

With these inputs we have ρ = ρ1 = (b − a)/r = .003/.010 = .3 and ρ2 = (d − c)/r =
.0005/.010 = .05, and thus κ = ρ2/ρ1 = 1/6. According to worst case considerations we
have clearance

w0 = a− d− 2r = .098− .09425− 2× .01 = −.01625 ,

i.e., we are .01625 away from any clearance at all.
For the statistical tolerance analysis we will use Table 1 for κ = 1/10 and κ = 1/3, since

κ = 1/6 is not covered in Table 1. For κ = 1/10 we read the following values from Table 1

α(ρ) = α(.3) = −.421 and β(ρ) = β(.3) = −.184

so that
t̂.001(.3) = α(.3) + β(.3) [− log10(.001)] = −.973 .

For κ = 1/3 we read the following values from Table 1

α(ρ) = α(.3) = −.458 and β(ρ) = β(.3) = −.176

so that
t̂.001(.3) = α(.3) + β(.3) [− log10(.001)] = −.986 .

For κ = 1/6 we take the interpolated value

t̂.001(.3) = −.973 + −.986− (−.973)
1
3
− 1

10

(
1
6
− 1

10

)
= −.9767 .

Thus the statistically toleranced lower bound (with risk p = .001) for the maximal minimum
play Pmax−min is

m0 = η + r t̂.001(ρ) = .0055− .01 · .9767 = −.00427

which, although still negative, is considerably better than the worst case value w0 = −.01625.
Both calculations indicate either that the tolerances are not tight enough to assure the
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assembly goal, since m0 and w0 are both negative, or that the nominal clearance η was
chosen too small.

A larger η will lead to more slack after pinning of the parts and thus to freer motion and
more misalignment of the parts relative to each other. From that perspective it is desirable to
keep η small. However, if in relaxing η the misalignment consequences are still acceptable,
one may go this route since it usually is most easily accommodated. It only involves a
shift in the nominal clearance whereas all tolerance tightening would require a reduction in
variability.

Taking the easier route of increasing the nominal clearance η we immediately see from
the above calculations that the above nonclearance situation can be remedied by increas-
ing η by .01625 to .0055 + .01625 = .02175 in the worst case treatment and by .00427 to
.0055 + .00427 = .00977 in the statistical tolerance treatment. The worst case treatment
thus requires 123% more nominal slack than is needed under statistical tolerancing. This
extra slack is undesirable and unnecessary.

-0.010 -0.005 0.0 0.005 0.010

0
50

10
0

20
0

30
0

worst case

0.1 %
nonclearance assemblies

Figure 8. Validation distribution of Pmax−min after increas-
ing the nominal clearance η by .00425 in 100,000
simulated assemblies

Figure 8 shows a simulation of 100,000 assemblies after an increase of .00425 in the
nominal tolarance η. The tickmarks below the axis show the 100 most extreme low clearance
cases. All of them lie below zero which is consistent with the .11% nonassembly assessment.
Recall, that we had aimed for .1% nonassembly.

Another way to deal with the shortfall in m0 and w0 is to tighten the tolerances. As
pointed out above this is usually more difficult. Furthermore, the analysis of what tolerance
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reduction may be required is not as simple as finding the required increase in η. The reason is
that whereas η only appeared at the end of the calculations, after having dealt with looking
up values from Table 1, the tolerances as represented by ρ1, ρ2 and r enter upfront. Thus
one will have to proceed on a trial an error basis. We illustrate this here by finding out how
much smaller r would need to be to make m0 and w0 positive.

Under worst case tolerancing to get w0 > 0 we need

0 < a− d− 2r = .00375− 2r or r < .001875 .

This is quite stringent, since it leads to a value that is over 5 times smaller than originally
considered.

To see for which r we have m0 > 0 we proceed by trial and error. Let us try r = .005.
Then ρ = ρ1 = .003/.005 = .6, ρ2 = .0005/.005 = .1, and thus κ = ρ2/ρ1 = 1/6 which again
leads to interpolation between κ = 1/10 and κ = 1/3. From Table 1 we get for κ = 1/10
and ρ = .6

α(ρ) = α(.6) = −.460 and β(ρ) = −.190
so that

t̂.001(ρ) = α(ρ) + β(ρ) [− log10(.001)] = −1.03

and for κ = 1/3 and ρ = .6 we get from Table 1

α(ρ) = α(.6) = −.489 and β(ρ) = −.186

with
t̂.001(ρ) = α(ρ) + β(ρ) [− log10(.001)] = −1.047 .

Interpolating between these two values for t̂.001(ρ) we get the one for κ = 1/6, namely

t̂.001(.6) = −1.03 +
−1.047− (−1.03)

1
3
− 1

10

(
1
6
− 1

10

)
= −1.0349 .

This results in

m0 = η + r t̂.001(ρ) = .0055− .005 · 1.0349 = .000326; .

This is a positive clearance and relaxing the positioning tolerance to r = .0053 we find by
the same process m0 = .000064 and we will stop here.

Figure 9 shows the clearances Pmax−min for 100, 000 simulated assemblies after tightening
the positioning tolerance to r = .0053. The hundred lowest clearances are indicated by the
hanging tickmarks. Not all of these fall below zero, which is consistent with the positive
value m0 = .000064.

From the two validations represented in Figures 8 and 9 it appears that the interpola-
tion exercise of using Table 1 in the above manner does preserve the targeted risk of .1%
nonassemblies quite well.
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Figure 9. Validation distribution of Pmax−min after tight-
ening the position tolerance to r = .0053 in
100,000 simulated assemblies
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5 Variations in Perpendicularity

A further complication to the hole pinning problem arises when the parts to be pinned have
significant thickness, W , and the holes are not necessarily drilled exactly perpendicular to
the parallel part surfaces. In that case the entry and exit contour of the drilled hole are
ellipses of identical shape but offset from each other along their common main axis. See
Figure 10 for two typical projected views of these two ellipses. The shaded circle inscribed
into the intersection of the ellipses represents the cross section of the largest cylindrical pin
that could pass through such a hole in perpendicular fashion. The diameter D′ of this shaded
circle will be called the effective hole diameter. The two projected views differ in the number
of contact points that the circle has with the ellipses.

•

•

•

•

2

••

2

Figure 10. Maximal circle inscribed to two ellipses
offset along main axis

Focussing on the maximal diameter for perpendicular pin insertion is a somewhat con-
servative choice. It certainly simplifies the mathematics of the problem by reducing it to
the previously studied clearance criterion when perpendicularity of holes was assumed. The
reason why this may be conservative is that one may get pins with larger diameters through
two such paired and slanted holes. However, we believe that the increase in diameter is small
since the slants in the two holes and their position relative to each other typically will not be
optimally aligned. Furthermore, even if a larger pin could be inserted this way it would have
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to be at a slant and this would create possibly undesired stresses in the fastening process.
By focussing on perpendicular pin insertion we avoid all these problems.

5.1 The Effective Hole Diameter

There are two effects that result from such angular deviations in the drilled hole axes. The
first is a reduction of the hole diameter D to the effective diameter D′. The second effect
is a ∆ dislocation of the inscribed effective hole center from the center of the entry ellipse.
Here 2∆ ≥ 0 is the distance between the centers (0, 0) and (X, Y ) of the entry and exit
contour ellipses of the hole when one ellipse is perpendicularly projected onto the plane of
the other, see Figure 10. The quantity 2∆ expresses to what extent the hole deviates from
perpendicularity (∆ = 0).

In Appendix B it is shown that the effective hole diameter is

D′ = D

√
1 +

4∆2

W 2
− 2∆ for

4∆2

W 2

(
D2

W 2
− 1

)
≤ 1

=
√
D2 −W 2 for

4∆2

W 2

(
D2

W 2
− 1

)
> 1 . (4)

Here D is the diameter of the hole through the part as measured perpendicularly to the hole
axis. It will be argued below that the second form of D′, namely

√
D2 −W 2, is of little

practical interest.

5.2 Modeling Nonperpendicularity Variations

It remains to formulate a reasonable model for the variations in 2∆. Presumably the an-
gular deviation α from perpendicularity is usually very small, i.e., 2∆/W = arctan(α) is
small. Since there appears to be no preference toward any direction in which the deviations
from perpendicularity may take place, it seems reasonable to assume that (X, Y ) have a
circular symmetric distribution around the origin (0, 0). If we establish perpendicularity
of the hole drilling tool independently along the X and Y directions and thus incur errors
independently in those two directions we are again led to the circular symmetric, bivariate
normal distribution around (0, 0) as a reasonable model. The common standard deviation
τ = τX = τY would usually be very small. Assuming that we deal with variation in the angle
α as the basic phenomenon it would be reasonable to assume that the standard deviation τ
governing the X, Y deflections is proportional to the part thickness W , i.e., τ = Wτ1, where
τ1 corresponds to W = 1. With this notation the entry to exit hole center deflection 2∆ for
a part with thickness W can be written

2∆ =
√
X2 + Y 2

and we have that

P (2∆ ≤ R) = 1− exp

(
− R2

2τ 2

)
= 1− exp

(
− R2

2W 2τ 2
1

)
. (5)
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For small angles α (in radians) or α◦ (in degrees), e.g., with |α| ≤ .052 or |α◦| ≤ 3◦, the
approximation

2∆

W
= arctanα ≈ α

is excellent. Thus

P (α ≤ R) ≈ P
(
2∆

W
≤ R

)
= 1− exp

(
− R2

2τ 2
1

)

or

P (α◦ ≤ t) = P
(
α ≤ 2πt

360

)
= 1− exp

(
−1

2

[
2πt

360τ1

]2)
.

Tolerancing α◦ by ᾱ◦ = ᾱ◦(γ) such that

γ = P [α◦ ≤ ᾱ◦]

yields the following relationship between ᾱ◦, τ1, and γ

ᾱ◦ =
360

2π
τ1
√
−2 loge(1− γ)

which for γ = .9973 becomes ᾱ◦ = 197.06 τ1 or τ1 = .005075ᾱ◦. For example, a limit of
ᾱ◦ = 3◦ on the angular deflections leads to τ1 = 3/197.06 = .01522 and thus

.9973 = P (α◦ ≤ 3◦) = P
(
2∆

W
≤ 2π

360
3
)
= P

(√
X2 + Y 2 ≤ .05236W

)
for a part of thickness W .

If we limit the angular deflections to a very liberal 3◦, then 2∆/W ≤ .052 and the
condition for the second case in (4) imply

D

W
>

√
1 +

W 2

4∆2
≥
√
1 + 1/.0522 = 19.3 .

This will hardly occur in practical situations and therefore we rule out the second case of
(4) from further considerations, i.e., we assume from now on that

D′ = D

√
1 +

4∆2

W 2
− 2∆ .

Using the excellent approximation
√
1 + x2 ≈ 1 + x2/2 for |x| ≤ .052 we further simplify D′

to

D′ ≈ D

(
1 +

2∆2

W 2

)
− 2∆

W
W

= D +
Dτ 2

1

2
Q2 − τ1WQ with Q =

2∆

τ1W

≈ D − τ1WQ = D − 2∆
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where in the last approximation we omit the usually negligible term Dτ 2
1Q

2/2, but erring on
the conservative side (for loose pinning) by making D′ smaller in the rare situations when
the neglected term is of any significance. The random variable Q has distribution function

P (Q ≤ x) = 1− exp(−x2/2) for x ≥ 0 (6)

and we see that P (0 ≤ Q ≤ 4) = .9997. This supports the above negligibility of the term
Dτ 2

1Q
2/2.

From the form D′ = D − τ1WQ we see that the part width W has a significant influ-
ence on the distribution of D′. Previously, when dealing with perpendicular holes only, we
assumed a common uniform distribution for the hole diameters D1, . . . , D4. In principle,
it is possible that by design we deal with four different part thicknesses W1, . . . ,W4 at the
four hole locations. This in turn would lead to four different hole diameter distributions for
D′

1, . . . , D
′
4. Such complexity should more properly be handled by a software simulation tool

with appropriate flexibility. A software tool with sufficient flexibility could easily be built
based on the material given here. However, in the interest of complexity reduction we will
deal here only with one part thickness W for both parts and thus with only one distribution
for the effective hole diameters D′

1, . . . , D
′
4.

It seems reasonable to assume that the angular deflection from the perpendicular is
established just once against each part and that the two holes on the same part suffer from
the same amount of angular deflection. However, at this point we leave open the possibility
that the direction of drilling and thus the direction of deflection may rotate because of part
rotation within the part surface plane. In that case the perpendicularity deflection 2∆ and
thus Q will be the same for both holes on the same part. However, we assume that the
perpendicularity deflections 2∆1 and 2∆2 are independent from part to part. We also may
reasonably assume that the angular deflection tolerances are the same for both parts. In
view of the approximation D′

i ≈ Di − τ1WQi, i = 1, 2, 3, 4, with Q1 = Q2 and Q3 = Q4

and the earlier assumption that D1 = D2 and D3 = D4, we can now similarly conclude that
D′

1 = D′
2 and D′

3 = D′
4.

As an aside, it is conceivable that parts of type i (i = 1, 2) are massproduced in a jig
and that it is the angle of the jig relative to the drilling tool that determines the angular
deviation of the hole axis from the perpendicular. In that case this angular deviation would
always be the same and would not change from part to part. Such a deviation, although
random, would then have to be treated as a one time random effect. Since its size is not
known but only bounded by the angular tolerance ᾱ◦ we should treat that effect in worst
case fashion, i.e., bound the term τ1WQ in the effective diameter D′ = D − τ1WQ by B0

and then reduce the nominal diameter D0 and thus the nominal clearance η by B0, while
proceeding with the tolerance analysis as though we ignore perpendicularity deviations. As
bound B0 on τ1WQ we can take

B0 = (2π/360)ᾱ◦W =
√
−2 loge(1− .9973) τ1W

so that

P (τ1WQ ≤ B0) = P
(
Q ≤

√
−2 loge(1− .9973)

)
= .9973 .
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In reducing the analysis this way we also assume that the direction of the angularity deviation
is the same for both holes on the same part. See the discussion below.

The second effect of nonperpendicularity is the effective hole center dislocation by the
amount ∆. This dislocation measures the distance of the effective hole center from the center
of the hole entry ellipse. As such it compounds with the hole centering distribution which
we view here as applying to the center of the hole entry ellipse. This compounding is best
understood as adding to the center (Ui, Vi) of the hole entry ellipse the nonperpendicularity
deflection vector (Xi/2, Yi/2), where

∆ =
√
(Xi/2)2 + (Yi/2)2 =

1
2

√
X2

i + Y 2
i .

Much of the following discussion will be dispensed with later, by assuming identical hole axis
vectors for the two holes on the same part, and is given here only for possible use in a more
flexible software simulation tool.

Previously we had modeled Xi and Yi as independent normal random variables with
common mean zero and standard deviation τ = τ1W , i.e., (Xi, Yi) has a bivariate normal
distribution with mean vector (0, 0) and covariance matrix τ 2I2, where I2 is a 2× 2 identity
matrix. This is also expressed in the following symbolic notation(

Xi

Yi

)
∼ N2

([
0
0

]
, τ 2I2

)
.

We can reasonably assume that (Ui, Vi) and (Xi/2, Yi/2) are independent of each other
so that(

Ui

Vi

)
∼ N2

([
µi

νi

]
, σ2I2

)
and

(
Xi/2
Yi/2

)
∼ N2

([
0
0

]
, (τ/2)2I2

)

=⇒
(
U ′

i

V ′
i

)
=

(
Ui +Xi/2
Vi + Yi/2

)
∼ N2

([
µi

νi

]
, (σ2 + τ 2/4)I2

)
= N2

([
µi

νi

]
, σ′2I2

)

with σ′2 = σ2 + τ 2/4 = σ2 +W 2τ 2
1 /4.

We denote by X ′
i the distance between the effective hole centers on part i. Of interest is

again the difference X ′
1 −X ′

2. This corresponds to the difference X1 −X2 when perpendicu-
larity was assumed as given. There it was shown that X1 −X2 ∼ N (0, 4σ2). The question
is whether we can similarly assume that X ′

1 −X ′
2 ∼ N (0, 4σ′2). This depends on the nature

of the perpendicularity errors on the same part. If the perpendicularity error vectors are the
same for the two holes on the same part, i.e., the part was not rotated within the part plane
between drilling operations, then the distance X ′

i is the same as the distance Xi, i.e., the
perpendicularity errors do not affect the effective hole center distances. In that case we have
X ′

1 − X ′
2 = X1 − X2 ∼ N (0, 4σ2). Furthermore, in this case X ′

1 − X ′
2, D

′
1, D

′
3, d1, and d2

are all independent. This simplifies matters greatly when trying to study the distribution of
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the resulting reduced clearance criterion P ′
max−min, obtained from the expression for Pmax−min

with Di replaced by D′
i, i.e.,

P ′
max−min =

D′
1 +D′

3

2
− d1 + d2

2
− 1

2
max (|X1 −X2|, |D′

1 −D′
3|+ |d1 − d2|) .

If however, the part was rotated within the part plane between drilling operations, we
are faced with significant complications. Not only will this affect the distribution of X ′

1−X ′
2,

but it will also create some dependence between X ′
1−X ′

2 and the effective hole diameters D′
1

and D′
3, since both are driven by the common random variables Q1 and Q3. Furthermore,

such a rotation may not be uniform over the interval [0, 2π] as would be implied by complete
independence of perpendicularity errors from hole to hole. It would be implausible to have
independent drill orientation errors when drilling holes into the same flat surface, since the
orientation would presumably be established against that surface. Without information on
the drilling process it may be quite difficult to establish reasonable distributional assumptions
concerning such rotations. For that reason we will exclude rotations of the drilling axis while
moving the drilling tool from one hole to the next on the same part. This may not be a
great loss since usually the work piece is clamped down and it is the numerically controlled
drill tool that moves along simple translations and not by rotations.

5.3 The Standardized Clearance Distribution

The distribution of any one effective hole diameter D′
i = Di − τ1WQi is no longer uniform

but is derived from the uniform distribution of Di and the distribution of Qi given in (6).
As before we normalize D′

i by considering

D′
i −D0

r
=
Di −D0

r
− τ1W

r
Qi = ρ1Vi − ρ3Qi = ρ1(Vi − ωQi)

with ρ3 = τ1W/r and ω = ρ3/ρ1. Again it would be complicated to derive the distribution
of (D′

i − D0)/r analytically and that would only be a stepping stone to the much more
complicated distribution of P ′

max−min. To get an appreciation of the distribution shapes
for (D′

i − D0)/r we again employ simulations. Since ρ1 acts as simple scale parameter in
ρ1(Vi − ωQi) it suffices to simulate the distributions of Vi − ωQi for a selection of ω values.
The resulting histograms are given in Figure 11 and exhibit a variety of shapes, ranging from
a near uniform distribution, dominated by Vi, to a distribution dominated by −ωQi.

As before we will study the distribution of P ′
max−min in its standardized form, namely

(P ′
max−min − η)/r which has the same distribution as

T ′ = 1
2
(V1 + V3) ρ1 − 1

2

(
Ṽ1 + Ṽ2

)
ρ2 − 1

2
(Q1 +Q3)ρ3

− 1
2
max

(
.5815 |Z|, |ρ1(V1 − V3)− ρ3(Q1 −Q3)|+ |Ṽ1 − Ṽ2|ρ2

)

= ρ1
1
2

[
V1 + V3 − ω(Q1 +Q3)− κ(Ṽ1 + Ṽ2)

]

− 1
2
max

(
.5815 |Z|, ρ1

[
|V1 − V3 − ω(Q1 −Q3)|+ κ|Ṽ1 − Ṽ2|

])
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Figure 11. Simulated distributions of Vi−ωQi, for various values
of ω, from 100, 000 simulations
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where V1, V3, Ṽ1 and Ṽ2 are uniformly distributed over [−1
2
, 1

2
], and Q1 and Q2 have distribu-

tion function (6). Furthermore, all six random variables are independent of each other. The
distribution of T ′ can again be studied via simulations for various combinations of ρ = ρ1,
κ = ρ2/ρ1, and ω = ρ3/ρ1.

Adding the nonperpendicularity component into our tolerancing considerations unfortu-
nately has added one new parameter, namely ρ3 or ω, into the tolerance analysis for P

′
max−min.

To cover an appropriate range for ω = ρ3/ρ1 = τ1W/(b− a) we offer the following consider-
ations. The numerator of ω = τ1W/(b − a) controls the deflection 2∆ of entry to exit hole
centers, namely from (5) we have

P (2∆ ≤ kτ1W ) = 1− exp

(
−k2

2

)
= .9973 for k =

√
−2 loge(1− .9973) = 3.439 .

Since 2∆ is the amount by which D is reduced to D′ It seems that this bound on 2∆ should
be somewhat comparable to the tolerance range b−a on the hole diameter. Thus we propose
to look at values

k ω =
k τ1W

b− a
= .5, 1, 1.5, 2 .

Using round numbers this translates roughly to

ω =
τ1W

b− a
=

2π

360
√
−2 loge(1− .9973)

W ᾱ◦

b− a
= .005075

W ᾱ◦

b− a
= .15, .30, .45, .60 ,

where ᾱ◦ is the tolerance bound (in degrees) on the angular deviation from perpendicularity.
It now remains to carry out the same programme of simulations as before, leading to

four new tables, Tables 2-5, corresponding to Table 1, one table for each ω. These tables
can be used in conjunction with Table 1, which corresponds to ω = 0, to do the necessary
interpolations. This is illustrated by example calculations in the next section.

5.4 Worst Case Clearance under Nonperpendicularity

How does the nonperpendicularity tolerance affect worst case tolerancing? Previously, when
perpendicularity was assumed the worst case clearance was

w0 = a− d− 2r ,

where a was the lowest tolerated hole diameter value. From the assumptions and approxi-
mations made above we see that nonperpendicularity only affects the effective hole size in
that Di is replaced by D′

i = Di − 2∆i(≤ Di). A lower tolerance bound a on Di combined
with an upper tolerance bound kτ1W = .01745ᾱ◦W for 2∆i leads to a lower tolerance value
a− .01745 ᾱ◦W for D′

i and thus a worst case clearance value of

w′
0 = a− .01745 ᾱ◦W − d− 2r .
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Table 2. Coefficients for linear relationship
between − log10(p) and t̂p for ω = .15

intercepts α(ρ) slopes β(ρ)
κ

ρ 1/10 1/3 1/2 2/3 1 1/10 1/3 1/2 2/3 1
0.1 -0.448 -0.412 -0.415 -0.425 -0.457 -0.173 -0.184 -0.174 -0.178 -0.171
0.2 -0.478 -0.450 -0.447 -0.452 -0.490 -0.176 -0.185 -0.179 -0.184 -0.178
0.3 -0.508 -0.487 -0.479 -0.480 -0.523 -0.179 -0.185 -0.184 -0.190 -0.184
0.4 -0.540 -0.523 -0.512 -0.509 -0.558 -0.182 -0.187 -0.190 -0.195 -0.190
0.5 -0.572 -0.559 -0.547 -0.541 -0.592 -0.185 -0.189 -0.195 -0.201 -0.197
0.6 -0.606 -0.595 -0.585 -0.577 -0.625 -0.188 -0.192 -0.200 -0.206 -0.204
0.7 -0.642 -0.633 -0.625 -0.618 -0.662 -0.191 -0.195 -0.205 -0.211 -0.211
0.8 -0.679 -0.673 -0.670 -0.667 -0.707 -0.195 -0.199 -0.209 -0.214 -0.217
0.9 -0.718 -0.715 -0.720 -0.723 -0.765 -0.198 -0.203 -0.212 -0.217 -0.221
1.0 -0.757 -0.761 -0.775 -0.787 -0.839 -0.202 -0.206 -0.215 -0.219 -0.224
1.1 -0.799 -0.812 -0.835 -0.858 -0.929 -0.205 -0.210 -0.217 -0.219 -0.224
1.2 -0.843 -0.868 -0.901 -0.938 -1.036 -0.208 -0.212 -0.218 -0.219 -0.222
1.3 -0.892 -0.932 -0.973 -1.025 -1.161 -0.211 -0.213 -0.219 -0.217 -0.219
1.4 -0.946 -1.002 -1.051 -1.120 -1.294 -0.214 -0.213 -0.219 -0.216 -0.216
1.5 -1.006 -1.078 -1.133 -1.220 -1.426 -0.216 -0.213 -0.218 -0.214 -0.213
1.6 -1.071 -1.157 -1.219 -1.323 -1.554 -0.218 -0.213 -0.218 -0.212 -0.212
1.7 -1.140 -1.239 -1.308 -1.428 -1.679 -0.220 -0.213 -0.217 -0.212 -0.211
1.8 -1.212 -1.323 -1.399 -1.532 -1.799 -0.222 -0.214 -0.218 -0.213 -0.213
1.9 -1.286 -1.408 -1.492 -1.635 -1.912 -0.224 -0.216 -0.219 -0.216 -0.216
2.0 -1.360 -1.493 -1.584 -1.734 -2.021 -0.226 -0.218 -0.222 -0.220 -0.221
2.1 -1.435 -1.577 -1.676 -1.830 -2.127 -0.230 -0.222 -0.225 -0.226 -0.228
2.2 -1.509 -1.661 -1.767 -1.925 -2.234 -0.233 -0.226 -0.231 -0.233 -0.235
2.3 -1.583 -1.743 -1.858 -2.019 -2.345 -0.238 -0.232 -0.237 -0.240 -0.243
2.4 -1.657 -1.823 -1.947 -2.113 -2.458 -0.243 -0.239 -0.244 -0.247 -0.251
2.5 -1.730 -1.900 -2.034 -2.207 -2.570 -0.249 -0.247 -0.252 -0.255 -0.260
2.6 -1.802 -1.975 -2.120 -2.299 -2.675 -0.255 -0.256 -0.260 -0.264 -0.271
2.7 -1.873 -2.048 -2.205 -2.389 -2.772 -0.262 -0.267 -0.270 -0.273 -0.282
2.8 -1.943 -2.121 -2.288 -2.477 -2.861 -0.270 -0.277 -0.280 -0.283 -0.294
2.9 -2.013 -2.193 -2.369 -2.563 -2.946 -0.278 -0.287 -0.290 -0.294 -0.307
3.0 -2.082 -2.266 -2.448 -2.649 -3.035 -0.286 -0.298 -0.302 -0.305 -0.319
3.1 -2.151 -2.339 -2.526 -2.734 -3.133 -0.296 -0.308 -0.314 -0.316 -0.332
3.2 -2.218 -2.413 -2.603 -2.818 -3.236 -0.305 -0.319 -0.327 -0.327 -0.344
3.3 -2.284 -2.487 -2.681 -2.902 -3.336 -0.315 -0.329 -0.339 -0.339 -0.355
3.4 -2.349 -2.563 -2.758 -2.984 -3.431 -0.326 -0.339 -0.351 -0.351 -0.367
3.5 -2.413 -2.639 -2.836 -3.065 -3.524 -0.337 -0.348 -0.363 -0.363 -0.379
3.6 -2.474 -2.714 -2.914 -3.145 -3.619 -0.348 -0.358 -0.373 -0.376 -0.390
3.7 -2.535 -2.787 -2.994 -3.225 -3.719 -0.359 -0.368 -0.383 -0.389 -0.401
3.8 -2.595 -2.861 -3.075 -3.305 -3.828 -0.370 -0.378 -0.392 -0.402 -0.411
3.9 -2.655 -2.934 -3.157 -3.386 -3.943 -0.381 -0.388 -0.400 -0.414 -0.421
4.0 -2.717 -3.007 -3.240 -3.467 -4.053 -0.392 -0.398 -0.408 -0.427 -0.431
4.1 -2.781 -3.081 -3.322 -3.549 -4.152 -0.402 -0.408 -0.417 -0.439 -0.442
4.2 -2.846 -3.155 -3.404 -3.632 -4.242 -0.413 -0.418 -0.426 -0.450 -0.455
4.3 -2.913 -3.229 -3.486 -3.716 -4.331 -0.423 -0.429 -0.436 -0.461 -0.467
4.4 -2.981 -3.302 -3.566 -3.802 -4.423 -0.433 -0.439 -0.446 -0.472 -0.480
4.5 -3.051 -3.377 -3.646 -3.887 -4.518 -0.442 -0.450 -0.457 -0.483 -0.492
4.6 -3.122 -3.453 -3.725 -3.971 -4.619 -0.452 -0.460 -0.469 -0.494 -0.504
4.7 -3.194 -3.530 -3.804 -4.054 -4.721 -0.461 -0.469 -0.481 -0.505 -0.516
4.8 -3.265 -3.607 -3.882 -4.138 -4.822 -0.470 -0.479 -0.493 -0.516 -0.528
4.9 -3.336 -3.684 -3.959 -4.224 -4.918 -0.480 -0.488 -0.506 -0.526 -0.540
5.0 -3.407 -3.761 -4.037 -4.311 -5.013 -0.489 -0.498 -0.518 -0.536 -0.552
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Table 3. Coefficients for linear relationship
between − log10(p) and t̂p for ω = .30

intercepts α(ρ) slopes β(ρ)
κ

ρ 1/10 1/3 1/2 2/3 1 1/10 1/3 1/2 2/3 1
0.1 -0.453 -0.446 -0.425 -0.459 -0.442 -0.171 -0.164 -0.172 -0.168 -0.173
0.2 -0.505 -0.504 -0.489 -0.516 -0.505 -0.175 -0.169 -0.176 -0.172 -0.178
0.3 -0.557 -0.562 -0.552 -0.575 -0.568 -0.179 -0.174 -0.181 -0.176 -0.184
0.4 -0.610 -0.622 -0.618 -0.636 -0.634 -0.184 -0.180 -0.186 -0.180 -0.189
0.5 -0.664 -0.683 -0.685 -0.701 -0.705 -0.188 -0.186 -0.190 -0.185 -0.195
0.6 -0.722 -0.747 -0.756 -0.770 -0.784 -0.193 -0.192 -0.195 -0.190 -0.201
0.7 -0.783 -0.814 -0.831 -0.846 -0.872 -0.199 -0.198 -0.199 -0.195 -0.207
0.8 -0.849 -0.886 -0.910 -0.929 -0.971 -0.205 -0.205 -0.204 -0.202 -0.213
0.9 -0.920 -0.962 -0.993 -1.020 -1.081 -0.211 -0.212 -0.210 -0.209 -0.219
1.0 -0.998 -1.043 -1.081 -1.119 -1.198 -0.219 -0.221 -0.216 -0.217 -0.226
1.1 -1.082 -1.127 -1.172 -1.223 -1.320 -0.227 -0.231 -0.225 -0.226 -0.235
1.2 -1.170 -1.214 -1.266 -1.330 -1.443 -0.237 -0.242 -0.236 -0.238 -0.247
1.3 -1.262 -1.303 -1.362 -1.437 -1.567 -0.247 -0.254 -0.250 -0.252 -0.261
1.4 -1.356 -1.395 -1.460 -1.543 -1.691 -0.259 -0.268 -0.265 -0.267 -0.277
1.5 -1.450 -1.488 -1.559 -1.649 -1.814 -0.273 -0.283 -0.282 -0.284 -0.295
1.6 -1.544 -1.582 -1.660 -1.753 -1.937 -0.287 -0.299 -0.300 -0.303 -0.313
1.7 -1.637 -1.678 -1.762 -1.856 -2.059 -0.303 -0.317 -0.319 -0.322 -0.332
1.8 -1.729 -1.774 -1.864 -1.959 -2.180 -0.320 -0.334 -0.338 -0.342 -0.352
1.9 -1.820 -1.871 -1.966 -2.065 -2.300 -0.338 -0.353 -0.357 -0.363 -0.372
2.0 -1.909 -1.968 -2.069 -2.174 -2.420 -0.356 -0.371 -0.377 -0.382 -0.393
2.1 -1.996 -2.064 -2.172 -2.285 -2.540 -0.375 -0.390 -0.396 -0.402 -0.412
2.2 -2.081 -2.162 -2.275 -2.399 -2.661 -0.395 -0.409 -0.415 -0.421 -0.432
2.3 -2.164 -2.260 -2.378 -2.514 -2.781 -0.415 -0.428 -0.434 -0.440 -0.453
2.4 -2.247 -2.359 -2.482 -2.628 -2.900 -0.436 -0.447 -0.452 -0.459 -0.473
2.5 -2.330 -2.460 -2.586 -2.739 -3.020 -0.456 -0.465 -0.471 -0.478 -0.493
2.6 -2.417 -2.561 -2.691 -2.845 -3.141 -0.476 -0.484 -0.490 -0.498 -0.513
2.7 -2.505 -2.664 -2.795 -2.947 -3.263 -0.496 -0.501 -0.509 -0.519 -0.532
2.8 -2.596 -2.767 -2.900 -3.045 -3.388 -0.515 -0.519 -0.528 -0.541 -0.551
2.9 -2.688 -2.870 -3.006 -3.141 -3.514 -0.535 -0.537 -0.548 -0.563 -0.569
3.0 -2.782 -2.973 -3.112 -3.238 -3.643 -0.554 -0.554 -0.567 -0.585 -0.586
3.1 -2.878 -3.075 -3.218 -3.339 -3.773 -0.572 -0.573 -0.587 -0.606 -0.602
3.2 -2.974 -3.176 -3.326 -3.445 -3.904 -0.591 -0.591 -0.606 -0.625 -0.619
3.3 -3.070 -3.277 -3.434 -3.556 -4.033 -0.609 -0.610 -0.625 -0.644 -0.636
3.4 -3.164 -3.377 -3.543 -3.671 -4.161 -0.628 -0.629 -0.643 -0.662 -0.653
3.5 -3.255 -3.476 -3.654 -3.788 -4.286 -0.646 -0.648 -0.660 -0.679 -0.671
3.6 -3.342 -3.573 -3.767 -3.902 -4.407 -0.665 -0.667 -0.674 -0.697 -0.690
3.7 -3.428 -3.670 -3.880 -4.016 -4.525 -0.684 -0.687 -0.688 -0.715 -0.710
3.8 -3.515 -3.765 -3.993 -4.130 -4.641 -0.702 -0.707 -0.701 -0.733 -0.730
3.9 -3.606 -3.858 -4.103 -4.244 -4.757 -0.720 -0.727 -0.714 -0.751 -0.751
4.0 -3.703 -3.951 -4.212 -4.357 -4.875 -0.737 -0.748 -0.729 -0.770 -0.771
4.1 -3.805 -4.043 -4.317 -4.469 -4.999 -0.753 -0.769 -0.744 -0.789 -0.789
4.2 -3.912 -4.135 -4.419 -4.579 -5.126 -0.769 -0.790 -0.762 -0.809 -0.807
4.3 -4.021 -4.228 -4.515 -4.689 -5.254 -0.784 -0.810 -0.783 -0.830 -0.824
4.4 -4.130 -4.322 -4.606 -4.795 -5.381 -0.799 -0.831 -0.807 -0.851 -0.842
4.5 -4.239 -4.417 -4.693 -4.895 -5.503 -0.814 -0.851 -0.833 -0.874 -0.862
4.6 -4.346 -4.514 -4.778 -4.987 -5.618 -0.828 -0.870 -0.860 -0.898 -0.884
4.7 -4.452 -4.610 -4.861 -5.069 -5.725 -0.843 -0.890 -0.887 -0.924 -0.910
4.8 -4.556 -4.704 -4.942 -5.142 -5.823 -0.858 -0.911 -0.916 -0.952 -0.938
4.9 -4.660 -4.797 -5.021 -5.210 -5.913 -0.874 -0.932 -0.944 -0.980 -0.969
5.0 -4.763 -4.888 -5.100 -5.274 -5.999 -0.889 -0.953 -0.974 -1.009 -1.001
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Table 4. Coefficients for linear relationship
between − log10(p) and t̂p for ω = .45

intercepts α(ρ) slopes β(ρ)
κ

ρ 1/10 1/3 1/2 2/3 1 1/10 1/3 1/2 2/3 1
0.1 -0.446 -0.445 -0.441 -0.433 -0.450 -0.157 -0.155 -0.167 -0.169 -0.167
0.2 -0.535 -0.536 -0.535 -0.528 -0.541 -0.166 -0.165 -0.173 -0.175 -0.176
0.3 -0.623 -0.628 -0.629 -0.624 -0.635 -0.175 -0.174 -0.179 -0.181 -0.184
0.4 -0.713 -0.722 -0.725 -0.724 -0.733 -0.185 -0.184 -0.186 -0.188 -0.194
0.5 -0.804 -0.818 -0.822 -0.828 -0.837 -0.195 -0.195 -0.194 -0.196 -0.205
0.6 -0.897 -0.918 -0.923 -0.937 -0.950 -0.207 -0.206 -0.204 -0.206 -0.216
0.7 -0.992 -1.021 -1.025 -1.049 -1.071 -0.220 -0.219 -0.216 -0.218 -0.230
0.8 -1.091 -1.128 -1.131 -1.166 -1.199 -0.234 -0.233 -0.231 -0.233 -0.245
0.9 -1.193 -1.239 -1.239 -1.284 -1.333 -0.251 -0.249 -0.250 -0.252 -0.264
1.0 -1.297 -1.353 -1.349 -1.402 -1.470 -0.270 -0.266 -0.273 -0.274 -0.286
1.1 -1.404 -1.469 -1.462 -1.519 -1.610 -0.291 -0.286 -0.299 -0.299 -0.310
1.2 -1.512 -1.587 -1.578 -1.637 -1.753 -0.314 -0.308 -0.327 -0.327 -0.336
1.3 -1.623 -1.705 -1.698 -1.753 -1.897 -0.338 -0.332 -0.355 -0.357 -0.363
1.4 -1.737 -1.824 -1.821 -1.870 -2.044 -0.363 -0.358 -0.383 -0.388 -0.390
1.5 -1.852 -1.942 -1.946 -1.991 -2.190 -0.389 -0.385 -0.411 -0.419 -0.418
1.6 -1.968 -2.061 -2.073 -2.116 -2.337 -0.416 -0.414 -0.439 -0.450 -0.447
1.7 -2.085 -2.180 -2.203 -2.247 -2.484 -0.444 -0.443 -0.465 -0.480 -0.475
1.8 -2.203 -2.300 -2.333 -2.383 -2.630 -0.472 -0.472 -0.491 -0.509 -0.504
1.9 -2.321 -2.422 -2.463 -2.521 -2.775 -0.500 -0.502 -0.518 -0.537 -0.533
2.0 -2.440 -2.545 -2.592 -2.659 -2.919 -0.527 -0.530 -0.547 -0.566 -0.562
2.1 -2.560 -2.671 -2.719 -2.794 -3.061 -0.555 -0.558 -0.577 -0.594 -0.592
2.2 -2.682 -2.797 -2.846 -2.927 -3.201 -0.582 -0.586 -0.608 -0.622 -0.622
2.3 -2.804 -2.923 -2.974 -3.062 -3.338 -0.608 -0.614 -0.638 -0.649 -0.652
2.4 -2.928 -3.049 -3.102 -3.198 -3.475 -0.634 -0.642 -0.668 -0.676 -0.683
2.5 -3.053 -3.174 -3.232 -3.336 -3.614 -0.660 -0.670 -0.697 -0.702 -0.713
2.6 -3.180 -3.297 -3.362 -3.477 -3.760 -0.686 -0.698 -0.725 -0.727 -0.741
2.7 -3.306 -3.420 -3.493 -3.619 -3.912 -0.711 -0.726 -0.753 -0.752 -0.767
2.8 -3.431 -3.542 -3.626 -3.764 -4.069 -0.738 -0.754 -0.780 -0.776 -0.791
2.9 -3.552 -3.663 -3.761 -3.910 -4.231 -0.765 -0.783 -0.805 -0.800 -0.815
3.0 -3.670 -3.784 -3.897 -4.055 -4.395 -0.793 -0.812 -0.829 -0.824 -0.837
3.1 -3.785 -3.903 -4.032 -4.199 -4.561 -0.823 -0.841 -0.852 -0.849 -0.859
3.2 -3.896 -4.021 -4.167 -4.340 -4.725 -0.854 -0.870 -0.876 -0.875 -0.881
3.3 -4.005 -4.137 -4.302 -4.479 -4.885 -0.885 -0.900 -0.900 -0.902 -0.905
3.4 -4.113 -4.253 -4.435 -4.613 -5.039 -0.917 -0.931 -0.924 -0.929 -0.930
3.5 -4.222 -4.367 -4.566 -4.745 -5.187 -0.948 -0.962 -0.949 -0.958 -0.958
3.6 -4.334 -4.480 -4.694 -4.875 -5.328 -0.978 -0.993 -0.978 -0.987 -0.988
3.7 -4.451 -4.594 -4.819 -5.002 -5.464 -1.007 -1.024 -1.008 -1.017 -1.020
3.8 -4.573 -4.710 -4.942 -5.128 -5.598 -1.033 -1.054 -1.040 -1.047 -1.053
3.9 -4.701 -4.828 -5.063 -5.253 -5.731 -1.058 -1.084 -1.073 -1.078 -1.086
4.0 -4.832 -4.950 -5.185 -5.379 -5.867 -1.081 -1.113 -1.107 -1.109 -1.117
4.1 -4.967 -5.076 -5.307 -5.507 -6.010 -1.103 -1.140 -1.139 -1.139 -1.147
4.2 -5.102 -5.209 -5.429 -5.637 -6.158 -1.125 -1.165 -1.171 -1.169 -1.175
4.3 -5.238 -5.348 -5.552 -5.765 -6.308 -1.147 -1.188 -1.203 -1.200 -1.201
4.4 -5.373 -5.495 -5.677 -5.891 -6.461 -1.169 -1.208 -1.233 -1.231 -1.227
4.5 -5.509 -5.649 -5.804 -6.017 -6.615 -1.190 -1.225 -1.262 -1.262 -1.252
4.6 -5.645 -5.810 -5.933 -6.145 -6.770 -1.212 -1.240 -1.288 -1.293 -1.274
4.7 -5.781 -5.976 -6.063 -6.275 -6.930 -1.234 -1.254 -1.312 -1.324 -1.294
4.8 -5.918 -6.146 -6.195 -6.408 -7.096 -1.255 -1.266 -1.336 -1.354 -1.311
4.9 -6.055 -6.317 -6.326 -6.543 -7.268 -1.276 -1.277 -1.360 -1.383 -1.325
5.0 -6.192 -6.489 -6.457 -6.680 -7.444 -1.297 -1.288 -1.385 -1.412 -1.338
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Table 5. Coefficients for linear relationship
between − log10(p) and t̂p for ω = .60

intercepts α(ρ) slopes β(ρ)
κ

ρ 1/10 1/3 1/2 2/3 1 1/10 1/3 1/2 2/3 1
0.1 -0.467 -0.470 -0.436 -0.459 -0.483 -0.144 -0.139 -0.164 -0.155 -0.142
0.2 -0.580 -0.589 -0.558 -0.583 -0.602 -0.163 -0.158 -0.177 -0.170 -0.162
0.3 -0.694 -0.708 -0.681 -0.707 -0.723 -0.181 -0.176 -0.191 -0.185 -0.183
0.4 -0.810 -0.830 -0.806 -0.833 -0.850 -0.200 -0.196 -0.206 -0.202 -0.204
0.5 -0.927 -0.953 -0.933 -0.962 -0.983 -0.221 -0.216 -0.223 -0.220 -0.226
0.6 -1.048 -1.080 -1.064 -1.094 -1.125 -0.242 -0.238 -0.243 -0.242 -0.249
0.7 -1.172 -1.209 -1.198 -1.230 -1.275 -0.266 -0.262 -0.265 -0.266 -0.274
0.8 -1.300 -1.343 -1.336 -1.369 -1.433 -0.291 -0.288 -0.292 -0.293 -0.300
0.9 -1.431 -1.480 -1.477 -1.511 -1.597 -0.318 -0.315 -0.321 -0.324 -0.329
1.0 -1.567 -1.620 -1.621 -1.656 -1.767 -0.348 -0.345 -0.353 -0.357 -0.359
1.1 -1.706 -1.765 -1.770 -1.803 -1.940 -0.378 -0.376 -0.387 -0.393 -0.391
1.2 -1.848 -1.911 -1.921 -1.952 -2.114 -0.411 -0.409 -0.423 -0.430 -0.424
1.3 -1.993 -2.060 -2.075 -2.103 -2.288 -0.444 -0.444 -0.460 -0.469 -0.458
1.4 -2.141 -2.209 -2.232 -2.254 -2.463 -0.478 -0.479 -0.496 -0.509 -0.493
1.5 -2.290 -2.359 -2.391 -2.407 -2.639 -0.513 -0.516 -0.531 -0.548 -0.529
1.6 -2.440 -2.510 -2.552 -2.563 -2.813 -0.548 -0.553 -0.566 -0.587 -0.566
1.7 -2.590 -2.660 -2.714 -2.724 -2.986 -0.584 -0.590 -0.600 -0.625 -0.603
1.8 -2.739 -2.811 -2.877 -2.888 -3.157 -0.620 -0.628 -0.635 -0.662 -0.641
1.9 -2.889 -2.962 -3.040 -3.055 -3.329 -0.656 -0.665 -0.670 -0.697 -0.679
2.0 -3.039 -3.114 -3.203 -3.225 -3.500 -0.692 -0.702 -0.705 -0.731 -0.717
2.1 -3.189 -3.267 -3.366 -3.397 -3.671 -0.728 -0.739 -0.740 -0.765 -0.755
2.2 -3.340 -3.422 -3.528 -3.570 -3.841 -0.764 -0.775 -0.775 -0.797 -0.794
2.3 -3.491 -3.577 -3.690 -3.743 -4.014 -0.800 -0.811 -0.810 -0.830 -0.833
2.4 -3.641 -3.733 -3.852 -3.915 -4.187 -0.835 -0.847 -0.844 -0.863 -0.871
2.5 -3.792 -3.890 -4.012 -4.085 -4.358 -0.871 -0.882 -0.879 -0.897 -0.911
2.6 -3.944 -4.050 -4.170 -4.254 -4.523 -0.906 -0.916 -0.916 -0.930 -0.951
2.7 -4.095 -4.211 -4.326 -4.421 -4.683 -0.941 -0.950 -0.955 -0.965 -0.992
2.8 -4.247 -4.374 -4.481 -4.585 -4.837 -0.976 -0.983 -0.995 -1.000 -1.033
2.9 -4.399 -4.540 -4.636 -4.746 -4.987 -1.011 -1.016 -1.035 -1.036 -1.074
3.0 -4.550 -4.708 -4.791 -4.904 -5.135 -1.046 -1.048 -1.074 -1.074 -1.115
3.1 -4.701 -4.877 -4.948 -5.059 -5.286 -1.082 -1.079 -1.111 -1.112 -1.156
3.2 -4.852 -5.046 -5.107 -5.215 -5.442 -1.116 -1.110 -1.146 -1.150 -1.196
3.3 -5.007 -5.213 -5.269 -5.376 -5.606 -1.151 -1.142 -1.178 -1.187 -1.234
3.4 -5.164 -5.378 -5.433 -5.544 -5.779 -1.184 -1.175 -1.209 -1.221 -1.271
3.5 -5.321 -5.540 -5.597 -5.717 -5.962 -1.217 -1.208 -1.240 -1.254 -1.306
3.6 -5.476 -5.699 -5.759 -5.895 -6.152 -1.251 -1.243 -1.273 -1.286 -1.340
3.7 -5.631 -5.855 -5.921 -6.074 -6.345 -1.285 -1.278 -1.307 -1.317 -1.373
3.8 -5.784 -6.010 -6.083 -6.252 -6.536 -1.320 -1.314 -1.341 -1.349 -1.404
3.9 -5.937 -6.163 -6.246 -6.424 -6.724 -1.354 -1.350 -1.376 -1.383 -1.436
4.0 -6.089 -6.316 -6.409 -6.586 -6.911 -1.389 -1.386 -1.410 -1.420 -1.467
4.1 -6.239 -6.469 -6.573 -6.735 -7.099 -1.424 -1.421 -1.444 -1.462 -1.497
4.2 -6.388 -6.624 -6.738 -6.874 -7.290 -1.460 -1.456 -1.478 -1.507 -1.525
4.3 -6.533 -6.782 -6.902 -7.007 -7.486 -1.496 -1.490 -1.512 -1.554 -1.553
4.4 -6.676 -6.943 -7.066 -7.136 -7.688 -1.534 -1.522 -1.548 -1.602 -1.580
4.5 -6.815 -7.106 -7.230 -7.264 -7.900 -1.572 -1.554 -1.585 -1.651 -1.605
4.6 -6.951 -7.270 -7.394 -7.391 -8.120 -1.611 -1.585 -1.622 -1.699 -1.629
4.7 -7.084 -7.435 -7.560 -7.517 -8.344 -1.651 -1.616 -1.658 -1.749 -1.652
4.8 -7.217 -7.600 -7.729 -7.640 -8.562 -1.691 -1.648 -1.691 -1.799 -1.675
4.9 -7.348 -7.763 -7.901 -7.760 -8.773 -1.731 -1.680 -1.720 -1.851 -1.698
5.0 -7.479 -7.926 -8.075 -7.879 -8.980 -1.771 -1.712 -1.748 -1.904 -1.722
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5.5 Example with Nonperpendicularity Variation

Here we illustrate the use of Tables 1-5 in a fictitious example. We assume that the common
part thickness for the two parts is W = .5, that the nominal hole diameters are D0 = .5,
that the hole diamter range is b − a = .003. For the pin diameter we assume a nominal
value d0 = .5− η, where the nominal clearance η is left open at this point. The pin diameter
variation range is d − c = .001. The radial accuracy for hole centering is assumed to be
r = .005 and we assume a bound ᾱ◦ = .5◦ on the deviations from perpendicularity.

The above data lead to the following worst case tolerance clearance

w′
0 = a− .01745 ᾱ◦W − d− 2r

= (.5− .0015)− (.01745 .5 .5)− (.5− η − .0005)− (2 .005)

= η − .01636 .

For this worst case clearance to be positive we need to aim for a nominal clearance η in excess
of .01636. This noiminal clearance can be achieved either by increasing D0 or by decreasing
d0 or by a combination of both.

For the statistical tolerance treatment we proceed as in the previous example calculation
with the added interpolation over ω. Here we have ρ = (b− a)/r = .6, κ = (d− c)/(b− a) =
1/3, and ω = .005075W ᾱ◦/(b − a) = .4229, which is bracketed by ω1 = .30 and ω2 = .45.
Again we aim for a nonassembly risk of p = .001. From Table 3 we read off under κ = 1/3,
ρ = .6, and ω = .30

α(.6) = −.747 and β(.6) = −.192 and thus t̂.001(.6) = −.747+3×(−.192) = −1.323

and thus
m′

0 = η + .005× (−1.323) = η − .006615 .

Similarly, for ω = .45 we have

α(.6) = −.918 and β(.6) = −.206 and thus t̂.001(.6) = −.918+3×(−.206) = −1.536

and thus
m′

0 = η + .005× (−1.536) = η − .00768 .

Interpolating between .006615 and .00768 we get the following statistically stacked clearance
for ω = .4229

m′
0 = η − .00749 ,

where

.00749 = .006615 + (.4229− .30)
.00768− .006615

.45− .30
.

To render m′
0 the nominal hole to pin clearance η needs to exceed .00749. We note the the

worst case required nominal clearance value of .01636 exceeds the statistically toleranced
value of .00749 by 118%, which amounts to significant and unnecessary slack.
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Appendix A

Here we derive a mathematical expression for the pinning criterion Pmax−min as it was for-
mulated in the main body of this paper.

Consider as starting position the one portrayed in Figure 1, namely with hole centers
1 and 3 aligned. There we have X1 < X2. If we move part 2 to the right or left we can
only reduce the maximum clearance diameter at holes 1 and 3, although initially it will stay
the same, since one hole is contained within the other. At the same time such left or right
motions of part 2 will affect the maximum clearance diameter at holes 2 and 4. For the
situation in Figure 1, with X1 < X2, a right motion of part 2 can only reduce (or maintain,
in case the holes are nested) the maximum clearance diameter at holes 2 and 4. Such a right
motion will not get us any closer to finding the maximum of the minimum plays at the two
hole pairs. Thus only left motions of part 2 should be considered in this case. The farthest
we should go with such left motion is the distance |X1 −X2|, because then the hole centers
2 and 4 become aligned and at that point any further motion in that direction becomes
detrimental as explained before. Therefore, beginning at the above starting position, we
should look for a left motion with distance � somewhere between 0 and |X1−X2|, to find the
maximum of the minimum plays at both hole pairs. If X1 > X2, one will have to interchange
“left” and “right” in the above discussion of motions. If X1 = X2, no motion is necessary.
In that case the maximum of the minimum plays at the two hole pairs is

Pmax−min = min [min (D1, D3)− d1, min (D2, D4)− d2] (7)

and there is no way to increase that absolute maximum by any motion.
Left motion from the starting position will leave holes 1 and 3 nested as long as that left

motion distance is within [0, |D3 −D1|/2]. Similarly, holes 2 and 4 will become nested under
left motions as long as that left motion distance is within[

[|X1 −X2| − |D4 −D2|/2]+ , |X1 −X2|+ |D4 −D2|/2
]
,

where [x]+ = x is x ≥ 0 and [x]+ = 0 for x < 0. This is seen by first moving hole centers
2 and 4 into alignment by a |X1 − X2| left motion and then realizing that a ±|D4 −D2|/2
displacement will leave the holes 2 and 4 barely nested. The use of the [ ]+ function is
to rule out negative left motions, which amount to right motions ruled out from further
considerations. Since we don’t consider left motions beyond |X1−X2|, the operative interval
for keeping holes 2 and 4 nested is[

[|X1 −X2| − |D4 −D2|/2]+ , |X1 −X2|
]
.

There are two cases to distinguish here. In the first, when

|D3 −D1|/2 ≥ [|X1 −X2| − |D4 −D2|/2]+ ,

any left motion distance within the interval

[ [|X1 −X2| − |D4 −D2|/2]+ , min(|X1 −X2|, |D3 −D1|/2)]
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will leave both hole pairs nested and Pmax−min will be as in (7), i.e., the largest value one
could possibly get.

In the other case, when

A = |D3 −D1|/2 < [|X1 −X2| − |D4 −D2|/2]+ = |X1 −X2| − |D4 −D2|/2 = B , (8)

both hole pairs will become overlapping as soon as the left motion distance � is in the range
[A,B]. While the left motion distance is in this interval any play gained or lost at one
overlapping hole pair is lost or gained at the other.

At the left motion distance A = |D3 −D1|/2 the play at the left hole pair 1 and 3 is

PL(A) = min(D1, D3)− d1

while at the right hole pair 2 and 4 the play is

PR(A) = Q2(∆2)− d2 with ∆2 = |X1 −X2| − A >
|D4 −D2|

2
≥ 0 .

Note that the original misalignment at 2 and 4, namely |X1−X2| is not completely corrected
by the left motion amount A. This follows from the inequality (8), the case considered here.
Using the identity (2) the above expression for PR(A) has the following equivalent form:

PR(A) = min

(
D2, D4,

D2 +D4

2
− |X1 −X2|+ |D3 −D1|

2

)
− d2

= min

(
D2, D4,min(D2, D4)− |X1 −X2|+ |D3 −D1|

2
+

|D4 −D2|
2

)
− d2

= min (D2, D4)− d2 −
(
|X1 −X2| − |D3 −D1|

2
− |D4 −D2|

2

)
.

At the left motion distance B = |X1 −X2| − |D4 −D2|/2 we have

∆2 = |X1 −X2| − B = |D4 −D2|/2 and Q2(∆2) = min(D2, D4)

and thus the play at the holes 2 and 4 is

PR(B) = min(D2, D4)− d2 .

With respect to the left hole pair 1 and 3 we have under the same motion ∆1 = B and

Q1(∆1) = min
(
D1, D3,

D1 +D3

2
−∆1

)

= min

(
D1, D3,

D1 +D3

2
− |X1 −X2|+ |D4 −D2|

2

)

= min

(
D1, D3,min(D1, D3)− |X1 −X2|+ |D4 −D2|

2
+

|D3 −D1|
2

)

= min (D1, D3)−
(
|X1 −X2| − |D4 −D2|

2
− |D3 −D1|

2

)
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Thus the play at the left hole pair 1 and 3 under this left B shift is

PL(B) = Q1(∆1)− d1

= min (D1, D3)− d1 −
(
|X1 −X2| − |D4 −D2|

2
− |D3 −D1|

2

)
.

As the amount � of left shift ranges from A to B the plays PL(�) and PR(�) at the left
and right hole pairs have the form

PL(�) = (A− �) + PL(A) and PR(�) = (�− B) + PR(B)

with constant sum
PL(�) + PR(�) = A−B + PL(A) + PR(B) .
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Figure 12. Three cases

There are basically three cases one needs to distinguish in order to find the � ∈ [A,B] that
maximizes the minimum play at both hole pairs. These cases are illustrated in Figure 12,
where the ordinate of ◦ indicates the maximum of the minimum play in each case. In case 1,
when PR(A) > PL(A) we should take �◦ = A and get as maximal minimum play PL(A). In
case 2, PR(B) < PL(B), we should take �◦ = B and get as maximal minimum play PR(B).
In case 3, when PL(A) ≥ PR(A) and PL(B) ≤ PR(B) we should take

�◦ =
A+B + PL(A)− PR(B)

2

and get as maximal minimum play

PL(�◦) = PR(�◦) =
PL(A) + PR(A)

2
=
PL(B) + PR(B)

2
.
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Note that PL(A) ≥ PR(A) and PL(B) ≤ PR(B) is equivalent to

|min(D2, D4)− d2 − [min(D1, D3)− d1]| ≤ |X1 −X2| − |D3 −D1|+ |D4 −D2|
2

(9)

The above derivations for the maximal minimum play Pmax−min can now be summarized
as follows into four mutually exclusive and exhaustive cases of which the last three can be
further combined into one, leaving us with two cases I and II which can then be combined
in a single case.

Case I:

(9) =⇒ Pmax−min =
min(D1, D3)− d1 +min(D2, D4)− d2

2

− 1
2

(
|X1 −X2| − |D3 −D1|+ |D4 −D2|

2

)

=
D1 +D2 +D3 +D4

4
− d1 + d2

2
− |X1 −X2|

2
,

where the last simplification follows from identity (2). From (9) and the first form of Pmax−min

given in this case it follows that

Pmax−min ≤ min [min(D1, D3)− d1, min(D2, D4)− d2] .

Case a:

(|D3 −D1|+ |D4 −D2|)/2 ≥ |X1 −X2|

=⇒ Pmax−min = min [min(D1, D3)− d1, min(D2, D4)− d2]

Case b:

min(D2, D4)− d2 − [min(D1, D3)− d1] > |X1 −X2| − |D3 −D1|+ |D4 −D2|
2

> 0

=⇒ Pmax−min = min(D1, D3)− d1 = min [min(D1, D3)− d1, min(D2, D4)− d2] .
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Case c:

min(D2, D4)− d2 − [min(D1, D3)− d1] < −
(
|X1 −X2| − |D3 −D1|+ |D4 −D2|

2

)
< 0

=⇒ Pmax−min = min(D2, D4)− d2 = min [min(D1, D3)− d1, min(D2, D4)− d2] .

We can combine Cases a-c to

Case II:

|min(D2, D4)− d2 − [min(D1, D3)− d1]| > |X1 −X2| − |D3 −D1|+ |D4 −D2|
2

=⇒ Pmax−min = min [min(D1, D3)− d1, min(D2, D4)− d2]

= min

(
D1 +D3

2
− |D1 −D3|

2
− d1,

D2 +D4

2
− |D2 −D4|

2
− d2

)

=
D1 +D2 +D3 +D4

4
− d1 + d2

2
− |D1 −D3|+ |D2 −D4|

4

−
∣∣∣∣∣D1 −D2 +D3 −D4 − 2(d1 − d2)− (|D1 −D3| − |D2 −D4|)

4

∣∣∣∣∣

=
D1 +D2 +D3 +D4

4
− d1 + d2

2
− |D1 −D3|+ |D2 −D4|

4

− 1
2
|min(D1, D3)− d1 − [min(D2, D4)− d2]|

after fivefold application of identity (2). Thus we can combine cases I and II to

Pmax−min =
D1 +D2 +D3 +D4

4
− d1 + d2

2

− 1
2
max

(
|X1 −X2|, |D1 −D3|+ |D2 −D4|

2

+ |min(D1, D3)− d1 − [min(D2, D4)− d2]|
)

39



=
|D1 −D3|+ |D2 −D4|

4
+

min(D1, D3) + min(D2, D4)

2
− d1 + d2

2

− 1
2
max

(
|X1 −X2|, |D1 −D3|+ |D2 −D4|

2

+ |min(D1, D3)− d1 − [min(D2, D4)− d2]|
)
.
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Appendix B

Here we determine the diameter of the largest circle fitting into the intersection of two ellipses
E1 and E2 of same shape and size, aligned but offset from each other along their major axis,
see Figure 10 for two generic cases.

Because of the rotational and translational symmetry of the problem formulation we may,
without loss of generality, assume that the common major axis of these two ellipses coincides
with the x-axis and that their perimeter curves ∂E1 and ∂E2 are given as the set of points
(x, y) satisfying the following two equations:

∂E1 :
y2

b2
+

(x−∆)2

a2
= 1 and ∂E2 :

y2

b2
+

(x+∆)2

a2
= 1 with ∆ ≥ 0.

The major axis being along the x-axis entails that b ≤ a. In fact, we will assume b < a,
because when a = b we deal with two circles and it is easily seen that the largest inscribed
circle has radius r = a − ∆, provided a ≥ ∆. If the latter is not the case, no such circle
exists, although we will still speak of a “circle” with negative radius r. In a way that negative
radius expresses how far away we are from a situation with a real inscribed circle.

From symmetry considerations it follows that the biggest circle within E1 ∩E2 is centered
at (0, 0) and all normals at points where one of the ellipses and the inscribed circle touch
each other have to pass through the origin.

The equation of the line through a point (x0, y0) on ∂E1 which is tangent to ∂E1 is given
by:

(x−∆)(x0 −∆)

a2
+
yy0

b2
= 1 with

y2
0

b2
+

(x0 −∆)2

a2
= 1

and the equation of the line through a point (x0, y0) on ∂E1 which is normal to ∂E1 derives
from that as:

y =
y0

x0 −∆

a2

b2
(x− x0) + y0 with

y2
0

b2
+

(x0 −∆)2

a2
= 1 .

The above requires that x0 �= ∆. The case of x0 = ∆ is of no interest here, since it concerns a
line parallel to the y-axis but not passing through the origin. Above the origin was identified
as the center of the inscribed maximal circle. In saying that this line does not pass through
the origin we assume that ∆ > 0. When ∆ = 0 we are faced with two coinciding ellipses
and the radius of the maximally inscribed circle is r = b in that case.

The above requirement that normals through common tangent points (x0, y0) on ellipse
∂E1 and inscribed circle pass through the origin translates to

0 =
y0

x0 −∆

a2

b2
(−x0) + y0 and

y2
0

b2
+

(x0 −∆)2

a2
= 1 . (10)

When y0 �= 0 the first of the equations in (10) is equivalent to

x0 −∆ = x0 a
2/b2 or x0 =

∆

1− a2/b2
(< 0 ) .

41



The two equations in (10) combine to

y2
0

b2
+
x2

0a
4

a2b4
= 1 or b2

[
1− a2∆2

(b2 − a2)2

]
= y2

0 .

Thus, if

1− a2∆2

(b2 − a2)2
> 0 , (11)

there are two solutions to the equations (10) and therefore two points at which the inscribed
circle touches ∂E1, and similarly two points at which the inscribed circle touches ∂E2, see the
left example in Figure 10. This circle has radius

r =

√√√√ ∆2

(1− a2/b2)2
+ b2

[
1− a2∆2

(b2 − a2)2

]
= b

√
1− ∆2

a2 − b2
.

When a ≥ b the main axis segment contained within E1 ∩ E2 has length 2a − 2∆. A
circle with radius r = a −∆ ≥ 0 will go through (±r, 0) and touch both ellipses at (−r, 0)
and (r, 0), respectively, see the right example in Figure 10. However, this circle will only
be an inscribed circle if its radius r is at most equal to the curvature R of these ellipses at
these tangent points. According to Bronshtein and Semendyayev1 (page 202) this curvature
is R = b2/a. Note that the condition

R =
b2

a
≥ a−∆ = r

is equivalent to

1− a2∆2

(b2 − a2)2
≤ 0 ,

which is complementary to the above case (11). To summarize the above, the maximal
inscribed circle has radius

r = b

√
1− ∆2

a2 − b2
for ∆ < a− b2/a

and

= a−∆ for ∆ ≥ a− b2/a .

In the latter case we can have a negative radius, i.e., no real inscribed circle at all, when
a < ∆. For the reasons given above we leave negative radii as they are.

Note that the two special cases ∆ = 0 and a = b, treated separately above, are included
in this last summary form for r.

The general result above is now specialized to the case where the two ellipses are generated
by the entry and exit contour of a cylinder of diameter D passing at some angle through a

1Bronshtein, I.N. and Semendyayev, K.A. (1985). Handbook of Mathematics.
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plate of uniform thickness W , see Figure 13. As we project the centers of these two ellipses
perpendicularly onto the entry plane their distance is denoted by 2∆, linking it up with our
previous notation in the general formulation. The special aspect is that the length 2a of the
major axis of either ellipse is linked here to this 2∆, whereas 2b = D for any ∆.

W

•

•

2a

D = 2b

2

Figure 13. Hole cross section

From Figure 13 and the similarity of triangles we have the following relationship

2a

D
=

√
W 2 + 4∆2

W
and thus a =

D

2

√
1 +

4∆2

W 2
.

From this and 2b = D we have

a2 − b2 =
D2

4

(
1 +

4∆2

W 2

)
− D2

4
=
D2∆2

W 2
.

The condition ∆ < a− b2/a becomes

a∆ < a2 − b2 =
D2∆2

W 2
or

D

2

√
1 +

4∆2

W 2
<
D2∆

W 2

or

√
1 +

4∆2

W 2
<

2∆D

W 2
or 1 <

4∆2

W 4

(
D2 −W 2

)
. (12)

In the following we will distinguish two cases, namely Case I: D > W and Case II: D ≤ W .
Case I: Condition (12) is equivalent to

2∆ >
W 2

√
D2 −W 2

.

Under this condition the maximal cylinder, that can pass perpendicularly through the hole,
has diameter

D′ = D

√
1− ∆2

a2 − b2
= D

√
1− W 2

D2
=

√
D2 −W 2 ( < D )
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regardless of the actual value of ∆ satisfying 2∆ > W 2/
√
D2 −W 2.

The complement of (12), i.e., ∆ ≥ a− b2/a, is equivalent to

2∆

W
≤ 1√

D2/W 2 − 1

in which case the maximal cylinder, that can pass perpendicularly through the hole, has
diameter

D′ = 2(a−∆) = D

√
1 +

4∆2

W 2
− 2∆ , (13)

with D′ ≤ D, since

f(x) = D
√
1 + x2/W 2 − x is decreasing for x = 2∆ ∈


0, W√

D2/W 2 − 1


 .

Case II: Here condition (12) can not occur. Thus we only have to deal with ∆ ≥ a− b2/a,
in which case the maximal cylinder, that can pass perpendicularly through the hole, again
has diameter D′ given by (13).
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Appendix C

This appendix contains the figures corresponding to Figures 6-7 for the values κ = 1/10, 1/3, 1/2, 2/3.
Table 1 was derived from all these spline fits.
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Figure 14. Simulated distributions of T , for κ = .1,
ρ = 1, 2, 3, 4, and 100, 000 simulations
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Figure 15. Simulated distributions of T , for κ = 1/3,
ρ = 1, 2, 3, 4, and 100, 000 simulations
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Figure 16. Simulated distributions of T , for κ = .5,
ρ = 1, 2, 3, 4, and 100, 000 simulations
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Figure 17. Simulated distributions of T , for κ = 2/3,
ρ = 1, 2, 3, 4, and 100, 000 simulations
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Figure 18. Average of 10 estimated intercepts for linear
relationship between − log10(p) and t̂p for κ = .1
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Figure 19. Average of 10 estimated intercepts for linear re-
lationship between − log10(p) and t̂p for κ = 1/3
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Figure 20. Average of 10 estimated intercepts for linear
relationship between − log10(p) and t̂p for κ = .5
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Figure 21. Average of 10 estimated intercepts for linear re-
lationship between − log10(p) and t̂p for κ = 2/3

53



•

•

•

• •

•
•

•

•

• •
•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

rho

sl
op

e

0.0 1.0 2.0 3.0 4.0 5.0

-0
.2

7
-0

.2
5

-0
.2

3
-0

.2
1

-0
.1

9
-0

.1
7

Figure 22. Average of 10 estimated slopes for linear re-
lationship between − log10(p) and t̂p for κ = .1
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Figure 23. Average of 10 estimated slopes for linear re-
lationship between − log10(p) and t̂p for κ = 1/3
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Figure 24. Average of 10 estimated slopes for linear re-
lationship between − log10(p) and t̂p for κ = .5

56



•

•

•

•

••

•

•••

•

•
•

•

•
•

•

•

•

•

• • •
• •

•

rho

sl
op

e

0.0 1.0 2.0 3.0 4.0 5.0

-0
.2

8
-0

.2
4

-0
.2

0
-0

.1
6

-0
.1

2
-0

.0
8

Figure 25. Average of 10 estimated slopes for linear re-
lationship between − log10(p) and t̂p for κ = 2/3

57


