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Abstract

Each of two parts has K coordination holes with the intent that each hole on one
part is paired and to be pinned with a corresponding hole on the other part. While
the nominal hole centers for each hole pair are identical, the actual hole centers will
deviate from their nominal values in some random fashion reflecting the inherent hole
centering accuracy of the drilling process. It is then of some interest to examine the
maximal hole center discrepancy among K such hole pairs and to understand how this
discrepancy grows with K. We give a plausible and very simple model for assessing
this maximal discrepancy statistically and show that the growth of this discrepancy is
slow, namely on the order of

√
log(K). Although this model formulation assumes the

unrealistic true position part alignment on all K nominal centers, it is still useful in
that it provides a conservative assessment compared to what might be possible under
“best” alignment. Furthermore, its results relate essentially linearly to the common,
practical alignment procedure using primary and secondary hole pairs. The statistical
treatment of hole center variation is compared to the worst case treatment for both
alignment procedures. While the gain of the statistical over worst case treatment is
small under true positioning it is substantial under primary/secondary hole alignment.
Consequences for minimal clearance and maximal clean-out diameters are derived,
assuming no or negligible hole and pin diameter variations. These results can be
extended usefully to the situation when triplets of holes, one hole each on one of three
parts, need to be pinned. The above results are derived assuming equal hole centering
variability from hole to hole. This is extended to hole centering variability that grows
linearly with the distances of the nominal hole centers from some reference datum. A
further extension deals with matching two parts where each part is built up from k
subparts with n holes each. The misalignments of the subparts relative to each other
add dependency complications when trying to assess the maximum mismatch between
the K = kn holes on each assembly half.
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1 Problem Description and Overview

We consider various aspects of the coordination hole tolerance stacking problem. They arise
when trying to mate two parts, such as stringers to skins, skins to skins, and panels to
frames, etc., by placing (temporary) fasteners through matching hole pairs or hole triplets.
Usually there will be K such hole pairs or triplets, where K ≥ 2 and K may be as large as
60 or higher.

When such fasteners are temporary, their function is to act as clamping devices that
hold the parts in position while intermediate holes are match-drilled and riveted. Since such
riveting fixes the position of the parts relative to each other, these coordination holes also
serve the much more important role of defining the geometry or final position of the two parts
relative to each other. The temporary fasteners are removed after riveting the intermediate
holes. The coordination holes are then cleaned out, i.e., match-drilled with larger, full-sized
holes and riveted.

Defining the relative geometry of parts by coordination holes differs from previous prac-
tices of using massive tools for joining parts. There the tools carry the geometry information
which is transferred to the parts by holding them in place in the tools while match drilling
and riveting them. This process results in variation in the geometry as defined on the tool
and in variation in fixturing the parts on the tool. The variation in the geometry as defined
on the tool acts more like a bias, fixed effect, or mean shift which does not lend itself very well
to statistical variation cancellation. Such biases would repeat themselves time and again,
unless there is some slow drift in the tool geometry, which represents another systematic
variation component.

Although the coordination hole scenario was the original motivation for looking at this
problem, the analysis methods proposed here have a wider scope. Namely, they are relevant
whenever several particular feature point locations on one part need to be mated to corre-
sponding feature point locations on another part. In the above motivating example these
feature point locations would be the hole centers. Typically such feature point locations are
subject to variation which leads to mismatches when more than one pair of such feature
point locations needs to be aligned. Assessing the maximal size of this mismatch (over all
feature point location pairs) from a statistical and worst case perspective is our main goal
here.

Although the scope of the methods presented here goes beyond pinning coordination
holes we will stay with that application image to avoid complete abstraction. A crucial initial
assumption underlying the analysis methods developed here is that during assembly the parts
are aligned by matching the nominal hole center positions for each hole pair. Since these
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nominal hole center positions are also called the true positions of these particular features,
we refer to this part alignment also as true position alignment. This particular alignment
is artificial, because it is not at all clear how to accomplish it in practice. However, if it is
possible to pin the parts loosely and without interference under true position alignment, it
will also be possible to pin the parts under some other nearby alignments as well. It is just a
matter of finding such alignments through small motions of the parts relative to each other.
Among all these alignments there certainly will be a best one, i.e., with smallest maximum
hole center discrepancy. Considering the true position alignment case is therefore in some
sense a conservative assessment of the pinning problem. By “conservative” we mean that
even if it is established that the parts cannot be pinned under true position alignment, such
pinning may still be possible under some other alignment.

Figure 1: Hole Clearance Diameter C

•
••clearance diameter  C

nominal center

Being able to put fasteners or pins through all the paired holes simultaneously is referred
to as the clearance problem. Since the paired holes have actual hole centers that deviate from
their respective common nominal centers, these paired holes can be viewed as overlapping
circles which define a maximal inscribed circle, shown shaded in Figure 1. The common
nominal center for both holes is marked by a +. The nominal centers match because true
position alignment is assumed here. The diameter of this inscribed circle is called the clear-
ance diameter, C, for that particular hole pair. It is a direct function of how far the actual
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hole centers deviate from each other.

These clearance diameters vary from hole pair to hole pair and it is the smallest one of
these K clearance diameters that will give the most problem of placing a fastener through it.
Other alignments may certainly produce a smallest clearance diameter (over K hole pairs)
that is even larger than the one achieved under true position alignment, but finding this
alignment mathematically and analyzing its statistical effects is very complicated at best.
The problems of implementing such an alignment in practice may be even more prohibitive,
since it would require a high degree of positional part control, which is exactly what co-
ordination holes are supposed to accomplish in a practical fashion. The potential gain of
the optimal alignment over the true position alignment may be so small that it will not
justify such complications in analysis or practical implementation when aiming for ease of
application.

Throughout it is assumed that all coordinate hole fasteners have the same diameter. If the
fastener diameters vary as well, with tolerances controlling their variation, then one could use
the maximally allowed fastener diameter for a conservative clearance assessment. Similarly, it
is assumed that hole diameters are identical. If there is variation among these diameters, then
we can take conservatively the smallest toleranced hole diameter for a conservative clearance
assessment. There definitely is room here for taking advantage of additional statistical
tolerancing, i.e., variation cancellation due to fastener and hole size variation, in addition
to the hole centering variation. A first attempt in this direction was made in [4] for the
case of two hole pairs with respect to a nearly “best” alignment. There, hole centering and
hole and pin size variations as well as deviations from perpendicularity in the hole axes were
taken into account in the statistical tolerance stack. However, for K holes and true position
alignment this issue of hole and pin size variations has not yet been worked out. If the pin
and hole diameter variations are much smaller than the hole centering variation, as assumed
here, these effects will have little consequence. However, if these variations are comparable
to hole centering variation, then further investigations into statistical stacking of these effects
would be beneficial.

Once the parts have been pinned by these temporary fasteners other full-sized holes are
match-drilled in-between and riveted. After the parts have been fastened in this way the
original coordination hole fasteners used for clamping the parts to each other are removed
and bigger full-sized holes are drilled over each hole pair to clean out these overlapping holes.
The smallest circle (shown in Figure 2 as the dotted circle), that contains these two circles
and is centered on one of them, has diameter B. This is called the clean-out diameter, since
it is the smallest diameter required to clean out both holes under such centering. These
clean-out diameters will vary from hole pair to hole pair. The maximum clean-out diameter
over all K hole pairs is a simple function of the maximum distance between hole center pairs.
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The control of the maximum clean-out diameter is referred to as the clean-out problem. As
long as the maximum clean-out diameter is less than the intended full-sized hole diameter,
there is no danger of residual cavities or boundary irregularities in the clean-out holes, i.e.,
no need for rework or oversized fasteners.

Figure 2: Hole Clean-Out Diameter B

• ••clean-out diameter  B

nominal center

In the context of the minimal clearance diameter a case was made that true position
part alignment gives a conservative assessment of the ability to pin the parts. The same
is not so clear-cut with respect to the maximum clean-out diameter over all K hole pairs.
The reason for the difference is that while trying to pin the parts via coordination holes
the parts are still free to move relative to each other, whereas at the clean-out stage the
parts are already riveted to each other at intermediate, match-drilled holes. At that stage
the parts are certainly not in true position alignment. A plausible (but not completely
forcing) argument can be made for treating a maximum clean-out diameter analysis under
true position part alignment as reasonable, if not conservative. This argument is as follows.
By pinning K hole pairs simultaneously the paired hole centers will be coerced to move
closer together in order to permit simultaneous pinning, especially when pinning becomes
difficult due to excessive hole centering variations. In such cases the hole centers are likely
to be closer together than under true positioning and it is these cases which also pose the
biggest clean-out problems. Exceptions to this plausibility argument can be constructed and
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more investigations are needed, but at this point we will assume that treating the clean-out
problem under true position part alignment will not be too far off the mark from being
conservative. Actually it will be seen later that the particular alignment strategy of using
primary and secondary coordination holes for a definite and practical alignment provides a
counterexample to the above argument. However, in that case this issue of proper treatment
of the clean-out problem is resolved in straightforward fashion.

In [1], [2] and [3] we examined an alternate and more realistic alignment model, in
which two hole pairs, located farthest apart from each other, were aligned as follows. The
parts are moved relative to each other until the centers of the first or primary hole pair
are aligned on top of each other (via expanding fasteners or tightly toleranced hole and
pin diameters). Then the distant or secondary hole pair is aligned by rotating the parts
around the pinned primary hole pair to achieve maximal clearance at that secondary hole
pair. This alignment causes the centers of all four holes in the two hole pairs (when projected
on a plane perpendicular to the hole axes) to be collinear. This alignment leaves matters
mathematically more complex in that the hole center distances of intermediate hole pairs are
no longer statistically independent of each other. They all depend on the alignment of the
two hole pairs used for alignment, which in turn is affected by the hole centering variation
at the primary and secondary hole pairs. These dependencies make a clean analysis of the
statistical effects of hole centering variation analytically very complicated. It was found in
[1] that using the two hole pairs farthest apart in this alignment is better than choosing
any other two hole pairs for such an alignment. This not only minimizes the actual part to
part misalignment but also minimizes the maximum hole center discrepancy, i.e., gives best
clearance and clean-out results. Although a clean analytical treatment of this alignment
procedure was judged to be intractable, we found through extensive simulations a simple
link to the results obtained under the impractical method of true position alignment.

In Section 2 we first present the clearance and clean-out problem in the context of one
matched hole pair under true position alignment. We show that the clearance and clean-
out diameters, C and B, are best studied in terms of the distance D between hole centers.
Based on a circular bivariate normal distribution for the hole centering variation we derive
the statistical distribution function of D and then extend this to K matched hole pairs,
again under true position alignment. From this we derive the distribution functions for the
minimal clearance and maximal clean-out diameters for K matched hole pairs. The K hole
pairs can all be along one seam or over several seams or arranged in some other spatial
form. For example, they could represent hole pairs or paired feature point locations around
the perimeter edge of two fuselage sections. As far as pinning is concerned, one can always
view the relevant discrepancies locally within a plane. This ignores possible 3-dimensional
interference effects which would need to be addressed separately.
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Accurate approximations to these distribution functions are then given in terms of the
Gumbel distribution from extreme value theory and the effect of K and the hole positioning
precision is examined. These approximations show that the ability to simultaneously pin all
K hole pairs degrades in direct proportion to the hole centering variability. Furthermore,

the degradation is approximately proportional to
√

log(K), i.e., the number of hole pairs
affects the problem only very mildly. This is certainly surprising in view of other tolerance
stacking phenomena where variability contributions of K linearly stacked dimensions would
aggregate proportional to

√
K in root sum square (RSS) stacking or proportional to K in

worst case stacking. Of course, we do not have additive accumulation over K variation terms
here. Instead we deal with maxima over K terms (hole center discrepancies), each of which
is affected by four variation terms (the hole center coordinates).

In Section 3 the effect of the more practical alignment procedure via primary and sec-
ondary coordination holes is examined through extensive simulations and related successfully
and in simple linear fashion to the analytical model developed in Section 2.

In Section 4 the results of statistical tolerance stacking under true position and pri-
mary/secondary hole pair alignment are compared to worst case tolerance stacking under
corresponding alignments. In the case of true positioning the gain in maximimal hole center
mismatch, when using statistical over worst case tolerance stacking, is mild (25% − 10%
for K = 2, . . . , 50) but under primary/secondary hole pair alignment the gain ranges from
55%− 40% for linear hole patterns and from 33%− 25% for hole patterns arranged equally
spaced on the perimeter of a square. Since hole centering accuracy affects the maximum
hole center mismatch in a proportional manner, such gains translate directly to the same
percentage improvements for hole centering accuracies.

In Section 5 the results of Section 2 for matching K hole pairs under true position
alignment are extended to the situation where three parts are to be pinned (e.g. skin, skin and
stringer) and thus three holes are matched at each nominal location. This extension is based
on considering the worst pair among each triplet and coupling this with Boole’s inequality.
This leads to a good approximation for describing extreme hole center discrepancies, which
are our primary concern. Here the clearance problem growth relative to K is on the order of√

log(2.4K), i.e., again very slow with K. These results under true position alignment are

then again extended to the case which uses primary/secondary hole triplet alignment.

The above results assume equal hole centering accuracy regardless of the locations at
which the holes are drilled. This assumption is often not satisfied in practice. Usually the
drilling tool is indexed against some datum and the drilling accuracy will degrade somewhat
as the drill head moves away from that datum. Systematic location effects (datum to hole
variation) have no bearing on the ability to pin parts successfully. Such a common shift
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of all hole centers can be compensated by shifting the part correspondingly when aligning
it for pinning. Of course such shifts affect the position of the parts relative to each other.
In fact, they are possibly the main drivers in part to part misalignment. An increase in
centering variation from hole to hole cannot be corrected so easily and its effect may need to
be factored in at the tolerance design stage. One way to deal with this is to conservatively
assume a constant centering accuracy as it can be attained at the hole center farthest from
the datum used as reference during drilling. Since this may be too conservative we reanalyze
in Section 6 the results from Section 2 in the context of linearly increasing hole centering
variation. Some simple approximations are presented that appear reasonable for extreme
clearance and clean-out problems. The results presented here are of exploratory nature since
they only cover true position alignment.

Another form of hole centering degradation with distance from datum occurs when dif-
ferential thermal expansion effects (between drill tool and part to be drilled) play a role.
Then there are systematic offsets (typically with linear growth from the datum) and one
needs to compensate for these before invoking any of the results presented here. Such com-
pensation should adjust the nominal hole center location based on the ambient temperature
and tool/part expansion differential.

Section 7 addresses a further extension. Here the two parts or subassemblies to be joined
by coordination holes are themselves built up from subparts, each subpart already predrilled
with its respective coordination holes. The assembly from subparts to part or subassembly is
another source of variation (affecting all holes on the same subpart jointly, i.e., in a dependent
manner) which needs to be accounted for when examining whether the two built up parts or
subassemblies can be pinned successfully at all coordination holes. This problem is examined
only in a rather limited setting and the intent is to gain a preliminary understanding of how
such correlated variation affects the analysis. Although this question arose originally in
support of JSF it came up again within the context of fitting cargo liners to built up frames.
Ultimately it is planned to build a simulation software tool which has sufficient flexibility to
help address various further such inquiries.

Sections 2, 3, and 5 are accompanied by boxed rules or guidelines for planning tolerance
stack analyses. Their purpose is to serve as direct entry points without having to read
through the underlying analyses. Sections 6 and 7 are exploratory investigations. Further
progress in these areas is definitely possible and could lead to similar boxed rules or guidelines,
but a definite case for their need has to be made before embarking on this.
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2 Clearance & Clean-Out under True Position Alignment

Suppose two locally flat parts 1 and 2 are to be pinned by placing a pin of diameter δ through
a hole with diameter d in part 1 and (by proper alignment of part 2 with respect to part 1)
at the same time also through a corresponding hole of diameter d on part 2. For δ < d such
pinning should always be possible, if we align the hole centers on top of each other. This
assumes that there are no other part interferences.

Although the alignment just mentioned may work fine with just one hole pair to be
pinned, it is usually no longer possible if several hole pairs need to be aligned simultaneously
and if the actual hole centers deviate from the respective nominal hole centers. It is assumed
that the nominal hole centers are matched perfectly by design and thus could be aligned
perfectly by true position alignment. Note the distinction made between “actual hole centers”
and “nominal hole centers.” It is extremely unlikely that the actual hole centers on part 1
could simultaneously match the corresponding actual hole centers on part 2 through some
alignment. Bearing this in mind we assume for now that the parts are aligned on their true
position, as intended by the design.

2.1 Single Hole Pair Clearance

Focussing on hole centering issues we disregard part thickness and thus perpendicularity
issues (see [4] for some treatment of that) and view the two parts as planar and aligned in
true position within a common two-dimensional coordinate system. Within this coordinate
system we denote the common nominal hole centers by (µ, ν) and the actual hole centers by
(X1, Y1) and (X2, Y2), respectively. See Figure 1, where (µ, ν) is marked by a + and (X1, Y1)
and (X2, Y2) are marked as the two outside • marks on the clearance diameter. The middle
• represents the center of the maximal clearance circle.

Assume that X1, Y1, X2, Y2 are independent and normally distributed random variables
with means µ for X1 and X2 and ν for Y1 and Y2 and with variances σ2

1 for X1 and Y1 and
σ2

2 for X2 and Y2. These assumptions mean that the hole centering variation on either part
is described by a circular bivariate normal distribution centered on (µ, ν) with the radial
accuracy governed by σ1 in the case of (X1, Y1) and by σ2 in the case of (X2, Y2). This
variation model is backed by theoretical considerations as the only one that has independent
variations in the X and Y directions and which has an isotropic bivariate probability density,
i.e., a density that is constant at points equidistant from the nominal center (µ, ν). This
means that hole center deviations from the nominal center are equally likely in all directions.
The fact that we allow for different σ’s reflects the possibly different processes that may be
applied in drilling the holes on the two parts. For example, it may be possible to center
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holes more accurately on stringers than on skin panels.

A consequence of the above variation model is that the probability of “the distance of
(Xi, Yi) from nominal center (µ, ν) being bounded by x” is given by

P
(√

(Xi − µ)2 + (Yi − ν)2 ≤ x
)

= 1− exp

(
− x2

2σ2
i

)
for i = 1, 2 .

Here exp(y) = ey is the exponential function and we denote by log(z) = loge(z) its inverse,
often also denoted by ln(z).

In particular, from the defining relation of the quantile xp relative to p (0 < p < 1),
namely

P
(√

(Xi − µ)2 + (Yi − ν)2 ≤ xp

)
= 1− exp

(
−
x2
p

2σ2
i

)
= p = .9973

we obtain

x.9973 = xp = σi
√
−2 log(1− p) = σi

√
−2 log(1− .9973) = 3.439σi ,

i.e., a 3.439σi radial zone around (µ, ν) will contain 99.73% of all actual hole centers. This
can be viewed as a bivariate analogy to the 99.73% of all Xi (or Yi) values falling within the
customary 3σi of µ (or ν) in the univariate framework. The factor 3.439 (as opposed to 3)
adjusts for the fact that we deal with a two-dimensional variation criterion.

If the radial tolerance for hole centering is specified by Ti for holes on part i, we may, in
keeping with the above 3σi vis-á-vis .9973 paradigm for one-dimensional tolerances, want to
link this radial tolerance to σi as follows:

Ti = 3.439 σi or σi = Ti/3.439 . (1)

The distance between the pair of actual hole centers is denoted by D and can be expressed
as

D =
√

(X1 −X2)2 + (Y1 − Y2)2 .

This distance D also is the amount by which the two holes (circles) of radius r or diameter
d = 2r are shifted relative to each other, leaving us with a diameter C = 2r−D = d−D for
the largest clearance circle that can fit within the two offset holes. A negative value for C
indicates that there is no clearance within the two holes at all, at least not in the assumed
true position alignment. If d−D < δ there is insufficient clearance for a pin with diameter
δ.
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The corresponding diameter for a clean-out hole, centered on one of the two hole centers,
is B = 2(r + D) = d + 2D. If we center the clean-out hole halfway between the two
hole centers, then the clean-out diameter is B′ = d + D. This latter diameter may be
relevant1 when drilling full-sized holes. Then one is concerned with a rivet passing through
the clearance diameter and the subsequently “upset” rivet filling at most a circle of a certain
size, namely the smallest one containing both circles. This circle coincides with the one
associated with the diameter B′.

Under the above assumptions the differences X1 −X2 and Y1 − Y2 are independent and
normally distributed random variables with mean zero and common variance τ2 = σ2

1 + σ2
2 .

Thus the distribution function of D, or the probability that the distance D between two hole
centers is bounded by x, is given by

P (D ≤ x) = 1− exp

(
− x2

2τ2

)
for x ≥ 0 .

The fact that the hole drilling accuracies could differ from part to part is of no great impact,
since in the end only τ2 = σ2

1 + σ2
2 matters.

2.2 Clearance and Clean-Out Distributions for K Holes

If K hole pairs are aligned on nominal positions we can ask: What is the maximum diameter
for a pin that would fit all hole pairs simultaneously? This diameter is the minimum of K
statistically independent hole clearances, i.e.,

CK,min = min(C1, . . . , CK) = min(d−D1, . . . , d−DK) = d−max(D1, . . . , DK) ,

where Ci is the clearance for the ith true position aligned hole pair. Similarly, the worst clean-
out diameter among the K holes is given by the maximum of K statistically independent
clean-out hole diameters, i.e.,

BK,max = max(B1, . . . , BK) = d+ 2 max(D1, . . . , DK)

or

B′K,max = max(B′1, . . . , B
′
K) = d+ max(D1, . . . , DK) ,

where Bi and B′i are the respective clean-out diameters for the ith true position aligned hole
pair.

1pointed out to me by Mark Boberg
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The reason for being able to invoke statistical independence here is that the random de-
viations of each hole center from nominal are assumed to be independent and don’t influence
each other through the alignment process, since the alignment is assumed to be keyed on
the fixed nominal centers. Although datum to hole variation would affect all holes on the
same part by a common shift (which causes dependence from hole to hole), one can ignore
this variation source as far as pinning and clean-out is concerned. One would simply assume
an alignment that negates that common shift, i.e., use a modified true position alignment.
Since true position alignment is artificial (not realizable), there is no loss in using the further
artificial construct of a modified true position alignment.

The exact statistical distributions of CK,min, BK,max, and B′K,max are easily derived in
terms of the distribution of

MK = max(D1, . . . , DK) .

Namely,

P (CK,min ≤ x) = P (d−max(D1, . . . , DK) ≤ x) = 1− P (MK ≤ d− x) , x ≤ d

P (BK,max ≤ x) = P (2MK + d ≤ x) = P (MK ≤ [x− d]/2) , x ≥ d

and

P (B′K,max ≤ x) = P (MK + d ≤ x) = P (MK ≤ x− d) x ≥ d .

From the independence of centering errors for each hole pair and the true position alignment
assumption we get for x ≥ 0

P (MK ≤ x) = P (D1 ≤ x, . . . , DK ≤ x) = P (D1 ≤ x)× · · · × P (DK ≤ x)

= [P (D ≤ x)]K =

[
1− exp

(
− x2

2τ2

)]K

From this it follows that

P (CK,min ≤ x) = 1−
[
1− exp

(
− [d− x]2

2τ2

)]K
for x ≤ d

P (BK,max ≤ x) =

[
1− exp

(
− [(x− d)/2]2

2τ2

)]K
for x ≥ d,

and
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P (B′K,max ≤ x) =

[
1− exp

(
− [x− d]2

2τ2

)]K
for x ≥ d.

2.3 Approximations and Quantiles

For large K the above distributions can be approximated, providing a clearer insight into the
effects of τ and K on the growth of the clearance and clean-out problem. It turns out that
these approximations are also useful for small to moderate K, provided they are applied to
the appropriate distribution tail. Fortuitously, this tail happens to be just the one that is of
most concern in each respective case.

First we develop the approximation for P (MK ≤ x) as follows:

HK(x) = P (MK ≤ x) =

[
1− exp

(
− x2

2τ2

)]K
≈
[
exp

(
− exp

{
− x2

2τ2

})]K

= G
(
x2

2τ2
− log(K)

)
= HK(x) , (2)

where τ2 = σ2
1 + σ2

2 and G(x) = exp(− exp[−x]) is the Gumbel distribution function known
from extreme value theory. The above approximation invokes

1− α ≈ exp(−α)

which is good for small values of α. Here we used α = exp (−x2/(2τ2)), which is small for
large x. Thus the approximation for HK(x) should work well for all K ≥ 2, provided x is
large. The latter is the case of main interest. For large K the approximation will tend to
get better for other x values as well. This is demonstrated later in the context of quantiles.

It should be pointed out that the approximation HK(x) for HK(x) is not based on the
traditional approach taken in extreme value theory. There one usually determines normal-
izing constants aK and bK such that the following limiting relationship holds uniformly for
all x

P (bK [MK − aK ] ≤ x) −→ G(x) as K →∞ ,

where G(x) is a distribution function which can be only one of three different types. In

Appendix A we show that with aK = τ
√

2 log(K) and bK =
√

2 log(K)/τ we have that

G(x) = G(x), which is one of these three distribution types. Thus for all x ≥ 0 and for large
K we can also approximate

HK(x) = P (MK ≤ x) = P (bK [MK − aK ] ≤ bK [x− aK ]) ≈ G(bK [x− aK ]) . (3)
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For K = 2, 3, 5, 10, 30, 60 the respective plots in Figure 3 show the true densities of the
MK distributions as a solid line, compared with the density from our first approximation
(2) as a dotted line, and that of the second approximation (3) as a dashed line. The first
approximation is excellent for high MK values even for small K and overall quite good for
K ≥ 10. The second approximation is not good for small K and even for K = 30 and
K = 60 it still shows substantially higher density in the important, right tail. One sees
clearly how slowly the distributions shift to the right as K increases from 2 to 60, and they
also appear to get more concentrated at the same time. This latter observation is confirmed
below when looking at quantile differences.

It should be pointed out that HK(x) is not a statistical distribution function, since it
does not increase from zero to one. Instead it increases from exp(−K) to one for x ≥ 0
and is not meant to serve as approximation for x < 0. Thus it should not surprise that the
derivative of HK(x), shown as dotted line in Figure 3, does not integrate to one over the
range [0,∞). Instead it integrates only to 1− exp(−K). This is particularly pronounced in
Figure 3 for K = 2, where the total areas under the solid and dotted curves don’t appear to
match. The solid and dashed curves represent genuine densities, but the dashed curve does
extend to the left of x = 0, which is again pronounced for K = 2.

The exact p-quantile mK,p of MK is defined by

p = P (MK ≤ mK,p) =

[
1− exp

(
−
m2
K,p

2τ2

)]K

which we solve for mK,p as

mK,p = τ
√
−2 log (1− p1/K) .

For p ≈ 1 and thus p1/K even closer to 1 we have from − log(1 − x) ≈ x for small x as
excellent approximation

1− p1/K ≈ − log
(
1−

[
1− p1/K

])
= − log

(
p1/K

)
= − log p

K
and thus

mK,p ≈ τ
√
−2 log[− log(p)] + 2 log(K) . (4)

This approximation is good for any K ≥ 2, provided p ≈ 1. For large K it is valid for all
p ∈ (0, 1), as long as p1/K is reasonably close to 1. Note that for any p > 0 we have p1/K ≈ 1
provided K is large enough.
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Figure 3: Distribution of MK for σ1 = σ2 = .01
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Figure 4: Growth of mK,p with Respect to K when σ1 = σ2 = .01
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The exact and approximate quantile representations clearly show the dependence on the
hole centering precision parameter τ . It simply scales the distribution of MK , i.e., if τ
increases by a factor κ, then the distribution of MK will spread out to the right from zero
by that factor κ. Also note the slow increase of mK,p with respect to K, namely through
log(K) under the square root. See Figure 4 for a graphical illustration of this slow growth
effect.

Concerning the spread of the distribution of MK we can look at the difference of two of
its quantiles. Let 0 < p < q < 1 and denoting A = −2 log[− log(q)] > −2 log[− log(p)] = B
we have

mK,q −mK,p ≈ τ
√
A+ 2 log(K)− τ

√
B + 2 log(K)

= τ
A+ 2 log(K)− [B + 2 log(K)]√
A+ 2 log(K) +

√
B + 2 log(K)

=
τ(A−B)√

A+ 2 log(K) +
√
B + 2 log(K)
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which slowly decreases to zero at the rate of 1/
√

log(K) as K −→∞.

2.4 Clearance Tolerance Stack Criterion and Fallout Rate

The corresponding exact formula and approximation for the p-quantile of the minimum
clearance diameter CK,min derives from the above relations as follows.

p = P (CK,min ≤ cK,min,p) = 1− P (MK ≤ d− cK,min,p)

=⇒ 1− p = P (MK ≤ d− cK,min,p) = P (MK ≤ mK,1−p)

i.e.,

=⇒ cK,min,p = d−mK,1−p = d− τ
√
−2 log [1− (1− p)1/K ] (5)

≈ d− τ
√
−2 log [− log(1− p)] + 2 log(K)

with the last approximation being excellent for small p for any K ≥ 2.

When the pin diameter δ is less than the quantile cK,min,p we have

P (CK,min > δ) ≥ P (CK,min > cK,min,p) = 1− p

and we can conclude that the minimum clearance CK,min over all K hole pairs is greater
than the pin diameter δ for at least 100(1− p)% of the part assemblies to be pinned. The
condition δ < cK,min,p translates to

d− τ
√
−2 log [1− (1− p)1/K ] > δ

or

τ
√
−2 log [1− (1− p)1/K ] < d− δ .

Using the approximation for small p this becomes

τ
√
−2 log [− log(1− p)] + 2 log(K) < d− δ , (6)

where d− δ is the nominal margin between hole and pin diameter. If this is to be satisfied
for 99.73% of all assemblies, which is in keeping with the traditional interpretation of end
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tolerances (Te ∼ 3σe), we would choose p = .0027 in (6). Furthermore, according to (1) we
should take

τ =
√
σ2

1 + σ2
2 =

1

3.439

√
T 2

1 + T 2
2 ,

where Ti is the radial hole centering tolerance for part i. Here the conversion σi = Ti/3.439
reflects our previous interpretation that 99.73% of all actual hole centers are within the
circular zone with radius Ti around the respective ith nominal hole center.

With this the clearance criterion (6) becomes

1

3.439

√
T 2

1 + T 2
2

√
11.826 + 2 log(K) =

√
T 2

1 + T 2
2

√
1 + 2 log(K)/11.826 < d− δ .

Conversely, one can ask for the rate p of assembly fallout (not all holes can be pinned)
for a given nominal gap d− δ. Since this rate is not necessarily near zero we should not use
the approximation. Clearly we have p = 1 for d < δ and for d ≥ δ we get

p = P (CK,min < δ) = P (d−MK < δ) = P (MK > d− δ)

= 1−
1− exp

−1

2

[
d− δ
τ

]2
K

= 1−
[
1− exp

(
−11.826(d− δ)2

2(T 2
1 + T 2

2 )

)]K
.

The Rule 1 box summarizes the clearance tolerance stack criterion and the clearance
fallout rate in terms of the radial tolerances for hole centering.

2.5 Clean-Out Tolerance Stack Criterion and Fallout Rate

Similarly one obtains the corresponding exact formula and approximation for the p-quantiles
of the maximum clean-out diameter BK,max, namely

p = P (BK,max ≤ bK,max,p)

= P (MK ≤ [bK,max,p − d]/2) = P (MK ≤ mK,p) .

Thus one obtains bK,max,p = d+ 2mK,p or, using the approximation for p ≈ 1,

bK,max,p ≈ d+ 2τ
√
−2 log [− log(p)] + 2 log(K) ,

with the interpretation that 100p% of such assemblies will have the clean-out diameter
bounded from above by this quantile bK,max,p.
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Rule 1

Clearance under True Position Alignment

Given 2 parts, each with a set of K nominally matched coordination holes (in any
pattern), and given that these holes are centered with radial tolerance Ti on part i,
i = 1, 2, then these two parts can be pinned successfully at all K coordination hole
pairs with 99.73% assurance for such assembly if

d− δ >
√
T 2

1 + T 2
2

√
1 +

2 log(K)

11.826
.

Here d and δ are the common hole and pin diameters. If these themselves are tol-
eranced one can conservatively work with the worst case dimensions of these with
respect to the clearance issue, namely with tightest hole diameters and widest pin
diameters (maximum material condition).

Conversely, for given d− δ ≥ 0 the assembly fallout rate p of insufficient clearance at
some hole pair among the K pairs to be pinned is given by

p = 1−
[
1− exp

(
−11.826(d− δ)2

2(T 2
1 + T 2

2 )

)]K
.

For d− δ < 0 the assembly fallout rate obviously is p = 1 or 100%.

Assumptions: The hole centering variation is reasonably described by a circular
bivariate normal distribution, centered on nominal hole centers (matching for both
parts), and is independent from hole to hole (hole to hole variation). It is assumed
that the radius Ti for the circular hole centering tolerance zones captures 99.73% of
all drilled hole centers.

Furthermore, the parts are assumed to be aligned in true position. Although this
latter alignment is not practical it is still not the best possible one for minimizing
clearance problems.
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When the diameter df of the full-sized holes, which are drilled for clean-out purposes, is
at least as large as the quantile bK,max,p we have

p = P (BK,max ≤ bK,max,p) ≤ P (BK,max ≤ df) .

Under that condition we can conclude that the full-sized hole diameter df will clean out all
K coordination hole pairs for at least 100p% of the part assemblies.

If this is again to happen for 99.73% of all assemblies, we would take p = .9973 in the
formula above and for τ we take the same value as before. Hence

bK,max,.9973 ≈ d+
2

3.439

√
T 2

1 + T 2
2

√
−2 log[− log(.9973)] + 2 log(K) < df

or √
T 2

1 + T 2
2

√
1 + [2 log(K)]/11.826 < (df − d)/2 .

For the other formulation of clean-out diameter this would yield

p = P (B′K,max ≤ b′K,max,p) = P (MK ≤ b′K,max,p − d) = P (MK ≤ mK,p)

so that b′K,max,p = d+mK,p or, using the approximation for p ≈ 1,

b′K,max,p ≈ d+ τ
√
−2 log [− log(p)] + 2 log(K) ,

with the interpretation that 100p% of such assemblies will have the maximal clean-out diam-
eter B′K,max bounded from above by this quantile b′K,max,p. The considerations for full-sized
hole drilling parallel those from before, leading now to the more relaxed requirement√

T 2
1 + T 2

2

√
1 + [2 log(K)]/11.826 < df − d .

Conversely, for given df − d ≥ 0, one may ask for the rate p of fallout, i.e., for the
proportion of assemblies with clean-out problems. In the context of the first clean-out
centering, leading to BK,max, one obtains

p = P (BK,max > df) = 1− P (BK,max ≤ df) = 1− P (MK ≤ [df − d]/2)

= 1−
1− exp

−1

2

[
(df − d)/2

τ

]2
K

= 1−
[
1− exp

(
−11.826 [(df − d)/2]2

2(T 2
1 + T 2

2 )

)]K
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When dealing with the other clean-out formulation, leading to B′K,max, the fallout rate is
calculated in the same manner, but replacing (df − d)/2 by df − d in the above formula.

With respect to clean-out issues the Rule 2 box summarizes the tolerance stack criterion
and the assembly fallout rate in terms of the radial tolerances for hole centering.

3 Alignment Using Primary and Secondary Hole Pairs

Here we consider an alignment process that comes close to common practice. The two parts
are aligned by pinning two pairs of coordination holes. The pairs to be pinned are chosen so
that they are maximally apart. Simulations reported in [1] appear to show that this choice
of hole pairs is best among all other choices of hole pairs, both in terms of minimizing part
misalignment and in terms of reducing hole clearance and clean-out problems.

In the alignment considered here the first of the two hole pairs, called the primary hole
pair, is pinned perfectly, i.e., the centers of the holes in this pair match, either by employing
an expanding temporary fastener or by using a tightly toleranced hole/fastener combination.
The other and secondary hole pair is aligned by the necessary rotation around the pinned
primary hole pair and by pushing a temporary, expanding fastener through the secondary
hole pair and expanding that fastener so that the hole centers of all four involved holes are
collinear when projected onto the plane perpendicular to the hole center axes. For this to be
possible it is assumed that the parts have the required freedom to move or rotate relative to
each other. Of course it is possible that the hole center variations are so extreme that there
is insufficient clearance at the secondary hole pair to get the fastener through. Whether
pinning of the secondary hole pair is possible or not, for purposes of analysis it is assumed
that after alignment the primary hole centers match and that they are collinear with the
pair of secondary hole centers, i.e., the secondary hole centers are as close as possible to each
other given the constraint of matching the primary hole centers.

After this alignment the clearance at the primary hole pair is obviously maximal and at
the secondary hole pair it is somewhat reduced. For the intermediate hole pairs the clearances
are presumably negatively impacted, because the nominal centers for all these hole pairs are
now misaligned. Since the actual hole centers are aimed at the nominal centers, it is likely
that the maximal hole center discrepancy over these K−2 intermediate paired hole centers is
somewhat increased over what it would be under true position alignment. To a small extent
this may be offset by the “better” than true position alignment at the primary hole pair. The
net effect on the maximal hole center distance over all K hole pairs is not obvious. We denote
the maximum of the distances between the K hole center pairs after the primary/secondary
hole pair alignment by M̃K .
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Rule 2

Clean-Out under True Position Alignment

Given 2 parts, each with a set of K nominally matched coordination holes (in any
pattern), and given that these holes are centered with radial tolerance Ti on part i,
i = 1, 2, then the respective pairs of coordination holes on these two parts can be
cleaned out successfully at all K locations with 99.73% assurance if

(df − d)/2 >
√
T 2

1 + T 2
2

√
1 +

2 log(K)

11.826
.

Here df and d are the common diameters of the full-sized (clean-out) holes and coor-
dination holes, respectively. If these themselves are toleranced one can conservatively
work with the worst case dimensions of these as far as clean-out is concerned, namely
with the minimum value for df and the maximum value for d.

Conversely, for given df − d ≥ 0 one determines the fallout rate p of an excessive
clean-out diameter requirement at some hole pair among the K pairs to be cleaned
out as

p = 1−
[
1− exp

(
−11.826 [(df − d)/2]2

2(T 2
1 + T 2

2 )

)]K
.

If df − d < 0 the fallout rate is p = 1 or 100%.

Assumptions: The hole centering variation is reasonably described by a circular
bivariate normal distribution, centered on nominal hole centers (matching for both
parts), and is independent from hole to hole (hole to hole variation). It is assumed
that the radius Ti for the circular hole centering tolerance zones captures 99.73% of
all drilled hole centers.

The parts are assumed to be aligned in true position. Although this latter alignment
is not practical it is still not the best possible one for minimizing clean-out problems.

The clean-out holes are assumed to be centered on one of the respective coordination
hole centers. If the clean-out holes are centered midway between the two respective
coordination hole centers, i.e., centered on the clearance gaps, we can replace (df −
d)/2 by the more relaxed df − d in the two formulas above.

Caveat: See the discussion on page 4 concerning the possibly not quite conservative
nature of this rule, which is based on true position alignment.
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3.1 Maximum Hole Center Distance

An analytical investigation of these alignment effects on M̃K proved intractable and it was
decided to attack this problem via extensive simulations. Two sets of simulations were
investigated, one with nominal hole centers equally spaced along a straight line and the
other with nominal hole centers equally spaced along the perimeter of a square including
the corners. These simulations show that the high quantiles of the M̃K distribution are
significantly higher under this two hole pair alignment when compared to the corresponding
quantiles of MK under true position alignment.

Previously it was argued that even true position alignment was not the best possible one,
and now it seems that this two hole pair alignment, which comes closer to assembly reality,
may give away even more. This means that tighter hole centering tolerances are needed in
order to allow for the variation effects in this alignment process.

In the simulations we assume a common σ for hole centering accuracy on either part.
However, the results can also be used when the hole centering accuracy is different for the two
parts to be pinned, i.e., are characterized by standard deviations σ1 and σ2 for parts 1 and 2,

respectivly. In that case one simply interprets σ =
√

(σ2
1 + σ2

2)/2 = τ/
√

2 as the “common”
σ. The justification for this is given at the end of Appendix B. There it is also demonstrated
that the distribution of M̃K/σ, aside from the linear or square pattern of equally spaced
nominal hole centers, depends only on K and not on σ. This distributional independence
from σ holds, provided σ is small compared to the hole to hole spacings, which certainly is
not a restrictive limitation. By simulating the distribution of the normalized ratio M̃K/σ we
get direct access (by simple scaling) to the distribution of M̃K for any reasonable σ.

The first set of simulations assumes that the nominal hole centers are equally spaced along
a line. For each K ∈ {2, 3, . . . , 10, 12, 14, 16, 20, 25, 30, 40, 50, 60} a set of 50, 000 simulations
was run. This means that for each run the hole center variations at all K hole center pairs
were independently simulated, i.e., the X and Y deviations from nominal at each hole center
were independently generated from a normal distribution with mean zero and standard
deviation σ. The resulting value of M̃K/σ was calculated and this process was then repeated
independently 50, 000 times for each K.

The second set of simulations assumes that the nominal hole centers are equally spaced
along the perimeter of a square with points at the corners. This means that K must be a
multiple of 4. Two diagonally opposing corner points were used as primary and secondary
points for alignment. Again M̃K denotes the maximum of the K distances between respective
hole center pairs after the above primary/secondary hole pair alignment. The distribution
of the normalized M̃K/σ, depending only on K for K ∈ {4, 8, 12, 16, 20, 24}, was obtained
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by running 50, 000 simulations for each K.

For each K the 50, 000 simulated values of M̃K/σ (for the linear as well as the square
hole center patterns) were sorted in increasing order. The resulting ordered values can be
viewed as the 50, 000 sample pi-quantiles m̂K,pi/σ, for pi = i/50, 001, i = 1, . . . , 50, 000.
These normalized sample quantiles, for pi not too close to zero or one, can be viewed as good
estimates of the actual p-quantiles m̃K,pi/σ of M̃K/σ. Here m̃K,p is defined by the property

P (M̃K ≤ m̃K,p) = p .

These normalized sample quantiles, m̂K,pi/σ ≈ m̃K,pi/σ, were compared against the corre-
sponding quantiles

mK,pi/σ = 2

√
− log

(
1− p1/K

i

)
of the MK/σ distribution. Recall that MK is the maximal hole center distance under true
position alignment and its distribution does not depend on the pattern of nominal hole
centers. For the respective values of K the plots of m̂K,pi/σ ≈ m̃K,pi/σ against mK,pi/σ for
i = 1, . . . , 50, 000 are shown in Figures 5-7 for the linear and square hole center patterns.

For linear hole patterns and K ≥ 3 the plots look consistently quite linear for pi ≥ .001
and for K = 2 linearity sets in for pi ≥ .3. In the linear pattern case the respective quantiles
are indicated by the dashed horizontal lines.

For square hole patterns the linearity is strong for pi ≥ .50, i.e., between the .50- and
.99-quantiles. In the square pattern case these segments are marked by the +’s. The more
pronounced scatter of the very extreme upper points is quite natural and should not be
construed as evidence against the continuation of that linear behavior.

In the linear pattern case least squares lines (dashed) were fitted to the upper 70% (for
K = 2) and 99.9% (for K ≥ 3) of the points. In the square pattern case least squares
lines (dashed) were fitted to the upper 50% of the points. The solid lines represent the
main diagonals where m̃K,p/σ = mK,p/σ. These diagonals are shown to give a perspective
to the actual difference between m̃K,p/σ and mK,p/σ. The intercept and slope coefficients
(αK , βK) of the fitted least squares lines were plotted against K in Figure 8 and smoothed
(for K > 2) using a smoothing spline. The smoothed values are presented in Table 1 for the
K values for which simulations were run, while interpolated values were saved for use in a
spreadsheet tool. Note that although the table values were generated assuming a common σ
for hole centering accuracy on both parts, they can also be used when we deal with differing

accuracies represented by σ1 and σ2, simply by taking σ =
√

(σ2
1 + σ2

2)/2 = τ/
√

2.
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Figure 5: Quantile Comparison of Primary/Secondary Hole versus True Position Alignment
m̃K,p/σ versus mK,p/σ for Linear Patterns
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Figure 6: Quantile Comparison of Primary/Secondary Hole versus True Position Alignment
m̃K,p/σ versus mK,p/σ for Linear Patterns
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Figure 7: Quantile Comparison of Primary/Secondary Hole versus True Position Alignment
m̃K,p/σ versus mK,p/σ for Square Patterns
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Figure 8: Smoothing Splines for Intercepts and Slopes
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Table 1: Coefficients for Linear Quantile Relationships

m̃K,p/σ = αK + βKmK,p/σ or m̃K,p = αKσ + βKmK,p

linear patterns for nominal hole centers

valid for p ≥ .3 at K = 2 & p ≥ .001 for K ≥ 3

K αK βK K αK βK K αK βK

2 -2.127 1.571 8 -0.802 1.479 20 -1.122 1.545
3 -1.043 1.446 9 -0.828 1.487 25 -1.260 1.573
4 -0.923 1.451 10 -0.857 1.495 30 -1.346 1.587
5 -0.838 1.456 12 -0.916 1.508 40 -1.520 1.616
6 -0.796 1.463 14 -0.969 1.517 50 -1.713 1.650
7 -0.788 1.471 16 -1.020 1.526 60 -1.830 1.668

square patterns for nominal hole centers

valid for p ≥ .5

K αK βK K αK βK K αK βK

4 -2.198 2.107 12 -2.744 2.139 20 -3.300 2.229
8 -2.469 2.108 16 -2.975 2.171 24 -3.545 2.267
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A plot with all the fitted least squares lines superimposed is given in Figure 9, with K = 2
represented by the lowest dotted line for the linear patterns and with K = 4 represented
by the highest dashed line for the square patterns. For each hole center geometry (linear
or square) there is remarkably little difference in these lines for K > 2. That the relation
between m̂K,p ≈ m̃K,p and mK,p is so strongly linear is fortuitous. It begs for a true analytical
explanation, especially since the type of geometric hole centering pattern (linear or square)
still seems to have a strong impact on the coefficients of the linear relationships. On intuitive
grounds one might suspect that this linear relationship results in some average way from the
tiltings underlying the primary/secondary hole alignment scheme.

Seeing no reasonably easy path to such an explanation we chose instead to borrow the
exact analytical expression for mK,p and, building on the empirically observed linearity,
obtained a simple formula for m̃K,p as well, namely for K = 2 & p ≥ .30 and K ≥ 3 &
p ≥ .001 (p ≥ .50 in the square hole pattern case)

m̃K,p ≈ αKσ + βKmK,p =
τ√
2

[
αK + 2βK

√
− log (1− p1/K)

]
(7)

≈ τ√
2

[
αK + 2βK

√
− log [− log(p)] + log(K)

]
,

where the last approximation is reasonble only for p ≈ 1.

It is clear that the upper quantiles of m̃K,pi are consistently and significantly higher than
those of mK,pi. From Figure 10, which displays the percent increase in the .9973-quantile of
M̃K over the .9973-quantile of MK , we see that this increase in the linear pattern case ranges
mostly from 25% to 35%. Only for K = 2 is this increase as low as 15%. For the square
pattern case the increase is more pronounced at 65%.

Since σ, which governs the hole centering accuracy, affects the maximal discrepancies
between hole centers in a proportional fashion, one sees that relying on primary/secondary
hole pair alignment in setting tolerance requirements on hole centering could easily result in
25-35% or 65% tighter tolerances than needed under true position alignment. This tightening
of tolerances could be viewed as the tolerance contribution due to the assembly process, i.e.,
it is the cost of the practicality of primary/secondary hole pair alignment.
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Figure 9: Linear Quantile Relationships for Upper Quantiles of m̃K,pi/σ versus mK,pi/σ.
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3.2 Clearance Tolerance Stack and Fallout Rate

If C̃K,min denotes the minimum clearance diameter over K hole pairs under the primary/secondary
hole pair alignment one obtains from (7) as in (5) the following relationship for the p-quantile
c̃K,min,p of C̃K,min

c̃K,min,p = d− m̃K,1−p ≈ d− τ
[
αK√

2
+ βK

√
−2 log (1− [1− p]1/K)

]

≈ d− τ
[
αK√

2
+ βK

√
−2 log[− log(1− p)] + 2 log(K)

]
,

where the first approximation is good for K = 2 & p ≤ .70 and K ≥ 3 & p ≤ .999 for linear
hole patterns and for p ≤ .50 for square hole patterns while the second approximation should
only be used for p ≈ 0 for either pattern.

When the pin diameter δ is less than the quantile c̃K,min,p we have

P (C̃K,min > δ) ≥ P (C̃K,min > c̃K,min,p) = 1− p .

In that case the minimum clearance C̃K,min over allK hole pairs under the primary/secondary
hole pair alignment is greater than the pin diameter δ for at least 100(1 − p)% of the part
assemblies to be pinned. The condition δ < c̃K,min,p translates to

τ

[
αK√

2
+ βK

√
−2 log (1− [1− p]1/K)

]
< d− δ . (8)

Using the approximation for small p this becomes

τ

[
αK√

2
+ βK

√
−2 log[− log(1− p)] + 2 log(K)

]
< d− δ . (9)

To ensure successful pinning of 99.73% of all assemblies, we would choose p = .0027 in (8)
or (9). With the same motivation as before we take

τ =
√
σ2

1 + σ2
2 =

1

3.439

√
T 2

1 + T 2
2 ,

which results in the following requirement on the nominal hole to pin clearance d− δ

d− δ >
√
T 2

1 + T 2
2

 αK

3.439
√

2
+ βK

√
1 +

2 log(K)

11.826

 .
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Conversely, one can again ask for the assembly fallout rate p (not all holes can be pinned)
for a given nominal gap d− δ, i.e., we want

p = P (C̃K,min < δ) = P (M̃K > d− δ) or P (M̃K ≤ d− δ) = 1− p . (10)

By the definition of the quantile m̃K,p we have that equation (10) is satisfied whenever
m̃K,1−p = d − δ. Since we have an accurate representation of m̃K,1−p for K = 2 & p ≤ .70
and K ≥ 3 & p ≤ .999 (for p ≤ .50 for square hole patterns), we can find p by solving this
latter (approximate) equation, i.e.,

d− δ =
τ√
2

[
αK + 2βK

√
− log (1− [1− p]1/K)

]

=
1

3.439

√
T 2

1 + T 2
2

[
αK√

2
+ βK

√
−2 log (1− [1− p]1/K)

]

for p. Solving this equation for p results in the following assembly fallout rate p for given
nominal gap d− δ

P (C̃K,min < δ) = p = 1−

1− exp

−1

2

 3.439(d− δ)
βK
√
T 2

1 + T 2
2

− αK

βK
√

2

2


K

.

For K = 2 & p > .70 and K ≥ 3 & p > .999 (p > .50 for square hole patterns) the accuracy
of this expression deteriorates somewhat. Obviously we should have p = 1 if d− δ ≤ 0 and
for d− δ = 0 the above formula reduces to

p = 1−
1− exp

−1

4

[
αK
βK

]2
K ,

which gives the values .865, .998 for K = 2, 3 in the linear hole pattern case and the values
.997, .99995 for K = 4, 8 in the square hole pattern case.

The above derivations are summarized in the modified Rule 1a which gives the tolerance
clearance requirement on the nominal clearance gap d − δ and the clearance fallout rate
for given d − δ under primary/secondary hole pair alignment, both in terms of the radial
tolerances for hole centering.
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Rule 1a

Clearance under Primary/Secondary Hole Pair Alignment

Given 2 parts, each with a set of K nominally matched coordination holes (equally
spaced in a linear or square pattern), and given that these holes are centered with
radial tolerance Ti on part i, i = 1, 2, then these two parts can be pinned successfully
at all coordination hole pairs with 99.73% assurance for such assembly if

d− δ >
√
T 2

1 + T 2
2

 αK

3.439
√

2
+ βK

√
1 +

2 log(K)

11.826

 .

Here d and δ are the common hole and pin diameters. If these themselves are toler-
anced one can conservatively work with the worst case dimensions of these, i.e., with
maximum material condition (tightest hole diameter and widest pin diameter). The
values of αK and βK can be read from Table 1.

Conversely, for given d− δ > 0 the assembly fallout rate p of insufficient clearance at
some hole pair, among the K pairs to be pinned, is

p = 1−

1− exp

−1

2

 3.439(d− δ)
βK
√
T 2

1 + T 2
2

− αK

βK
√

2


2


K

.

This is reasonably accurate when K = 2 & p ≤ .70 K ≥ 3 & p ≤ .999 (p ≤ .50) for
linear (quadratic) hole patterns but still useful otherwise. Of course for d− δ ≤ 0 the
fallout rate is p = 1 or 100%.

Assumptions: The hole centering variation is reasonably described by a circular
bivariate normal distribution, centered on nominal hole centers (matching for both
parts), and is independent from hole to hole (hole to hole variation). It is assumed
that the radius Ti for the circular hole centering tolerance zone captures 99.73% of
all drilled hole centers.

The nominal coordination hole centers are equally spaced along a line or along the
periphery of a square, including the corners.

Here it is assumed that the parts are aligned by the primary/secondary hole pair
alignment process, i.e., perfect on the primary hole pair and by rotation best possible
at the secondary hole pair. Among the K hole pairs the primary and secondary pairs
are chosen to be as far apart as possible.

33



3.3 Cleanout Tolerance Stack Criterion and Fallout Rate

Similary, Rule 2a is converted from Rule 2, i.e., gives clean-out requirements on df − d and
the clean-out fallout rate for given df − d under primary/secondary hole pair alignment in
terms of the radial tolerances for hole centering.

We note that the caveat at the bottom of Rule 2 is missing in Rule 2a. The reason
for this is that under primary/secondary hole alignment it is assumed that the parts are
fixed relative to each other while intermediate holes are match-drilled and riveted. It is
assumed that this process does not disturb the alignment2. This was not the case under true
position alignment where this alignment was not achievable in practice and where pinning
the coordination holes would definitely not leave the parts in true position alignment while
match-drilling and riveting intermediate holes.

2This ignores possible expansion effects due to riveting.
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Rule 2a

Clean-Out under Primary/Secondary Hole Pair Alignment

Given 2 parts, each with a set of K nominally matched coordination holes, and
given that these holes are centered with radial tolerance Ti on part i, i = 1, 2, then
the coordination holes on these two parts can be cleaned out successfully at all K
locations with 99.73% assurance if

(df − d)/2 >
√
T 2

1 + T 2
2

 αK

3.439
√

2
+ βK

√
1 +

2 log(K)

11.826

 .

Here df and d are the common full-sized (clean-out) hole and coordination hole diame-
ters, respectively. If these themselves are toleranced one can conservatively work with
the worst case dimensions of these, i.e., with minimum value for df and maximum
value for d. The values of αK and βK can be read from Table 1.

Conversely, for given df−d one determines the fallout rate p of an excessive clean-out
diameter at some hole pair among the K pairs to be cleaned out as

p = 1−

1− exp

−1

2

3.439(df − d)/2

βK
√
T 2

1 + T 2
2

− αK

βK
√

2


2


K

.

This is reasonably accurate when K = 2 & p ≤ .70 and K ≥ 3 & p ≤ .999 (p ≤ .50)
for linear (quadratic) hole patterns but still useful otherwise. Of course for df−d ≤ 0
the fallout rate is p = 1 or 100%.

Assumptions: The hole centering variation is reasonably described by a circular
bivariate normal distribution, centered on nominal hole centers (matching for both
parts), and is independent from hole to hole (hole to hole variation). It is assumed
that the radius Ti for the circular hole centering tolerance zone captures 99.73% of
all drilled hole centers.

The nominal coordination hole centers are equally spaced along a line or along the
periphery of a square, including the corners.

Here it is assumed that the parts are aligned by the primary/secondary hole pair
alignment process, i.e., perfect on the primary hole pair and by rotation best possible
at the secondary hole pair. Among the K hole pairs the primary and secondary pairs
are chosen to be as far apart as possible. The clean-out holes are assumed to be
centered on one of the respective coordination hole centers. If the clean-out holes are
centered midway between the two respective coordination hole centers, i.e., centered
on the clearance gaps, we can replace (df − d)/2 by the more relaxed df − d in the
above two formulas.
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4 Comparison with Worst Case Analysis

So far the clearance and clean-out problem was examined from a statistical point of view.
This is contrasted here with the worst case tolerance stack analysis. For reasons of fair
comparisons we will distinguish two types of worst case analyses. In the first we assume that
the parts are aligned in nominal or true position and in the second we employ the same type
of primary/secondary hole pair alignment considered previously.

We assume that the hole centers on part i are toleranced by circular zones with respective
radii Ti, i = 1, 2. Such circular zones are shown in nominal alignment on the left side of
Figure 11 for two hole pairs. The circles there do not represent the actual holes but the
circular tolerance zones for the hole centers. These zones are centered on the nominal hole
centers, indicated by ·’s, while the actual hole centers, chosen for illustration in worst case
fashion, are indicated by ◦’s and •’s. Both the circular zones and the respective distances
between them are shown in exaggeratedly large and small dimensions for the purpose of
compact illustration. Also for illustration the radii for the two circular zones are chosen
to be different to be able to distinguish the two circles when aligned in true position. In
nominal or true position alignment the farthest any two hole centers can be apart from each
other is T1 + T2. The left side of Figure 11 shows that this is possible.

On the right side of Figure 11 we show a different alignment of the parts, namely by
centering the actual hole centers of the primary hole pair on top of each other and leaving
the actual hole centers of the secondary hole pair as close to each other as possible. This
results in all four hole centers being collinear and the primary pair matching. This alignment
of secondary and primary hole pairs results in a mismatch of 2T1 + 2T2 between the pair of
secondary hole centers. When pinning these two hole pairs one may become aware of this
large mismatch and may want to trade some of that mismatch at the cost of undoing the
perfect match at the top hole pair on the right side, i.e., if possible one would move back in
the direction of the alignment shown on the left.

That this is not always so recognizable is shown in Figure 12, where on the left side three
pairs of hole centering zones are shown with actual hole centers indicated by •’s on part 1
and by ◦’s on part 2. The parts on the left are shown in nominal alignment with dashed and
solid circular zones shown only slightly offset for clarity. Note that the • and ◦ are never
more than T1 +T2 apart in this alignment. On the right side the same set of zones and actual
hole centers is shown in the best possible alignment for primary and secondary hole centers,
namely matching in both cases. However, the intermediate hole center pair now shows a
2T1 + 2T2 mismatch. Without looking at these intermediate hole pairs this mismatch would
not be discovered during the alignment of primary and secondary hole pairs.
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Figure 11: Comparing True Position & Primary/Secondary Hole Alignment
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In comparing statistical with worst case tolerance stacking methodology one should com-
pare them under true position alignment and then again under primary/secondary two hole
alignment. It turns out that while there is little gain in statistical tolerancing over worst
case tolerancing under true position alignment, there is significant gain (≈ 50% reduction in
end tolerance for maximum hole mismatch) of statistical over worst case tolerancing under
the commonly used primary/secondary hole pair alignment.
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Figure 12: Worst Case in “Best Fit” Primary/Secondary Hole Alignment
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4.1 Comparison under True Position Alignment

Here the worst case mismatch between hole centers was shown to be mwc,1 = T1 + T2, re-
gardless of the number of holes involved and the geometric pattern of the holes. Statistically
we can bound the maximum mismatch between K pairs of hole centers, aligned in true posi-
tion and without regard to geometric pattern, by mK,.9973, which covers almost all (99.73%)
assemblies. Note that

mK,.9973 ≈ τ
√
−2 log[− log(.9973)] + 2 log(K) =

√
T 2

1 + T 2
2

√
1 +

2 log(K)

11.826

For easier comparison assume T1 = T2 = T . The percentage reduction of mK,.9973 relative
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to mwc,1 is then

RK = 100× mwc,1 −mK,.9973

mwc,1
%

This percent reduction, RK , is plotted against K in Figure 13. The gain of statistical over
worst case tolerancing, initially at 25% for K = 2 and dropping to 15% at K = 14, may not
be sufficient justification for entering the complications of statistical tolerance stacking, at
least under true position alignment and as far as clearance and clean-out issues are concerned.
However, recall that true position alignment is not really a viable assembly option. It was
used only as an intermediate step in a better understanding of the primary/secondary hole
alignment scheme.

Figure 13: Percent Reduction in Maximum Hole Center Mismatch
Statistical versus Worst Case Tolerance Stack

under True Position Alignment
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4.2 Comparison under Primary/Secondary Hole Alignment

Under the commonly used primary/secondary hole alignment it appeared from Figure 12
that the worst case hole center mismatch is mwc,2 = 2(T1 + T2). Under the same alignment
the maximum mismatch between K pairs of hole centers can be bounded statistically for
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almost all (99.73%) assemblies by

m̃K,.9973 =
√
T 2

1 + T 2
2

 αK

3.439
√

2
+ βK

√
1 +

2 log(K)

11.826

 ,

where the appropriate coefficients αK and βK are taken from Table 1. For easier comparison
assume T1 = T2 = T . The percentage reduction of m̃K,.9973 relative to mwc,2 is

R̃K = 100× mwc,2 − m̃K,.9973

mwc,2

%

Figure 14: Percent Reduction in Maximum Hole Center Mismatch
Statistical versus Worst Case Tolerance Stack

Primary/Secondary Hole Alignment, Linear and Square Patterns
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This percent reduction, R̃K , is plotted against K as the two bottom curves in Figure 14
for linear and square patterns, respectively. The top curve will be explained later. The
percentage gain here is substantially higher than under true position alignment. The separate
point for K = 2 under the linear pattern reflects the fact that the smoothing was done only
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for the cases K > 2. This separate treatment for K = 2 seems justfied on visual grounds
but may also be explained by the fact that the alignment procedure affects clearance at both
holes favorably when K = 2. However, as soon as K > 2 one has at least one hole that is
most likely affected negatively by the alignment as far as clearance is concerned.

At the start of this subsection we stated that “it appeared . . . that the worst case hole
center mismatch is mwc,2 = 2(T1 + T2).” Although this appeared quite plausible at first
glance, it turns out that this understates the worst case mismatch by about 6 − 20% for
K > 2, at least for coordination holes in a linear and equally spaced pattern. This is
explained in Appendix D. For the special case of a linear and equally spaced nominal hole
center pattern with equal centering tolerances, i.e., T1 = T2 = T , it is argued there that the
worst case separation of hole centers is

4T × 1

2

1 +

√
1 +

(
K − 2

K − 1

)2
 = 4T × ψK .

Note that the factor ψK , which modifies 4T , is greater than 1 forK > 2. A plot of ψK against
K is given in Figure 46 of Appendix D. The values of ψK rise quickly from ψ3 = 1.059,
ψ4 = 1.10, to ψ10 = 1.17, and asymptote at ψ∞ = (1 +

√
2)/2 ≈ 1.21.

When comparing statistical tolerancing with worst case analysis we should thus look at
the following corrected percentage reduction

R̂K = 100

[
ψKmwc,2 − m̃K,.9973

ψKmwc,2

]
%

= 100

[
mwc,2 − m̃K,.9973

mwc,2
+
m̃K,.9973

mwc,2
×
(

1− 1

ψK

)]
%

=

[
R̃K +

(
100− R̃K

)
×
(

1− 1

ψK

)]
% .

When before we had a percentage reduction of R̃10 ≈ 43% for K = 10, we should, based on
the true worst case and using ψ10 = 1.17, have computed a correct percentage reduction of

R̂10 = [43 + (100− 43)× (1− 1/1.17)] % = 51.3% .

This percentage reduction, adjusted to the true worst case, is shown as the curve at the top
of Figure 14.

Since the primary/secondary alignment scheme comes close to general practice it appears
that a significant gain over worst case stacking can be realized from statistical stacking.
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5 Three Matched Holes

The development for two matched holes at each nominal location can be generalized to
three holes at each such location. This situation arises for example when trying to pin
three parts, such as two skin panels and a stringer along one common seam of coordination
holes. Following the same strategy as for pinning two holes at each location we first focus
on the case when the parts are aligned in true position and cover again the case of clearance
and clean-out. After that we examine how this relates to primary/secondary hole triplet
alignment, but limit this investigation to a linear and equally spaced pattern of nominal hole
centers.

5.1 Clearance for Three Matched Holes, True Position Alignment

The necessary ingredients for finding clearance and clean-out diameters for a triplet of coor-
dination holes, all aligned on the same nominal center or in true position alignment, can be
found in [2]. For easy reference purposes the relevant parts are reproduced in Appendix C.
The step of going from one such triplet to K of them is the same as before, invoking again
statistical independence. Unfortunately, the statistical distribution of the clearance diameter
for three overlapping holes in true position is not very tractable. However, reasonably clean
approximations are feasible. For extreme clearance (small) and clean-out (large) diameters
it is possible to offer a rationale for using the previous results for hole pairs also for triplets.
This rationale is based on the following consideration. It seems that the extremes in question
will, for the most part, occur when two of the three circles are too far apart, so that the
presence of the third circle is irrelevant. What we are suggesting is that the probability of
all three circles being active contributors to an extremely low clearance or extremely large
clean-out is negligible.

In [2] (see also Appendix C) we saw that the clearance diameter at one hole triplet site is
of the form 2r− U , where 2r is the common hole diameter and U is a complicated function
of the hole center distances |P1P2|, |P1P3|, |P2P3|, assuming all three parts in true position
alignment, i.e., aligned at the nominal P = (µ, ν), while the actual hole centers are at Pi,
i = 1, 2, 3. Of course this is viewed with all three holes as projected onto a common plane
so that the three holes are represented as three circles, which usually overlap and define a
largest circle with clearance diameter 2r − U that fits within the intersection of all three
circles.

The above rationale suggests that for large U-values we essentially have

U ≈ max{|P1P2|, |P1P3|, |P2P3|} .

42



For large x this leads to the following approximation for P (U ≤ x):

P (U ≤ x) ≈ P
(
|P1P2| ≤ x, |P1P3| ≤ x, |P2P3| ≤ x

)

≈ P
(
|P1P2| ≤ x

)
P
(
|P1P3| ≤ x

)
P
(
|P2P3| ≤ x

)

=

[
1− exp

(
− x2

2τ2
12

)] [
1− exp

(
− x2

2τ2
13

)] [
1− exp

(
− x2

2τ2
23

)]

=

[
1− exp

(
− x2

2τ2

)]3

with τ2
ij = σ2

i + σ2
j , and where in the last equality we assume that σ1 = σ2 = σ3 = σ for the

three hole drilling processes, and thus τ = τ12 = τ13 = τ23 = σ
√

2. This latter simplification
is not necessary, but makes the effect of dealing with hole triplets more transparent.

The above approximation for P (U ≤ x) (with the further simplification) yields the fol-
lowing approximation for the p-quantile Up of U , namely:

Up ≈ Û1,p = 2σ
√
− log [1− p1/3]

As a second approximation, derived by trial and error from the first, we propose

Up ≈ Û2,p = 2σ
√
− log [1− p1/2.4] ,

which would be consistent with the following form for the approximate distribution function
of U

P (U ≤ x) ≈
[
1− exp

(
− x2

4σ2

)]2.4

To check the suggested approximations we simulated 50, 000 such hole triplets (with
σ = .01 and linear hole pattern with a gap of 20 between adjacent nominal hole centers) and
observed the true U value each time. Figure 15 compares the sorted observed U-values, i.e.,
U(1) ≤ . . . ≤ U(n), n = 50, 000, against Û1,pi with pi = i/(n + 1), i = 1, . . . , n. The straight
line represents the main diagonal. The few stragglers at the high end should not be viewed
as significant deviation from the main diagonal. They are to be expected as part of normal
statistical variation. It is quite evident that the suggested approximation is very good for
high p-quantiles of U , say for p ≥ .95, but then tends to deteriorate mildly for the lower
values of p. The second approximation Û2,p, shown in Figure 16, is reasonably good over the
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Figure 15: Approximation Quality for High U-Quantiles
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Figure 16: Approximation Quality for High U-Quantiles
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full range of p-values, although not quite as close as Û1,p for p ≥ .95. However, this second
approximation tends to be superior when two or more hole triplets are involved.

When considering K such hole triplets and denoting by Ui the clearance loss at the ith

hole triplet we find as before that

MK3 = max (U1, . . . , UK)

is the relevant quantity in describing the minimum clearance diameter

CK3,min = min (C1, . . . , CK) = min (2r − U1, . . . , 2r − UK) = d−MK3 .

We then have, assuming again σ1 = σ2 = σ3 = σ,

P (MK3 ≤ x) = [P (U1 ≤ x)]K ≈
[
1− exp

(
− x2

4σ2

)]2.4K

.

The corresponding approximation for the p-quantile mK3,p of MK3 is then

mK3,p ≈ m̂K3,p = 2σ
√
− log (1− p1/2.4K) .

Employing the same approximation as before, we also have for p ≈ 1

mK3,p ≈ m̄K3,p = 2σ
√
− log[− log(p)] + log(2.4K) .

Note that going from two to three holes at each pinning location amounts to increasing K
to 2.4K. However, that effect is softened by the way 2.4K enters the formulas for m̂K3,p or
m̄K3,p.

To check the suggested approximate behavior of m̂K3,p we simulated 50, 000 sets of K
such hole triplets (with σ = .01 and with linear pattern of nominal hole centers, equally
spaced with gaps of 20 between adjacent hole centers) and observed the true MK3 value
each time. Figure 17 compares the sorted observed MK3-values, i.e., MK3(1) ≤ . . . ≤MK3(n),
n = 50, 000, against m̂K3,pi with pi = i/(n + 1), i = 1, . . . , n. The straight line represents
the main diagonal. It is quite evident that the suggested approximation is quite good even
for quantiles as low as the .001-quantile or lower.

The approximate p-quantile cK3,min,p for the minimal clearance diameter is

cK3,min,p = d−mK3,1−p ≈ d− m̂K3,1−p

= d− 2σ
√
− log (1− [1− p]1/2.4K) = ĉK3,min,p

≈ d− 2σ
√
− log[− log(1− p)] + log(2.4K) = c̄K3,min,p ,
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where the last approximation holds for small p. From the previous findings about the ap-
proximation of m̂K3,p it follows that the approximation ĉK3,min,p is quite good for all p.

Again we use the conversion of T1 = T2 = T3 = T to σ, i.e., σ = T/3.439. In order to be
able to pin 99.73% of all assemblies we need c̄K3,min,.0027 > δ or

d− δ > 1

3.439
T
√

2
√
−2 log[− log(.9973)] + 2 log(2.4K) = T

√
2
√

1 + 2 log(2.4K)/11.826 .

Conversely, one can ask for the rate p of assembly fallout (not all hole triples can be
pinned, i.e., CK3,min < δ) for a given nominal gap d − δ. Clearly we have p = 1 for d < δ
and for d ≥ δ we have

p = P (CK3,min < δ) = P (MK3 > d− δ) = 1− P (MK3 ≤ d− δ)

= 1−
[
1− exp

{
−(d− δ)2

4σ2

}]2.4K

.

The Rule 3 box summarizes the clearance tolerance stack criterion and fallout rate in
terms of the radial tolerances for hole centering.

5.2 Clean-Out for Three Matched Holes, True Position Alignment

In [2] (see also Appendix C) it was seen that the smallest clean-out diameter of a hole
centered on one of the three holes, say on hole 1, is

B = d+ 2 max
(
|P1P2|, |P1P3|

)
.

The quantity V = max
(
|P1P2|, |P1P3|

)
, although simpler in nature than U , still has a

complicated distribution. For large values x the probability P (V ≤ x) can be effectively
approximated as follows

P (V ≤ x) = P
(
|P1P2| ≤ x, |P1P3| ≤ x

)
≈ P

(
|P1P2| ≤ x

)
P
(
|P1P3| ≤ x

)

=

[
1− exp

(
− x2

2τ2
12

)]
×
[
1− exp

(
− x2

2τ2
13

)]
=

[
1− exp

(
− x2

2τ2

)]2

,

where in the last equality we assume again σ1 = σ2 = σ3 = σ and thus τ = τ12 = τ13 = σ
√

2.
This yields the following approximation for the p-quantile Vp of V for p ≈ 1, namely

Vp ≈ V̂p = 2σ
√
− log (1− p1/2 ) .
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Figure 17: Approximation Quality for MK3-Quantiles
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Rule 3

Clearance For Three Parts, True Position Alignment

Given 3 parts, each with a set of K nominally matched coordination holes, and given
that these holes are centered with the same radial tolerance T on all three parts
(otherwise assume conservatively the largest tolerance that applies), then these three
parts can be pinned successfully at all K coordination hole triplets with 99.73%
assurance for such assembly if

d− δ > T
√

2
√

1 + 2 log(2.4K)/11.826 .

Here d and δ are the common hole and pin diameters. If these themselves are toler-
anced one can conservatively work with the worst case dimensions of these, i.e., with
maximum material condition (tightest hole diameter and widest pin diameter).

Conversely, for given d− δ ≥ 0 the assembly fallout rate p of insufficient clearance at
some hole triplet among the K triplets to be pinned is given by

p ≈ 1−
[
1− exp

{
−(d− δ)211.826

4T 2

}]2.4K

.

For d− δ < 0 the assembly fallout rate obviously is p = 1 or 100%.

Assumptions: The hole centering variation is reasonably described by a circular
bivariate normal distribution, centered on nominal hole centers (matching for all
three parts), and is independent from hole to hole (hole to hole variation).

It is assumed that the radius T for the circular hole centering tolerance zones captures
99.73% of all drilled hole centers.

Furthermore, the parts are assumed to be aligned in true position. Although this
latter alignment is not practical it is still not the best possible one for minimizing
clearance problems.
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To check the suggested approximation we simulated 50, 000 such hole triplets (with σ =
.01 and linear nominal hole center pattern, with gaps of 20 between adjacent hole centers)
and observed the true V value each time. Figure 18 compares the sorted observed V -values,
i.e., V(1) ≤ . . . ≤ V(n), n = 50, 000, against V̂pi with pi = i/(n+ 1), i = 1, . . . , n. The straight
line represents the main diagonal. It is quite evident that the suggested approximation is
very good over the full range of p-values.

Figure 18: Approximation Quality for High V -Quantiles
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When considering K such hole triplets we find, as before, that

M ′K3 = max (V1, . . . , VK)
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is the relevant quantity in describing the maximum clean-out diameter

BK3,max = max (B1, . . . , BK) = max (2r + 2V1, . . . , 2r + 2VK) = d+ 2M ′K3 .

We have, assuming again σ1 = σ2 = σ3 = σ and thus τ = τ12 = τ13 = σ
√

2, that

P (M ′K3 ≤ x) = [P (V1 ≤ x)]K ≈
[
1− exp

(
− x2

2τ2

)]2K

The corresponding p-quantile m′K3,p of M ′K3 is approximated by

m′K3,p ≈ 2σ
√
− log [1− p1/2K ] = m̂′K3,p .

Given the excellent approximation quality of V̂p for all p there was no need to verify the
approximation quality for m̂′K3,p.

The p-quantile approximation for the maximum clean-out diameter is thus

bK3,max,p = d+ 2m′K3,p ≈ d+ 4σ
√
− log [1− p1/2K ] = b̂K3,max,p

and for p ≈ 1 this becomes

bK3,max,p ≈ d+ 4σ
√
− log [− log(p)] + log(2K) = b̄K3,max,p .

Using again the identification σ = T/3.439 and aiming for 99.73% of all assemblies
without clean-out problems, we must have

b̄K3,max,.9973 = d+ 2
√

2T
1

3.439

√
−2 log[− log(.9973)] + 2 log(2K) < df

or √
2T

√
1 + 2 log(2K)/11.826 < (df − d)/2 .

Conversely, for given df − d ≥ 0 one may ask for the rate p of fallout, i.e., for the
proportion of assemblies with clean-out problems. This rate p is obtained as

p = P (BK3,max > df ) = 1− P (BK3,max ≤ df)

= 1− P (M ′K3 ≤ [df − d]/2)

= 1−
{

1− exp

(
− [df − d]2

16σ2

)}2K

.

The Rule 4 box summarizes the clean-out tolerance stack criterion in terms of the radial
tolerances for hole centering.
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Rule 4

Clean-Out For Three Parts, True Position Alignment

Given 3 parts, each with a set of K nominally matched coordination holes, and
given that these holes are centered with common radial tolerance T on all three
parts (otherwise take conservatively the largest of the centering tolerances as common
value), then the coordination holes on these three parts can be cleaned out successfully
at all K locations with 99.73% assurance if

(df − d)/2 >
√

2T
√

1 + 2 log(2K)/11.826 .

Here df and d are the common full-sized (clean-out) hole and coordination hole diame-
ters, respectively. If these themselves are toleranced one can conservatively work with
the worst case dimensions of these, i.e., with minimum value for df and maximum
value for d.

Conversely, for given df−d one determines the fallout rate p of an excessive clean-out
diameter at some hole triplet among the k to be cleaned out as

p = 1−
{

1− exp

(
− [df − d]211.862

16T 2

)}2K

.

Assumptions: The hole centering variation is reasonably described by a circular
bivariate normal distribution, centered on nominal hole centers (matching for all three
parts), and is independent from hole to hole (hole to hole variation). The clean-out
holes are assumed to be centered on one of the respective coordination hole centers.

It is assumed that the radius T for the circular hole centering tolerance zones captures
99.73% of all drilled hole centers.

The parts are assumed to be aligned in true position. Although this latter alignment
is not practical it is still not the best possible one for minimizing clean-out problems.

Caveat: See the discussion on page 4 concerning the possibly not quite conservative
nature of this rule, which is based on true position alignment.
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5.3 Clearance Under Primary/Secondary Hole Triplet Alignment

Here we consider the clearance issue for K triplets of holes, nominally equally spaced in a
linear pattern, when the first and last hole triplet are used for primary and secondary hole
triplet alignment. This means that a hole triplet at one end of the linear pattern is pinned
first such that the hole centers of all three holes coincide. Although this may not be exactly
achievable one can aim for it by using an expanding fastener or tightly toleranced hole and
pin diameters. Then the three parts are rotated around the pinned primary hole triplet to get
maximal clearance at the secondary hole triplet at the other end of the linear pattern. This
secondary hole triplet is then pinned with an expanding fastener. The working assumption
is that, after pinning these two hole triplets, the coinciding three primary hole centers (when
projected on the plane perpendicular to the hole barrel axis) are collinear with the three
secondary hole centers (when projected similarly). This may not be achievable exactly but
one can come close. Once this alignment is effected the locations of all K holes on each of
the three parts are assumed to be fixed. Because of this alignment the diameter of clearance
at the ith hole triplet is reduced from the common hole diameter d by the amount Ui. As
was shown in Appendix C this amount Ui depends on the pairwise distances between the
three hole centers at that location.

The minimum clearance diameter C̃K3,min over all K hole triplets can again be expressed
as

C̃K3,min = d−max(U1, . . . , UK) = d− M̃K3 .

Because the alignment is driven by the hole centering variations at the primary and secondary
alignment hole triplets it is evident that the Ui are no longer statistically independent.
Furthermore, their distributions vary with i. For this reason we write M̃K3 and C̃K3,min

instead of MK3 and CK3,min which where used under true position alignment.

As in the case of pinning K hole pairs by primary/secondary hole pair alignment, it
is analytically not feasible to get the exact distribution of M̃K3. Thus we simulated the
distribution of M̃K3 for K = 2, 3, . . . , 10, 12, 14, 16, 20, 25, 30, 40, 50, and 60 by simulating
N = 50, 000 instances of M̃K3 for each such K. The hole centering variation was again
simulated by a circular bivariate normal distribution, using σ = .01 and a nominal hole
center gap of 20. The hope is that the quantiles of the simulated M̃K3 values relate linearly
to the quantiles

m̂K3,p = 2σ
√
− log (1− p1/2.4K) ,

i.e., we hope that the p-quantile m̃K3,p of M̃K3 satisfies the following approximate relationship

m̃K3,p/σ ≈ αK + βK m̂K3,p/σ or m̃K3,p ≈ αKσ + βK m̂K3,p .
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Table 2: Coefficients for Linear Quantile Relationships

m̃K3,p/σ = αK + βKm̂K3,p/σ or m̃K3,p = αKσ + βKm̂K3,p

valid for p ≥ .1 for K = 2 and for all p for K > 2.

K αK βK K αK βK K αK βK

2 -2.491 1.674 8 -0.970 1.540 20 -1.265 1.597
3 -1.386 1.562 9 -0.983 1.544 25 -1.367 1.614
4 -1.209 1.549 10 -1.004 1.549 30 -1.424 1.621
5 -1.077 1.539 12 -1.058 1.560 40 -1.589 1.646
6 -1.002 1.536 14 -1.111 1.570 50 -1.745 1.671
7 -0.972 1.537 16 -1.168 1.580 60 -1.820 1.680

Plotting the ordered values M̃(1) ≤ . . . ≤ M̃(N) of the N = 50, 000 simulated values of M̃K3/σ
against the corresponding quantiles m̂K3,pi/σ, pi = 1/(N + 1), i = 1, . . . , N , shows that the
pattern is indeed quite linear as Figures 19 and 20 illustrate. In each plot the abscissa
represents the m̂K3,pi/σ value and the ordinate the corresponding value M̃(i). Aside from the
point patterns each of the plots shows two slanted lines. One is the main diagonal which is
shown for comparison purpose and the other is a least squares line fitted to the point pattern.
Only in the case K = 2 we used the upper 90% of the plotted points for least squares fitting.
In all other cases all points were used in the fitting process. The special treatment of K = 2
accounts for the fact that the linear pattern does not seem to extend to the lower 10% of
the points. This special phenomenon presumably results from the fact that for K = 2 we
have no intermediate hole triplets between primary and secondary alignment triplets and it
is probably the intermediate triplets that dominate the behavior of M̃K3 for K > 2. The
horizontal dashed lines are the indicated quantiles of the simulated M̃K3/σ values.

The straight line fits are so good that the actual point patterns are mostly obscured,
except for strays at either end and the already explained deviant behavior for K = 2 at
the low end. The intercepts and slopes of these lines, when plotted against K, still show
some simulation roughness as shown in Figure 21. To smooth out this roughness we fitted a
smoothing spline for K > 2 and tabulated instead the smoothed values in Table 2 for those
values of K for which simulations were run. For other values of K we used the smoother for
interpolationa purposes and saved those intercept and slope values for a spreadsheet tool.

54



Figure 19: Quantile Comparison of M̃K3/σ and m̂K3,p/σ
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Figure 20: Quantile Comparison of M̃K3/σ and m̂K3,p/σ
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Figure 21: Smoothing Splines for Intercepts and Slopes
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Although these tabled values arose out of a simulation using very specific values for σ
and inter-hole gaps, their validity extends to other such choices of σ and inter-hole gaps as
long as one is small compared to the other, as is usually the case.

As before, the obtained representation

m̃K3,p = αKσ + βKm̂K3,p = σ
[
αK + 2βK

√
− log (1− p1/2.4K)

]
translates to the following corresponding quantile representation for C̃K3,min, namely

c̃K3,min,p = d− m̃K3,1−p = d− σ
{
αK + 2βK

√
− log (1− [1− p]1/2.4K)

}
, (11)

which is reasonably valid for p ≤ .9 for K = 2 and for all p for K > 2.

For p ≈ 0 one can further approximate this by

c̃K3,min,p ≈ d− σ
{
αK + 2βK

√
− log (− log[1− p]) + log(2.4K)

}
, (12)

showing clearly the benign effect ofK. The case p ≈ 0 is most relevant for clearance concerns.

In order for 99.73% of all such three part assemblies to pin successfully we need that
c̃K3,min,.0027 > δ, where δ is the common pin diameter. Relating again σ to the hole centering
tolerance T via σ = T/3.439 (assuming 99.73% of all hole centers are within radius T of
nominal center) this translates to the following condition for successful pinning of the three
parts

d− δ > T

3.439

{
αK + 2βK

√
− log (1− [1− .0027]1/2.4K)

}
or using (12)

d− δ > T
√

2

 αK

3.439
√

2
+ βK

√
1 +

2 log(2.4K)

11.826

 .

Conversely, one can ask for given d − δ: What is the proportion p of assemblies for
which the three parts cannot be pinned successfully? From the quantile relationship (11)
one obtains

p = 1−
1− exp

−1

2

{
3.439(d− δ)
βKT
√

2
− αK

βK
√

2

}2
2.4K

.

The above is summarized in the Rule 3a box. When comparing this to Rule 1a one should
keep in mind that in Rule 3a we assumed a common hole centering tolerance T for all three
parts.

58



Rule 3a

Clearance under Primary/Secondary Hole Triplet Alignment

Given 3 parts, each with a set of K nominally matched coordination holes (equally
spaced and in a linear pattern), and given that these holes are centered with common
radial tolerance T on all three parts, then these three parts can be pinned successfully
at all coordination hole triplets with 99.73% assurance for such assembly if

d− δ > T
√

2

 αK

3.439
√

2
+ βK

√
1 +

2 log(2.4K)

11.826

 .

Here d and δ are the common hole and pin diameters. If these themselves are toler-
anced one can conservatively work with the worst case dimensions of these, i.e., with
maximum material condition (tightest hole diameter and widest pin diameter). The
values of αK and βK can be read from Table 2.

Conversely, for given d− δ > 0 the assembly fallout rate p of insufficient clearance at
some hole triplet among the K triplets to be pinned is

p = 1−
1− exp

−1

2

{
3.439(d− δ)
βKT
√

2
− αK

βK
√

2

}2
2.4K

.

This is reasonably accurate when p ≤ .90 for K = 2 and for all p when K > 2. Of
course for d− δ ≤ 0 the fallout rate is p = 1 or 100%.

Assumptions: The hole centering variation is reasonably described by a circular
bivariate normal distribution, centered on nominal hole centers (matching for all three
parts), and is independent from hole to hole (hole to hole variation). It is assumed
that the common radius T for the circular hole centering tolerance zones captures
99.73% of all drilled hole centers.

The nominal coordination hole centers are equally spaced along a line.

Here it is assumed that the parts are aligned by the primary/secondary hole triplet
alignment process, i.e., perfect on the primary hole triplet and by rotation best pos-
sible at the secondary hole triplet. Among the K hole triplets the primary and
secondary triplets are chosen to be as far apart as possible.
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5.4 Clean-Out Under Primary/Secondary Hole Triplet Alignment

Here we consider the clean-out issue for K triplets of holes, nominally equally spaced in
a linear pattern, when the first and last hole triplets are used for primary and secondary
hole triplet alignment as explained in the previous section. It is assumed that the clean-out
holes are all centered on the holes in one of the three parts pinned. The choice of that
part is based on practicality considerations. Because of the primary/secondary hole triplet
alignment the diameter of the clean-out hole at the ith hole triplet is increased over the
common hole diameter d by the amount 2Vi. As was shown in Appendix C the quantity Vi
depends on the pairwise distances between the three hole centers at that location under the
given alignment.

The maximum clean-out diameter B̃K3,max over all K hole triplets can again be expressed
as

B̃K3,max = d+ 2 max(V1, . . . , VK) = d+ 2M̃ ′K3 .

Because the alignment is driven by the hole centering variations at the primary and secondary
alignment hole triplets it is evident that the Vi are no longer statistically independent.
Furthermore, their distributions vary with i. For this reason we write M̃ ′K3 and B̃K3,max

instead of M ′K3 and BK3,max which where used under true position alignment.

As in the case of pinning K hole pairs by primary/secondary hole pair alignment, it
is analytically not feasible to get the exact distribution of M̃ ′K3. Thus we simulated the
distribution of M̃ ′K3 for K = 2, 3, . . . , 10, 12, 14, 16, 20, 25, 30, 40, 50, and 60 by simulating
N = 50, 000 instances of M̃ ′K3 for each such K. The hole centering variation was again
simulated by a circular bivariate normal distribution, using σ = .01 and a nominal hole
center gap of 20. The hope is that the quantiles of the simulated M̃ ′K3 values relate linearly
to the quantiles

m̂′K3,p = 2σ
√
− log (1− p1/2K) ,

i.e., we hope that the p-quantile m̃′K3,p of M̃ ′K3 satisfies the following approximate relationship

m̃′K3,p/σ ≈ αK + βK m̂
′
K3,p/σ or m̃′K3,p ≈ αKσ + βK m̂

′
K3,p .

Plotting the ordered values M̃ ′(1) ≤ . . . ≤ M̃ ′(N) of the N = 50, 000 simulated values of M̃ ′K3/σ
against the corresponding quantiles m̂′K3,pi

/σ, pi = 1/(N + 1), i = 1, . . . , N , shows that the
pattern is indeed quite linear as Figures 22 and 23 illustrate.

In each plot the abscissa represents the m̂′K3,pi
/σ value and the ordinate the corresponding

value M̃ ′(i). In addition to the point patterns each of the plots shows two slanted lines. One
is the main diagonal which is shown for comparison purpose and the other is a least squares
line fitted to the point pattern.
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Figure 22: Quantile Comparison of M̃ ′K3/σ and m̂′K3,p/σ
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Figure 23: Quantile Comparison of M̃ ′K3/σ and m̂′K3,p/σ
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Only in the case K = 2 we used the upper 90% of the plotted points for least squares
fitting. In all other cases all points were used in the fitting process. The special treatment
of K = 2 was already commented on in the previous section. The horizontal dashed lines
are the indicated quantiles of the simulated M̃ ′K3/σ values.

The straight line fits are again so good that the actual point patterns are mostly obscured,
except for strays at either end and the already explained deviant behavior for K = 2 at the
low end. The intercepts and slopes of these lines, when plotted against K, still show some
simulation roughness as shown in Figure 24. To smooth out this roughness and to facilitate
interpolation of αK and βK for other intermediate values of K we fitted a smoothing spline for
K > 2 and tabulated instead the smoothed values in Table 3 which shows these coefficients
only for those values of K for which simulations were run. However, other values were
interpolated and are used in a spreadsheet software tool. Although these tabled values arose
out of a simulation using very specific values for σ and inter-hole gaps, their validity extends
to other such choices of σ and inter-hole gaps as long as one is small compared to the other,
as is usually the case.

As before, the obtained representation

m̃′K3,p = αKσ + βKm̂
′
K3,p = σ

[
αK + 2βK

√
− log (1− p1/2K)

]

translates to the following corresponding quantile representation for B̃K3,max, namely

b̃K3,max,p = d+ 2m̃′K3,p = d+ 2σ
[
αK + 2βK

√
− log (1− p1/2K)

]
, (13)

which is reasonably valid for p ≥ .1 for K = 2 and for all p for K > 2.

For p ≈ 1 one can further approximate this by

b̃K3,max,p ≈ d+ 2σ
{
αK + 2βK

√
− log [− log(p)] + log(2K)

}
, (14)

showing clearly the benign effect ofK. The case p ≈ 1 is most relevant for clean-out concerns.

In order for 99.73% of all such three part assemblies to clean out successfully we need
that b̃K3,max,.9973 < df , where df is the common clean-out diameter. Relating again σ to the
hole centering tolerance T via σ = T/3.439 (assuming 99.73% of all hole centers are within
radius T of nominal center) this translates to the following condition for successful clean-out
of the holes on the three parts
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Figure 24: Smoothing Splines for Intercepts and Slopes
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Table 3: Coefficients for Linear Quantile Relationships

m̃′K3,p/σ = αK + βKm̂
′
K3,p/σ or m̃′K3,p = αKσ + βKm̂

′
K3,p

valid for p ≥ .1 for K = 2 and for all p for K > 2.

K αK βK K αK βK K αK βK

2 -2.265 1.589 8 -1.031 1.525 20 -1.328 1.587
3 -1.312 1.508 9 -1.050 1.532 25 -1.445 1.607
4 -1.173 1.505 10 -1.073 1.537 30 -1.565 1.628
5 -1.080 1.507 12 -1.123 1.547 40 -1.704 1.647
6 -1.034 1.512 14 -1.184 1.559 50 -1.853 1.672
7 -1.021 1.518 16 -1.245 1.571 60 -1.929 1.678

(df − d)/2 >
T

3.439

[
αK + 2βK

√
− log (1− .99731/2K)

]
or using (14)

(df − d)/2 > T
√

2

 αK

3.439
√

2
+ βK

√
1 +

2 log(2K)

11.826

 .

Conversely, one can ask for given df − d: What is the proportion p of assemblies for
which the holes on the three parts cannot be cleaned out successfully? From the quantile
relationship (13) one obtains

p = 1−
1− exp

−1

2

{
3.439(df − d)/2

βKT
√

2
− αK

βK
√

2

}2
2K

.

The above is summarized in the Rule 4a box. When comparing this to Rule 2a one should
keep in mind that in Rule 4a we assumed a common hole centering tolerance T for all three
parts.
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Rule 4a

Clean-Out under Primary/Secondary Hole Triplet Alignment

Given 3 parts, each with a set of K nominally matched coordination holes, and
given that these holes are centered with common radial tolerance T on all three
parts (otherwise take conservatively the largest of the centering tolerances as common
value), then the coordination holes on these three parts can be cleaned out successfully
at all K locations with 99.73% assurance if

(df − d)/2 > T
√

2

 αK

3.439
√

2
+ βK

√
1 +

2 log(2K)

11.826

 .

Here df and d are the common full-sized (clean-out) hole and coordination hole diame-
ters, respectively. If these themselves are toleranced one can conservatively work with
the worst case dimensions of these, i.e., with minimum value for df and maximum
value for d. The values of αK and βK can be read from Table 3.

Conversely, for given df−d one determines the fallout rate p of an excessive clean-out
diameter at some hole pair among the K pairs to be cleaned out as

p = 1−
1− exp

−1

2

{
3.439(df − d)/2

βKT
√

2
− αK

βK
√

2

}2
2K

.

This is reasonably accurate when K = 2 & p ≤ .90 and for all p for K ≥ 3. Of course
for df − d ≤ 0 the fallout rate is p = 1 or 100%.

Assumptions: The hole centering variation is reasonably described by a circular
bivariate normal distribution, centered on nominal hole centers (matching for all three
parts), and is independent from hole to hole (hole to hole variation). It is assumed
that the radius T for the circular hole centering tolerance zone captures 99.73% of all
drilled hole centers.

The nominal coordination hole centers are equally spaced along a line.

Here it is assumed that the parts are aligned by the primary/secondary hole triplet
alignment process, i.e., perfect on the primary hole triplet and by rotation best possi-
ble at the secondary hole triplet. Among the K hole triplet the primary and secondary
triplets are chosen to be as far apart as possible. The clean-out holes are assumed to
be centered on the respective coordination hole centers of one of the parts, chosen on
practicality grounds.
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6 Hole Centering Variation Increasing with Datum Distance

So far hole centering variation has been assumed to be the same from hole to hole. Here
we reexamine the maximal hole center mismatch issue when the hole centering variation
increases linearly with the distance from some datum.

There is no boxed rule given here, since this section represents more of an exploratory
study of what happens when the drilling accuracy deteriorates. Another reason for not giving
a boxed rule is that it was not clear how to express tolerances on such a deterioration of
drilling accuracy. The reader who wants to use the methods given here is advised to read
the section as a whole and make the necessary modification concerning the specifics.

The hole centering variation is again assumed to be independent from hole to hole, which
is reasonable under true position part alignment. Following the development in Section 2.2
we can write

P (MK ≤ x) = P (D1 ≤ x, . . . , DK ≤ x) = P (D1 ≤ x) · · ·P (DK ≤ x)

=

[
1− exp

(
− x2

2τ2
1

)]
· · ·

[
1− exp

(
− x2

2τ2
K

)]
, (15)

where τ2
i = σ2

i1 + σ2
i2 and σij is the standard deviation characterizing the hole centering

variability for the ith hole on part j. This formula is exact but not easy to comprehend in
relation to K and the hole centering accuracies σij . How the σij vary from hole to hole has
not yet been specified and is not important at this point.

To get a better understanding of (15) we develop an approximation that will be applicable
only for large x values, i.e., for which P (MK ≤ x) ≈ 1. Such large x values are of primary
concern because they cover the typical range for tolerancing MK .

We can rewrite (15) as

P (MK ≤ x) =

[
exp

(
1

K

K∑
i=1

log

[
1− exp

{
− x2

2τ2
i

}])]K
.

In the approximation we will replace

1

K

K∑
i=1

log

[
1− exp

{
− x2

2τ2
i

}]
by − exp

(
− x2

2τ2
0

)

for some appropriately chosen value of τ2
0 . Using the approximation

log

[
1− exp

{
− x2

2τ2
i

}]
≈ − exp

(
− x2

2τ2
i

)
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for large enough x we see that only the terms with large τi values will amount to anything
when averaging these approximations in

1

K

n∑
i=1

log

[
1− exp

{
− x2

2τ2
i

}]
≈ − 1

K

K∑
i=1

exp

{
− x2

2τ2
i

}
. (16)

Thus it seems reasonable to find a value τ2
0 as some kind of weighted average of the τ2

i with
high weights given to high values of τ2

i .

We will work with the following hole pattern and associated hole centering accuracies.
Assume that the nominal hole centers are equally spaced in a plane, along a line perpendicular
to a given datum line. It is stipulated that

3σx = .0005′′ + .00001× x

where x is the distance (in inches) of the nominal hole center from the datum line. The
spacing between adjacent holes is assumed to be ∆ = 20′′. In particular it is assumed that

3σi1 = .0005′′ + .00001×∆(i− 1) for i = 1, . . . , K , (17)

so that 3σi1 = .0005′′ and 3σiK = .0005 + (K − 1).0002′′.

For σi2 we could either assume the same model, i.e., σi2 = σi1, or one can investigate
what happens when the datum line is at opposite ends on the two parts, i.e., we would then
assume that

3σi2 = 3σ(K−i+1)1 = .0005′′ + .00001×∆(K − i) for i = 1, . . . , K .

In view of the dominant contributions from terms with large τi in (16) it is hoped that with
this latter scheme the large centering variation at one hole center is balanced out by the
small variation at the corresponding hole on the other part.

Figure 25 shows a comparison of the two datum schemes (σi2 = σ(K−i+1)1 and σi2 = σi1)
in addition to assuming constant maximum σ0, namely σ0 = σK1 for all holes on both parts,
by showing the exact cumulative distribution functions (15) for K = 2, . . . , 10, 20, . . . , 60,
using the above formula (17) for σi1.

It is clear that the strategy of using opposite end datums paid off by yielding distributions
for MK which are positioned closer to zero than the corresponding distributions under same
end part datum and under constant maximum σ0. The 99% quantiles of these distribution
functions, denoted by m0,K,.99 (constant maximum σ0), m1,K,.99 (opposite end datums), and
m2,K,.99 (same end datums) are compared in ratio form m1,K,.99/m0,K,.99 and m2,K,.99/m0,K,.99

in Table 4. Clearly the opposite datum indexing scheme is best. However, implementation
of that scheme needs to be weighed against the cost of doing so.
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Figure 25: Distributions of Maximal Hole Center Distances
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Table 4: Comparison of .99-Quantiles for the Three Schemes

K 2 3 4 5 6 7 8
m1,K,.99/m0,K,.99 0.869 0.800 0.758 0.730 0.711 0.696 0.686
m2,K,.99/m0,K,.99 0.934 0.903 0.886 0.875 0.867 0.861 0.857

K 9 10 20 30 40 50 60
m1,K,.99/m0,K,.99 0.678 0.671 0.643 0.635 0.632 0.630 0.629
m2,K,.99/m0,K,.99 0.853 0.851 0.841 0.840 0.840 0.840 0.840

With regard to the approximation

P (MK ≤ x) =

[
exp

(
1

K

K∑
i=1

log

[
1− exp

{
− x2

2τ2
i

}])]K
≈ exp

[
−K exp

(
− x2

2τ2
0

)]

= exp

[
− exp

(
− x2

2τ2
0

+ logK

)]
= G

(
x2

2τ2
0

− logK

)
(18)

for some appropriate weighted average τ2
0 of the τ2

i values, several such averages were tried.
The one that gave the best results was

τ2
0 =

∑K
i=1 τ

5.5
i∑K

i=1 τ
3.5
i

=
K∑
i=1

wiτ
2
i with wi = τ3.5

i

/
K∑
j=1

τ3.5
j .

The quality of the approximation is illustrated in Figures 26-29 by showing the relevant
upper end of the cumulative distribution functions (cdf), as computed by (15), and their
approximations, as computed by (18), for some representative values of K and the σi1 in
(17). The approximation is quite good for opposite end datums. For datums at the same
end it is still acceptable for P (MK ≤ x) ≥ .99, although there is some deterioration for large
K.
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Figure 26: Comparison of Approximation Quality for K = 3
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Figure 27: Comparison of Approximation Quality for K = 7
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Figure 28: Comparison of Approximation Quality for K = 20

approximation quality: part datum references at opposite ends
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Figure 29: Comparison of Approximation Quality for K = 60
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The merit in using the approximation (18) is that it gives some insight into the effect of
K. Since the approximation has the same form as in our original simple situation based on
true position alignment, except for a modified τ0 value, we see that p-quantiles mK,p of MK

are again of the form

mK,p ≈ τ0

√
−2 log[− log(p)] + 2 log(K)

for p ≈ 1. Hence mK,p grows only slowly with K and the accuracy enters again through the
scalar multiplier τ0, although the latter is obtained in weighted fashion from the τ2

i .

Whether one can now take the same step of extrapolating this behavior under true
position alignment to the practical primary/secondary hole pair alignment using the same
linear relationship with coefficients αK and βK from Table 1 is not clear.

It it is not even clear yet whether the weighted average of the τi’s found above works well
for all choices of linear growth in σx.

7 Mating Coordination Holes on Assembled Parts

So far it has been assumed that the “matching” hole patterns were on two monolithic parts
and at issue was how well the K hole centers on one part matched the K hole centers on
the other part. The quality of matching was judged while the nominal hole centers on each
part were held in matching nominal positions.

Here we introduce the complication that the two mating parts are not monolithic but are
assembled in some fashion from smaller parts. During the assembly these smaller parts are
experiencing small shifts and rotations which leave these subparts in not exactly the desired
nominal position relative to each other. Of interest is how well the hole center patterns on
all these subparts combine in matching the hole center patterns of another mating assembly
also made up of subparts.

Ideally all the hole centers on these two assemblies should match, but because of all the
variation sources (drilling holes on subparts and aligning subparts relative to each other in
one of the two halves of the mating assembly) there will be mismatches. Whereas we have
viewed the hole centering variation on a subpart as independent from hole to hole, we now
get the complication that any positioning error of such a subpart will affect all hole centers on
that subpart in some common way. This introduces dependencies which make an analytical
solution infeasible. As alternate recourse we explore this problem via simulations and study
how these results relate to our simple, true positioning approach for the monolithic case. If
the relationship is simple enough, then useful extensions to our results may be possible.

In order to build a simulation model we need to conceptualize the various sources of
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variation in some acceptable way. Again we assume that the assembled part halves will be
aligned on their nominal hole centers and that the actual hole centers may deviate from the
nominal hole centers subject to the various sources of variation. This may be simplistic since
in practice there is no way of knowing where exactly the nominal hole centers are located
after the subparts have been joined into an assembly half. However, determining the worst
case hole center mismatch under such an alignment should be conservative since through
some motion of the assembly halves relative to each other one should be able to get smaller
mismatches than under the true position alignment.

To simplify matters we assume that each assembly half is made up of k subparts, each
with n holes drilled in it. The nominal hole centers for both assembly halves are(

µij
νij

)
i = 1, . . . , k, j = 1, . . . , n .

For further simplicity we assume that the nominal hole centers are along some common axis or
seam, here taken to be the x-axis. Hence we assume that νij = 0, i = 1, . . . , k, j = 1, . . . , n.
This simplicity is mainly for purposes of exposition. The obtained results or insights should
be valid for general hole center patterns.

We entertain the following model for the jth actual hole center on the ith subpart of the
first assembly half:(

Xij

Yij

)
=

(
µij
0

)
+ σ

(
Uij
Vij

)
+ τ1

(
Ui
Vi

)
+ τ2

(
0
Zi

)
ρij (19)

where

ρij =
µij − (µi1 + µin)/2

µin − (µi1 + µin)/2
=
µij − (µi1 + µin)/2

(µin − µi1)/2
.

Here all terms Uij , Vij, Ui, Vi, Zi, i = 1, . . . , k, j = 1, . . . , n are independent standard normal
random variables. The first term on the right side of equation (19) is the nominal hole
center and the second term varies independently from hole to hole within the same subpart
and between subparts and represents the circular symmetric bivariate normal hole centering
variation. The amount of this variation is regulated by the scalar parameter σ. The third
term on the right side of (19) is the same for all holes within the same ith subpart. This
variation term represents a random translation of the part as it occurs during assembly. Its
scale is regulated by the parameter τ1. The fourth and last term on the right of (19) is
driven by the same random component Zi for all holes within the same ith subpart. However
that term varies from hole to hole due to the deterministic multiplier ρij . This fourth term
represents a small random tilt or rotation variation from the x-axis. Its effect is nil at the
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midpoint (µi1 +µin)/2 between the two extreme nominal hole centers on the ith subpart and
is maximal at those extreme locations. It is easy to see that ρij ∈ [−1, 1] for j = 1, . . . , n for
each i = 1, . . . , k.

Figure 30: Hole Center Variation on a Single Subpart (5 Replications)
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Figure 7 shows five example hole center patterns on the same subpart using the above
variation scheme. The unconnected solid dots represent the nominal hole centers for that
subpart and the open ellipses connected by five different line types represent the hole centers
for five different drilled patterns. Note that some polygons show a definite shift or tilt from
the horizontal nominal x-axis.

Similar to (19) we also have a variation model for the hole centers on the other assembly
half, built up again from k subparts with n hole centers each, namely(

X ′ij
Y ′ij

)
=

(
µij
0

)
+ σ

(
U ′ij
V ′ij

)
+ τ1

(
U ′i
V ′i

)
+ τ2

(
0
Z ′i

)
ρij (20)

Here all terms U ′ij , V
′
ij, U

′
i , V

′
i , Z

′
i, i = 1, . . . , k, j = 1, . . . , n are again independent standard

normal random variables, which are also independent of the corresponding terms relating to
the other assembly half. Note, that we used the same nominal hole centers for both assembly
halves. This expresses our assumption that both assembly halves are held in nominal position
while examing the hole center mismatch. Also assumed as the same for both halves are the
variation controlling parameters σ, τ1 and τ2. We will choose τ1 and τ2 such that the shift
variation, controlled by τ1 is about the same as the rotation variation at the extreme subpart
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nominal hole centers, where |ρij| = 1, i.e., we assume

P (τ1

√
U2
i + V 2

i ≤ c) = P (τ2

√
Z2
i + 02 ≤ c) = .9973 .

From this one gets c = 3τ2 and

.9973 = P
(√

U2
i + V 2

i ≤
3τ2

τ1

)
= P

(
U2
i + V 2

i ≤
[
3τ2

τ1

]2
)

= 1− exp

(
−32τ2

2

2τ2
1

)

i.e., √
−2

9
log(1− .9973) =

τ2

τ1
or τ2 = 1.14644 τ1 .

With this we have modeled the tilt of the extreme subpart ends on the same level as subpart
translation. The ratio of τ1 to σ we denote by r = τ1/σ. When r = 0 we actually have no
subpart translation or tilt, i.e., we are back to the case of monolithic assembly halves.

In the simulation we use the above models (19) and (20) to generate (Xij, Yij) and
(X ′ij, Y

′
ij) and compute

D = max
(√

(Xij −X ′ij)2 + (Yij − Y ′ij)2 : i = 1, . . . , k; j = 1, . . . , n
)

which is the maximal hole center discrepancy among all n × k hole center pairs while the
assembly halves are held in nominal position. It is certainly possible that smaller values
for this maximal hole center discrepancy can be realized by moving the assembly halves
relative to each other into a more advantageous mating configuration. However, any such
attempt would add complications into which we don’t wish to enter. This is in keeping
with the approach taken previously in the monolithic part case. By giving up the optimal
configuration we gain significantly in simplicity of the results.

The above discrepancy measure D can be simulated many times over and its distribution
can be studied. Since r = 0 represents a known case for which we can express the distribution
of D by a simple formula we will study the distribution of these simulated D values for other
r values in relation to this known distribution. Recall that for r = 0 we have

F0(d) = P (D ≤ d) =

[
1− exp

(
− d2

4σ2

)]nk

and the p-quantile d0,p, defined by F0(d0,p) = p, is obtained as

d0,p = 2σ

√
− log

(
1− p 1

nk

)
.
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Suppose the simulated values of D for r = 0 are D1, . . . , DN and denote their ordered values
by D(1) ≤ . . . ≤ D(N). Plotting these sorted values D(s) versus d0,p(s) with p(s) = s/(N + 1)
one would expect to see a point pattern that follows the main diagonal reasonably closely.
Of course, for the low and high extremes of this simulated sample of D values (i.e., for s
values near 1 and N) the deviations from the straight line pattern will be more substantial.
Since such a straight line pattern is simple, it is suggestive to plot the ordered D(s) values,
as simulated for other values of r, also against d0,p(s). This program was carried out with
values of r = 0, .5, .75, 1, 1.5, 2, 2.5, 3 with N = 10, 000 simulated D values in each case.
This was done for each (k, n) configuration with k = 2, 3, 4, 5, 7, 10 and n = 2, 3, 4, 5, 7, 10.
Of the resulting 36 plots for each (k, n) configuration only a few representative ones are
shown in Figures 31-36, since the basic character of all 36 plots is the same. Each point
pattern of 10, 000 simulated points is shown by a connecting polygonal line. The bottom
one, representing the case r = 0, is expected to be linear except for the fringes at either
end, since the observed sample quantiles are plotted against the actual quantiles d0,p of the
D distribution. It is remarkable that the point patterns for all the other r values and for
all (k, n) configurations also exhibit a mostly linear pattern, at least up to the cumulative
probability level of .99. Beyond that level it is difficult to separate real deviation from
linearity from the natural and typically strong tail variation.

Also indicated on each plot is the radial hole centering accuracy as ρ = .01 which means
that σ = .29075× .01 = .0029075. This does not mean that the obtained results will be valid
only for this accuracy. The results will be valid for any accuracy, since σ modifies d0,p as a
simple scalar multiplier and since σ drives all variation terms in (19) and (20) as a scalar
multiplier.

The strongly linear patterns in the plots mean that for other r values in the range (0, 3]
and possibly for some r > 3 the character of the D distribution does not change and that
only the location and scale of the distribution is affected. This observation permits us to
summarize the quantiles dr,p of the D distribution function Fr(d) by

dr,p = α+ βd0,p = α+ 2βσ

√
− log

(
1− p 1

nk

)
,

where the coefficients α = α(r) and β = β(r) are estimated from the middle 80% of the
plotted linear point pattern in each case. From the defining relationship Fr(dr,p) = p it then
follows that we may represent the distribution function of D under r as

Fr(d) = P (D ≤ d) =

1− exp

−{d− α(r)

2β(r)σ

}2
nk .

The values of α = α(r) and β = β(r) are given in Tables 5 and 6.
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It should be noted that the negative values for α do not suggest that the low end threshold
of the distributions is negative. This would not make sense for the inherently nonnegative
quantity D. Such negative α values are just a result of fitting a line to the middle 80% of
the observations. At the very low end the linear pattern may not hold, but that end of the
distribution is of little concern to us.

The results of the present investigation are limited in that we assumed equal bounds on
shift and tilt effects at the subpart ends. This may or may not be reasonable.

This investigation should be viewed as preliminary and one can only speculate how these
results may extend to the practical alignment based on primary/secondary hole pairs. Given
that above we found a linear modification which accounted for the subpart alignment vari-
ation and given that primary/secondary hole pair alignment was accounted for by another
linear modification when dealing with the pinning of two monolithic parts, one may suspect
that a compounding of such linear effects would be a reasonable procedure.
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Table 5: Adjustment Coefficients for k = 2, 3, 4 Parts

k = 2 k = 3 k = 4
r α β α β α β

all n 0.00 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
n = 2 0.50 0.0000 1.1769 -0.0001 1.2008 -0.0001 1.2000

0.75 -0.0002 1.4143 -0.0003 1.4308 -0.0004 1.4434
1.00 -0.0006 1.6841 -0.0007 1.7174 -0.0005 1.6878
1.50 -0.0011 2.3035 -0.0016 2.3633 -0.0018 2.3712
2.00 -0.0023 3.0049 -0.0031 3.1031 -0.0027 3.0641
2.50 -0.0032 3.7379 -0.0032 3.7369 -0.0044 3.8547
3.00 -0.0041 4.4533 -0.0045 4.4890 -0.0052 4.5597

n = 3 0.50 0.0000 1.1663 -0.0001 1.1783 -0.0003 1.1901
0.75 -0.0007 1.4182 -0.0009 1.4338 -0.0005 1.4008
1.00 -0.0014 1.7055 -0.0015 1.7065 -0.0015 1.7055
1.50 -0.0032 2.3820 -0.0037 2.4304 -0.0035 2.4202
2.00 -0.0051 3.1064 -0.0056 3.1577 -0.0058 3.1706
2.50 -0.0080 3.9758 -0.0077 3.9352 -0.0084 4.0065
3.00 -0.0092 4.6745 -0.0103 4.8012 -0.0098 4.7328

n = 4 0.50 -0.0005 1.2041 -0.0002 1.1780 -0.0003 1.1877
0.75 -0.0010 1.4137 -0.0009 1.4171 -0.0011 1.4305
1.00 -0.0019 1.7160 -0.0020 1.7181 -0.0021 1.7313
1.50 -0.0042 2.4018 -0.0047 2.4443 -0.0049 2.4729
2.00 -0.0068 3.1594 -0.0070 3.1859 -0.0076 3.2449
2.50 -0.0101 4.0005 -0.0104 4.0394 -0.0112 4.1312
3.00 -0.0128 4.8436 -0.0133 4.8514 -0.0134 4.8754

n = 5 0.50 -0.0003 1.1866 -0.0005 1.1944 -0.0003 1.1801
0.75 -0.0012 1.4280 -0.0009 1.3935 -0.0010 1.4087
1.00 -0.0024 1.7328 -0.0021 1.7048 -0.0026 1.7538
1.50 -0.0052 2.4277 -0.0057 2.4859 -0.0056 2.4801
2.00 -0.0080 3.1836 -0.0088 3.2675 -0.0091 3.2911
2.50 -0.0111 3.9917 -0.0125 4.1342 -0.0116 4.0319
3.00 -0.0154 4.9233 -0.0156 4.9386 -0.0158 4.9568

n = 7 0.50 -0.0004 1.1873 -0.0004 1.1796 -0.0003 1.1704
0.75 -0.0013 1.4144 -0.0016 1.4465 -0.0014 1.4212
1.00 -0.0027 1.7295 -0.0028 1.7354 -0.0028 1.7369
1.50 -0.0068 2.5195 -0.0069 2.5267 -0.0063 2.4725
2.00 -0.0105 3.3063 -0.0107 3.3304 -0.0104 3.3120
2.50 -0.0148 4.1827 -0.0152 4.2161 -0.0148 4.1881
3.00 -0.0187 5.0159 -0.0200 5.1418 -0.0190 5.0426

n = 10 0.50 -0.0007 1.2084 -0.0009 1.2166 -0.0005 1.1901
0.75 -0.0019 1.4500 -0.0020 1.4689 -0.0017 1.4404
1.00 -0.0036 1.7839 -0.0035 1.7764 -0.0035 1.7728
1.50 -0.0082 2.5721 -0.0083 2.5855 -0.0080 2.5593
2.00 -0.0127 3.3941 -0.0137 3.4883 -0.0128 3.4047
2.50 -0.0180 4.3148 -0.0177 4.2773 -0.0191 4.3958
3.00 -0.0227 5.1746 -0.0235 5.2512 -0.0236 5.2568
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Table 6: Adjustment Coefficients for k = 5, 7, 10 Parts

k = 5 k = 7 k = 10
r α β α β α β

all n 0.00 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
n = 2 0.50 -0.0003 1.2202 -0.0001 1.2012 -0.0002 1.2046

0.75 -0.0004 1.4399 -0.0005 1.4478 -0.0006 1.4538
1.00 -0.0009 1.7380 -0.0009 1.7271 -0.0012 1.7584
1.50 -0.0019 2.3832 -0.0021 2.4087 -0.0020 2.3900
2.00 -0.0032 3.1154 -0.0031 3.1070 -0.0032 3.1165
2.50 -0.0040 3.8203 -0.0050 3.9119 -0.0038 3.8024
3.00 -0.0054 4.5813 -0.0052 4.5646 -0.0060 4.6467

n = 3 0.50 -0.0003 1.1897 -0.0005 1.2122 -0.0001 1.1810
0.75 -0.0010 1.4483 -0.0007 1.4171 -0.0009 1.4297
1.00 -0.0017 1.7320 -0.0017 1.7372 -0.0022 1.7724
1.50 -0.0037 2.4376 -0.0041 2.4629 -0.0042 2.4786
2.00 -0.0063 3.2324 -0.0064 3.2505 -0.0063 3.2272
2.50 -0.0080 3.9654 -0.0083 3.9999 -0.0083 4.0108
3.00 -0.0100 4.7578 -0.0097 4.7205 -0.0111 4.8455

n = 4 0.50 -0.0004 1.1905 -0.0003 1.1854 -0.0004 1.1955
0.75 -0.0010 1.4158 -0.0010 1.4166 -0.0010 1.4273
1.00 -0.0023 1.7469 -0.0023 1.7564 -0.0024 1.7588
1.50 -0.0050 2.4890 -0.0049 2.4662 -0.0052 2.4939
2.00 -0.0078 3.2564 -0.0076 3.2421 -0.0085 3.3075
2.50 -0.0116 4.1693 -0.0111 4.0945 -0.0112 4.1180
3.00 -0.0138 4.9110 -0.0134 4.8750 -0.0142 4.9547

n = 5 0.50 -0.0004 1.1905 -0.0005 1.1958 -0.0005 1.1952
0.75 -0.0012 1.4229 -0.0012 1.4316 -0.0010 1.4071
1.00 -0.0027 1.7603 -0.0026 1.7522 -0.0023 1.7198
1.50 -0.0053 2.4616 -0.0058 2.4919 -0.0057 2.4829
2.00 -0.0089 3.2731 -0.0094 3.3119 -0.0092 3.3012
2.50 -0.0125 4.1282 -0.0131 4.1984 -0.0118 4.0711
3.00 -0.0151 4.9012 -0.0151 4.8963 -0.0164 4.9959

n = 7 0.50 -0.0004 1.1852 -0.0006 1.2036 -0.0003 1.1776
0.75 -0.0016 1.4439 -0.0012 1.4162 -0.0015 1.4363
1.00 -0.0027 1.7300 -0.0031 1.7670 -0.0024 1.7048
1.50 -0.0067 2.5135 -0.0068 2.5151 -0.0068 2.5199
2.00 -0.0106 3.3186 -0.0113 3.3797 -0.0111 3.3581
2.50 -0.0157 4.2704 -0.0153 4.2302 -0.0154 4.2303
3.00 -0.0208 5.2030 -0.0197 5.1065 -0.0201 5.1430

n = 10 0.50 -0.0005 1.1887 -0.0006 1.1926 -0.0006 1.1920
0.75 -0.0016 1.4265 -0.0016 1.4335 -0.0018 1.4434
1.00 -0.0033 1.7537 -0.0035 1.7701 -0.0035 1.7706
1.50 -0.0079 2.5569 -0.0080 2.5586 -0.0083 2.5861
2.00 -0.0129 3.4150 -0.0131 3.4296 -0.0134 3.4399
2.50 -0.0186 4.3631 -0.0179 4.2932 -0.0178 4.2965
3.00 -0.0223 5.1510 -0.0228 5.1872 -0.0231 5.2219
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Figure 31: Approximation quality for k = 2 parts and n = 2 holes per part
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Figure 32: Approximation quality for k = 2 parts and n = 10 holes per part
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Figure 33: Approximation quality for k = 3 parts and n = 7 holes per part

expected p-quantiles   (with all  k x n  holes on same part)

ob
se

rv
ed

 p
-q

ua
nt

ile
s 

  (
k 

pa
rt

s 
w

ith
 n

 h
ol

es
 e

ac
h)

0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

0.
0

0.
02

0.
04

0.
06

0.
08

0.001 0.050 0.250 0.500 0.750 0.900 0.990 0.999

r = 0

r =  0.5
r =  0.75

r =  1

r =
  1.5

r =
  2

r =
  2

.5

r =
  3

number of holes per part:  n =  7

number of parts:  k =  3

number of simulations:  nsim =  10000

single hole radial centering accuracy:  rho =  0.01

p-scale

85



Figure 34: Approximation quality for k = 7 parts and n = 4 holes per part
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Figure 35: Approximation quality for k = 10 parts and n = 2 holes per part
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Figure 36: Approximation quality for k = 10 parts and n = 10 holes per part
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9 Appendix A
Extreme Value Approximation

Using the notation introduced in Sections 2.2 and 2.3 we have for bK > 0

P (bK [MK − aK ] ≤ x) = P (MK ≤ x/bK + aK)

=

[
1− exp

(
−{x/bK + aK}2

2τ2

)]K

=

[
1− exp

(
− x2

2τ2b2
K

− xaK
bKτ2

− a2
K

2τ2

)]K

and with aK = τ
√

2 log(K) and bK =
√

2 log(K)/τ

=

[
1− 1

K
exp

(
−x− x2

4 log(K)

)]K

−→ exp [− exp(−x)] = G(x) as K →∞.

This follows since

K

[
1

K
exp

(
−x− x2

4 log(K)

)]
−→ exp(−x) as K →∞.

We also see that for large |x| the term

exp

(
− x2

4 log(K)

)

converges to 1 only very slowly due to the slow growth of log(K).
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10 Appendix B
Geometry of Primary/Secondary Hole Pair Alignment

Setup and Alignment Transformation

As discussed in Section 3, the alignment of the two parts will be accomplished by using two
sets of paired coordination holes, two holes on one part are paired with corresponding holes
on the other. In this alignment the first hole pair is matched exactly and the second hole
pair is aligned by rotation in the best possible way. It is assumed that the relevant aspects
of the two hole pairs can be viewed as two sets of cicles in the same plane3. It is assumed
that nothing impedes the motions of the above alignment process.

Because of the above planar view we may denote the coordinates of the primary hole pair
by (X1, Y1) and (X ′1, Y

′
1) for the first and second part, respectively. Similarly, we denote the

coordinates of the secondary hole pair by (X2, Y2) and (X ′2, Y
′

2). These coordinates are with
respect to a fixed coordinate system. The first part will stay firmly fixed within that system
whereas the second part will undergo motions with respect to that system. Throughout we
will observe the convention that coordinates with a ′ refer to points on the second part.
Coordinates with a ′′ refer to the same points after the alignment transformation. We view
(Xi, Yi) and (X ′i, Y

′
i ) as bivariate normal random vectors, i.e.,(

Xi

Yi

)
and

(
X ′i
Y ′i

)
∼ N2

((
µi
νi

)
, σ2

(
1 0
0 1

))
for i = 1, 2

where the (µi, νi) represent the nominal hole center locations, which are supposed to be the
same for a matched set of holes. Another way of expressing this is as follows

Xi = µi + σUi , Yi = νi + σVi , X ′i = µi + σU ′i , Y ′i = νi + σV ′i ,

where Ui, Vi, U
′
i , V

′
i are independent standard normal random variables. This representation

turns out to be very useful when tracking the influence of the parameters µi, νi, σ on various
key characteristics.

The translation to match the primary hole centers on both parts is clearly given by
(∆x,∆y), where

∆x = X1 −X ′1 = σ(U1 − U ′1) and ∆y = Y1 − Y ′1 = σ(V1 − V ′1) .

These lateral and longitudinal offsets are normally distributed with means zero and standard
deviation

√
2σ.

3This may involve a projection if the two hole pairs are on two parallel planes.
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We now rotate the translated second part around (X1, Y1) until the segment connecting
(X1, Y1) with (X2, Y2) coincides with the direction of the translated segment connecting
(X ′1, Y

′
1) with (X ′2, Y

′
2). We have the following expressions for the cosine and sine of that

rotation angle φ:

cosφ =
(X2 −X1)(X ′2 −X ′1) + (Y2 − Y1)(Y ′2 − Y ′1)√

(X2 −X1)2 + (Y2 − Y1)2
√

(X ′2 −X ′1)2 + (Y ′2 − Y ′1)2

and

sin φ =
(X2 −X1)(Y ′2 − Y ′1)− (Y2 − Y1)(X ′2 −X ′1)√

(X2 −X1)2 + (Y2 − Y1)2
√

(X ′2 −X ′1)2 + (Y ′2 − Y ′1)2
.

By this translation and rotation we move any point (X ′, Y ′) to a new position, namely(
X ′

Y ′

)
−→

(
X1

Y1

)
+Rφ

((
X ′ + ∆x

Y ′ + ∆y

)
−
(
X1

Y1

))
=

(
X ′′

Y ′′

)
,

where

Rφ =

(
cosφ sinφ
− sinφ cosφ

)
.

Note that only part 2 is moved and part 1 remains fixed in the chosen coordinate system.

Approximations

It turns out that the above complicated expressions for sinφ and cosφ can be approximated
very well, leading to useful approximations in the transformation formulas. The benefit of
such approximations is that it becomes easier to get a sense of what drives the variability of
certain key characteristics.

There is no loss in generality in assuming ν1 = ν2, since we can always set up the reference
coordinate system that way. Typically σ is relatively small compared to |µ2−µ1|, i.e., terms
like (U2−U1)σ/(µ2−µ1) can be neglected when compared to 1. The reason is that standard
normal random variables tend to be mostly restricted to the interval [−3, 3] and convolutions
such as U2−U1 will be mostly within the same interval scaled up by a factor

√
2. Thus such

random quantities are reasonably limited or bounded and multiplication by σ/(µ2−µ1) will
render such contributions negligible.

This can be used to simplify the above expressions for cosφ and sinφ. For example,

cosφ ≈ 1
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since

(X2 −X1)(X ′2 −X ′1) = (µ2 − µ1 + σ(U2 − U1))(µ2 − µ1 + σ(U ′2 − U ′1))

= (µ2 − µ1)2

(
1 +

σ(U2 − U1)

µ2 − µ1

)(
1 +

σ(U ′2 − U ′1)

µ2 − µ1

)

≈ (µ2 − µ1)2

and (using ν1 = ν2)

(Y2 − Y1)(Y ′2 − Y ′1) = (ν2 − ν1 + σ(V2 − V1))(ν2 − ν1 + σ(V ′2 − V ′1))

= σ2(V2 − V1)(V ′2 − V ′1)

so that the numerator in cosφ becomes approximately

(µ2 − µ1)2 + σ2(V2 − V1)(V ′2 − V ′1) = (µ2 − µ1)2

(
1 +

σ2(V2 − V1)(V ′2 − V ′1)

(µ2 − µ1)2

)

≈ (µ2 − µ1)2 .

The same process leads to (µ2 − µ1)2 as an approximation for the denominator of cosφ and
thus cosφ ≈ 1 to a good approximation. Similarly one finds

φ ≈ sinφ ≈ σ(V ′2 − V ′1 − V2 + V1)

µ2 − µ1

=
Y ′2 − Y ′1 − Y2 + Y1

µ2 − µ1

.

This clearly shows the influence of σ, µ1, and µ2 on φ. What also stands out is that the
variation of φ is dominated mainly by the variation of the Y coordinates, which should come
as no surprise. Using this approximation we can approximate the standard deviation of φ
by

σφ ≈
2σ

|µ2 − µ1|
,

which is proportional to σ and inversely proportional to the nominal distance between the
two holes used for alignment. As far as the misalignment angle is concerned it is most
advantageous to space the primary and secondary alignment holes as far apart as possible.

The above approximations for cosφ and sinφ yield the following approximations for
the points (X ′′, Y ′′) obtained by transformation from (X ′, Y ′) = (µ, ν) + σ(U ′, V ′) which
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may represent the center of some coordination hole anywhere on the second part, i.e., not
necessarily collinear with the two used for alignment:

X ′′ = X1 + (X ′ −X ′1) cosφ+ (Y ′ − Y ′1) sinφ

≈ X ′ +X1 −X ′1 +
σ

µ2 − µ1

(Y ′ − Y ′1)(Y ′2 − Y ′1 − Y2 + Y1)

= µ+ σU ′ + σ(U1 − U ′1) +
σ

µ2 − µ1

(ν + σV ′ − ν1 − σV ′1)(V ′2 − V ′1 − V2 + V1)

≈ µ+ σ

[
U ′ + U1 − U ′1 +

ν − ν1

µ2 − µ1

(V ′2 − V ′1 − V2 + V1)

]

neglecting the term σ2(V ′−V ′1)(V ′2−V ′1−V2 +V1)/(µ2−µ1) against the other terms involving
only σ. Further

Y ′′ = Y1 − (X ′ −X ′1) sinφ+ (Y ′ − Y ′1) cosφ

≈ Y ′ + Y1 − Y ′1 −
σ

µ2 − µ1
(X ′ −X ′1)(Y ′2 − Y ′1 − Y2 + Y1)

= ν + σV ′ + σ(V1 − V ′1)− σ

µ2 − µ1
(µ− µ1 + σ(U ′ − U ′1))(V ′2 − V ′1 − V2 + V1)

≈ ν + σ

[
V ′ + V1 − V ′1 −

µ− µ1

µ2 − µ1
(V ′2 − V ′1 − V2 + V1)

]

neglecting the term σ2(U ′−U ′1)(V ′2−V ′1−V2 +V1)/(µ2−µ1) against the other terms involving
only σ.

If (X, Y ) = (µ, ν) + σ(U, V ) (again with U , V independent standard normal random
variables) is the point on the first panel paired with (X ′, Y ′) on the second panel, then we
can express the approximate distance between the two points after alignment as

D = D(X, Y,X ′, Y ′) =
√

(X −X ′′)2 + (Y − Y ′′)2

≈ σ


[
U − U ′ − U1 + U ′1 −

ν − ν1

µ2 − µ1
(V ′2 − V ′1 − V2 + V1)

]2

(21)

+

[
V − V ′ − V1 + V ′1 +

µ− µ1

µ2 − µ1

(V ′2 − V ′1 − V2 + V1)

]2


1/2

.
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Note the direct proportionality between D and σ and the fact that a common rescaling
of the µ’s and ν’s has no effect on D, since such scale factors would simply drop out in
(ν − ν1)/(µ2 − µ1) and (µ− µ1)/(µ2 − µ1). Such rescaling is of course limited by our earlier
assumption that σ/(µ2 − µ1) be negligible against one, i.e., we can’t scale these means too
small in order for this observation to hold.

In the special case when (X, Y ) = (X2, Y2) and (X ′, Y ′) = (X ′2, Y
′

2) the above expression
for D simplifies to

D = D(X2, Y2, X
′
2, Y

′
2) ≈ σ|U2 − U ′2 − U1 + U ′1| .

Figure 37 illustrates the quality of the above approximations by plotting the approximate
value of D against its actual value. For the two alignment hole locations we took µ1 = 0
and µ2 = 20 (ν1 = ν2 = 0) and for the location error standard deviation we took a relatively
large value of σ = .1. The top half of Figure 37 shows the approximate D plotted against the
actual D of the second matched hole pair for 100 randomly generated alignment situations.
The points lie close to the main diagonal indicating that the approximation is excellent. The
bottom half of Figure 37 shows the corresponding comparison of a third coordination hole
at (µ, ν) = (10, 0) (not used for alignment) for 100 randomly generated alignment situations
and third coordination hole choices. Again the approximation is excellent and it appears
that we can use it with confidence.

Simulation of Maximal Hole Center Distances

When we have a set of K coordination hole pairs in some matching patterns on two parts it
becomes notationally more convenient to treat the Kth pair as the secondary hole pair used
in the alignment, whereas the holes corresponding to indices i = 2, . . . , K − 1 are viewed
as intermediate holes. Thus we should modify the above expression (21) for the hole center
distance by replacing the index 2 by K throughout. Taking the thus modified expression
(21) for the hole center distance at any hole pair (X, Y ) = (Xi, Yi) and (X ′, Y ′) = (X ′i, Y

′
i )

and finding the largest of these distances, namely

M̃K = max [D(Xi, Yi, X
′
i, Y

′
i ) ; i = 1, . . . , K]

leads to

95



Figure 37: Approximation Quality
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M̃K = σmax


[
Ui − U ′i − U1 + U ′1 −

νi − ν1

µK − µ1

(V ′K − V ′1 − VK + V1)

]2

+

[
Vi − V ′i − V1 + V ′1 +

µi − µ1

µK − µ1
(V ′K − V ′1 − VK + V1)

]2


1/2

; i = 1, . . . , K

 .

The distribution of M̃K/σ is easily simulated for various nominal hole center patterns. One
pattern of interest is when all K holes are equally spaced along a line and another is when
they are symmetrically arranged around the perimeter of a square including the corners of
the square. In the latter case K should be divisible by 4. The relative spacing between
nominal hole centers does not affect the distribution of M̃K/σ, since any common scaling
factor of the (µi, νi) drops out in the ratios (νi − ν1)/(µK − µ1) and (µi − µ1)/(µK − µ1).
This of course assumes that any such scaling does not violate our earlier assumption that
σ/(µK − µ1) (before it was σ/(µ2 − µ1)) be negligible against one. In practical situations
such violating scalings should not arise.

In the above derivation and simulation description it was assumed that the hole cen-
tering variation, characterized by σ, is the same on both parts. Observe that in M̃K the
contributions from the two parts always appear paired, such as in

σ(Vi − V ′i ) = Yi − Y ′i .

If we assume that the Yi and Y ′i have different standard deviations, say σ1 and σ2, we can
view Yi − Y ′i as having the same distribution as

σ(Vi − V ′i ) with σ2 = (σ2
1 + σ2

2)/2 .

This leaves the situation in the same state as originally assumed.
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11 Appendix C
Clearance and Cleanout for Three Overlapping Holes

The problem discussed here is that of finding the largest circle that can be inscribed into the
intersection of three circles with same radius r and centers that deviate to some extent from
a nominal, common center position. What is desired is a criterion that tells us whether the
intersection will accommodate a clearance circle at all and if so, we would like to characterize
the diameter of the maximum clearance circle that can be inscribed.

Figure 38: Three Holes (Case A): Clearance Circle Tangent to All Three Circles
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It turns out that there are two intrinsically different cases (A and B) aside from the
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situation when there is no clearance circle (case C). In the first case the clearance circle
touches all three given circles and in the second case only two of the circles are touched,
i.e., it is as though the third circle is not present. Figures 38 and 39 depict cases A and
B, respectively. Figure 40 shows an example with nonempty intersection for each pair of
circles but with empty overall intersection, i.e., no clearance. The various geometric entities
in those Figures will be explained in the next section. Much of the geometric insight and
solution to this problem is due to Tom Grandine.

Figure 39: Three Holes (Case B): Clearance Circle Tangent to Only Two Circles
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A second problem in this context is that of finding the smallest circle that is centered on
one of the three circle centers and which contains all three circles. This circle is the clean-out
circle.

Figure 40: Three Holes (Case C): No Clearance Circle
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The Clearance Diameter

Let Pi = (xi, yi) denote the center of circle Ci, i = 1, 2, 3. The common diameter of the
three circles is denoted by 2r. In order to see whether there is a positive clearance at all, we
consider those two circle centers that are farthest apart, say P1 and P2, i.e., |P1P2| ≥ |P1P3|
and |P1P2| ≥ |P2P3|, where |PiPj| denotes the distance between Pi and Pj . It is evident
that there will be a positive clearance for circle C1 and circle C2 provided 2r > |P1P2|. This
situation is illustrated in Figure 38. There the two circles, lower left and lower right, are
farthest apart. Concentric to these two circles are drawn two dotted line circles with common
radius |P1P2|. By the maximality assumption of the distance |P1P2| it follows that the center
P3 of the upper circle must be within the intersection of the dotted line circles. However,
even if P3 is in that intersection it does not guarantee that the three circles, C1, C2, C3, will
have a positive clearance diameter, as Figure 40 illustrates.

In order to understand the clearance diameter we connect P1, P2, and P3 to form the
sides of a triangle. Next we erect the midperpendiculars on each triangle side, indicated
by the straight dotted lines. These intersect at exactly one point, say Q. Using P1P2 as
diameter a smaller dotted line circle is drawn in Figure 38. If the third center point P3 lies
outside this dotted line circle (as in Figure 38), then the point Q will lie within the triangle.
Otherwise (as shown in Figure 39) it will lie outside the triangle.

This can be seen from Thales’ theorem which states that the triangle is a right triangle
whenever P3 lies on this dotted line circle. In that case Q is easily seen to lie on the side
opposite to P3, i.e., the dividing line between inside and outside of that triangle.

The significance of the midperpendiculars is as follows. If the clearance circle touches
two of the given circles, then the perpendiculars to these two tangency points have to meet
on the midperpendicular defined by these two circles. If the clearance circle touches all three
given circles, then the perpendiculars at the three tangency points (given by the dashed line
segments in Figure 38) simultaneously meet on all three midperpendiculars of the triangle
P1, P2, P3, i.e., in Q.

This point Q is equidistant from all the Pi. Denote this distance by r′, which is the radius
of the circle through the Pi’s with center at Q. The dashed lines going from Pi through Q
to the edge of circle Ci have length r. Hence the segment from Q to the clearance circle
edge has length ρ = r − r′. Based on the above discussion 2ρ is the clearance diameter of
the largest circle fitting into the intersection of the three given circles. As mentioned above,
the intersection may be empty, which is indicated by ρ being negative. However, this latter
contingency only occurs when the Pi are all far apart.

In Figure 39 the third center point is within the circle spanning the diameter P1P2.
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Because of that the midperpendiculars meet below the triangle. The corresponding inscribed
clearance circle that would touch all three original circles is not the largest possible. The
circle with midpoint halfway between P1 and P2 and touching circles C1 and C2 is clearly
bigger. It does not touch circle C3 and it is the maximal circle within the intersection of C1

and C2.

It remains to calculate the clearance diameter from the coordinates of P1, P2, P3. Case B
is the easiest. It is characterized (assuming P1 and P2 being furthest apart) by the condition

|P1P2|2 > |P1P3|2 + |P2P3|2 .

In that case the maximal clearance diameter is

D = 2r − |P1P2| = 2r −
√

(x1 − x2)2 + (y1 − y2)2 .

In case A we need to establish the radius r′ of the circle passing through P1, P2, P3. This
is given by the sine theorem which states

|P1P2|
sinα3

=
|P1P3|
sinα2

=
|P2P3|
sinα1

= 2r′ ,

where αi is the angle of the triangle P1, P2, P3 at Pi. We can express sinα1 as

sinα1 =
|(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)|√

(x2 − x1)2 + (y2 − y1)2
√

(x3 − x1)2 + (y3 − y1)2

and
|P2P3| =

√
(x3 − x2)2 + (y3 − y2)2 .

After obtaining 2r′ as the above ratio we obtain 2ρ = 2r − 2r′ as the clearance diameter,
provided it is positive. If not, then there is no clearance.

The Clean-Out Diameter

Here we find the smallest circle that contains the three given circles C1, C2, and C3

and which is centered on one of these three circles. Although one could optimize over the
centering of the clean-out circle by trying out all three circles as possible centers we will
not pursue this here. The reason is that the circle center found to be optimal may not be
accessible, being either at the bottom or in the middle of the three hole stack and assuming
that we can drill the clean-out hole only from the top of the stack. An optimal center location
sandwiched as the middle hole would always be inaccessible, no matter from which side we
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can drill. Thus we will assume that the centering hole is given as circle C1 and the only
question is how large must the clean-out diameter be in order to clean out all three given
circles.

In order to clean out C1 and C2 we need a hole diameter of

D1 = 2
(
r +

√
(x1 − x2)2 + (y1 − y2)2

)
and in order to clean out C1 and C3 we need a hole diameter of

D2 = 2
(
r +

√
(x1 − x3)2 + (y1 − y3)2

)
.

In order to clean out all three holes at the same time while centering on C1 we need a
clean-out diameter of

DU = max(D1, D2)

= 2r + 2 max
(√

(x1 − x2)2 + (y1 − y2)2,
√

(x1 − x3)2 + (y1 − y3)2

)
.

Previously, when cleaning out two hole pairs, we also considered centering the clean-
out hole halfway between the two hole centers. When three holes are involved this type of
centering is probably even more difficult to accomplish because of three levels of stacking
holes. We will not analyze this further. In any case, the above formulation of DU (based on
centering on C1) is likely to be conservative, by providing the largest clean-out diameter. If
that leads to satisfactory full-sized hole diameters, we will have the same or higher degree
of satisfaction with whatever clean-out centering is accomplished in practice.
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12 Appendix D
Worst Case for Primary/Secondary Hole Pair Alignment

The following is a worst case analysis when parts are aligned by primary and secondary
coordination holes. The arguments put forth are not a mathematical proof that this analysis
actually represents the worst case but we believe that they are very persuasive nevertheless.
Furthermore, simulations appear to confirm the conclusions. This type of analysis seems
new and the results are somewhat surprising at first glance.

Figure 41 shows a pair of circles which represent the hole centering tolerance zones for
two holes each on two parts X and Y . The left circle represents the matching tolerance
zones for the primary hole centers (with matched nominal centers E = F ) for parts X and
Y whereas the right circle (with matched nominal centers G = H) represents the matching
tolerance zones for the secondary hole centers on the same parts. We emphasize that these
circles do not represent the actual holes themselves.

On the perimeter of the primary centering zones two extreme realizations of actual hole
centers are shown as ◦, one for part X and one for part Y and denoted by Ã and A,
respectively. These realizations of actual hole centers are extreme in the sense that they are
as far apart as possible and still within the same matched tolerance zones. There are many
other such extreme realizations which can be distinguished by the angle φ which the segment
AÃ forms with the baseline which connects the centers F and H.

Figure 41: Primary/Secondary True Position Alignment
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These extreme primary hole centers can be aligned perfectly by moving part X along
the segment ÃA. The result after this shift is illustrated in Figure 42, showing the offset
primary and secondary tolerance zones as solid line circles centered at E, F , G, and H. We
will use the convention of referring to the tolerance zones by the same letters.

Also shown on the perimeter of the secondary tolerance zones are two extreme actual
hole centers, again indicated by ◦ and labeled by B and C respectively. This choice of hole
centers is special in that the segments AB and AC are tangent to the respective zones H
and G. These tangents have angle α between them, which itself is a function of φ.
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Figure 42: Primary/Secondary Hole Alignment: Shift & Rotation
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In order to align these secondary hole centers as best as possible (while keeping the
perfect alignment at A) we should rotate part X with E and G on it around A so that A,
B, and C become collinear. The result of this rotation is shown in Figure 42 as the dashed
circle with center at G′, with A, B, and C ′ collinear. A little reflection should convince that
for fixed φ this rotation by the angle α will separate G′ and H as much as possible for any
choice of actual hole centers within the zones G and H.

Figure 43: Worst Case Primary/Secondary Hole Alignment
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Typically the primary and secondary hole pairs are chosen to be those that are nominally
farthest apart from each other. Once the primary and secondary holes are aligned as best
as possible, the remaining hole centers located in-between (and not shown in Figure 42)
will have misaligned hole centers. The question is: What is the maximal separation that
the hole centers of any in-between hole pair can experience? It seems plausible4 that this
maximal separation comes about when φ = 0, which will result in a maximal rotation angle
α = αB + αC . This latter situation is illustrated in Figure 43.

Figure 44 shows an elaboration of Figure 43 in that an intermediate pair of hole center
tolerance zones (between primary and secondary) has been added to each part, both shown
in their shifted and rotated position according to the previously discussed alignment.

Figure 44: Worst Case Intermediate Hole Center Separation
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Since the actual hole centers of these intermediate holes are not used during the alignment
we can, in worst case fashion, choose the actual hole centers within these aligned tolerance
zones (centered at K and L′) as far apart as possible, namely at U and V ′. Because of the
separation of the zones K and L′ the distance between U and V ′ exceeds 4ρ, where ρ is the
common radius of all the hole centering tolerance zones. The point V on the perimeter of
zone L corresponds to the point V ′ before rotation by the angle α.

When there are several intermediate holes between the primary and secondary alignment
holes then the maximal discrepancy between actual hole centers, i.e., the worst case, can be
realized for that intermediate hole pair which is farthest away from the primary hole pair,
i.e., just shy of the secondary hole pair.

4Although simulations support this conjecture we found it very tedious to prove this rigorously and so
far have left this issue unresolved
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Figure 45 shows the zones and the worst case choices of actual hole centers in true position
alignment. Note that the points Ã, Ṽ , and C̃ in Figure 45 correspond to the shifted points
A, V , and C in Figure 44, respectively. The fact that these points A, Ã, U , Ṽ , B, and C̃
represent worst case choices for actual hole centers within their respective tolerance zones
is far from obvious when looking just at Figure 45. It only becomes plausible (without the
benefit of a tight mathematical proof at this point) through the previous sequence of Figures
and explanations.

Figure 45: Worst Case Intermediate Hole Center Separation
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It remains to derive a formula for the worst case distance between the hole centers U
and V ′ in Figure 44. This distance is d = x + 2ρ, where x is the distance between K and
L′. To derive this let ` denote the distance between the nominal primary and secondary
hole centers, i.e., between F and H. Let λ be the distance between F and the most distant,
intermediate, nominal hole center, say between F and K (in Figure 44). Then the distance
between A and L′ (in Figure 44) is λ+ρ, the same as the distance between A and L, whereas
the distance between A and K is λ− ρ. By the Cosine Theorem we have

x =
√

(λ− ρ)2 + (λ+ ρ)2 − 2(λ− ρ)(λ+ ρ) cos(α)

=
√

2λ2 + 2ρ2 − 2(λ2 − ρ2) cos(α)

which is an increasing function of λ > 0, confirming our earlier assertion that the worst case
intermediate hole center pair should be chosen as distant from F as possible.

To obtain cos(α) we note from Figure 43 that

sin(αB) =
ρ

`− ρ and sin(αC) =
ρ

`+ ρ

and thus

107



cos(α) = cos(αB + αC) = cos(αB) cos(αC)− sin(αB) sin(αC)

=

√√√√1− ρ2

(`− ρ)2

√√√√1− ρ2

(`+ ρ)2
− ρ

`− ρ
ρ

` + ρ

=
`
√
`2 − (2ρ)2 − ρ2

`2 − ρ2
=

√
1− 4R2 −R2

1−R2
≈ 1− 2R2 ,

abbreviating R = ρ/`, which typically is very small, say R < .01 when the radial tolerance
is .01′′ and ` = 1′′ conservatively small. The maximum relative error incurred in the last
approximation is 4× 10−8 for R < .01.

Hence we have

d ≈ 2ρ+
√

2ρ2 + 2λ2 − 2(λ2 − ρ2)(1− 2R2) = 2ρ+
√

4ρ2 + 4R2(λ2 − ρ2)

= 2ρ+ 2ρ
√

1 + (λ/`)2 −R2 ≈ 2ρ
(

1 +
√

1 + (λ/`)2

)
.

The maximum relative error in the last approximation is 2.11 × 10−5 for λ/` ≥ .5 and
R < .01.

For the special case with K equally spaced and linearly arranged nominal hole centers
on both parts one has λ = (K − 2)`/(K − 1) and thus for K ≥ 3

dK = d = 4ρ× 1

2

1 +

√
1 +

(
K − 2

K − 1

)2
 .

For K = 3 one has d3 ≈ 4ρ× 1.059, i.e., 5.9% larger than 4ρ, which represents the worst
case for K = 2. That 4ρ is a worst case separation of actual hole centers when K = 2 can
be seen from Figures 42 and 43. There the secondary hole center tolerance zones touch after
the worst case alignment shift of the primary hole centers. In this touching position any two
hole centers in the respective secondary centering zones can be at most 4ρ apart and will
only be brought closer together by any alignment rotation around A. If the actual secondary
hole centers are at opposite ends of the secondary tolerance zones and on the baseline, then
no rotation will take place and 4ρ is achieved. The fact that d2 = 4ρ in the above formula
for dK is merely an accident.

108



For large K we get d∞ ≈ 4ρ× (1 +
√

2)/2 = 4ρ × 1.207, which is 20.7% larger than 4ρ.
For K = 2, . . . , 20 the factor of increase, dK/(4ρ), is plotted against K in Figure 46 together
with the asymptote at 1.207. It is somewhat surprising that for K > 2 the worst case hole
center separation is larger than 4ρ. Maybe the reason for it not having shown up in practical
situations is that it is a worst case situation and thus statistically rare and the factor of
increase is bounded by 1.207 for all K.

Figure 46: Worst Case Increase Factor for 4ρ
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From the above we also get sin(α) ≈ α for the worst case angular misalignment between
the parts X and Y as

sin(α) =
√

1− cos2(α) ≈
√

1− (1− 2R2)2 = 2R
√

1−R2 ≈ 2R .

The maximum relative error in the last approximation is at most 5× 10−5 for R < .01.

The effect of this angular misalignment between the parts X and Y will be felt most at
points (on X and Y) which have the greatest perpendicular distance, say ζ , from the baselines
connecting the primary and secondary hole centers on each part. The lateral swing at these
distant points is approximately 2ζR = 2ρ ζ/`. Aside from the hole centering tolerance zone
radius, ρ, this swing is strongly dependent on the ratio of ζ and `. Here ` represents the width
over which coordination holes are used to join the parts and ζ represents the dimensional
extent of the parts in the direction perpendicular to the joining seam. Ideally one would like
to have ζ/` < 1, or at least not much larger than 1.
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The other aspect of part misalignment between the parts X and Y is the worst case shift
caused by aligning the two primary hole centers. Here “worst case” refers to the previously
analyzed case of maximal separation of hole centers when using the primary/secondary hole
alignment scheme. Although the subsequent rotation for aligning the secondary hole centers
will slightly reduce the actual shift this reduction is negligible, namely at most 5× 10−5 in
relative terms for R < .01. Under this worst case misalignment we obtain a shift of 2ρ along
the axis defined by the primary and secondary hole centers. Of course such shifts could also
occur in the direction perpendicular to this, but then we no longer get worst case separation
of hole centers.

The above analysis dealt with a linear nominal hole center pattern. It would be of interest
to find the worst case when the hole center pattern is equally spaced around the periphery
of a circle. Much of the previous considerations probably still apply and after some analysis
one may come up with a closed form formula for worst case hole center here as well.
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