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Abstract

Given a pure random sample, Xi,...,X,, from a population with a
continuous distribution function F we are interested in the extrapolation
problem. Namely, we wish to estimate or provide confidence bounds for
extreme quantiles x,, of I, in particular for quantiles which fall beyond the
range of the sample. Building on the fact that the i** sample extreme Y;
can act as exact 100y% upper confidence bound for z,, for some appropri-
ate p; = pi(y,n), we extend the scope of these nonparametric confidence
bounds by introducing an adaptive type of QQ-plot, which plots the sample
extremes Y7, ...,Y, against appropriate transforms of pi,...,pg. In such a
plot the sample quantiles are expected to form an approximately straight
line which then becomes the vehicle for extrapolation. The adaptability of
the QQ-plot arises from the assumption that F' is in the domain of attraction
of one of the three classical extreme value distribution types. Estimating the
extreme-value index ¢ by the generalization of Hill’s estimator (Dekkers et
al., 1989) we then use a probability transform f.(p;) = ([-nlog(p;)] ¢—1)/c
to act as the abscissa values of the QQ-plot. A straight line or quadratic
is fitted by weighted least squares, using the estimated approximate co-
variance structure suggested by extreme value theory. The extrapolation
depth k is pushed as far in as is consistent with the domain of attraction
assumption. Under the latter the slope of the fitted line and the scatter of
the points around that line are intimately linked leading to a ratio criterion
that can then be used to motivate the proper depth k. By duality the con-
fidence bounds for quantiles can be inverted to confidence bounds for tail
probabilities for given thresholds.



1 Introduction and Summary

One often is interested and tempted to make inferences about the extreme tail
behavior of distributions without having sufficient data, as is the case when we
consider extrapolation from the data to regions beyond the data. To make in-
ferences in the face of such difficulties is a risky undertaking. Traditionally such
extrapolations often take the form of fitting an “appropriate” probability distri-
bution to the observed data and using that distribution in the extrapolation step.
Of course, the fit of the employed probability distribution can only be judged over
the range of the observed data and not beyond. There are many distributions,
in fact infinitely many, that agree with the fitted distribution over the observed
range but show vastly different behavior in the tail regions beyond that range.
If however a particular distribution fits the data very well over that range and
if that distribution is from a list of well known distributions, then one might be
more inclined to take that extrapolatory step with some faith. The reason for this
is that these distributions are well known for certain intrinsic modeling properties
which, with some reflection, would make them a natural choice in particular ap-
plications. Of course, such reflection sometimes comes after the fact of examining
the data. These modeling properties often describe the mechanics of how the ran-
dom data may be generated. Given that the model fits the data reasonably well
so far, there is then reason to believe that the underlying mechanics will continue
to work in similar fashion, if we were to collect such data ad infinitum, i.e., get the
whole population. Ultimately, the act of fitting a distribution to the data already
constitutes an extrapolation step, although some practitioners may not be fully
aware of it.

When judging the fit of a particular probability distribution to a set of data
it is worthwhile contrasting the following two graphical techniques: In the first
we superimpose the fitted density function over the histogram of the data. In
the second we compare the quantiles of the observed data to the corresponding
quantiles of the fitted distribution. The p-quantile, z,, is the division point be-
tween the lower 100p% and the upper 100(1 — p)% of all population values of this
distribution. Similarly, the sample p-quantile, Z,, is the division point between
the lower 100p% and the upper 100(1 — p)% of all sample values. This is not very
precise but should suffice at this point. For a good fit such a quantile-quantile
plot (QQ-plot) should approximately follow a straight line, namely the main diag-
onal. What may look innocuous or only somewhat suspect in a histogram /density
comparison may become quite glaring in the QQ-plot.



On the other hand, if the fit looks good in either case, then the extrapolation
along the fitted straight line looks much more inviting than the continuation along
a density curve which has followed the histogram closely over the data range. We
are doing an extrapolation step in either case. Much of the difference between the
two steps is only a matter of perception. However, one advantage of the QQ-plot is
that it does not require a choice for width and location of bins as they are needed
for histograms. Further, since the sample quantiles are related in direct fashion
to the empirical distribution function we also inherit the latter’s greater stability
as an estimator, since the empirical distribution function involves averaging and
thus some smoothing.

Of course, a straight line extrapolation only seems to be less biased than
committing oneself to some kind of curvature beyond the data range, because the
curvature issue has in actuality only been transformed into an equivalent distortion
of the plotting axes.

Ultimately, the extrapolation step is one of good faith
and not statistical in nature.

If one were perverse and pessimistic, but not necessarily pragmatic, one could
easily generate the same kind of data from distributions with vastly different
extreme tail behavior beyond the range of the data, and thus without being able to
detect it. Having understood this and being pragmatic and somewhat optimistic
we will continue by offering an alternate scheme which is a mostly nonparametric
in nature, i.e., it is not based on a particular population model for the data.

Throughout we will focus on the extreme right tail of the distribution. The
left tail of the distribution can be treated by reflection around zero. First we will
develop upper confidence bounds for the upper quantiles. Such upper confidence
bounds are also called upper tolerance bounds. By duality one can invert these
methods to also obtain upper bounds for right tail probabilities corresponding to
given thresholds. Lower confidence bounds are obtained by complementing the
confidence level, i.e., a 100(1 — )% upper bound for some target 6 serves also as
a 1007% lower bound for the same target.

One feature of the proposed method is that it is based only on the observed
tail behavior of the sample, i.e., the extrapolation results are not influenced by the
middle nor by the opposite tail of the data. One advantage is that we no longer
have to fit a distribution over the full range of the data. With larger samples
of real data, e.g., with n = 1000 or more data points, it becomes very difficult



to pass any of the formal tests of fit over the full data range for any of the well
known distributions. Of course, one could devise tests of fit over the tail of a
given distribution using only the £ relevant sample extremes. Some such tests are
available and they are discussed by Michael and Schucany (1986).

The nonparametric extrapolation scheme makes two basic assumptions about
the sampled distribution, namely that it be continuous and that it should be in the
domain of attraction of one of the three possible extreme value distribution types.
Although we require a continuous parent distribution, which excludes ties in the
sample data with probability one, we feel that such ties due to rounding or record-
ing accuracy limitations should not invalidate the method. What is excluded here
are data that are intinsically limited to discrete points. The assumption of being
in the domain of attraction of one of the extreme value distributions is mainly
used in motivating the linearization of the extrapolation plot.

The scheme is based on exact upper confidence bounds for selected population
quantiles. Here “exact” refers to the fact that no approximations are involved
prior to the extrapolatory step. The latter is taken in such a way that its quality
can to some extent be judged visually where it counts and its effect is not hidden
or propagated by further procedural steps. First an appeal is made to linear ex-
trapolation against a somewhat ad hoc choice for a transformed percentage scale,
i.e., using the log-odds scale. Through extreme value theory this ad hoc choice
can be motivated when the sampled population is in the domain of attraction of
the extreme value or Gumbel distribution. When the sampled population is in
the domain of attraction of either of the other extreme value distribution types we
can use an adaptively transformed scale for linearization. The choice of this scale
is based on the extreme-value index estimate proposed by Dekkers et. al. (1989).

Using this index estimate we also estimate the approximate covariance struc-
ture of the extreme order statistics and fit a line to the point pattern using gener-
alized least squares. This avoids being unduly influenced by the sometimes wild
swings in the most extreme order statistics. We can use the residual standard
deviation, gy, to guide us in the choice of the data tail proportion to be used
for extrapolation. Because of the domain of attraction assumption &, estimates
not only the residual variability but also the slope § of the fitted line. Since the
weighted least squares fit gives us another estimate 5 of 0, we can use the ratio
T=5% /0K as a natural criterion for deciding on the sample tail depth to be used
for extrapolation.



The domain of attraction assumption essentially says that the tail behavior of
the sampled distribution F' be of some broad type and it seems only reasonable
to use as many of the sample extremes as are consistent with that stipulated tail
behavior type. As long as we are in the range of that validity it seems reasonable
to treat T" as a known multiple of a noncentral Student-¢ random variable for
which we can give expected ranges of variation around one. As long as 7" is within
that range it would appear safe to use the sample tail data to that depth. Iterative
search over several tail depths will eventually lead to a reasonable choice for the
appropriate depth. Of course, there are still certain arbitrary choices and the non-
central ¢ distribution assumption is somewhat tenuous. Thus it is mandatory to
test the method extensively by Monte Carlo methods against samples drawn from
many diverse but known populations. The goal of this validation is to establish
to what extent the intended confidence level is maintained, how far out from the
data can we expect its deterioration, how much variability can we expect from
such confidence bounds, and to what extent do these results depend on the sample
size and the sampled distribution.

Linear extrapolation is reasonably motivated only for estimates (median un-
biased, confidence level v = .5). For general confidence bounds it was thus felt
worthwhile to try not only linear, but also quadratic extrapolation, since quadratic
polynomials represent the simplest form of model deviation from linearity. How-
ever, only curvature away from the linear extrapolation fit was allowed.

A major feature of the method is that the judgment of extrapolation quality
has a strong graphical component. Aside from our more objective criterion 7',
it also allows us to judge the degree of linearity visually and provides a visual
awareness of the extent to which extrapolation goes beyond the reach of the data.

2 Nonparametic Tolerance Bounds

Let X1, ..., X,, be a random sample from a population with continuous cumula-
tive distribution function F'(z) = P(X; < z),and denote by Y; > Y, > ... > Y],
the ordered sample, in order from largest to smallest. The p—quantile z, of F' is
defined as the smallest value for which F'(z,) = p, i.e. x, = inf{z : F(z) > p}.
Hence P(X; < x,) =p.

It is well known that each Y; can, for given p, serve as 100v% upper confidence
bound for the quantile z,, when the confidence level v is determined from the



following identity
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is the incomplete beta function ratio.

Usually the confidence level 7 and the value p of the target quantile z, are
specified and one tries to choose i such that Equation (1) is satisfied as closely
as possible. Unfortunately the choice of 7 is limited to few discrete values, i =
1, 2, 3, ..., and for high v or p &~ 1 not even ¢ = 1 will give a satisfactory choice.
Thus we will approach this problem from a slightly different angle.

In Equation (1) treat i and + as fixed and determine p = p; = p; ., such that
this equation is satisfied. Foe each ¢ and ~ there is a unique and exact solution to
this problem. For v = .5 an excellent approximation of p; 5, is given by

S 1
L3
n+3’

Disn ~1—

see Hoaglin (1983), and also Filliben (1975) for a similar approximation.

Thus Y; can serve as an exact 1007% upper confidence bound for z,,. This
can be done for : =1, 2, 3, .... Plotting Y; against p; as in Figure 1a for v = .95
might suggest a smoothing curve (as shown there by a smoothing spline) for
interpolation, or even extrapolation, on the p—axis to a value py of interest. Using
such a smoothing curve one reads off (again as shown in Figure la for py = .99)
the corresponding Yy = Y, = 2.638 on the ordinate scale and then treats Yy as
an extrapolated/interpolated 1007% upper confidence bound for z,,.

Unfortunately the p; on the abscissa are naturally bounded between 0 and 1,
whereas the Y; are usually unbounded. Thus the relationship between Y; and p;
will usually be quite curved and will not be very amenable to taking the extrap-
olatory step, especially not by linear extrapolation as was done in Figure 1la.

Although the 95% upper confidence bound turned out to be 2.638 and is on the
correct side of the true standard normal .99-quantile = 2.326, it is quite obvious

6



Figure la: Exact Nonparametric Tolerance Bounds
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that for p much closer to 1, the linearly extrapolated upper bound would never
exceed the value 3, whereas the true standard normal quantiles are unbounded
for p close to 1.

To avoid this difficulty one could employ the often used device of viewing the p;
on the unbounded log-odds scale, where linear extrapolation is less problematic.
Here we extrapolate the pattern of Y; versus log(p;/(1 — p;)), that pattern often
having more of a straight line character.

Using the same data as in Figure la, this is illustrated in Figure 1b, where
again a smoothing spline was fitted and linearly extrapolated. Note that the spline
itself is almost linear within the data range, although that is somewhat accidental.
Instead of fitting a smoothing spline one could also simply fit a straight line. The
circumstances under which this is reasonable will be explored in the next section.
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Figure 1b: Exact Nonparametric Tolerance Bounds
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3 Extreme Value Theory

As pointed out we need to understand the situations for which the above ad hoc
choice of the log-odds transform can be justified as a linearizing transform. We
also need to find out what to do in many other, if not all other, situations. Extreme
value theory provides answers to both both questions.

To set the stage, we review the notion of domain of attraction. A distribution
function F', giving rise to a random sample Xi,..., X,,, is in the domain of at-
traction of a distribution H, if there are sequences of constants {a, } and {b, > 0}
such that, as n — oo,

(maX(Xl, .

P
bn

Xn - Un
Xn) —a §y> = Pmax(Xy,...,X,) <a,+byy)

= [P (Xz <ay,+ bny)]n

= F" (an + bny) - H(y) (2)
for all —oo < y < co. This translates to
F(an +byy) ~ H'"(y)

for large n. For those y which are of interest in the limit, i.e., for which 0 <
H(y) < 1, and for large enough n we have that H'/"(y) ~ 1 and thus

Fz) ~ HY (%) (3)

for F(z) =~ 1, writing z = a,, + b,y. This characterizes the right tail behavior of
F in terms of the distribution H. The depth, i.e., how close to one F(z) must
be, for the approximation (3) to hold, depends on the distribution F. For the
domain of attraction condition to be meaningful, it would seem that (3) ought
to hold reasonably well for F'(z) > 1 — k/n for some k. It would be of little
practical use if approximation (3) becomes valid only for F/(z) > 1 — 1/n. The
asymptotic arguments would still hold, but the contemplated sample sizes in the
limiting argument are way beyond the given sample size. Thus the limiting results
can then not be appealed to for finite sample approximation. Our attitude in
appealing to extreme value theory is that the limiting arguments are useful as
approximations for the sample size at hand.



According to extreme value theory, see Castillo (1988), the above limiting
distribution H can only be one of three different types, namely the Fréechet type

0 <0

exp(—z) >0 for some v > 0,

the Weibull type (its traditional form reflected around zero)

H(z) =W, (z) = { TXp(_(_x) ) i i 8 for some v > 0,

and the Gumbel type
H(z) = A(x) = exp(—exp(—z)) for —oo <z < o0 .

These three forms can be represented simultaneously in one analytic form, namely
in the von Mises form:

. —1/c _
Hc,x,a(l‘)zeXp{—l1+c<x5)\>] } for 1+c<¥> > 0.

The above three types are distinguished by the extreme-value index c. For ¢ > 0,
v=1/c, 6 = ¢, A =1 we obtain the Frechét form ®,(z), for ¢ < 0, v = —1/c,
0 = —¢, A = —1 we have the Weibull form ¥,(z), and ¢ = 0 (interpreted as
¢ —0),d =1, A =0 yields the Gumbel form or extreme value distribution A(z).
If F satisfies the above limiting property (2), we can write for large enough z (i.e.,
F(z)~1)

F(x) ~ H\'(x)

C
for appropriate location and scale parameters A and §. For p ~ 1 we can thus find
the p-quantile z,, of F' approximately by solving

n

Hc,/\,é (xp> =p ,

o (cnn(p)~ ~ 1

Ty R0 + A

for ¢ # 0 and for c =0 (¢ — 0) we get
zp ® A+ 6(—In(—nln(p))) = A+ §(—1n(n)) — 0 In(—1In(p)) .

10



Note that for p &~ 1 we have —In(p) ~ 1 — p ~ (1 — p)/p and thus (for ¢ = 0)

T, & A—dIn(n) +dln <1]'%p> ,
which is a linear function of the log-odds of p. By choosing v = .5 and finding
the respective p; = p; ., the right tail order statistics Y7 > Y5 > ... > ¥}, will
be median unbiased estimates of x,,,xp,,..., 7. Thus in the case ¢ = 0, i.e.,
when F'is in the domain of attraction of the Gumbel distribution, we can expect
the Y7, ...,Y, to show an approximately linear pattern when plotted against the
log-odds of py, ..., pk.

The above argument suggests the appropriate transform for any other value
of ¢, namely transform p; to

(—nIn(p;))°—1

fc(pi) =

and plot Yi,...,Y, against fe(p1),..., fe(pr). Again one would expect a near
linear plot pattern, since the p;-quantiles are in approximately linear relation
to the transforms f.(p;) of p;. The validity of extending this latter relation far
beyond the range of the data and thus being able to extrapolate it to the extreme
quantiles of interest depends on the quality of the extreme value approximation
that is being appealed to. This is similar to using the central limit theorem in
justifying a normality assumption and then using the normal curve to perform
extreme tail extrapolations. If the normal approximation is poor in the tails, then
the extrapolation will be poor as well.

In using the transformation f.(p;) it is assumed that it is known which value
of ¢ to choose. One could choose the value ¢ so that the plotted points become
most linear, using a generalized least squares approach in each linear fit. This is
still an option worth pursuing. Here we estimate ¢ from the data directly using
the moment estimate proposed by Dekkers et al. (1989), namely:

_ M2\
Ge=Myp+1—5(1—-=—F

Mo
with
1 k—1 o 1 k—1 o 9
My = P Z log(Y:/Yx) and My = r_1 Z [logO/z‘/Yk)} )
i=1 =1
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where Y; = Y; — median(X1, ..., X,). Here it is assumed that k& < n/2. The
shifting of the data by median(X7, ..., X,) is motivated by two considerations.
The first is that the arguments in the logarithms should be positive and the second
is that the estimate ¢, then becomes properly location and scale invariant. The
median shift was suggested to me by Laurent De Haan (via e-mail) after earlier
attempts of shifting the whole sample to be positive failed miserably for Cauchy
samples. De Haan argues that the asymptotic results in their paper (Dekkers et
al., 1989) should still hold, since the rate of convergence for the median is 1/y/n
whereas the extreme value limiting result rates are tied to k& which is assumed
to be small compared to n, i.e., k/n — 0 as n — oo. Thus for all practical
purposes the estimated median acts like a constant, i.e., as though it were the
known population median.

Since the Y; are highly correlated and typically show inhomogeneous variability
it is appropriate that the generalized least squares approach should be used to fit
the straight line to (f; (pi.5n),Yi), i = 1,..., k. In order to do this we need to
motivate and employ the proper weights for the extreme order statistics. These

are given in the next section.

In order to avoid numerical stability problems during the least squares fitting
it was decided to limit the estimated ¢, from below by —1.5. An extremal index
of ¢ = —1.5 indicates a very sharp upper bound on the sample distribution.
Actually the density of H. ) s(y) becomes infinite at its upper support end point.
The density behavior is like (—y)™'/% as y / 0. We feel that such cases are of
lesser interest in practice. In such cases one gets a fairly quick idea from the
sample that there is a hard upper bound to the sampled distribution. The main
issue then is to locate that upper bound with high precision. Maybe more relevant
would be to find the reason for the hard upper bound, and thus most likely also
its exact value.

The above argument for a linearity transform was based on using v = .5 and
may not be valid when + # .5. In practice it appears that the value ¢, that works
for v = .5, also seems to linearize the plotted points reasonably well for other
values of 7. However, one also may try to fit a quadratic in f; (pi,..) to capture
some of the mild Y; curvature that may be present.

12



4 Extreme Order Statistics Covariance Structure

Using the above approximate representation of the extreme p-quantiles of ' we
can use a one term Taylor expansion and get the approximate covariance structure
of the extremes Y7,...,Y}, from that of the uniform order statistics as follows. If
Uny < ... < U, are the order statistics of a sample of size n from U(0, 1), then

l

. 7Ti(1—7Tj>
Cn+1

forie <.
n -+ 2 =J

FE (U(i)) = T and (¢{0)% (U(Z-), U(j)) =

Assuming that the high sample order statistics (i/n &~ 1) can be represented
approximately as

X =F" (Un) = g (Uw) = 9(m) + (U — ) g'(m:)
with (for p ~ 1)

_w

1 c+1
gp) =A+df(p) and ¢'(p) = p <Togp> ,

we get for Y; = X(,_;41y) and ¢ > j (i/n and j/n =~ 0)

(I—m)m; | nd 1
nt2  (T-m Cnlogl—m)

Q

Oij; = COV (Y Y)

(]

175 P =]

gn2s? 1
(n+1)(n+2) detijet!

Q

~ 62 Z-—c—l j—c )

The matrix ¥ = (0;;/6%), using the above approximations for ¢;; and with ¢
replaced by its estimate ¢, can now be used in the generalized least squares fit of
a straight line to (fgk (Pi.5n)s Yi) ,i=1,..., k. For reasons to become clear when
discussing the proper choice of k in the next section, it is worthwhile to spell out
the notational details of this generalized least squares fit. Let

k—vector
! !/ !
Y - (}/17 RN Yk)? f - ( Zk (pl,.5,n)7 ety f;:\k (pk,.5,n))7 1 = (]-7 ey ]-) )
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e = (e, ..., ep), b' = (b1, by), and X = (1,f),
then the vector representation of the least squares model
Yi=bi+bofs (pisn) e, i=1,...k
is
Y =Xb+e, with  E(e)=0 and var(e) = 0°%.

Note that by = ¢, so that there is a structural link between the slope of the
regression line and the covariance matrix.

To reduce this problem to the setting of ordinary least squares we find a
symmetric matrix C such that C'C = CC! = 7! and thus C™'C~* = X or
CX.C! = I,. For natural reasons one calls C also the square root of X7, With

Z=CY, W = CX, and d=Ce
we have
Z=Wb+d with E(d)=0 and var(d) = I,

i.e., a regression model with uncorrelated errors, but same parameters b and J.
The ordinary least squares theory, applied to this transformed model, yields the
following estimates for b and o2 = §2:

b= (W'W) WZz=(X='X) (X=Y)

and

31% = L y (Zz' - Blwil - Ezwiz)Q
k=2

where (w;1, wy2) is the i*® row of W and Z; is the i component of Z. The variance
covariance matrix of b is

var (b) = & (WtW)_l — 52 (XtE‘lX)_l

In particular, var(by) = 62x2, where x2 is the (2, 2)-element in the matrix (X'31X) .

14



5 The Choice of k&

An issue, that has not yet been addressed, is the number k of extreme data values
to use in the estimation of ¢ and in the extrapolation step. There is not much
in the extreme value literature that addresses this issue. In a recent paper De
Haan (1994) discusses the optimal choice for k. It is an issue of balancing the
bias (for k too large) against the variability (for k too small) of the estimate ¢,
of ¢. Unfortunately the optimal choice of k depends on the distribution F'. The
relation of the “optimal” k = k(n) to n can take dramatically different forms,
depending on F'. This is of little help, because if one knew the form of F' one
could use that form to do the extrapolation. In choosing k one should keep in
mind that in order to have consistency for ¢ one needs k — oo and k/n — 0.
Of course, it is not clear how close to oo and 0 is close enough in practical cases
and that may again depend on the underlying distribution F. We will take a
very simpleminded approach for a good choice of k in that we probe as deep into
the sample as we can, provided those sample extremes appear to agree with the
domain of attraction assumption.

The procedure is based on the following observation. The estimate 63 from the
generalized least squares fit will estimate §2. Since § = b, also represents the slope
of the ideal line that is being estimated, we can use T}, = Eg,k. /G, as a criterion for
judging the appropriateness of the choice of k. Here we added the subscript k£ on
by to emphasize its dependence on k.

As long as T) remains near 1 we can increase k. Once T} deviates too far
from 1, we presumably have gone too deep into the sample. To provide a ra-
tional /heuristic yardstick for judging such deviations we apeal to the noncentral
Student-t distribution. This is motivated by

oy & N(8,6%K2)

appealing losely to the central limit theorem, and (with weaker backing, namely,
simply by normal theory analogy)

52 o 52X%—2
R k=2
Thus
T /627,% . /627k/6 ~ N(l,li%) (1//1,@, )
= 8

== = = ~ = K tp— 2,1/kg >
Ok Or/0 Xi—o/(k —2) \/Xk of (k —2)



where t;, denotes a noncentral Student-t random variable with f degrees of
freedom and noncentrality parameter . Since the distribution of kity_g1/x, is
completely known, we can set probability limits for the ordinary variation of T}
assuming our domain of attraction assumption is valid. For lack of a better un-
derstanding of the sensitivity of T}, to deviations from our domain of attraction
assumption we propose to set equal tailed probability limits.

In searching for the proper extrapolation depth k& we will restrict ourselves
to k € [K1, K], where K7 = max(6, [1.3y/n]) and Ky = 2|log;o(n)y/n]. These
choices, although somewhat arbitrary, satisfy the requirement that Ky/n — 0 as
n — 00. Through a search algorithm, described in detail below, we replace the
original interval [K7, K3| by a strictly decreasing sequence of subintervals. Each
subsequent subinterval is again denoted by [K7, K]

We also fix a grid resolution ks below which it is felt not worthwhile to refine
the search for k, i.e., when the search for k is narrowed down to an interval
(K1, Ks] with width Ky — K7 < ks, then the search is stopped. See Table 1 for
some numerical values of Ky, Ki/n, Ky, Ky/n, and k. for a selection of sample
sizes.

Table 1

n Kl Kl/n K2 KQ/n kres kA kspan

100 13 130 | 40  .400 1 1 5
500 | 29  .058 | 120 .240 1 1 11
1000 | 41  .041 | 188 .188 1 2 15
5000 | 91  .018 | 522 .104 | 3 4 35
10000 | 130 .013 | 800 .080 | 5 7 20

As k gets larger, it becomes computationally more and more tedious to com-
pute the square root, C, of ¥~!. One may therefore set an upper limit, M, on the
dimensionality of £~!. In individual applications we may let M be fairly large.
However, when trying to simulate many scenarios using a large number of repli-
cations to get accurate assessments of coverage rates, one may want to be content
with lower values of M, say M = 50. This issue typically arises only when the
sample sizes are large, say in the thousands.
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Maintaining the bound M on the dimensionality of 37! can be accomplished
fitting the regression line to a thinned out subset of the points (f: (pi.5.), Yi),

Ck

t = 1,...,k. This subset is of size at most M, i.e., if &k < M we fit all these k
observations, and when £ > M we will thin that set of points, so that it is of
size M. Out of many possible thinning strategies we have employed the following.
Given a value k > M we choose from {1,2,...,k} the following subsequence of
approximate length M:

i1:1, ig, ey ZM

with spacings
ZQ—Z1:1+A1, Z3—Z2:1—|—A2, ey ZM—ZM,1:1—|—A(M—1)
By concatenating these spacings we get

The requirement 7,; < k yields

2(k — M)
A< ar—T

For i), to come as close as possible to k we take

2(k — M)

i TRy

and, to maintain the integer character of the subsequence, we take

= [ratizy).

Note that the thinned sequence is strictly increasing, starts at 1y = 1 and ends at
iy = k. The latter may not happen due to rounding problems, in which case we
add k to the thinned sequence, i.e., increase M by one. Although the sequence
{1,2,...,k} is thinned for purposes of fitting a regression line (or a quadratic) no
such thinning takes place for estimating c, i.e., all k£ extremes Yi,..., Y} are used
in computing cy.

The actual search for k € [K7, K3 proceeds as follows. Starting at k = K,
we proceed in steps of size ka = max(1, |.07/n]), ie., ki = Ky + (i — 1)ka,
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i=1,...11, and k15 = K, (see Table 1 for some sample values of ka). For each of
these 12 k-values we obtain the weighted least squares fit of a straight line to the
points (f3 (pi.5.n),Yi), i =1,...,k, or, if k is larger than 50, of a suitably thinned
subset of these points, and calculate the noncentral Student-t criterion 7j. This
criterion is compared against two intervals, namely

Io. = |:K/k:tk‘—2,1/,‘g (25),  Krtk—21/k (,75)}

and
L = {ﬁktk—2,1/n(‘025)7 ’fktk—2,1/n(-975)} :

These two intervals contain respectively 50% and 95% of the involved noncentral
Student-t distribution. The idea is to stop searching as soon as T}, falls outside
of I1. Unfortunately the last k prior to that is not necessarily a good choice for
k either, because it often is nearly outside of I;. This motivates the use of the
other interval Ip,. We will consider those k£ values as “good” choices for which
T}, falls inside of Ip,. As we go to larger and larger choices of k and while we
still have T}, € Iy, we will typically find stretches of k values for which T}, € Iy
interspersed with stretches for which Ty & Io,. We will keep track of the longest
contiguous stretch of “good” choices of k.

For the above 12 initial values of k there usually is a large gap between ki; =
K1 +10ka and k1o = Ks. If among the first 11 values of k we always have T}, € Iy,
then we continue the search by treating K| = K; + 10ka as our new left search
interval endpoint and K/ = K. Another contingency for arriving at a narrower
search interval [K7], K| occurs when for some first k; we find Ty, & I1,. Then we
take Ki = ki—l and Ké = k’z

Again we try out 12 values for k, namely k; = K| +2(i — 1)ka, 0 =1,...,11
and k15 = K. Note that the incrementing value is now 2ka. We continue in this
fashion to a grid of 12 values over [KY, K7], with the incrementing value increased
to 3ka, until the span of the decreased search interval is < k.. or the span of
good values is long enough, namely at least kgpan = max(2, [.5y/n]) (see Table 1
for some sample values of kspan ).

Once we stop the search we take the best k out of the longest stretch of good
k values. Here the best k is that which yields a T} closest to the median (= 1) of
the involved noncentral Student-¢ distribution. The metric of closeness is pa and
is described below. Although the above essentially describes the search strategy,
there are few more minor details, which will not be discussed here.
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Figure 2a: Normal Tail Extrapolation
sample of size n = 1000 from N(0, 1)
extrapolation for first 12 choices of k € [41, 188|
using at most 50 points for weighted least squares fit

1 ¢=-0.0994 k=41 1 ¢c=-011 k=43

extremes

1.0 1520 25 3.0 35
extremes

1.0 1520 25 3.0 35

transformed p(i) transformed p(i)

1 ¢=-0.0612 k=45 1 €=-0.0894 k=47

extremes

1.0 1.5 2.0 25 3.0 35

extremes
10 1520 25 30 35

-6 -4 -2 0 -6 -4 -2 0

transformed p(i) transformed p(i)

1 ¢=-0.117 k=49 1 ¢=-0142 k=51

extremes
1.0 1520 25 30 35

extremes
1.0 1520 25 30 35

transformed p(i) transformed p(i)

Figures 2a-d illustrate this search for the proper extrapolation depth k using
the upper tail of a sample of size n = 1000 drawn from a standard normal pop-
ulation. Initially the chosen range for k is [K;, K5] = [41,188]. For n = 1000 we
have ka = 2. Thus the first 12 trial values of £ are 41,43,45,...,61,188. The
corresponding weighted least squares fits and the respective estimated value of ¢
are shown in Figures 2a.

In each of these plots all 188 high extremes Yi,...,Yigs are plotted as tiny
dots against the corresponding transformed p; 5 ,-values fgk (pi.5n). The fat dots
represent those points that were used for fitting the weighted least squares line.
Note that the abscissa scale changes from plot to plot, since the depth k for
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Figure 2a: Normal Tail Extrapolation (continued)

extrapolation for first 12

1 ¢=-0.203 k=53

extremes

-10

transformed p(i)

1 €c=-0.348 k=57

extremes

-15 -10 -5 0

transformed p(i)

1 ¢c=-0424 k=61

extremes

-20 -15 -10 -5 0

transformed p(i)

choices of k € [41,188|

1 ¢=-0.218 k=55

1.0 1.5 2.0 25 3.0 35

-10 -8 -6 -4 -2 0

transformed p(i)

1 ¢=-0.33 k=59

1.0 1.5 2.0 2.5 3.0 35

transformed p(i)

1c=-00278 k=188

1.0 1.5 2.0 25 3.0 35

transformed p(i)

computing ¢, and thus the transformation f; () changes.

The number of fat dots, used for weighted least squares fitting in each plot,

is always 50 or less. In the 12" plot for k& = 188 one can clearly see the effect of
thinning out the points that are fitted. Note the (unfitted) small dots interspersed
with the fat dots. Observe that the fitted line is above the bulk of the data in the
first six plots and for k = 57,59, 61 the situation is reversed.
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Figure 2c: Normal Tail Extrapolation
sample of size n = 1000 from N(0,1)
extrapolation for next 6 choices of k € [61, 188]
using at most 50 points for weighted least squares fit

1 ¢=-0.591 1c¢=-046 k=69

extremes
extremes

1.0 1.5 2.0 25 3.0 35
1.0 1.5 2.0 25 3.0 35

-30 -20 -10 0 -20 -15 -10 -5 0

transformed p(i) transformed p(i)
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1.0 1.5 2.0 25 3.0 35

extremes
10 1520 25 30 35

transformed p(i)

1 ¢=-0127 k=85

extremes
1.0 1520 25 30 35

extremes
1.0 1520 25 30 35

-10 -8 -6 -4 -2 0 -6 -4 2 0
transformed p(i) transformed p(i)

Figure 2b gives the plot of the 12 corresponding ratios 7). The vertical lines
represent the 95% intervals I, and the narrower marks on them indicate the 50%
intervals Iy,. Above each vertical line are two numbers, a count and a probability.
The count is the number of consecutive “good” T} values up to that value k, i.e.,
for which we have T} € Iy.. The probability indicates the closeness of T}, to its
median. That closeness probability is computed as follows:

1

where ¢ is the observed value of 7). Note that po = 0 just then when ¢} falls on
the median of the distribution for 7},.
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Figure 2d: Noncentral t Criterion
for each plot in Figure 2c

1.4
5 0.0303
0 0.405
0.201
0.13
0.0489
0.0867
17 0.0765

1.2

1.0

noncentral Student-t ratio

0.8

65 70 75 80 85

Note that in Figure 2b we start out with a stretch of 5 “good” values, although
technically only 3 of these 5 were checked. This is followed by 5 checked values
outside their respective Iy, intervals and after that we run into another stretch of
5 “good” k values. A stretch of 5 is not sufficient to end the search for k. For that
to happen we would need a stretch of length at least kspan = [.5v/1000] = 15.

The next search interval is thus [K, K3] = [61,188]. The least squares fits for
the first 6 values of k after 61 are shown in Figure 2c together with the estimates
for ¢. This is followed by Figure 2d which shows again the observed T} values
together with the respective intervals. Over the stretch from k£ = 69 to k = 85
we accumulate a count of 17 “good” k values. Thus we stop in our search. Over
that span of 17 “good” k values we find that pa is smallest for &k = 77, which thus
becomes our final choice.

Finally, Figure 3 shows the actual quantile extrapolation for the chosen sample
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Figure 3: Normal Right Tail Quantile Extrapolation
from sample of size n = 1000 from N(0,1),
estimates and 95% upper confidence bounds
for x, = x;_q with q =105

sample size n = 1000
quantile estimate : 4.009
linear 95 % quantile upper bound : 4.392

© quadratic 95 % quantile upper bound : 5.022
at right tail probability : p = 1e-05
extreme value coefficient: -0.2226

Lo

sample extremes

— t
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transformed p(i)

tail depth of k& = 77. The target in this figure is the quantile z, = x,_, for
tail probability ¢ = 107°. Two linear extrapolations are shown. The lower line
corresponds to a 50% confidence level and thus results in a median unbiased
estimate of x,. The upper line extrapolates 95% upper confidence bounds for z,.

This is accomplished by plotting the same data Y7, ..., Y} twice, namely against
the two transformed scales f; (pi 5.,) and f (pi,95.n), respectively. In both cases
we fit straight lines by the method of weighted least squares, as outlined previously.
The extrapolation then proceeds by marking f; (p) (for the desired p = 1 — ¢)
on the abscissa, moving up vertically to intercept the respective fitted lines, and
moving left from those intercepts to find the estimate/confidence bound on the
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ordinate axis, as indicated by the dashed and dotted lines.

Also shown is a quadratic extrapolation curve for extrapolating 95% upper
confidence bounds for x,. It too is fit by weighted least squares. If the curvature
coefficient of the quadratic is such that the extrapolation becomes more conserva-
tive than the linear extrapolation, we force the quadratic to reduce to the linear
extrapolation.

There is considerable graphical appeal in this extrapolation procedure. Not
only can one see upfront how well the fitted line fits the data, but one also gets an
appreciation of how far out from the data one tries to extrapolate. To get a better
sense of the extrapolation a probability scale with a few order of magnitude tick
marks is superimposed.

6 Confidence Bounds for Tail Probabilities

Upper confidence bounds for quantiles z,, are intrinsically related to lower confi-
dence bounds for F'(t) for a given t. By subtraction from 1 such lower bounds
become upper bounds to the tail probability 1 — F(¢). Similarly, lower bounds for
z, relate to upper bounds for F'(¢), and, by subtraction from 1, to lower bounds
to 1 — F(t). This makes it possible to get upper and lower bounds for left or
right tail probabilities. We will describe this relationship in generic terms only for
upper tolerance bounds and lower confidence bounds for F(t). Tt is assumed that

F' is continuous.

Let U (p,v) be an approximately 1007% upper confidence bounds for z,, i.e.
ﬁ(p, v) = [7(X1, ..., Xu; p,7y) is a function of the sample with the following
property

~

Pr(U(p,vy) > xp) = .

Here F' denotes the distribution from which the sample is drawn and z;, is the p-
quantile of F. Assume that U(p, ) is strictly increasing in p and suppose further
that U(p,~) = t has a unique solution p = p = p(t,v) = p(Xy, ..., Xu;t,7), then

pit,y)<p <= t<U(p").

For t and p such that ¢t = F~!(p) = 2, (= F(t) = pif F is continuous) we then
have

Pr(p(t,y) < F(t)) = Pr(z, <U(p.7)) = 7.
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Figure 4: Normal Right Tail Probability Extrapolation
from sample of size n = 1000 from N(0,1),
estimates and 95% upper confidence bounds
for qo = P(X > to) with to = 4.5

© -
sample size n = 1000
right tail probability estimate : NA
linear 95 % right tail probability upper bound : 2.786e-06
quadratic 95 % right tail probability upper bound : 0.0001328
L0 — atthreshold: 4.5
extreme value coefficient: -0.2226
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For the nonparametric tolerance bounds this inversion to confidence bounds
for F(t) is easy enough by simply extrapolating from ¢ on the Y—scale to the
transformed p; scale to obtain the lower confidence bound p(¢,~) for F(¢) and the
upper confidence bound
1 —p(t,y) = q(t,v) for 1 — F(t).

Using the same normal data as before this idea is illustrated in Figure 4 for the
median unbiased estimate and confidence upper bound for the right tail probabil-
ity P(X > t9) = 3.4 1079 corresponding to the threshold ¢ty = 4.5. The estimate
is given as NA, which results from the fact that the estimate for c¢ is negative,
namely ¢77 = —.2226. This is discussed in more detail below.

Note that the 95% upper bound of 2.786 10~% understates the target of 3.4 10=°
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by 18%. This is not too bad considering that we are trying to extrapolate to a
tail probability of magnitude 3.4 107¢ based on only 1000 observations.

In the context of estimates and confidence bounds for tail probabilities we
should point out the following possibility. For ¢ < 0 the implied (reflected) Weibull
distribution has a hard upper bound ¢,. If we choose a threshold t > t,, then it
is not possible to perform the backtransformation to the extrapolated value of p
corresponding to t. If the threshold ordinate ¢ leads to the abscissa value f;, then
the formal backtransform, from f; to p;, would yield

(—logp) -1
c

Ji = = Pt =€xp (_% (cfi + 1)_1/6) )

which runs into problems when cf; +1 < 0, i.e., when f; > —1/c. We thus can
view —1/c as the extrapolation boundary on the abscissa. In that case we could
presumably infer that the right tail probability corresponding to t is zero. How-
ever, we should keep in mind that the extrapolation boundary itself is estimated
and a zero chance is a rather strong statement. We thus prefer to designate such

cases by the symbol NA as in the estimation case of Figure 4.

7 Simulations

Although the proposed method may have many attractive features, there is a
great need to build an experience base for using this method. This can be done
by performing extensive simulations, namely by sampling a variety of different
distributions, using a range of sample sizes, and trying different extrapolation
depths.

There should be no illusions concerning the results of such simulations. They
will be of mixed quality and are presented in Scholz and Tjoelker (1995).
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