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Abstract

Data from a 2-parameter Weibull distribution (with covariates) is traditionally
analyzed on a logarithmic scale to take advantage of the resulting location-scale
nature of the transformed data Y1, ..., Y,. Quantities of interest are the regression
parameters 3, the scale parameter o, the p-quantile y,(u) = v’ + o log(—log(1 —
p)), the tail probability p(ylu) = P(Y < y|u) = 1—exp(—exp((y—u'B)/0))), and
the failure rate function r(y,u) = [exp((y — v/3)/0)]/o for a given p-dimensional
covariate vector u. Usually such data is partially obscured by some sort of censor-
ing which (aside from the case of type II censoring) does not allow exact confidence
bounds for these quantities. Thus one resorts to large sample approximations
from maximum likelihood theory. Unfortunately this has led to different types
of approximations depending on the quantity of interest, see Meeker and Esco-
bar (1998). For example, confidence bounds for y,(u) and p(y|u) are not always
monotone in p or y and thus are not constructed as inverses to each other as would
be the case when exact methods are possible. Also, one usually invokes approx-
imate normality of the m.l.e.’s g,(u) and log(d) (the latter for producing better
results) with the apparent inconsistency that 7,(0) = 7 log(—log(1 — p)) invokes
the inferior approximation for 6. We resolve these problems by invoking either
the approximate (p + 1)-variate normal approximation for ((B —B)/a,log(c)) or
its bootstrapped approximating distribution. This resolves all the above problems
in a clean fashion and in the bootstrap case it leads back to the approach by
Robinson (1983).
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1 Weibull Regression Model for Right Censored Data

Consider the following linear model:

p
yi = Y _ B + o6 = uwf + oe; 1=1,...,n
j=1

where €1, ..., €, are independent random errors, identically distributed according to the
extreme value or Gumbel distribution with density g(z) = exp[z—exp(z)] and cumulative
distribution function G(z) = 1 — exp[— exp(z)]. The p-quantile of G is denoted by w,,
ie., w, = log(—log(l —p)).

The n x p matrix U = (u;;) of constant regression covariates is assumed to be of full
rank p, with n > p. The unknown parameters o, 31, ..., 3, are estimated by the method
of maximum likelihood, obtained as the solution to the likelihood equations, provided it
exists.

The above model can also arise from the following Weibull regression model:

P(I;<t)=1~exp (‘ la(;)r>

which, after using the log-transformation Y; = log(T;), results in

PO )= 1o o ()| [y (2000

Using the identifications ¢ = 1/n and u(u;) = logla(w;)] = w,B this reduces to the
previous linear model with the density g.

Rather than observing the responses y; completely, the data are allowed to be censored,
i.e., for each response y; one either observes it or some censoring time ¢;. The response
y; is observed whenever ¢; > y; and otherwise one observes ¢;, and one knows whether
the observation is a y; or a ¢;. One will also always know the corresponding covariates
uij,7 =1,...,pfori=1,...,n. Such censoring is called multiple right censoring. Thus
the data consist of

S = {(33'1,51,’11,1), .. '7(xn75naun)} s

where x; = y; and 9; = 1 when y; < ¢;, and z; = ¢; and §; = 0 when y; > ¢;. The number
of uncensored observations is denoted by » = > ; §; and the index sets of uncensored
and censored observations by D and C, respectively, i.e.,

D={i:0=1i=1,....,n} ={i1,...,i,} and C={i:6,=0,i=1,...,n}.
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The likelihood function of the data S is

L(B,0) = H %eXp [@ ~exp <xz — uﬁﬂ T exp [_ exp <xz —Uui )]

g ieC

and the corresponding log-likelihood is

{(B,0) = log[L(B,0)]
C O [E g (58] S Y (25)

€D €D 1eC

In [10] conditions were given under which maximum likelihood estimates or m.l.e.’s of the

parameters (01, .., [, 0) exist and are the unique solution of the likelihood equations
ol(B, o) ol(B, o) .
———= =0 d ———= =0 fi =1,....p.

Also given were algorithmic details for obtaining these estimates.

2 Normal Approximations

Under the conditions of Theorem 2 of [10] the likelihood equations have a unique solution,
the m.l.e. (8,0), and the matrix H of second partial derivatives of ¢ at this solution is

_ 1 (Z?zlexp(»’:’i)uiuﬁ Yy Ziexp(Zi)u, )_ 1 5

i1 Ziexp(Z;)u; T+ 2 exp(zz)

where 2, = (z; — uw,3)/6. The negative of H is also known as the observed Fisher
information matrix. Denoting w; = exp(Z;)/ 37, exp(Z;) and W = >j—1exp(Z;) one

can write
n -~ / n ~ 2
—_ o~ i=1 Wi U Uy Doy WiZiw; ~( A b
B =W - ) =W b .
E’i:l W;z;W; 7"/VV + Zi:l Wiz;

In [10] this matrix B was shown to be positive definite.



It is conventional practice to invoke large sample maximum likelihood theory to claim

that R
( - ) ) ( - ) ~ Ny (0. 7) = Ny (0.5°57) 1)

o o

where the p + 1 dimensional normal distribution with mean vector 0 and covariance
matrix —H  serves as an approximation for the distribution of the left-hand side. The
fact that the observed Fisher information is used in expressing the covariance matrix is a
matter of convenience, since the estimated Fisher information matrix is usually difficult
to evaluate in the context of censoring.

The estimated Fisher information matrix is obtained by computing the Fisher informa-
tion matrix [(3,0) = —FE (H), where H is the matrix of second partial derivatives of
¢ evaluated at (3, 0) and the expectation E is evaluated under (3, 0) as well, and then
estimating 1(83,0) by I(B8,5). Note that the lack of censoring times for any of the n
cases may even make it impossible to evaluate the Fisher information since the evalua-
tion of (3, 0) (and thus its derivatives) involves the determination of i € C, which can
only be done when the censoring time is known for case i.

This substitution of —H  for (B ,0)~!is usually justified by the consistency properties
of m.l.e.’s and continuity considerations. We will not dwell on conditions that support the
validity of approximate normality and the above use of the observed Fisher information
in the presence of right censoring and covariates.

Even if the large sample approximation is theoretically justified, one still has to explore
via simulation to what extent the sample is large enough for the approximation to be
reasonable. Sample size alone will not decide the issue. There is also the question of
how much censoring can be tolerated. It is unclear whether the number of uncensored
cases needs to approach infinity in order for asymptotic results to hold. As Le Cam/[5]
says in his Principle 7: “If you need to use asymptotic arguments, don’t forget to let
your number of observations tend to infinity.”

Although the above focusses on multiple right censoring we point out that the idea of
the new method also applies to other types of censoring, such as interval censoring.

When using the observed Fisher information in the normal approximation we have
upB +ad ~ N(u’ﬁ+aa, 72(u,a)) , (2)
where
2 . ~2 / ——1 u
" (u,) = 7°(u,a) B N (3)
For later computational reference it is useful to develop an alternate expression for the
quadratic form in (3). To this end we use the partitioned form of B and note that its
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inverse can be expressed as

= Wp (4)

—

BTN —b'A”! 1

51 _ 1 ( A b )1 1 ( pA LAY AT —AD )
where p = ¢ — b’ A7'b > 0. In fact, it was shown previously in [10] (when establishing
that B is positive definite) that

2
r . = .. r
; =
From the above form of the partitioned inverse matrix one can express the quadratic
form in (3) as

— 1
u',a) B 1<u>:/\_ wW A 'u+ (o —u A7'D)?| . 6
w8 ()=l ( ] ©)
One construction of upper confidence bounds for the cumulative distribution function
G((yo—u/B) /o) for given threshold yy and covariate vector w involves a normal approx-
imation for (yo — w/8)/6. Again this can be obtained by the delta method from (1).
One arrives then at the following approximation:

Yo — ullé\ ~ N (ZUO - ’U’IIB L [pu/A_l’u,—l— <y0 - ’U’/B _ u/A—1b>2]) (7)
~ 5 W — .

o o P o

Experience has shown that the normal approximation for ¢ is not good in small samples
or in samples involving only few failures. Partly this is due to the fact that & is naturally
bounded from below by zero while the normal distribution has an infinite range. Thus
one often invokes instead the approximate normality of A = log(7). Using the delta
method one finds as resulting approximation

<10§(6)>_<10gﬁ(0)>:<§>_<§> ~ Np1 (0.6°DB D) |

—~

(I, O . . . .
D = ( o' 1/6) and I, is a p X p identity matrix.

where

A simple linear transformation yields

( (BX_—B;/& ) ~ Ny (0,B7) (8)



and using the partitioned form of B ! on the right side of (4) results in

(gl):(u,@x:f)/a) ~ NZ("’W%(EE 1)) (9)

2

where ¢i1 = pu’ A" 'u + (u’A’lb) and c1o = —u/ A7,

To obtain the conventional confidence bounds for the failure rate functions in the Weibull
or Gumbel model we need to invoke the following normal approximation. From (1) one

obtains
(5)-()-(2)-()
()

For a function f(u,o) with gradient vector

(dr,dy) = <afg: 7) or a>>

the delta method yields

.0~ fwo) ~ N (o (o )5 (0 Y )(0)
~ N<0,62(d1u',d2)/3\1<d;?,>> (11)

and using the expression in (6) one can express the variance of this normal approximation
as

~9
g 2 1 A—1 I A—17.\2
For the Gumbel model the failure rate function is

Lo(n2B) <y0 = wg)
g

Tg(yo,U) = G (yo—[’iﬂﬂ) = ;exp

and its logarithm is

log (r¢(yo, w)) = —log(o) + M )



Using (11) with f(u,0) = —log(o) + (yo — )/ one gets the following normal approxi-
mation for the maximum likelihood estimate

~ ~ —u'B
log (e (4o, w)) = — log(3) + L= %°

of log (rg(yo, ), namely

log (P (4o, w) /7 (0, w)) ~ N (0,7 (vo, , w)) (12)
where

1 _u/B 2
?(2;(90,’&) = W—p (pu’Alu + lu’Alb —1- yof] )

On the other hand, for the corresponding Weibull model with log(a) = w/'3, n = 1/0
and to = exp(yo) the failure rate function is

to\ 71
o= 2(2)

and its logarithm is

log(tg) — v/

. — log(to) -

log (rw (to,w)) = —log(o) +
Note that this form differs from log (rg(yo,w)) by the term log(ty). This is caused by
the differentiation process that is involved in the definition of the failure rate.

We use R
N N log(ty) — u'B
log (v (f0, ) = —log(@) + 2L 1oy
as maximum likelihood estimate of log (1 (fp)) and as normal approximation the delta
method yields

log (P (to, w) /rw (to, w)) ~ N (0,7 (to, u)) (13)

where

1 log(to) — w8 ]’
Tiv (to, ) = = (pu’A‘lqu lu’A‘lb— 1— M] ) .
Wp
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3 Two Quantile Lower Confidence Bounds

In this section we present the traditional lower confidence bound for the p-quantile
yp(u) = u/B + ow, at a given covariate vector uw and introduce a new proposal. We
focus on lower bounds since a 1007% lower bound is also a 100(1 — )% upper bound
for the same target quantity.

Both lower bounds are of the form w'8 +t&, but different types of normal approximations
are invoked. It is shown that the traditional lower confidence bound may have certain
defects in small samples or in samples with few failures. The new lower bound avoids
these defects.

3.1 Traditional Quantile Lower Confidence Bound

Since w8 + dw, is the m.Le. of the p-quantile y,(u) and since
w'B + 5w, ~ N(u'B + ow,, 72 (u, w,))

one common and natural lower confidence bound for y,(u), see [4] or [7] for example, is
Upr1 (7, u) = u'B + Gwy — 2T (U, wp) |

where z, is the y-quantile of the standard normal distribution function. Since w, affects
Up.z1(7y, w) both through w, and through 7(u,w,) it is not immediately clear whether
Up.21(7, ) is a monotone function of w,. Since the target y,(u) = B+0ow), is a monotone
increasing function of w, one would naturally require that any reasonable lower bound
also be monotone increasing in w,,.

The monotonicity properties of 4, 11(7, ©) are equivalent to the monotonicity properties
of

1
H.,(w,) = w, — ZVT\/pu’A_lu + (w, —w A 'b)2.
VWp
Note that
oH,(w,) - w, —uwA™'b
dwy ! \/pu’A_lu + (w, — u' A" 'b)?

H:y(wp) =

with ¢, = zy/\/ﬁ\/p.

When [¢,| < 1 we clearly have H!(w,) > 0 for all w, and in that case the lower
confidence bounds 7, r1(7, w) are monotone increasing in wy,. Since H (w,) ~ w,(1—1),)
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for |w,| &~ oo it follows that in this case g, 11(7, ©) increases from —oo to oo as p increases
from 0 to 1.

When v, > 1 one has
H! (wp) >0 for w,<w and H(w,) <0 for w,>w
and for ¢, < —1 one has

H (wp) <0 for w,<w and H(w,) >0 for w,>w

_ 1 . pu’A_lu
w = UIA b— Slgn(w,y) W

The monotonicity of the lower bound g, 11(7, w) depends on the magnitude of |1, | and
that is governed by the proportionality factor z, but also by the quantity Wp. From (5)
we have that Wp > r so that |¢,| < |2,|/+/F which shows the impact of the number of
uncensored observations on this issue.

where

Aside from the monotonicity issue there is also the issue of approximation quality and
hence the coverage of the resulting bounds. The quality of the invoked normal approxi-
mation

w'B + 5w, ~ N(u'B + ow,, 7 (u,w,))

will clearly depend on the factor w,. For example, when w, = 0, i.e., when p = 1 —
exp(—1) ~ .63212, the effect of the possibly poor normal approximation for & would not
be felt, while for p close to 0 or 1, i.e., for extreme quantiles, the term cw, would tend
to dominate in the above approximation and then the normal approximation would be
poor in small samples or when there are few failures. The same issue arises for all p when
u = 0 or approximately so when u = 0. Both issues (the possible lack of monotonicity
and the poor normal approximation of &) are addressed by the new proposal in the next
section.

3.2 New Quantile Lower Confidence Bound

Another construction of a lower confidence bound is

Upr2(7,pyw) = wB + 6w, — ko



where one finds the factor k = k(w,) such that P (g, r2(7,p,w) < y,(u)) =~ 7, namely

v ~ P (u’ﬁ + (wp, — k) <u'B+ wpo)

= P (M +wy(l—0/5) < k) (14)
= PVi+wp[l —exp(=V2)] < k) =P (Vi <k —w,+w,exp(—V2)) ,
where for .
Vi= w and Vo=X—\

we invoke the bivariate normal distribution given in (9). Using this approximation we
can write the defining equation for k = k(w,) as

7 = P(Vi<k—wp+wexp(=12))
/oo o <l<; — wy + wyexp(—vy) — 02012/0§> 1 (15)

—w(vg/09) dvy
. (v doy

—0o0

where ®(z) and ¢(z) are the standard normal distribution function and density, o5 =
1/(Wp) is the variance of Vs, and vy015/02 and 0ty = o1 (1 — 0fy/(011092)) are the mean
and variance of the conditional distribution of V; given VQ with oy = 03, 015 = 12/ (Wp),
and 0y = cn/(Wp) It is easily seen that 01‘2 =u'A” u/W

Solving the equation (15) for k = k(w,) involves combining a numerical integration with
a root solving algorithm. One easily sees that there is a unique solution k& = k(w,) for
each w, € R, hence for each p € (0,1). Also, it is easily shown that h(w,) = w, — k(w,)
is strictly increasing from —oo to oo as w, increases from —oo to oo. This avoids the
monotonicity problems that can occur for the traditional confidence bounds when dealing
with small samples, few failures, or extreme confidence levels (high values of |z,]).

The above invoked strictly increasing behavior of h(w), although quite evident from
equation (15), will now be stated and proved in a more general setting for more general
joint distributions of (V, V2) than the bivariate normal distribution.

Lemma 1: For any joint distribution of (V7, V5) the function h(w), defined as the largest
value satisfying v < Plh(w) < wexp(—Va) — V4], is nondecreasing in w.

If in addition Lebesgue measure Ay on R? and the joint distribution of (Vi,V;) are
absolutely continuous with respect to each other, i.e., with A denoting a Borel set in R?

A(A) =0 <= P[(V,Vh) €A =0,



then h(w) is strictly increasing in w and is defined uniquely by
v = Plh(w) S wexp(=V2) = Vi] .

Proof: Let w; < wy and assume that h(w;) > h(wsy). By definition of h(wy) we have
v < Plh(wz) < wyexp(—Va) — Vi

and since h(wy) is the largest such value we must have
7> Plh(w) < wyexp(=V2) = Vi

and from w; < wy we then get

7> Plh(wy) < wyexp(=Va) — Vi] = Plh(wr) < wy exp(~V) = Vi] = 7

where the last inequality comes from the definition of A(w;). Thus we have a contradic-
tion and we must have h(w;) < h(w,).

The absolute continuity of the (Vj,V3) distribution with respect to Mg implies that
wexp(—V,2) — V; has a continuous distribution and thus the largest h(w) with v <
P[h(w) < wexp(—V32) — V4] actually uniquely satisfies v = P[h(w) < wexp(—Vs) — V4].
The uniqueness follows similarly as the argument given below.

Now let wy < wy and assume that h(w;) = h(wsg) = hg. Then we have

v = Plho < wjexp(—V3) = V4] and = Plhy < wyexp(—V3) — Vi]

P[(ho + Vi) exp(V2) Sun] =~ and  P[(hg + V1) exp(V2) < wo] =~

which implies that
Plwy < (hg + Vi) exp(Va) <wy] =0. (16)

Considering the 1-1 mapping (V3,V2) — (Uy,Us) with Uy = (ho + V1) exp(V2) and
U, = Vi we have that the distributions of (V4, V2) and (U;, Us) dominate each other and
equation 16 implies that P(a; < U; < by,ay < Uy < by) = 0 for some nondegenerate
rectangle A = (a1, b1) X (ag, by) and since \y(A) = (by — a1)(by — az) > 0 we have arrived
at a contradiction. Thus wy < wy = h(wy) < h(ws) q.e.d.
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3.3 Bracketing the Root k = k(w,)

Solving P(Vi — wyexp(—Va) + w, < k) = v for k usually requires that the root be
bracketed. Although there are generic algorithms for this, they typically require a few
function evaluations. Here we give some simple brackets. Denote by v;(«) the a-quantile

of V;, i.e.,

Ra

rAT1 'A71b)2
Vo = Z‘“\J = uLly ) and vy = —F—, (17)

Wp Wp
where 2z, is the a-quantile of the standard normal distribution. We distinguish two cases,
wy, > 0 and w, < 0.

Case w, > 0: Let @ = (1 —)/2 and invoke the Bonferroni inequality

P(Vi <vi1-a,Va<v21_4) > 1—-2a=1.
Then
v = PVi—wyexp(—Va2) +w, <k) < PV} <v11-0,Va <Vg1-4)
< P(Vi—wpexp(=V2) +wp < v11-0 — wp exp(—v2,1-a) + wp)

and this implies k < v11_ — Wy, exp(—va,1-a) + Wp.
Next let 3 = 7/2 and by Boole’s inequality we have

PVi<vgUVh<wg) <20=r.

Then
PV} —wpexp(—Va) + w, < v1,3 — w,exp(—va,g) + wp)

S PVi<ugUVa <vyp) <7y =PV —wpexp(=V3) +w, < k)

and this implies v 3 — w, exp(—veg) + w, < k. We thus can bracket the solution k as
follows
U158 — Wy exp(—veg) +wy <k <1 — wyexp(—va1_q) + Wy .

Case w, < 0: With a = (1 —v)/2 we get
PVi <vij_aq,Va>034) >1—-2a=7.
Then
v = PVi—wyexp(—Va2) +w, <k) < P(Vi <v11-a,Va > 2,)

IN

P(Vi —wpexp(—V2) + wp < V110 — Wy eXp(—v2,4) + wp)
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and this implies k < vy 1o — Wy exp(—va,q) + Wp.
Next let 3 = 7/2 and by Boole’s inequality we have

P(‘/l <U1”3U‘/2 >U271_g) §2ﬁ:7
Then
v = P(Vi—wyexp(=V2) +w, < k) = P(Vi <vigUVa > v21-5)

> P(Vi—wpexp(=Va) +wp < o1 — wpexp(—va,1-p) + wp)

and this implies vy 3 — w, exp(—v21-5) + w, < k. This leads to the following bracketing
of k:
U153 — Wy exp(—vg1-g) + wp <k <1 1_q — Wy exp(—v2q) + W,

4 Two Upper Confidence Bounds for the CDF

In this section we present two methods for constructing upper confidence bounds for the
cumulative distribution function G((yo — u/'3)/c) for given threshold y, and covariate
vector u. We focus on upper bounds here, since they are dual to quantile lower bounds
and since a 1009% upper bound is also a 100(1 — )% lower bound.

The first upper bound uses a traditional method (and there are others) and the second is
based on the inversion of the new quantile lower bounds and is thus in line with classical
theory when exact methods are possible, i.e., no normal approximations are invoked.
Of course one could also invert the traditional lower bounds for quantiles, but that may
not always be possible because of monotonicity issues. Similarly one could invert the
traditional upper bounds for the CDF to get lower bounds for quantiles, but again that
runs into possible monotonicity problems, as will be shown. Thus we will not deal with
inversions of traditional approximate bounds on quantiles or the CDF.

4.1 Traditional Upper Confidence Bounds for the CDF

Using the normal approximation (7) one gets the following 100y% upper confidence
bounds for (yo — u'3) /o

~ ~ 2
Y ]_ — !
Ll A’u, A + z, $pu’A‘1u + <7y0 Au B _ u’A‘1b>

; S ;
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and thus as 1007% upper confidence bounds for G((yo — u'3)/0) we have

_ y—up 1 - y—up Y
pyui(y,u) =G 2| pW A u + (f —u'A 1b>
5 Ve 5

This upper bound is guaranteed to give values within the interval (0,1). This would
not necessarily be the case when invoking an approximate normal distribution (again
obtained by delta method) for G((y — u'8)/7) directly.
Since G((y —u/B)/0) is monotone increasing in y one would expect that py, ;1 (7, ©) also
be monotone increasing in y. That is not always the case. The monotonicity properties
of py.u1(7, ) are equivalent to the monotonicity properties of

- — ' 1 a3 2
By t=B qu,Am(w —qulb) |

o

which essentially already appeared previously in the form of H,(w,), if one identifies w,
with (y —4/8)/0 and changes z, to —z,. The latter sign change just means switching
the confidence level from v to 1 — 7, i.e.,

z —u'B 5 —upB\ 1
H(y) = Hi—, (%) and thus A (y) = H_ (%) =

Thus we can restate the monotonicity results as follows, using the notation

U1y = Zlﬂ/\/wf = _Zv/ﬁ = 1), .

When [¢,| = | — ¢1_,| < 1, then the upper bound Py 1 (7, u) is strictly increasing in y
and increases from 0 to 1 as y increases from —oo to oo.
When QEW > 1, ie., ¥y < —1, one has

]:];(y) <0 for y<u/'B+éw and ﬁ;(y) >0 for y>u/'B+cw
and for 1[37 < —1,1ie., ¥y > 1, one has

]:];(y) >0 for y<u'8+6w and ]:];(y) <0 for y>u'B+ow,

Al ~ puw' Ay
B =w A — sign(ty_,) || Lo = w Ab + s et
gn(Y1-+) V1 ign () 21

13

where



4.2 New Upper Confidence Bounds for the CDF

This method is based on an inversion of the new method for quantile lower bounds.
Because of the clean monotonicity properties of h, which was introduced in the con-
struction of the new quantile lower bounds, one can invert the quantile lower confidence
bounds to get upper confidence bounds for the cumulative distribution function of Y for
any given covariate vector u and threshold value y, namely for

y—Uﬁ>'

(18)

g

Pozpo(y;u):P(ng):G<

This is done as follows: For fixed 3,0, and y let py be as defined in (18) and hence
Wy, = (y —u'B)/o or y = u'B + ow,, and thus

v = P (u’ﬁ + h(wy,)o < u'B + owpo) =P (u’ﬁ + h(wy,)o < y)

_ p (h(wpo) <Y _A“,B ) _p <wp0 <p! (M))
= pnza(i (2B

Hence we can treat R
_ /
= (1 (1225))

as 100v% upper bound for py.

Since the evaluation of h~! would involve another root solving step it would be useful if
one could avoid this root solver on top of a root solver, since that increases the number
of function evaluations quadratically. This can indeed be done directly. We need to find
w(y) = h~Y(y —uw'B)/5), i.e., solve h(w(y)) = (y — w'B)/5 for w(y). Recall that when
finding the quantile lower confidence bound we had to solve

N = /_O:o P <wp exp(—v2) — h(wy) — U2012/U§> 1

—(v9/0o9) dv
012 0_290( 2/ 2) 2

for h(w,) for a given value of w,. Since there is a 1-1 relationship between h(w,) and
w, we can use this defining equation also in reverse, namely solve

- /O; o (w(y) exp(—vz) — hy — vzalz/a%> 0%90(02/02) v,

01)2

for w(y) for a given value of h, = (y — uw/'8)/5. We then take G(w(y)) as the desired
upper bound for P(Y <y).

14



4.3 Bracketing the Root w = w(y)

Here we want to solve P(V; —wexp(—Va2) < —hy) = P((Vi + hy) exp(V2) < w) = v for
w = w(y) for given h,. To facilitate the root solving we again provide brackets for w.
With v =1 — 2« and vy 1o + hy > 0 we invoke the Bonferroni inequality

P(Vi+hy <v11- + hy,exp(Va) < exp(vo1-q)) > 1 —200=1.
Then
P((Vi+ hy)exp(Va) < w) = < P((Vi + hy) exp(Va) < (v11-a + hy) exp(v2,1-a))

which implies w < (v11-a + hy) exp(v21-a)-
For vy 1_o + hy < 0 we invoke the Bonferroni inequality

P(Vi+hy <vi1-q + hy,exp(Va) > exp(v24)) > 1 —200=17.
Then
P((Vi -+ hy) xp(Va) < w) =7 < P(Vi + by) exp(Va) < (011 + ) xp(02))

which implies w < (v11-o + hy) exp(v2,0).
With 8 = v/2 and vy 3 + hy, > 0 we invoke the Bonferroni inequality

1 - Y < p(‘/l + hy > V1,8 + hyaexp(‘/Q) > eXp(vZﬁ))

< P((Vi+ hy)exp(Va) = (015 + hy) exp(vz6))

and thus
P((Vi + hy) exp(Va) < (v1 + hy) exp(vap)) < v = P((Vi + hy) exp(V2) < w)

which implies (v1,5 + hy) exp(va5) < w.
With 8 = v/2 and vy 3 + hy, < 0 we invoke the Bonferroni inequality

1—y < PVi+hy > v+ hy,exp(Va) < exp(va1-5))

< P((Vi + hy) exp(Va) = (01,5 + hy) exp(vz1-5))

and
P((Vi + hy) exp(V2) < (vi,5 + hy) exp(v21-5)) <7 = P((Vi + hy) exp(V2) < w)

which implies (v1,g + hy) exp(v21-5) < w.
Depending on which of the four combinations of inequalities vy 1_o + hy, > (<)0 and
v1,3 + hy > (<)0 applies we obtain four different bracketing intervals.
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5 Confidence Bounds for Parameters

Confidence bounds for the parameters 3, ..., 3, and ¢ can be obtained by using tradi-
tional quantile bounds with specific choices for u and wy,.

For example, if we denote by w; a p-vector with a 1 in the i*" and with 0 in all other
positions then w/3 = (; and if we choose w, = 0, i.e., p = 1—exp(—1) ~ .63212 then the
p-quantile y,(u;) is the same as ;. In that case the traditional lower confidence bounds
and the new bounds for this quantile coincide. This comes about because of w, = 0.

Similarly one can get confidence bounds for o by using quantile bounds for y,(u) with
u =0 and p=1—exp(—exp(l)) ~ .93401 because then y,(u) = 0. However here the
traditional and new bounds do not coincide. While the “traditional” bound for ¢ uses
the approximate normality of & (previously pointed out as a poor approximation), the
new method uses the approximate normality of log(d) which usually is employed in favor
of the “traditional” bound. The traditional method has the inherent flaw that it treats &
as approximately normal. Depending on the choice of w and w,, this will have a negative
impact when dealing with small to moderate sized samples or with intensive censoring.
The new method does not suffer from this and its approximation quality is completely
determined by the quality of the joint normal approximation for (8 — 3)/& and log(5),
because the remaining step to converting this to quantile or CDF confidence bounds
is an exact process. However, this does not preclude approximation errors for (Vi, V%)
being magnified by w, when dealing with the distribution of V; + w,[1 — exp(—V2)], for
example.

6 Bootstrap Confidence Bounds

As pointed out at the end of the previous section the coverage quality of the new type
of quantile or CDF confidence bounds hinges entirely on the quality of the invoked joint
normal approximation for (3 — 3)/& and log(5). For small samples or small number of
observed failures this approximation may still be lacking. One simple way out of this is
to bootstrap the distribution of (3 — 3)/6 and log(6/c). Here the bootstrap approach
will depend on how much is known about the censoring times cq, ..., c,.

There are situations where the observed and the potential censoring times are all known.
For example, all n items were put into service at various times and at some fixed time ¢
stock is taken concerning the failure times of those items that failed and concerning the
times that the other items have been exposed without failure. For the latter these times
are the censoring times and for the former one deduces the potential censoring times by
subtracting the times at which these failed items were placed into service from ty,. With
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the knowledge of all censoring times (observed or potential) it is a simple matter to
generate new right censored log-Weibull samples using a random sample of size n from a
log-Weibull distribution with parameters 8 and & (using the same covariates as before in
each case) and comparing these simulated observations with the corresponding censoring
times to produce a right censored sample. For each such censored sample one then again
computes the estimates 8~ and . Repeating this resampling/right censoring and
estimation a large number of B times one can get an empirically generated distribution
of (8" — B)/3* and log(*) — log(5) which may serve as a better representation of the
true joint distribution (other than the (p 4 1)-variate normal distribution) of (8 — 3) /&
and log(d) — log(c). Because we are no longer concerned with getting a close to normal
distribution we may equivalently generate the bootstrap distribution of (3 “—B )/o* and
6%/ as approximation to the joint distribution of (8 — 3)/6 and /0.

However, there are also other situations in which the potential censoring times are not
known. If in that case one can view the censoring times as a random sample from some
unknown distribution H one could estimate H by using the Kaplan-Meier estimate
H , 1.e., treating the observed censoring times as "failures” and the observed failures
as "censoring times” on the unobserved censoring times. In generating new bootstrap
samples it makes most sense to treat the observed censoring times as given for those cases
for which they occurred (i.e., condition on the known ancillaries), while any unknown
potential censoring time for an observed failure y could be randomly generated from
the conditional distribution of H given that the censoring time exceeds y. This is the
scheme proposed originally by Robinson [8] and then again by Hjort [1] and Kim [3].
The calculation of 1007% lower confidence bounds for p-quantiles by the bootstrap
method is straightforward and follows directly from equation 14. For given uw and p we
sort the bootstrapped values of

na* _ a3 o
M_i_wp(l—i), /L:lu?B

0;

and pick off (by linear interpolation) the y-quantile of these values. That will give us
the bootstrap approximation k* = k*(w,) to the desired quantity k& = k(w,) and the
resulting lower bound is then

Unio=uB + (w, — k)5 .

To be able to get this y-quantile one needs to choose B large enough. Of course, the
larger B the better the approximation to the value of k* when B = cc.

We won’t go into examining whether the absolute continuity conditions of Lemma 1 are
satisfied to claim the strict monotonicity of h*(w,) = w, —k*(w,) when B = co. We take
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that as given. The discrete nature of the bootstrap procedure for finite B is handled
through the suggested linear interpolation step.

For sparse failure data it is occasionally impossible to get the bootstrapped values of
(B"—pB)/5* and 6*/5, because the m.le.’s don’t exist. Our position is to leave out these
corresponding bootstrap sample cases, i.e., we work with a reduced bootstrap sample size
B < B, or we could also get new bootstrap samples until we have the desired number B of
“valid” bootstrap samples. The rationale is that we would not even attempt to calculate
confidence bounds if the original estimates had not been possible in the first place. Thus
we only factor in the uncertainty of the estimates conditional on the assumption that
they exist.

As pointed out before, confidence bounds for p-quantiles will also give us confidence
bounds for the parameters o and 3;. It remains to describe the bootstrap process for
getting confidence upper bounds for the CDF, py(y;u) = G((y — u/3)/0), that is more
direct than trying to invert the quantile bounds, i.e., for given y solving u/8 +h(w,)& = y
or (y —u'B)/6 = h(w,) for w, and thus for p. To do this more directly, we rewrite
equation 14 as follows

< wp>

and exploit the 1-1 relationship between w and h(w). Thus we let h, = (y — uw'3)/5
and sort the bootstrap values

~

S ELEI

o

SHESH

and pick off (by linear interpolation) the y-quantile of these values. That will give us the
bootstrap approximation wy of h="(h,) and then p (v, u) = G(w},) is the bootstrap
1007% upper confidence bound for py(y; u).

7 Examining Bivariate Normality

The new method, based on the approximate bivariate normality of (V3, V), assumes that
(B —=0B)/3,A—)\) = ((B —B)/5,1og(5/0)) has an approximate (p 4 1)-variate normal
distribution with mean 0 and covariance matrix B . To examine this assumption we
took a particular data set, namely the shock absorber data as given in Meeker and
Escobar [7] with n = 38 and p = 1. We treated its estimated Weibull model as the
truth and generated bootstrap samples from it with the same sample size. Whenever
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the censoring times were not known from the sample we generated censoring times by
Robinson’s [8] conditional method as oulined above. These censoring times were then
used to generate randomly right censored Weibull samples with the same sample size of
38. This then leads to new maximum likelihood estimates (3 :, af),i=1,..., Ny, where
Ny is the number of bootstrap replications of this sampling process.

Note that the covariance matrix B of the assumed (p+ 1)-variate normal distribution
of (B8 —B)/3,A—\) depends not only on the estimates 8 and & but also more generally
on the data, namely on the Z; = (z; —ugﬁ )/7, the covariates u;, and on r, the number of
failures in the sample. Thus when judging the multivariate normality of the standardized
bootstrap estimates (8, —8)/57,10g(67/5)), i = 1,..., N;, we are faced with a different
multivariate normal distribution for each ¢, namely with mean 0 and covariance matrix

-1
B: which depends on the respective bootstrap sample.

In order to judge the multivariate normality of the standardized bootstrap estimates
((B; —B)/62,10g(67/5)), i =1,..., N,, on a common scale we further standardize each
((B; —B)/57,log(67 /7)) by premultiplying it by the Cholesky factor Q; of the respective

——~ %

B, (i.e., B: = Q;Q; with Cholesky factor @);, an upper triangular matrix with positive

diagonal elements).

The effect of this transformation is that the transformed values of Q;((3, — 8)/5?,
log(c7/5))" then have a (p + 1)-variate normal distribution with mean 0 and (p + 1) x
(p + 1) identity matrix I,; as common covariance matrix. All of this holds in an
approximate sense since we start with an approximation. However, if normality holds
after transformation it is equally valid before transformation and vice versa, i.e., the
transformation does not make the normality better or worse. It only serves to make its
quality visible in the aggregate over all simulated bootstrap cases.

Figure 1 shows the results of such a bootstrap simulation with N, = 2000. The scatter
of the Cholesky transformed values of ((8, — 8)/57, log(7/5)) is shown in the upper
left plot and it roughly looks like the expected circular bivariate normal scatter centered
on zero and with variance one in each direction. On closer examination one sees some
deformation from this pattern (a flattening effect) in the upper right-hand corner and
some broader scatter toward the lower left corner.

The next two plots in this figure show the histograms of the respective x and y dimensions
of the scatter with superimposed fitted normal (solid line) and expected standard normal
(dotted line) density curves.

The last two plots in Figure 1 show the corresponding normal QQ-plots. These should
show a roughly linear pattern if the data were indeed normal. The solid line goes
through the first and third quartile of the data while the dotted line represents the
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expected standard normal distribution. Again one can see some deviation from the
expected normal behavior at the low end of the  and y values. It is not clear for which
values of (8),57) this would be the case. To get some sense of that we also plotted the
standardized bootstrap estimates log(67/5) versus (3, — 8)/3F in Figure 2.

Again the plot shows the expected ellipsoidal bivariate normal scatter with some flat-
tening in the upper left corner. This seems to suggest that large values of & will limit
the effect of B, exceeding B in the ratio (8, — 3)/5>.

Figure 2: Bivariate Normality of Bootstrap Estimates

log(6*/5)

-1.0

-1 0 1 2

(Br — B) /5

8 Confidence Bounds for the Failure Rate Function

As noted previously, the failure rate functions in the Weibull and Gumbel case differ by
the factor 1/ty, aside from the natural transformations resulting from the log-transform
of the first model into the second. This should not affect the methodolgy of constructing
confidence bounds, except to implement this factor when appropriate.

Our approach based on the bivariate normality or the bootstrapped distribution of
(V1,V2) does not transfer quite as cleanly to the failure rate function. We indicate
the source of the difficulty and offer a slight modification that neglects a second order
term. We start by giving the details of constructing confidence bounds by the traditional
method, then discuss the difficulty with the new approach and, based on the probability
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integral transform, give a solution using a slight modification. In the process the con-
fidence bounds for the CDF are rederived based on the probability integral transform.
Finally the corresponding bootstrap approach is presented.

8.1 Traditional Failure Rate Lower Confidence Bounds

For the case of the Gumbel distribution we use the normal approximation given in (12)
and get approximate 1007% lower confidence bounds for r¢(yo, u) as follows:

?G(ym u) X exp (_Z’y?G (y07 U))

and we note again that a 100(1 — )% lower bound also serves as a 100~% upper confi-
dence bound for r¢(yo, u).

The failure rate function r¢(yo, w) is monotone increasing in yo, in fact log(rq(yo, w)) is
linear in yo with positive slope 1/0. However, the confidence bounds do not necessarily
share the monotonicity property. This is similar to what was observed in the context
of quantile bounds and the examination for monotonicity is parallel to that previous
case and is not repeated here. Again the violation of monotonicity can occur when the
number of failed cases is low or the confidence level is extremely high.

For the case of the Weibull distribution we use the normal approximation given in (13)
and get approximate 1007% lower confidence bounds for ry (¢) as follows:

;’\W(to, 'U,) X exp (—ZW?W(t(), 'U,)) .

Note that Ty (to, u) = Ta(log(to), w) and Ty (to, u) = Fg(log(ty), w) /to.

Although rg(yo, u) is always monotone increasing in yo the same is not true for ry (to, u),
i.e., it is not always monotone increasing in ty. In fact, log(rw (to, w)) is a linear function
in log(ty) with slope 1/0 —1 = n — 1. Thus we have monotone increasing behavior
in {p when n > 1, monotone decreasing behavior in ¢, when 1 < 1, and a constant
failure rate function when n = 1. What can be said about the corresponding confidence
bounds? The estimated failure rate function 7y (¢o,w) is monotone increasing when
7 > 1, monotone decreasing when 77 < 1 and constant when 7) = 1. However, even when
the estimated failure rate function is monotone in one direction it does not necessarily
follow that the bounds will be monotone. Again criteria for monotone behavior can
be worked out based on the approach given in the quantile case, but here the case
for insisting on similar monotone behavior is not so compelling, since the direction of
monotonicity of the true failure rate function is not always the same. Thus we will not
go into a detailed discussion of this issue.
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8.2 Modified New Approach

We discuss mainly the Gumbel case and reduce the Weibull case to it at the end. Note
that the estimate

. R —u'3 o
log (T¢(yo, w)) = —log(d) + % of log(ra(yo,u)) = —log(o) + y

can be rewritten as follows

log (Fay,w)) = —log(6/0) — log(o) + L0 L =W =B (9 )
— log (ra(yo, w)) — log(6 /) + P = wB | o —Ou,a (% B 1)

= tog (ra(yo.w) — Vs — Vi + 22 (exp(-13) - )

= log(ra(yo, u)) exp(=V2) = Vi = V3 +log(0) (exp(=V2) = 1) (19)

and one sees that the distribution of 7¢(yo, u) depends on the unknown parameters not
only through the target quantity r¢(yo, ) but also through o alone.

Recall, that in the case of confidence bounds for the CDF we faced the following situation

u :eXP(—Vé -V,

)yo —u'g
o
and here the distribution of the estimate (yy — u/3)/d is seen to depend only on the
target quantity (yo—u'3)/o. It is understood that (V4, V5) has a known albeit estimated
distribution. Note that here, in contrast to the previous situation, there is no dependence

on additional parameters.

We now give another derivation of the upper confidence bound for the target parameter
0 = 0(yo,u) = (yo — v'B)/o, which through composition with G leads to an upper
confidence bound for the CDF, i.e., for G ((yo — w/3) /o). This derivation is more direct
than our previous inversion of quantile lower bounds but the result is the same. It also
points the way on how to deal with confidence bounds for the failure rate.

Let 0 = O(yo,u) = (yo — w'B)/G and denote by Hy(y) = Py (§§ y) its distribution

function. From the previous representation of 6 in terms of (V;, V5) we have

Hy(y) = P (fexp(=V2) = V1 <)
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and assuming a known bivariate normal distribution for (V;,V3) it is clear that Hy(y)
is strictly decreasing in 6 for fixed y. Denote this strictly decreasing function of 6 by
Yy(0) and for u € (0,1) denote its inverse (in #) by 1, " (u). By the bivariate normality

of (V1,V2) we can treat 0 as a continuous random variable and thus can invoke the
probability integral transform result, namely the random variable Hy(6) has a uniform
distribution on the interval (0, 1), i.e., 15(0) = Hy(6) is a pivot. Thus

P(Up0) <1-7) =1-7.
From this one gets
(0>@/)A (1-— )):1—7 or (6’<¢A (1-— )):7

where x = Qﬁa_l(l — ) solves ¢5(x) = 1 —~ or H,(0) = P(zexp(—=Va) — V4 < ) =

1 —~. Here 6 is the observed value and should not be treated as random within the last
probability statement. This leads to solving

- YA 2
v =P(Vi <zexp(=V3) — ) = / s (xexp( v) — 5 U2012/02> i¢(1)2/<72) dvy
—00 01)2 )
for x, which is the same task that was faced previously when inverting quantile lower
bounds.
Returning our focus to the failure rate we now let 6 = 0(y, u) = log(7¢(yo, w)) represent
the estimate of 6 = log(ra(yo, w)). From (19) we know that the distribution of 6 depends
both on 6 and A = log(o), i.e

Hy\(y) = P(0 < y) = P(0exp(=V3) — Vi — Va4 Aexp(=V3) — 1) < y) . (20)

As pointed out before, the difficulty is the term A(exp(—V2) — 1) with the unknown
parameter A. Our modification in approach is to replace the unknown A by its maximum
likelihood estimate A = log(d). This amounts to neglecting the second order term

—Va(exp(=Va) — 1) in
Mexp(=Va) = 1) = (A=) (exp(=V2) — 1) + Aexp(~V3) — 1)
— — Valexp(—Va) — 1) + A(exp(—12) — 1).

The notion “second order term” derives from the fact that both V; and exp(—V5) — 1
converge to zero in large samples. Thus we propose to work with the approximate pivot
H,+(0) when developing the confidence bound for the parameter .
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-~

Recall that the probability integral transform result gives us that Hp () is a pivot

~

with uniform distribution on (0,1). We will use the same pivot distribution for H,+(6)
banking on the negligibility of the above second order term.

-~

Of course it is possible to do a more refined analysis of the distribution of H,+(6) (using

only the known and estimated distribution of (4, V3)) but this involves a second level of
integration. Furthermore, the unknown parameter 6 then enters in two different places,
once as subscript to H and once through the distribution of 67, and the monotonicity in
6 is no longer clear. However, this is not an issue when trying to obtain quantiles of the

-~

H,+(0) distribution. On top of the double integration there is still the extra layer of

simulation to validate this refined method. Thus it seems reasonable and more practical

to stay with the uniform distribution on (0, 1) as the approximate pivot distribution for

He,i(e)'

For H,5(0) we have the following representation

-~

- 00 (6 + vy — Aexp(—vs) — 1) — — 2\ 1
H, +(0) :/ o <9 + v9 — AMexp(—vq) — 1) — fexp(—vq) + /020'12/0'2> R
) — 00 01)2 02
From

~

P(Hy5(0) <1—7)=1-7

and the fact that H, X(GA) is strictly decreasing in 6 we obtain a 100(1 — v)% lower
confidence bound 0;,(1—7, yo, u) for @ by solving H, X(é\) =1—nfor=0,(1—~,yo,u).

Thus we also have a 1007% upper confidence bound §U(’y, Yo, U) = éL(l -, Yo, ) for 6.
With that one gets in exp(0y (7, yo, w)) a 1007% upper confidence bound for the failure
rate function rg(yo, u).

From the construction of éL(l — 7, Yo, w) one easily sees that it is an increasing function
of 8 = 0(yo, u) and thus also an increasing function of yy. Hence these confidence bounds
have the same monotonicity property as the target failure rate function.

To get a corresponding bound in the Weibull case one simply makes use of the relation-
ship rw (to, u) = re(log(to), w)/ty after log-transforming the Weibull data into Gumbel
form. Here the monotonicity property of the bounds may be reversed (through the di-
vision by ty) because the ratio of two monotone functions may not stay monotone. As
noted previously, the case for insisting on the same monotonicity behavior as seen in the
estimate is no longer so compelling.
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8.3 Bracketing the Root §L(7,y0,u)
The lower confidence bound 6 (7, yo, u) is defined as the solution in 6 of
P (6’ > exp(Va) (5—1— Vi 4 Va — Mexp(=V3) — 1))) =1—7.

In solving for the unique root of this equation it is useful to bracket the solution 6 by
L<o<U.
Using the previous notation of (17) we have

P(_Ui,lf'y/4 <V < Uz',lf'y/4) =1—=,1=12
and thus by Bonferoni’s inequality
P(—0; < Vi <01, =0 < Vo <Wy) >1—17,
where ; = v; ;4. Hence with probability at least 1 —~ we have for Py >0
exp(V5) (§+ Vi 4 Va — AMexp(—Va) — 1))
< exp(¥7) max (O, 0 + 0y + Uy — Mexp(—s) — 1))
and for A < 0
exp(Va) (0 + Vi + Va — Mexp(—12) — 1))
< exp(?;) max (O,§+ By + Ty — Aexp(0y) — 1)) :

Combining these two cases and using sign(z) = 1 for z > 0 and sign(z) = —1 for z < 0
we have with probability at least 1 —~ that

exp(Va) (0 + Vi + Vo — Mexp(— V) — 1))

< exp(0y) max (0, 0 4 01 4 Uy — A(exp(—sign(N)dy) — 1)) =U.
This U can thus serve as upper bound to the root 6.
For the lower bound we proceed as follows. Let ¥; = v;1_(1—4)/4 then

1
P(-5<Vi<w) = —
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and by Bonferoni’s inequality
P(—0, <Vi <0y, =0, <Vp <0p) > 7.
Hence with probability at least v we have for A>0
exp(V2) (§+ Vi + Vo — Mexp(=V3) — 1))
> exp(¥;) min (O, 0 — vy — Uy — Aexp(y) — 1))
and for A < 0

exp(Va) (0 + Vi + Vo — Mexp(—1a) — 1))

> exp(¥;) min (0,5— Uy — Uy — Aexp(—0) — 1)) .
Combining these two cases we have with probability at least v that

exp(Va) (0 + Vi + Vo — Mexp(—1a) — 1))

> exp(TUz) min (0, 0 — vy — Uy — Aexp(sign(A)vy) — 1)) =I.

This L can thus serve as lower bound to the root 6.

8.4 Bootstrap Confidence Bounds for the Failure Rate

Again we let 0 = log(Fa(yo, w)) represent the estimate of § = log(re(yo, w)) and we
treat H 93(6) as an approximate pivot with uniform distribution on (0,1). Here we
no longer treat (V1,V3) as distributed according to a bivariate normal distribution but
will bootstrap that distribution. This assumption of a uniform pivot distribution is
reasonable and practical. The alternative would be to use the double bootstrap approach
given in Scholz [9] to get at the distribution and quantiles of H 073(5). The validation
step would put a third level of simulation on top of that. This is an inordinate amount
of effort to account for a term that is negligible in all but extreme situations.

Thus we need to find the value 0 that solves

-~

1—v= H&X(e)

to get a 100(1 — )% lower bound 05 (1 — ) for 0. Again we can treat 05 (v, u) =
07 (1 —~,u) as 100y% upper bound for 6 and exp(6};(,u)) as 100y% upper confidence
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bound for the failure rate function rg(yo,w) with the same adaptation as before for
Weibull data.

It remains to find 6% (1 —~, u) and that can again be done without iteration via a simple
bootstrap step as follows. Using (20) with y and A replaced by the observed values
of @ and A we have to solve (again treating only (V7,V3) as random in the following
probability statements)

1—y = P(fexp(—Va) = Vi = Va+ Mexp(~Va) = 1) <0 )

= P(0<[0+Vi+Va—Aexp(—Va) — 1)] exp(V3))

v = P([0+Vi+Va—Aexp(—Va) — 1)] exp(V3) < 0)
for 6. That solution is simply the «-quantile of the distribution of
[54— Vi + Vo — Mexp(=Va) — 1)] exp(V3) ,

while (V3, V,) vary according to their assumed bivariate distribution.

This quantile can be obtained by bootstrapping the (Vi,V5) values as before, namely
generate B independent copies (B:,&i*),i = 1,...B, (treating 8 and & as the true
population parameters) compute V;, = u’ (87 — B)/6r and Vi = log(6;/5) and sort
the resulting values of

0+ Vi + Vs = Aexp(=V3y) = D] exp(Vs) . i=1,....B,

in increasing order and interpolating the y-quantile of these values. This quantile then
serves as the bootstrap solution for 6} (v, u).

9 Bootstrap-t Solutions

The previously discussed bootstrap solution neither corresponds to a percentile bootstrap
nor to a bootstrap-t approach, although the latter comes close since use was made of the
bootstrap distribution of the “pivotal” quantities (V3, V5). However, the standardization
in Vi = (/B — u/'B)/6 uses just & and not the standard error estimate of u/3, with a
corresponding comment applying to V5. The simulation results in Jeng and Meeker [2]
suggest that the bootstrap-t approach works very well as far as coverage properties are
concerned. In this approach one takes for any given estimator 8 = g(B,5) of 0 = g(B,0)
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the quantity R = (§ — 0)/5e(0) as the basic “pivot.” The standard error estimate sé(f)
could be computed by several different methods. We will use the standard deviation of
the normal approximation for 6 when using the estimated observed Fisher information.
The y-quantile 7, of R (if it could be computed) could then be used to form 1007%
lower confidence bounds for € since

0—0 ~ PN
7:P<?@§rv> :P(H—rvse( )g@) .

Instead of the unknown distribution of R we use its bootstrap distribution, namely that
of R* = (6* — 0)/3e*(0*) where the estimates with superscript * are obtained through
simulation by assuming that the unknown parameters (3, o) are replaced by their known
maximum likelihood estimates (3, ) when simulating random samples and at the same
time emulating the relevant censoring mechanism as discussed previously. From the
simulated R* distribution ones determines the v-quantile rJ and then uses 0 — T;EE(HA)
as the bootstrap-t lower confidence bound for #. Although its coverage is good it is not
evident whether lower bounds for § = g, = v’ B + wpo will be monotone in p since the
bootstrap distribution of R* involves w, and may thus present the same difficulties as
were encountered with the classical maximum likelihood approach. Omne could probe
this issue by trying this method on some extreme cases.

We denote the bootstrap-t lower bound for 6 = vy, = w'B +w,0 by Uy 1.0+ = Uy, r24(7, w).
Correspondingly we denote the bootstrap-t upper bound for 6 = py(y) = G([y —u'3]/0)
by Py 1ra.e = Dy va+(7> w). In both cases the subscript ¢ indicates the bootstrap-t method
for obtaining the bounds. As pointed out before, these two bounds are not necessarily
inverses of each other.

9.1 Monotone Bootstrap-t Quantile Confidence Bounds

Here we present a hybrid approach that results in monotone quantile confidence bounds
while using a hybrid bootstrap-t approach. The method invokes the joint distribution
of R

~ u'B —u ~

Vi, = up —up and V, =

f20

o

f

?

Q

where

fov =5e(6) =5/ Wp.
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We point out that the standardization V; with ]?2 in the denominator is not in the spirit
of the standard error estimate. To do that one would have to use f; instead, where

~ &\/pu’Aflu + (w/ A7'b)?

fi6 =se(u'pB)

—

Wp

We also point out that in the standardization of & we did not use (6 — 0)/(f28). Doing
it as proposed will preserve the desired monotonicity of the quantile lower bounds to
be derived. All this will simply lead to a minor modification of our original bootstrap
proposal, namely changing the ¢ in the denominator to f28. It should be noted that fQ
appears as subfactor in ]?1 and it is this subfactor that is affected most by the number r
of failed observations in the sample. This r, when small, can have strong effects during
the bootstrap process and a standardization may stabilize that.

We will consider lower bounds of the form w8 + (wp, — k) fo5 for u/B + w,o, where k
has to be determined appropriately. If the joint distribution of V; and Vs, were known
one could for given w, determine the y-quantile ffv = l;;y(wp) defined by

y=P(u'B + (w, — k) fot < U'B+w,0) = P (f/l —w, Vo < ky — wp) (21)

and then we could view w8 + (w, — k) f26 as 1007% lower bound for y, = u/B + w,o.

Since the joint distribution of V; and V5, is not known we will again use its bootstrap
distribution and determine the corresponding quantile /’foY = l%;(wp) from the bootstrap
distribution of V;* — w,Vy. As lower confidence bound for y, = w8 + w,o we then
propose to use Uy 1o, = u'B + (w, — l;;)fgc?, where the subscript m on gy 1, ,, indicates
the monotone bootstrap version that is discussed here.

That h(w,) = w, — l;fy(wp) is nondecreasing in w, and thus in p is shown in exactly the
same manner as before.

The corresponding upper bounds for py = po(y;u) = G([y — w/'B]/0) are obtained in
analogous fashion as in our first bootstrap approach. For given y we need to solve

Q;L?,m = u/B + (wp — ];;)an =Yy
for w, and thus for p, or solve
~ — u’ 3
hy = M
J20
for w, = h="(h,). We rewrite Equation 21 (in bootstrap form) as follows

=P (Vi +hlwy)| V5 <wp) -

= h(wp)
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Thus for given fzy sort the bootstrap values

"a* _ A Tx ok
(Vi hy) [V = (M[ij‘iﬂJrhy) % . i=1,...B
and pick off (by interpolation) the vy-quantile of these values. That will give us the boot-
strap approximation wy of h='(h,) and then Dy vr2.m (7 w) = G(wy,) is the 1007% upper
confidence bound for po(y;w) which inverts the corresponding quantile lower bound.
The subscript m on pj 7 ,,(7, w) indicates again the monotone bootstrap version dealt
with here.

The counterpart of this bootstrap hybrid for the case of the failure rate function was
unclear and was not pursued further.
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