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Abstract

This report reviews several bootstrap methods with special emphasis on small
sample properties. Only those bootstrap methods are covered which promise
wide applicability. The small sample properties can be investigated ana-
lytically only in parametric bootstrap applications. Thus there is a strong
emphasis on the latter although the bootstrap methods can be applied non-
parametrically as well. The disappointing confidence coverage behavior of
several, computationally less extensive, parametric bootstrap methods should
raise equal or even more concerns about the corresponding nonparametric
bootstrap versions. The computationally more expensive double bootstrap
methods hold great hope in the parametric case and may provide enough
assurance for the nonparametric case.
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1 The General Bootstrap Idea

1.1 Introduction

The bootstrap method was introduced by Efron in 1979. Since then it has
evolved considerably. Efron’s paper has initiated a large body of hard theo-
retical research (much of it of asymptotic or large sample character) and it
has found wide acceptance as a data analysis tool. Part of the latter is due
to its considerable intuitive appeal, which is in contrast to the often deep
mathematical intricacies underlying much of statistical analysis methodol-
ogy. The basic bootstrap method is easily grasped by practitioners and by
consumers of statistics.
The popularity of the bootstrap was boosted early on by the very readable
Scientific American article by Diaconis and Efron (1983). Having chosen the
catchy name “bootstrap” certainly has not hurt its popularity. In Germany
one calls the bootstrap method “die Münchhausen Methode,” named after
Baron von Münchhausen, a fictional character in many phantastic stories. In
one of these he is supposed to have saved his life by pulling himself out of a
swamp by his own hairs. The first reference to “die Münchhausen Methode”
can be traced to the German translation of the Diaconis and Efron article,
which appeared in Spektrum der Wissenschaft in the same year. There the
translator recast the above episode to the following iamge: Pull yourself by
your mathematical hairs out of the statistical swamp.
Hall (1992) on page 2 of his extensive monograph on the bootstrap expresses
these contrasting thoughts concerning the “bootstrap” name:

Somewhat unfortunately, the name “bootstrap” conveys the im-
pression of “something for nothing” — of statisticians idly re-
sampling from their samples, presumably having about as much
success as they would if they tried to pull themselves up by their
bootstraps. This perception still exists in some quarters. One
of the aims of this monograph is to dispel such mistaken impres-
sions by presenting the bootstrap as a technique with a sound
and promising theoretical basis.

Much of the bootstrap’s strength and acceptance also lies in its versatility. It
can handle a very wide spectrum of data analysis situations with equal ease.
In fact, it facilitates data anlyses that heretofore were simply impossible be-
cause the obstacles in the mathematical analysis were just too forbidding.
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This gives us the freedom to model the data more accurately and obtain ap-
proximate answers to the right questions instead of right answers to often the
wrong questions. This freedom is bought at the cost of massive simulations
of resampled data sets followed by corresponding data analyses for each such
data set. The variation of results obtained in these alternate data analyses
should provide some insight into the accuracy and uncertainty of the data
analysis carried out on the original data.
This approach has become feasible only because of the concurrent advances
in computing. However, certain offshoots of the bootstrap, such as iterated
bootstrap methods, can still strain current computing capabilities and effi-
cient computing strategies are needed.
As stated above, the bootstrap has evolved considerably and there is no
longer a single preferred method, but a wide spectrum of separate methods,
all with their own strengths and weaknesses. All of these methods generally
agree on the same basic bootstrap idea but differ on how they are imple-
mented.
There are two major streams, namely the parametric bootstrap and the non-
parametric bootstrap, but even they can be viewed in a unified fashion. The
primary focus of this report is on parametric bootstrap methods, although
the definitions for the various bootstrap methods are general enough to be
applicable for the parametric and nonparametric case. The main reason for
this focus is that in certain parametric examples one can examine analyti-
cally the small sample properties of the various bootstrap methods. Such an
analysis is not possible for the nonparametric bootstrap.

1.2 Setup and Objective

We begin by assuming a very generic data analysis situation, namely that
we have some data set X. Data are uncertain for various reasons (sampling
variability, measurement error, etc.) and we agree that the data set was
generated by a probability mechanism which we denote by P . We do not
know P , but through X we get some indirect information about P . Much of
statistical inference consists in using X to make some inference concerning
the particulars of P .
A very common structure for X is that it represents some random sample,
i.e., X = (X1, . . . , Xn) and theXi are independent and identically distributed
(i.i.d.). Other structures involve known covariates, which can be thought of
as being a known part of the specified probability model. By keeping the
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data set as generic as possible we wish to emphasize the wide applicability
of the bootstrap methods.
Not knowing P is usually expressed by stating that P is one of many possible
probability mechanisms, i.e., we say that P is a member of a family P of
probability models that could have generated X.
In the course of this report we will repeatedly use specific examples for prob-
ability models and for ease of reference we will list most of them here.

Example 1: X = (X1, . . . , Xn) is a random sample of size n from some
distribution function F ∈ F , the family of all such distribution func-
tions on the real line, and let P = {PF : F ∈ F}. We say that X =
(X1, . . . , Xn) was generated by PF (and write X ∼ PF ) if X1, . . . , Xn

are independent, each having the same distribution function F .

Example 2: X = (X1, . . . , Xn) is a random sample of size n from a normal
population with mean µ and variance σ2. Let F be the family of all
normal distributions, with µ ∈ R and σ > 0 and let P = {PF : F ∈
F}. We say that X = (X1, . . . , Xn) was generated by PF (and write
X ∼ PF ) if X1, . . . , Xn are independent, each having the same normal
distribution function F ∈ F .

Example 3: X = {(t1, Y1), . . . , (tn, Yn)}, where t1, . . . , tn are fixed known
constants (not all equal) and Y1, . . . , Yn are independent random vari-
ables, which are normally distributed with common variance σ2 and
respective means µ(t1) = α + βt1, . . . , µ(tn) = α + βtn, i.e., we write
Yi ∼ N (α + βti, σ

2). Here α, β, and σ > 0 are unknown parameters.
Let F = {F = (F1, . . . , Fn) : Fi ≡ N (α + βti, σ

2), i = 1, . . . , n} and
we say X ∼ PF ∈ P if the distribution of the independent Y ’s is given
by F = (F1, . . . , Fn) ∈ F , i.e., Yi ∼ Fi.

Example 4: X = {(U1, V1), . . . , (Un, Vn)} is a random sample of size n from
a bivariate normal population with means µ1 and µ2, standard devia-
tions σ1 > 0 and σ2 > 0 and correlation coefficient ρ ∈ (−1, 1), i.e., we
write (Ui, Vi) ∼ N2(µ1, µ2, σ1, σ2, ρ). Let F be the family of all such
bivariate normal distributions and let P = {PF : F ∈ F}. We say that
X = {(U1, V1), . . . , (Un, Vn)} was generated by PF (and write X ∼ PF )
if (U1, V1), . . ., (Un, Vn) are independent, each having the same bivariate
normal distribution function F .
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The first example is of nonparametric character, because the parameter F
that indexes the various PF ∈ P cannot be fit into some finite dimensional
space. Also, we deal here with a pure random sample, i.e., with i.i.d. random
variables.
The second, third, and fourth example are of parametric nature, since there is
a one to one correspondence between F and θ = (µ, σ) in Example 2, between
F and θ = (α, β, σ) in Example 3, and between F and θ = (µ1, µ2, σ1, σ2, ρ)
in Example 4. We could as well have indexed the possible probability mech-
anisms by θ, i.e., write Pθ, with θ varying over some appropriate subset
Θ ⊂ R2, Θ ⊂ R3, or Θ ⊂ R5, respectively. In Example 3 the data are inde-
pendent but not identically distributed, since the mean of Yi changes linearly
with ti.
Of course, we could identify θ with F also in the first example and write
P = {Pθ : θ ∈ Θ}, with Θ = F being of infinite dimensionality in that
case. Because of this we will use the same notation describing any family P ,
namely

P = {Pθ : θ ∈ Θ}

and the whole distinction of nonparametric and parametric probability model
disappears in the background, where it is governed by the character of the
indexing set Θ.
Many statistical analyses concern themselves with estimating θ, i.e., with
estimating the probability mechanism that generated the data. We will as-
sume that we are always able to find such estimates and we denote a generic
estimate of θ by θ̂ = θ̂(X), where the emphasized dependence on X should
make clear that any reasonable estimation procedure should be based on the
data at hand. Similarly, if we want to emphasize an estimate of P we write
P̂ = P

θ̂
. Finding any estimate at all can at times be a big order, but that

difficulty is not adressed here.
In Example 1 we may estimate θ = F by the empirical distribution function
of the data, i.e, by

F̂ (x) =
1

n

n∑
i=1

I(−∞,x](Xi)

and we write θ̂ = F̂ . Here IA(x) = 1 if x ∈ A and IA(x) = 0 if x 6∈ A. Thus
F̂ (x) is that fraction of the sample which does not exceed x. F̂ (x) can also be
viewed as the cumulative distribution function of a probability distribution
which places probability mass 1/n at each of the Xi. If some of the Xi

coincide, then that common value will receive the appropriate multiple mass.
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Often one is content with estimating a particular functional ψ = ψ(P ) of P .
This will be the situation on which we will focus from now on. A natural
estimate of ψ would then be obtained in ψ̂ = ψ(P̂ ) = ψ(P

θ̂
).

In Example 1 one may be interested in estimating the mean of the sampled
distribution F . Then

ψ = ψ(PF ) =
∫ ∞

−∞
x dF (x)

and we obtain

ψ̂ = ψ
(
P
F̂

)
=
∫ ∞

−∞
x dF̂ (x) =

1

n

n∑
i=1

Xi = X̄ ,

i.e., the sample average as our estimate of ψ.
Since we index P by θ we may also speak of estimating a functional ψ(θ).
A natural estimate of ψ(θ) would then be ψ̂ = ψ(θ̂). This dual use of
ψ(θ) and ψ(P ) should not be confusing, if we keep in mind the convention
ψ(θ) ≡ ψ(Pθ).
Actually, this functional approach contains the estimation of the full proba-
bility model as a special case by using ψ(θ) = θ. In that case the value set of
ψ may be quite large depending on the nature of Θ. However, in most cases
we will focus on real valued functionals ψ(θ).
Having obtained an estimate ψ̂ raises the following questions: How good is
it? What is its bias? To what extent does the uncertainty in the original
data set influence the estimate, i.e., can we get confidence bounds for the
unknown ψ? These are some of the concerns that the bootstrap method
tries to address.

1.3 Bootstrap Samples and Bootstrap Distribution

If we had the luxury of knowing θ we could generate B resampled data sets
X1, . . . ,XB from Pθ. For each such data set we could get the corresponding
estimate, i.e., obtain ψ̂1, . . . , ψ̂B. By resampled data set we mean that Pθ
generates independent replicates X1, . . . ,XB just as Pθ generated the original
data set X. Of course, it is assumed here that it is always possible to generate
such data sets Xi from Pθ for any given θ. All nonrandom aspects, such as
sample sizes within each data set and the values t1, . . . , tn in Example 3, are
kept fixed. This should all be understood in the description of the probability
model Pθ.
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The scatter of these estimates ψ̂1, . . . , ψ̂B would be a reflection of the sam-
pling uncertainty in our original estimate ψ̂. As B →∞, the distribution of
the ψ̂1, . . . , ψ̂B represents the sampling distribution of ψ̂, i.e., we would then
be in a position to evaluate probabilities such as

QA(θ) = Pθ(ψ̂ ∈ A)

for all appropriate sets A. This follows from the law of large numbers (LLN),
namely

Q̂A(θ) =
1

B

B∑
i=1

IA(ψ̂i) −→ QA(θ)

as B → ∞. This convergence is “in probability” or “almost surely” and we
will not dwell on it further. Since computing power is cheap, we can let B be
quite large and thus get a fairly accurate approximation of QA(θ) by using
Q̂A(θ).
Knowledge of this sampling distribution could then be used to set error limits
on our estimate ψ̂. For example, we could, by trial and error, find ∆1 and
∆2 such that

.95 = Pθ(∆1 ≤ ψ̂ ≤ ∆2) ,

i.e., 95% of the time we would expect ψ̂ to fall between ∆1 and ∆2. This
still does not express how far ψ̂ is from the true ψ. This can only be judged
if we relate the position of the ∆i to that of ψ, i.e., write δ1 = ψ −∆1 and
δ2 = ∆2 − ψ and thus

.95 = Pθ(ψ̂ − δ2 ≤ ψ ≤ ψ̂ + δ1) .

All the above is hypothetical, since in reality we don’t know θ. If we did, we
would simply evaluate ψ = ψ(θ) and be done, i.e., we would have no need
for estimating it and would have no need for confidence bounds for ψ.
What we know instead, is an estimate θ̂ of θ. Thus we use P̂ = P

θ̂
when

generating B independent replicate data sets X?
1, . . ., X?

B. This collection
of alternate data sets is called the bootstrap sample. The asterisk on the X?

j

emphasizes that these data sets come from P
θ̂

and not from Pθ. Note that
P
θ̂

represents a conditional distribution of X? given the original data set X,

since θ̂ = θ̂(X) is kept fixed in the resampling process. It is as though we
treat θ̂ as the truth, i.e., P

θ̂
as the true probability model which generates

the data set X?.
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For each X?
i obtain the corresponding estimate θ̂?i and evaluate ψ̂?i = ψ(θ̂?i ).

The bootstrap idea is founded in the hope that the scatter of these ψ̂?1, . . .,
ψ̂?B should serve as a reasonable proxy for the scatter of ψ̂1, . . . , ψ̂B which we
cannot observe. If we let B →∞, we would by the LLN be able to evaluate

QA(θ̂) = P̂ (ψ̂? ∈ A) = P
θ̂
(ψ̂? ∈ A)

for all appropriate sets A. This evaluation can be done to any desired degree
of accuracy by choosing B large enough in our simulations, since

Q̂A(θ̂) =
1

B

B∑
i=1

IA(ψ̂?i ) −→ QA(θ̂)

as B →∞. This collection of probabilities is called the bootstrap distribution
of ψ̂?.
In this context and in all future bootstrap appeals to the WLLN , it is worth
noting that there is a certain similarity between interpreting Q̂A(θ̂) as an
approximation of QA(θ̂) for large B and the computation of any analytical
result to so many decimal places by some algorithm. Mostly, such computed
analytical results are at best approximations. In either case, the more effort
one expends, the more accuracy one gets in the approximation. The only
real difference between the two is that the simulation approach will not get
exactly the same answer when repeated with a different starting seed for the
random number generator.
Much of the theoretical bootstrap discussion has focussed on large samples.
If the chosen estimate θ̂ is a reasonable one (namely consistent), then θ̂ will,
in large samples, yield a very good approximation to the unknown θ. Under
appropriate continuity conditions, namely

P
θ̂
−→ Pθ as θ̂ −→ θ ,

in a sense, to be left unspecified here, one can then say that the bootstrap
distribution of ψ̂? is a good approximation to the sampling distribution of ψ̂,
i.e.,

P
θ̂
(ψ̂? ∈ A) ≈ Pθ(ψ̂ ∈ A) .

Research has focussed on making this statement more precise by resorting
to limit theory. In particular, research has studied the conditions under
which this approximation is reasonable and through sophisticated high order
asymptotic analysis has tried to reach for conclusions that are meaningful
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even for moderately small samples. Our main concern in later sections will
be to examine the qualitative behavior of the various bootstrap methods in
small samples.

2 The Bootstrap as Bias Reduction Tool

As a first application of the bootstrap method we present its general utility
for reducing bias in estimates. The exposition is divided into four subsec-
tions. The first covers bias reduction when the functional form of the bias
is known. It is pointed out that bias reduction may or may not increase the
estimation accuracy, as measured by the mean squared error of the estimate.
This is illustrated with two examples. The second subsection shows that
the bootstrap can accomplish the same bias reduction without knowing the
functional form of the bias. The third subsection discusses the iteration of
the bias reduction principle, again assuming a known functional form of the
bias. The last subsection shows that this can be accomplished by the iterated
bootstrap method without knowing the functional bias form.

2.1 Simple Bias Reduction

Suppose we are interested in estimating a real valued functional ψ(θ) and
we use as estimate ψ̂ = ψ(θ̂). Such estimates may be biased, i.e., (assuming
that expectations are finite)

Eθ
(
ψ(θ̂)

)
= ψ(θ) + b(θ)

with bias b(θ) 6≡ 0. This means that the mean Eθ
(
ψ(θ̂)

)
of the ψ(θ̂) dis-

tribution is not centered on the unknown value ψ(θ), but is off by the bias
amount b(θ).
If we know the functional form of the bias term b(θ), then the following “bias
reduced” estimate

ψ̂br1 = ψ(θ̂)− b(θ̂)

suggests itself. The subscript 1 indicates that this could be just the first
in a sequence of bias reduction iterations, i.e., what we do with ψ̂ for bias
reduction we could repeat on ψ̂br1 and so on, see Section 2.3.
Such a correction will typically reduce the bias of the original estimate ψ(θ̂),
but will usually not eliminate it completely, unless of course b(θ̂) is itself an
unbiased estimate of b(θ).
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Note that such bias correction often entails more variability in the bias cor-
rected estimate due to the additional variability of the subtracted bias cor-
rection term b(θ̂). However, it is not clear how the mean squared error of the
estimate will be affected by such a bias reduction, since

MSEθ
(
ψ̂
)

= Eθ
(
ψ̂ − ψ

)2
= varθ

(
ψ̂
)

+ b2(θ) .

The reduction in bias may well be more than offset by the increase in the
variance. In fact, one has the following expression for the difference of the
mean squared errors of ψ̂br1 and ψ̂

Eθ
(
ψ̂br1 − ψ

)2
− Eθ

(
ψ̂ − ψ

)2
= Eθ

(
b(θ̂)2

)
− 2Eθ

(
b(θ̂)(ψ̂ − ψ)

)
.

There appears to be no obvious way of characterizing the nonnegativity of the
right side of this equation, i.e., when bias reduction would lead to increased
mean squared error.
As illustration of this point we will present two examples, where the variances
increase in both cases and the mean squared errors go in either direction,
respectively. In the setting of Example 2 consider first estimating ψ = ψ(θ) =
ψ(µ, σ) = σ2. When we use the maximum likelihood estimates

µ̂ = X̄ =
1

n

n∑
i=1

Xi and σ̂2 =
1

n

n∑
i=1

(Xi − X̄)2 ,

we find for ψ̂ = ψ(θ̂) = σ̂2

Eθ
(
σ̂2
)

= σ2 − σ2

n
,

i.e., the bias is b(θ) = −σ2/n. The bias reduced version is

σ̂2
br1 = σ̂2 +

σ̂2

n
.

Here one finds

varθ
(
σ̂2
br1

)
=
(
n+ 1

n

)2

varθ
(
σ̂2
)
> varθ

(
σ̂2
)

and

MSE(σ̂2) = Eθ
(
σ̂2 − σ2

)2
=
σ4

n4
(2n3 − n2) ,
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MSE(σ̂2
br1) = Eθ

(
σ̂2
br1 − σ2

)2
=
σ4

n4

(
2(n+ 1)2(n− 1) + 1

)
and thus

MSE(σ̂2) < MSE(σ̂2
br1) for n > 1 ,

since

2(n+ 1)2(n− 1) + 1− (2n3 − n2) = (3n+ 1)(n− 1) > 0 for n > 1 .

As a second example consider estimating ψ = ψ(θ) = µ2 by ψ̂ = ψ(θ̂) = X̄2,
again in the setting of Example 2. We find

Eθ
(
X̄2
)

= µ2 +
σ2

n
,

i.e., with bias reduced version

ψ̂br1 = X̄2 − σ̂2

n
.

Here we find

varθ
(
(X̄)2 − σ̂2/n

)
= varθ

(
(X̄)2

)
+ varθ

(
σ̂2/n

)
> varθ

(
(X̄)2

)
and

MSE(ψ̂) = 4
µ2σ2

n
+ 3

σ4

n2
,

MSE(ψ̂br1) = 4
µ2σ2

n
+
σ4

n2

(
2 +

2n− 1

n2

)
and thus clearly

MSE(ψ̂br1) < MSE(ψ̂) for n > 1 ,

since

3−
(
2 +

2n− 1

n2

)
=
n2 − 2n+ 1

n2
=

(n− 1)2

n2
> 0 for n > 1 .
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2.2 Bootstrap Bias Reduction

In many problems the functional form of the bias term b(θ) is not known. It
turns out that the bootstrap provides us with just the above bias correction
without having any knowledge of the function b(θ). Getting a bootstrap
sample of estimates ψ̂?1, . . . , ψ̂

?
B from P

θ̂
we can form their average

ψ̄?B =
1

B

B∑
i=1

ψ̂?i .

By the LLN

ψ̄?B −→ E
θ̂

(
ψ̂?
)

= ψ(θ̂) + b(θ̂) as B →∞ ,

so that ψ̄?B − ψ(θ̂) is an accurate approximation of b(θ̂). This can be as
accurate as we wish by taking B sufficiently large. Thus we can take as
bootstrap bias corrected estimate

ψ̂?br1 = ψ(θ̂)− (ψ̄?B − ψ(θ̂)) = 2ψ(θ̂)− ψ̄?B .

For large enough B this will be indistinguishable from ψ̂br1, for all practical
purposes.

2.3 Iterated Bias Reduction

The bias reduction technique discussed in Section 2.1 can obviously be iter-
ated, as was already hinted in explaining the subscript 1 on ψ̂br1. This works,
since ψ̂br1 = ψ(θ̂) − b(θ̂) is again a function of θ̂ and we thus denote it by
ψbr1(θ̂). Suppose ψ̂br1 is still biased, i.e.,

Eθ
(
ψbr1(θ̂)

)
= ψ(θ) + b1(θ) .

We can also express this as

Eθ
(
ψbr1(θ̂)

)
= Eθ

(
ψ(θ̂)− b(θ̂)

)
= ψ(θ) + b(θ)− Eθ

(
b(θ̂)

)
.

From these two representations we get

b1(θ) = −
{
Eθ
(
b(θ̂)

)
− b(θ)

}
= Eθ

(
−b(θ̂)

)
− (−b(θ))

13



and thus we can interpret b1(θ) as the bias of −b(θ̂) for estimating −b(θ).
The second order bias reduced estimate thus becomes

ψ̂br2 = ψbr2(θ̂) = ψbr1(θ̂)− b1(θ̂)

= ψ(θ̂)− b(θ̂)−
[
b(θ̂)− E

θ̂

(
b(θ̂?)

)]
= ψ(θ̂)− 2b(θ̂) + E

θ̂

(
b(θ̂?)

)
,

where the θ̂? inside the expectation indicates that its distribution is governed
by θ̂, the subscript on the expectation. Since ψbr2(θ̂) is a function of θ̂, we
can keep on iterating this scheme and even go to the limit with the iterations.
In the two examples of Section 2.1 the respective limits of these iterations
result ultimately in unbiased estimates of σ2 and µ2, respectively. In the case
of the variance estimate the ith iterate gives

σ̂2
bri = σ̂2

(
1

ni
+

1

ni−1
+ · · ·+ 1

)
= σ̂2 1− 1/ni+1

1− 1/n

→ σ̂2 n

n− 1
= s2 as i →∞ ,

where s2 is the usual unbiased estimate of σ2. In the case of estimating µ2

the ith iterate gives

ψ̂bri = X̄2 − σ̂2
(

1

n
+ · · ·+ 1

ni

)
= X̄2 − s2 n− 1

n2

1− 1/ni

1− 1/n

→ X̄2 − s2

n
as i→∞ ,

the latter being the conventional unbiased estimate of µ2. In both exam-
ples the resulting limiting unbiased estimate is UMVU, i.e., has uniformly
minimum variance among all unbiased estimates of the respective target.
According to Hall (1992, p. 32) it is not always clear that these bias reduc-
tion iterations should converge to something. He does not give examples.
Presumably one may be able to get such examples from situations, in which
unbiased estimates do not exist. Since the analysis for such examples is com-
plicated and often involves estimates with infinite expectations, we will not
pursue this issue further.

2.4 Iterated Bootstrap Bias Reduction

Here we will examine to what extent one can do the above bias reduction
iteration without knowing the forms of the bias functions involved. We will

14



do this only for the case of one iteration since even that can stretch the
simulation capacity of most computers.
Suppose we have generated the ith bootstrap data set X?

i and from it we have
obtained θ̂?i . Then we can spawn a second generation or iterated bootstrap
sample X??

i1 , . . . ,X
??
iC from P

θ̂?i
. Each such iterated bootstrap sample then

results in corresponding estimates

θ̂??i1 , . . . , θ̂
??
iC

and thus
ψ̂??i1 , . . . , ψ̂

??
iC , with ψ̂??ij = ψ

(
θ̂??ij
)
.

From the LLN we have that

1

C

C∑
j=1

ψ̂??ij → E
θ̂?i

(
ψ(θ̂??i )

)
= ψ(θ̂?i ) + b(θ̂?i ) as C →∞ .

Here θ̂??i inside the expectation varies randomly as governed by P
θ̂?i

, while θ̂?i

is held fixed, just as θ̂? would vary randomly as governed by P
θ̂
, while θ̂ is

held fixed and just as θ̂ would vary randomly as governed by Pθ, while the
true θ is held fixed.
By the LLN and glossing over double limit issues we have that

ÂBC =
1

B

B∑
i=1

1

C

C∑
j=1

ψ̂??ij ≈
1

B

B∑
i=1

(
ψ(θ̂?i ) + b(θ̂?i )

)
→ E

θ̂

(
ψ(θ̂?) + b(θ̂?)

)
as C →∞ and B →∞. To a good approximation we thus have that

ÂBC ≈ E
θ̂

(
ψ(θ̂?) + b(θ̂?)

)
= ψ(θ̂) + b(θ̂) + E

θ̂

(
b(θ̂?)

)
and hence

ψ̂?br2 = 3ψ(θ̂)− 3ψ̄?B + ÂBC

≈ 3ψ(θ̂)− 3
(
ψ(θ̂) + b(θ̂)

)
+ ψ(θ̂) + b(θ̂) + E

θ̂

(
b(θ̂?)

)
= ψ(θ̂)− 2b(θ̂) + E

θ̂

(
b(θ̂?)

)
= ψ̂br2 .

Note that ψ̂?br2 is evaluated completely in terms of ψ(θ̂), ψ̂?i and ψ̂??ij , as per

definition of ψ̄?B and ÂBC , i.e., without knowledge of the bias functions b(·)
and b1(·).
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3 Variance Estimation

Suppose X ∼ Pθ and we are given an estimate ψ̂ = ψ̂(X) of the real valued
functional ψ = ψ(θ). We are interested in obtaining an estimate of the vari-
ance σ2

ψ̂
(θ) of ψ̂. Such variance estimates are useful in assessing the quality

of the estimate ψ̂, especially if the distribution of ψ̂ is approximately nor-
mal, as is often the case in large samples. However, such variance estimates
are also useful in Studentizing estimates, as for example in the percentile-t
bootstrap method of Section 3.4. Here we will briefly mention three general
variance estimation procedures. The first is the jackknife method, the second
is the substitution method and the third is a bootstrap implementation of
the substitution method, that bypasses a major obstacle of the substitution
method.

3.1 Jackknife Variance Estimation

When the data vector X represents a random sample of size n, i.e., X =
(X1, . . . , Xn), it often is possible to provide such variance estimates by the
jackknife method. See Efron (1982) for a general account. Here we will only
briefly indicate the construction of such variance estimates. Let ψ̂(−i) denote

the estimate ψ̂ when it is computed from all observations but the ith one and
let

ψ̂(·) =
1

n

n∑
i=1

ψ̂(−i) .

Then the jackknife estimate of the variance σ2

ψ̂
(θ) is given by

σ̂2

ψ̂J
=
n− 1

n

n∑
i=1

(
ψ̂(−i) − ψ̂(·)

)2
.

Unfortunately, this variance estimate is not always reasonable. For example,
if ψ and ψ̂ are population and sample median, respectively, then the above
jackknife variance estimate behaves badly in large samples and presumably
also in not so large samples, see Efron (1982) for details.
Furthermore, a data vector often has much richer structure than allowed for
in a pure random sample scenario. For more complicated structures it is
not always clear how to extend the above notion of the jackknife variance
estimate.

16



3.2 Substitution Variance Estimation

Another general variance estimation procedure is based on the following sub-
stitution idea. Knowing the functional form of σ2

ψ̂
(θ) (as a function of θ), it

would be very natural to simply estimate σ2

ψ̂
(θ) by replacing the unknown

parameter θ by θ̂, namely use as variance estimate

σ̂2

ψ̂
= σ2

ψ̂
(θ̂) .

Whether σ̂2

ψ̂
itself is a reasonable estimate of σ2

ψ̂
(θ) is another question. In

order for this procedure to be reasonable σ2

ψ̂
(θ) needs to be a continuous

function of θ, and θ̂ would have to be a reasonable estimate of θ, i.e., θ̂ be
sufficiently near θ.

3.3 Bootstrap Variance Estimation

The applicability of the above natural substitution procedure is quite general
and it can be carried out provided we have the functional form of σ2

ψ̂
(θ) as

a function of θ. Unfortunately, this functional form is usually not known. It
turns out that the bootstrap method provides a very simple algorithm for
getting accurate approximations to σ̂2

ψ̂
.

If Gθ denotes the distribution function of ψ̂ with variance σ2

ψ̂
(θ), then G

θ̂

denotes the distribution function of ψ̂? with variance σ2

ψ̂
(θ̂). Here ψ̂? is

obtained as estimate from X?, which is generated from P
θ̂
. In this fashion

we can get a bootstrap sample of estimates ψ̂?1, . . . , ψ̂
?
B and we can compute

the sample variance of these bootstrap estimates as

σ̂2

ψ̂B
=

1

B − 1

B∑
i=1

(
ψ̂?i − ψ̄?

)2
, where ψ̄? =

1

B

B∑
i=1

ψ̂?i .

This sample variance is an unbiased estimate of σ2

ψ̂
(θ̂) and its accuracy can

be controlled by selecting B sufficiently large, again appealing to the LLN .
Thus for all practical purposes we can evaluate the substitution variance
estimate σ̂2

ψ̂
by using σ̂2

ψ̂B
instead. Note that this process does not require

the functional form of σ2

ψ̂
(θ).

As an illustration we will use Example 1. There consider estimating the mean
ψ(F ) = µ =

∫
xdF (x), using ψ̂ = ψ(F̂ ) = X̄, with θ̂ = F̂ , the empirical
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distribution function of the sample, estimating θ = F . From analytical
considerations we know that

σ2
X̄(F ) =

σ2(F )

n
,

where σ(F ) is the standard deviation of F . The substitution principle would
estimate σ2(F )/n by σ2(F̂ )/n, where

σ2
(
F̂
)

=
1

n

n∑
i=1

(
Xi − X̄

)2
.

This σ2
(
F̂
)

is the variance of F̂ , which places probability 1/n on each of
the Xi, whence the computational formula. Instead of using the analytical
form of σ2

X̄(F ) and substitution, the bootstrap variance estimation method

generates B samples, of size n each, from F̂ and computes the B sample
averages X̄?

1 , . . . , X̄
?
B of these samples. For large B the sample variance

σ̂2
X̄B =

1

B − 1

B∑
i=1

(
X̄?
i − ¯̄X?

)2
, where ¯̄X? =

1

B

B∑
i=1

X̄?
i

will then be an accurate approximation of σ2(F̂ )/n. This approximation only
requires that we evaluate the averages X̄?

i and form their sample variance.
No other analytic formula is required in this approach.
By the LLN we again have that σ̂2

X̄B and σ2(F̂ )/n are essentially identical for
very large B. Of course, here it seems silly to conduct this many simulations
and compute the sample variance from such a large bootsstrap sample of
estimates, when we could have computed σ2(F̂ )/n directly from the original
sample. However, this simpler analytic approach is not always available
to us, whereas the bootstrap method is applicable universally for variance
estimation. The purpose of this example is to show that both approaches
reach the same goal.
Here it is worth pointing out that a random sample X? of size n taken from
F̂ amounts to sampling n times with replacement from the original sample
X1, . . . , Xn. Since F̂ places probability 1/n on each of the Xi, each Xi has the
same chance of being selected. Since the resampled observations need to be
independent, this sampling from {X1, . . . , Xn} has to be with replacement.
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4 Bootstrap Confidence Bounds

There are many methods for constructing bootstrap confidence bounds. We
will not describe them all in detail. The reason for this is that we wish to
emphasize the basic simplicity of the bootstrap method and its generality of
applicability. Thus we will shy away from any bootstrap modifications which
take advantage of analytical devices that are very problem specific and limit
the generic applicability of the method.
We will start by introducing Efron’s original percentile method, followed by
its bias corrected version. The accelerated bias corrected percentile method is
not covered as it seems too complicated for general application. It makes use
of a certain analytical adjustment, namely the acceleration constant, which is
not easily determined from the bootstrap distribution. It is not entirely clear
to us whether the method is even well defined in general multiparameter sit-
uations not involving maximum likelihood estimates. These three percentile
methods are equivariant under monotone transformations on the parameter
to be estimated.
Next we will discuss what Hall calls the percentile method and the Student-t
percentile method. Finally, we discuss several double bootstrap methods,
namely Beran’s prepivoting, Loh’s calibrated bootstrap, and the automatic
double bootstrap. These, but especially the last one, appear to be most
promising as far as coverage accuracy in small samples is concerned. How-
ever, they also are computationally most intensive. As we go along, we
illustrate the methods with specific examples. In a case study we will further
illustrate the relative merits of all these methods for small sample sizes in the
context of estimating a normal quantile and connect the findings with the
approximation rate results given in the literature. All of these investigations
concentrate on parametric bootstrap methods, but the definitions are gen-
eral enough to allow them to be used in the nonparametric context as well.
However, in nonparametric settings it typically is not feasible to investigate
the small sample coverage properties of the various bootstrap methods, other
than by small sample asymptotic methods or by doubly or triply nested sim-
ulation loops, the latter being prohibitive. We found that the small sample
asymptotics are not very representative of the actual small sample behavior
in the parametric case. Thus the small sample asymptotic results in the
nonparametric case are of questionable value in really small samples.
Throughout our treatment of confidence intervals, whether by simple boot-
strap or by double bootstrap methods, it is often convenient to assume that
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the distribution functions Fθ of the estimates ψ̂ are generally continuous and
strictly increasing on their support {x : 0 < Fθ(x) < 1}. These assumptions
allow us to use the probability integral transform result, which states that
U = Fθ(ψ̂) ∼ U(0, 1), and quantities like F−1

θ (p) are well defined without
complications. Making this blanket assumption here saves us from repeating
it over and over. In some situations it may well be possible to maintain
greater validity by arguing more carefully, but that would entail inessential
technicalities and distract from getting the basic bootstrap ideas across. It
will be up to the reader to perform the necessary detail work, if such gener-
ality is desired. If we wish to deviate from the above tacit assumption, we
will do so explicitly.

4.1 Efron’s Percentile Bootstrap

This method was introduced by Efron (1981). Hall (1992) refers to this
also as the “other percentile method,” since he reserves the name “per-
centile method” for another method. In Hall’s scheme of viewing the boot-
strap Efron’s method does not fit in well and he advances various arguments
against this “other percentile method.” However, he admits that the “other
percentile method” performs quite well in the double bootstrap approach.
We seem to have found the reason for this as the section on the automatic
double bootstrap will make clear. For this reason we prefer not to use the
abject term “other percentile method” but instead call it “Efron’s percentile
method.” However, we will usually refer to the percentile method in this
section and only make the distinction when confusion with Hall’s percentile
method is to be avoided. We will first give the method in full generality,
present one simple example illustrating what the method does for us, show
its transformation equivariance and then provide some justification in the
single parameter case.

4.1.1 General Definition

Suppose X ∼ Pθ and we are interested in confidence bounds for the real
valued functional ψ = ψ(θ). We also have available the estimate θ̂ of θ
and estimate ψ by ψ̂ = ψ(θ̂). Hence we can obtain a bootstrap sample of
estimates ψ̂?1, . . . , ψ̂

?
B from P

θ̂
. The scatter in these bootstrap values should

reflect to some degree the uncertainty in our original estimate ψ̂ of ψ. Hence
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an appropriately chosen high value of the ordered bootstrap sample

ψ̂?(1) ≤ . . . ≤ ψ̂?(B)

might serve well as upper confidence bound for ψ. This has some intuitive
appeal, but before completely subscribing to this intuition the reader should
wait until reading the section on Hall’s percentile method.
To make the above definition more precise we appeal to the LLN . For
sufficiently large B we can treat the empirical distribution of the bootstrap
sample of estimates

ĜB(t) =
1

B

B∑
i=1

I
[ψ̂?i≤t]

as a good approximation to the distribution function G
θ̂
(t) of ψ̂?, where

G
θ̂
(t) = P

θ̂

(
ψ̂? ≤ t

)
.

Solving
G
θ̂
(t) = 1− α for t = ψ̂U(1− α) = G−1

θ̂
(1− α)

we will consider ψ̂U(1−α) as a nominal 100(1−α)% upper confidence bound
for ψ. For large B this upper bound can, for practical purposes, also be
obtained by taking Ĝ−1

B (1 − α) instead of G−1

θ̂
(1 − α). This substitution

amounts to computing m = (1 − α)B and taking the mth of the sorted
bootstrap values, ψ̂?(1) ≤ . . . ≤ ψ̂?(B), namely ψ̂?(m), as our upper bound. If
m = (1 − α)B is not an integer, one may have to resort to an interpolation
scheme for the two bracketing order statistics ψ̂?(k) and ψ̂?(k+1), where k is the
largest integer ≤ m. In that case define

ψ̂?(m) = ψ̂?(k) + (m− k)
(
ψ̂?(k+1) − ψ̂?(k)

)
.

When B is sufficiently large, this bootstrap sample order statistic ψ̂?(m) is a

good approximation of G−1

θ̂
(1− α). Similarly, one defines

ψ̂L(α) = G−1

θ̂
(α) ≈ Ĝ−1

B (α)

as the corresponding nominal 100(1 − α)% lower confidence bound for ψ.
With ` = αB, it can be obtained as the `th order statistic ψ̂?(`) of the bootstrap

sample of estimates. If ` is not an integer, one finds ψ̂?(`) by interpolation as
above.
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Together these two bounds comprise a nominal 100(1 − 2α)%, equal tailed
confidence interval for ψ. These are the bounds according to Efron’s per-
centile method. The qualifier “nominal” indicates that the actual coverage
probabilities of these bounds may be different from the intended or nominal
confidence level.
The above construction of upper bound, lower bound, and equal tailed inter-
val shows that generally one only needs to know how to construct an upper
bound. At times we will thus only discuss upper or lower bounds.
In situations where we deal with independent, identically distributed data
samples, i.e., X = (X1, . . . , Xn) with X1, . . . , Xn i.i.d. ∼ Fθ, one can show
under some regularity conditions that for large sample size n the coverage
error is proportional to 1/

√
n for the upper and lower bounds, respectively.

Due to fortuitous error cancellation the coverage error is proportional to 1/n
for the equal tailed confidence interval. What this may really mean in small
samples will later be illustrated in some concrete examples.

4.1.2 Example: Bounds for Normal Mean

At this point we will illustrate the method with a very simple example in
which the method works very well. The example is presented here to show
what the bootstrap method does for us, as compared to analytical methods.
Suppose we have a random sample X = (X1, . . . , Xn) from a normal popula-
tion with unknown mean µ, but with known variance σ2

0. Here the classical
(1− α)% upper confidence bound for the mean µ is obtained as

µ̂U(1− α) = X̄ + z1−α
σ0√
n
,

where X̄ is the sample mean and z1−α = Φ−1(1− α) is the (1− α)-quantile
of the standard normal distribution function Φ. This bound is based on the
fact that X̄ has a normal distribution with mean µ and variance σ2

0/n. This
is so well known, that it is in the subconscious of most statisticians and one
forgets that this is actually an analytical result.
In the bootstrap method we would start with an estimate of the unknown
parameter. For simplicity we will take the natural estimate µ̂ = X̄ and
will discuss later what would happen if other estimates were chosen. When
resampling bootstrap samples X1, . . . ,XB from N(µ̂, σ2

0) and computing the
resulting bootstrap sample of estimates

(µ̂?1, . . . , µ̂
?
B) = (X̄?

1 , . . . , X̄
?
B) ,
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we know that the empirical distribution function of this sample is a good
approximation of

Gµ̂(t) = Pµ̂
(
X̄? ≤ t

)
= Φ

(
t− µ̂

σ0/
√
n

)
,

where the latter equation describes the analytical fact that X̄? ∼ N(µ̂, σ2
0/n),

when X̄? is the sample mean of X?
1 , . . . , X

?
n i.i.d. ∼ N(µ̂, σ2

0). The bootstrap
method does not know this analytical fact. We only refer to it to see what
the bootstrap percentile method generates. The percentile method takes the
(1− α)-percentile of the bootstrap sample of estimates as upper bound. For
large B this percentile is an excellent approximation to G−1

µ̂
(1− α), namely

the (1− α)-percentile of the N(µ̂, σ2
0/n) population or

G−1
µ̂

(1− α) = µ̂+ Φ−1(1− α)
σ0√
n

= µ̂U(1− α) .

Hence we wind up (approximately) with the classical upper bound just by
picking an appropriate percentile of the bootstrap sample of estimates. The
analytical results were only used to show that this is the case. They were
not used to find the percentile method upper bound. Here the percentile
bootstrap method comes up with confidence bounds which have the intended
coverage probabilities. This is an accident and is not a general phenomenon,
as will be explained in Section 4.1.4. The case where σ2 is unknown as well
is examined later in the context of the bootstrap t-percentile method.
If we had chosen a different estimate for µ, such as the sample median or a
trimmed sample mean, there would be no conceptual difference in the ap-
plication of the percentile bootstrap method. The only thing that would
change is that we would compute this type of estimate for each of the resam-
pled samples X?

i , i = 1, . . . , B.
Since the sampling distribution of sample mean or trimmed mean is continu-
ous and symmetric around µ we can deduce from the results in Section 4.1.4
that the corresponding percentile bootstrap confidence bounds will have ex-
act coverage rate. When using median or trimmed mean as estimates of µ,
the equivalent analytic description of these bounds is complicated and, in
the case of the trimmed mean, one has to resort to simulation.
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4.1.3 Transformation Equivariance

The property of transformation equivariance is defined as follows. If we have
a “method” for constructing confidence bounds for ψ and if g(ψ) = τ is a
strictly increasing transformation of ψ, then we could try to obtain upper
confidence bounds for τ = τ(θ) by two methods. On the one hand we can
obtain an upper bound ψ̂U for ψ and treat g(ψ̂U) as upper bound for τ with
the same coverage proability, since

1− α = P
(
ψ̂U ≥ ψ

)
= P

(
g(ψ̂U) ≥ τ

)
.

We refer to this approach as the indirect method. On the other hand we
could apply our “method” directly to τ = τ(θ) without reference to ψ, i.e.
obtain τ̂U . If both applications of our method (direct and indirect) lead to
the same result, then we say that the “method” is transformation equiv-
ariant. This property is very natural and desirable. It basically says that
the method is independent of the way the probability model for the data
is parametrized. As it turns out, the percentile method discussed here is
transformation equivariant.
The proof of this assertion is based on the identity

τ(θ) = g(ψ(θ))

and thus on
τ̂ ? = τ(θ̂?) = g(ψ(θ̂?)) = g(ψ̂?) .

This in turn implies

H
θ̂
(t) = P

θ̂
(τ̂ ? ≤ t) = P

θ̂

(
g(ψ̂?) ≤ t

)
= P

θ̂

(
ψ̂? ≤ g−1(t)

)
= G

θ̂

(
g−1(t)

)
and thus

H−1

θ̂
(p) = g

(
G−1

θ̂
(p)
)
.

The percentile method applied to τ̂ yields as upper bound

τ̂U = H−1

θ̂
(1− α) = g

(
G−1

θ̂
(1− α)

)
= g

(
ψ̂U
)
,

i.e., we have the desired transformation equivariance relation between τ̂U and
ψ̂U .
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4.1.4 A Justification in the Single Parameter Case

In this subsection we will describe conditions under which the percentile
method will give confidence bounds with exact coverage probabilities. In
fact, it is shown that the percentile method agrees with the classical bounds
in such situations.
Let θ̂ = θ̂(X) be an estimate of θ and let ψ̂ = ψ(θ̂) be the estimate of
ψ, the real valued parameter of interest. Consider the situation, in which
the distribution of ψ̂ depends only on ψ and not on any other nuisance
parameters, although these may be present in the model. Thus we essentially
deal with a single parameter problem. Suppose we want to get confidence
bounds for ψ = ψ(θ). Then ψ̂ has distribution function

Gψ(t) = Pψ
(
ψ̂ ≤ t

)
.

Here we write Pψ instead of Pθ because of the assumption made concerning

the distribution of ψ̂. In order to keep matters simple we will assume that
Gψ(t) is continuous in both t and ψ and that Gψ(t) ↘ in ψ for fixed t. The
latter monotonicity assumption is appropriate for reasonable estimates, i.e.,
for responsive estimates that tend to increase as the target ψ increases.
Using the probability integral transform we have that U = Gψ(ψ̂) is dis-
tributed uniformly over [0, 1]. Thus

1− α = Pψ
(
Gψ(ψ̂) ≥ α

)
= Pψ

(
ψ ≤ ψ̂[1−α]

)
where ψ̂[1−α] solves

G
ψ̂[1−α]

(ψ̂) = α

and the above equation results from the equivalence

Gψ(ψ̂) ≥ G
ψ̂[1−α]

(ψ̂) = α ⇐⇒ ψ ≤ ψ̂[1−α] ,

invoking the monotonicity of Gψ in ψ. Hence we can regard ψ̂[1−α] as a
100(1− α)% upper confidence bound for the parameter ψ.
Now suppose further that there is a monotonically increasing function g and
a constant τ > 0 such that

τ{g(ψ̂)− g(ψ)} ∼ Z or g(ψ̂) ∼ g(ψ) + Z/τ ,

where Z has a fixed distribution function H(z) which is assumed to be sym-
metric around 0. This assumption alludes to the fact that sometimes it is
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possible to transform estimates in this fashion so that the resulting distri-
bution is approximately standard normal, i.e., Z above would be a standard
normal random variable. The consequence of this transformation assump-
tions is that the percentile method will yield the same upper bound ψ̂[1−α],
and it does so without knowing g, τ or H. Only their existence is assumed
in the above transformation.
Under the above assumption we find

Gψ(t) = P
(
ψ̂ ≤ t

)
= P

(
τ
{
g(ψ̂)− g(ψ)

}
≤ τ {g(t)− g(ψ)}

)
= H (τ {g(t)− g(ψ)}) . (1)

Using this identity with t = ψ̂ and ψ = ψ̂[1−α] we have

α = G
ψ̂[1−α]

(ψ̂) = H
(
τ
{
g(ψ̂)− g(ψ̂[1−α])

})
and thus

ψ̂[1−α] = g−1
(
g(ψ̂)−H−1(α)/τ

)
= g−1

(
g(ψ̂) +H−1(1− α)/τ

)
,

where the last equality results from the symmetry of H. From Equation (1)
we obtain further

1− α = Gψ

(
G−1
ψ (1− α)

)
= H

(
τ
{
g
(
G−1
ψ (1− α)

)
− g(ψ)

})
and thus

G−1
ψ (1− α) = g−1

(
g(ψ) +H−1(1− α)/τ

)
and replacing ψ by ψ̂ we have

G−1

ψ̂
(1− α) = g−1

(
g(ψ̂) +H−1(1− α)/τ

)
= ψ̂[1−α] .

This means that we can obtain the upper confidence bound ψ̂[1−α] simply
by simulating the cumulative distribution function G

ψ̂
(t) and then solving

G
ψ̂
(t) = 1 − α for t = ψ̂[1−α], i.e., generate a large bootstrap sample of

estimates ψ̂?1, . . . , ψ̂
?
B and for m = (1−α)B take ψ̂?(m), the mth ordered value

of ψ̂?(1) ≤ . . . ≤ ψ̂?(B), as a good approximation to

G−1

ψ̂
(1− α) = ψ̂[1−α] .

When m is not an integer perform the usual interpolation.
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4.2 Bias Corrected Percentile Bootstrap

When our estimate ψ̂ consistently underestimates or overestimates the tar-
get ψ it would seem that a bias correction might help matters when setting
confidence intervals. This led Efron (1981) to propose also the following bias
corrected percentile bootstrap method. It is as easily implemented as the or-
dinary percentile method and it generally improves matters somewhat. The
transformation equivariance property is maintained, but there is a somewhat
arbitrary link to the normal distribution. However, for not so small sam-
ples a case can often be made that the normal approximation is appropriate
when dealing with properly transformed estimates. We give the general defi-
nition of the bias corrected percentile method, illustrate its application in the
simple example of estimating the normal variance, demonstrate the transfor-
mation equivariance, and present an exact coverage justification when the
distribution of ψ̂ only depends on ψ and some other normalizing conditions
apply.

4.2.1 General Definition

Suppose X ∼ Pθ and we are interested in confidence bounds for the real
valued functional ψ = ψ(θ). We also have available an estimate θ̂ of θ and
estimate ψ by ψ̂ = ψ(θ̂). If this estimate satisfies

Gθ(ψ) = Pθ(ψ̂ ≤ ψ) = .5

it is called median unbiased. For the bootstrap distribution G
θ̂

this entails

G
θ̂
(ψ̂) = .5. In order to correct for the bias in estimates that are not median

unbiased Efron proposed to compute the following estimated bias correction

x0 = Φ−1
(
G
θ̂
(ψ̂)

)
,

which reduces to zero when ψ̂ is median unbiased. Efron then suggested

ψ̂Ubc = G−1

θ̂
(Φ(2x0 + z1−α))

as nominal (1 − α)-level upper confidence bound for ψ. Here zp = Φ−1(p).
Similarly,

ψ̂Lbc = G−1

θ̂
(Φ(2x0 + zα))
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is the corresponding lower bound, i.e., 1− α is replaced by α as we go from
upper bound to lower bound. Together these two bounds form an equal
tailed confidence interval for ψ, with nominal level (1 − 2α)%. Note that
these bounds revert to the Efron percentile bounds when x0 = 0, i.e., when
G
θ̂
(ψ̂) = .5.

In practice, one proceeds by obtaining a bootstrap sample of estimates ψ̂?1, . . . ,
ψ̂?B from P

θ̂
and with q̂ denoting the proportion of these bootstrap values

which are ≤ ψ̂ one takes Φ−1(q̂) as a good approximation of x0. Next deter-
mine

q1−α = Φ(2x0 + z1−α) ,

compute m = Bq1−α and take the mth ordered value of the ψ̂?(1) ≤ . . . ≤ ψ̂?(B),

namely ψ̂?(m), as the (1−α)-level upper confidence bound for ψ. This then is
the upper bound according to the bias corrected percentile method. If m is
not an integer, one performs the usual interpolation between the appropriate
bracketing order statistics ψ̂?(k) and ψ̂?(k+1). A corresponding procedure is
carried out for the lower bound and combining the two bounds results in the
usual equal tailed confidence interval. Under certain regularity conditions
(see Hall, 1992) one can show, in the i.i.d. case with sample size n, that the
coverage error is of order 1/

√
n for either of the bounds and of order 1/n for

the interval.

4.2.2 Example: Bounds for Normal Variance

In the context of Example 2 we are here interested in confidence bounds for
ψ(θ) = ψ(µ, σ) = σ2. As estimates for θ = (µ, σ) we take the maximum
likelihood estimates µ̂ and σ̂. The variance estimate ψ̂ = ψ(µ̂, σ̂) = σ̂2 is not
median unbiased since

Gθ(ψ) = Pθ
(
σ̂2 ≤ σ2

)
= P (V ≤ n) = χn−1(n) = G

θ̂
(ψ̂) ,

where V = nσ̂2/σ2 has a chi-square distribution with n−1 degrees of freedom,
with distribution function denoted by χn−1(·). The table below illustrates
how far from median unbiased σ̂2 is, even for large samples.

n χn−1(n) n χn−1(n) n χn−1(n) n χn−1(n)
2 0.843 6 0.694 10 0.650 50 0.567
3 0.777 7 0.679 15 0.622 100 0.547
4 0.739 8 0.667 20 0.605 200 0.533
5 0.713 9 0.658 30 0.586 500 0.521
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For the following it is useful to get the distribution function of ψ̂ = σ̂2

explicitly as follows

Gθ(x) = Pθ(σ̂
2 ≤ x) = P (V ≤ nx/σ2) = χn−1(nx/σ

2) .

Its inverse is

G−1
θ (p) = χ−1

n−1(p)
σ2

n
,

where χ−1
n−1(p) is the inverse of χn−1.

Rather than simulating a bootstrap sample of estimates ψ̂?1, . . . , ψ̂
?
B, we pre-

tend that B is very large, say B = ∞, so that we actually have knowledge
of the exact bootstrap distribution

G
θ̂
(x) = P

θ̂

(
σ̂2? ≤ x

)
= χn−1(nx/σ̂

2) .

This allows us to write down the bias corrected bootstrap confidence bounds
in compact mathematical notation and analyze its coverage properties with-
out resorting to simulations. However, keep in mind that this is not necessary
in order to get the bounds. They can always be obtained from the bootstrap
sample, as outlined in Section 4.2.1.
The upper confidence bound for ψ = σ2 obtained by the bias corrected
percentile method can be expressed as

ψ̂Ubc = G−1

θ̂

(
Φ
(
2Φ−1

(
G
θ̂
(ψ̂)

)
+ z1−α

))
= G−1

θ̂

(
Φ
(
2Φ−1 (χn−1(n)) + z1−α

))
= χ−1

n−1

(
Φ
(
2Φ−1 (χn−1(n)) + z1−α

)) σ̂2

n
.

In comparison, the ordinary Efron percentile upper bound can be expressed
as

ψ̂U = G−1

θ̂
(1− α) = χ−1

n−1 (1− α)
σ̂2

n
.

The actual coverage probabilities of both bounds are given by the following
formulas:

Pθ
(
ψ̂U ≥ ψ

)
= Pθ

(
χ−1
n−1(1− α)σ̂2/n ≥ σ2

)
= P (V ≥ n2/χ−1

n−1(1− α))

= 1− χn−1(n
2/χ−1

n−1(1− α))
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Figure 1: Actual − Nominal Coverage Probability
of 95% Upper & Lower Bounds and Asymptotes
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Figure 2: Actual − Nominal Coverage Probability
of 90% Confidence Intervals and Asymptotes
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and

Pθ
(
ψ̂Ubc ≥ ψ

)
= Pθ

(
χ−1
n−1

[
Φ
(
2Φ−1(χn−1(n)) + z1−α

)]
σ̂2/n ≥ σ2

)
= P

(
V ≥ n2/χ−1

n−1

(
Φ
[
2Φ−1(χn−1(n)) + z1−α

)])
= 1− χn−1

(
n2/χ−1

n−1

[
Φ
(
2Φ−1(χn−1(n)) + z1−α

)])
.

The coverage probabilities for the corresponding lower bounds are the com-
plement of the above probabilities with 1− α replaced by α.
Figure 1 shows the coverage error (actual − nominal coverage rate) of nom-
inally 95% upper and lower confidence bounds for σ2 plotted against the
theoretical rate 1/

√
n, for sample sizes n = 2, . . . , 20, 30, 40, 50, 100, 200, 500,

1000, 2000. The asymptotes are estimated by drawing lines through (0, 0)
and the points corresponding to n = 2000. Note the symmetry of the asymp-
totes around the zero line, confirming the error cancellation of order 1/

√
n.

However, the sample size has to be fairly large, say n ≥ 30, before the asymp-
totes reasonably approximate the coverage error. The coverage error of the
upper bounds is negative and quite substantial for moderate n, whereas that
of the lower bounds is positive and small even for moderate n. Through-
out, the coverage error of the bias corrected percentile method appears to be
smaller than that of the Efron percentile method by a factor of at least two.
Figure 2 shows the coverage error (actual − nominal coverage rate) of the
corresponding nominally 90% confidence intervals for σ2 plotted against the
theoretical rate of 1/n. The approximation to the asymptotes is good for
much smaller n here. Again the bias corrected version is better by a factor
of at least two and for large n by a factor of three.

4.2.3 Transformation Equivariance

Again assume that the parameter of interest is the transform τ = g(ψ), with
g strictly increasing and define τ̂ = g(ψ̂) as its estimate. The bias corrected
percentile method applied directly to the estimate τ̂ yields as (1 − α)-level
upper bound for τ

τ̂Ubc = H−1

θ̂
(Φ(2y0 + z1−α))

with
y0 = Φ−1

(
H
θ̂
(τ̂)
)

and

H
θ̂
(t) = P

θ̂
(τ̂ ? ≤ t) = P

θ̂

(
g(ψ̂?) ≤ t

)
= P

θ̂

(
ψ̂? ≤ g−1(t)

)
= G

θ̂

(
g−1(t)

)
.
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Thus we have

y0 = Φ−1
[
G
θ̂

(
g−1

[
g(ψ̂)

])]
= Φ−1

(
G
θ̂
(ψ̂)

)
= x0

and with H−1

θ̂
(·) = g

(
G−1

θ̂
(·)
)

we can write

τ̂Ubc = g
(
G−1

θ̂
(Φ(2x0 + z1−α))

)
= g

(
ψ̂Ubc

)
,

i.e., the bound has the transformation equivariance property.

4.2.4 A Justification in the Single Parameter Case

Let θ̂ = θ̂(X) be an estimate of θ and let ψ̂ = ψ(θ̂) be the estimate of
ψ = ψ(θ), the real valued parameter for which we desire confidence bounds.
Consider again the situation in which the distribution of ψ̂ depends only on
ψ and not on any other nuisance parameters, although these may be present
in the model. Thus we essentially deal with a single parameter problem.
Then ψ̂ has distribution function

Gψ(t) = Pψ
(
ψ̂ ≤ t

)
.

In order to keep matters simple we will assume that Gψ(t) is continuous
in both t and ψ and that Gψ(t) ↘ in ψ for fixed t. These are the same
assumptions as in Section 4.1.4, where it was shown that this results in exact
coverage confidence bounds for ψ. The exact upper confidence bound ψ̂[1−α]

for ψ is found as solution to

G
ψ̂[1−α]

(ψ̂) = α .

Here we assume the existence of an increasing function g and constants τ > 0
and x0 such that

τ{g(ψ̂)− g(ψ)}+ x0 ∼ Z or g(ψ̂) ∼ g(ψ)− x0/τ + Z/τ ,

where Z has distribution functionH(z), which now is assumed to be standard
normal, i.e., H(z) = Φ(z). Thus, to some extent we have widened the scope
over the corresponding assumption in Section 4.1.4 by allowing the bias term
x0, but we also impose the restriction that H has to be standard normal.
This restriction may seem severe, but in many situations the distribution
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of estimates, transformed in the above fashion, are well approximated by a
standard normal distribution. Given the above transformation assumption
it is shown below that the bias corrected percentile upper bound for ψ agrees
again with ψ̂[1−α]. A priori knowledge of g and τ is not required, they only
need to exist. The bias correction constant x0, which figures explicitly in
the definition of the bias corrected percentile method, is already defined in
terms of the accessible bootstrap distribution G

θ̂
(·). The remainder of this

subsection proves the above claim. The argument is somewhat convoluted
and may be skipped.
First we have

Gψ(t) = Pψ
(
ψ̂ ≤ t

)
= Pψ

(
τ [g(ψ̂)− g(ψ)] ≤ τ [g(t)− g(ψ)]

)
= P (Z ≤ x0 + τ [g(t)− g(ψ)]) = Φ (x0 + τ [g(t)− g(ψ)]) . (2)

Replacing (ψ, t) by (ψ̂, ψ̂) we have

G
ψ̂
(ψ̂) = Φ(x0) and thus x0 = Φ−1

(
G
ψ̂
(ψ̂)

)
,

agreeing with the original definition of the bias. The exact upper bound
ψ̂[1−α] is found by solving

Gψ(ψ̂) = α

for ψ. Using Equation (2) for t = ψ̂ and ψ = ψ̂[1−α] we obtain

α = Gψ(ψ̂) = Φ
(
x0 + τ [g(ψ̂)− g(ψ)]

)
,

i.e.,
zα = Φ−1(α) = x0 + τ [g(ψ̂)− g(ψ)]

or
g(ψ̂)− g(ψ) = −(x0 − zα)/τ = −(x0 + z1−α)/τ

and finally

ψ̂[1−α] = ψ = g−1
(
g(ψ̂) +

1

τ
(x0 + z1−α)

)
. (3)

On the other hand, using again Equation (2) (in the second identity below),
we have

Φ(2x0 + z1−α) = Gψ

(
G−1
ψ (Φ(2x0 + z1−α))

)
= Φ

(
x0 + τ

[
g
(
G−1
ψ [Φ(2x0 + z1−α)]

)
− g(ψ)

])
.
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Equating the arguments of Φ on both sides we have

x0 + z1−α = τ
[
g
(
G−1
ψ [Φ(2x0 + z1−α)]

)
− g(ψ)

]
or

1

τ
(x0 + z1−α) + g(ψ) = g

(
G−1
ψ [Φ(2x0 + z1−α)]

)
and

g−1
(

1

τ
(x0 + z1−α) + g(ψ)

)
= G−1

ψ [Φ(2x0 + z1−α)] .

Replacing ψ by ψ̂ on both sides and recalling Equation (3) we obtain

ψ̂[1−α] = G−1

ψ̂
[Φ(2x0 + z1−α)] ,

i.e., the bias corrected percentile upper bound coincides with the exact upper
bound ψ̂[1−α].

4.3 Hall’s Percentile Method

Hall (1992) calls this method simply the percentile method, whereas he refers
to Efron’s percentile method as “the other percentile method.” Using the
terms “Efron’s percentile method” and “Hall’s percentile method” we pro-
pose to remove any value judgment and eliminate confusion. It is not clear
who first initiated Hall’s percentile method, although Efron (1979) already
discussed bootstrapping the distribution of ψ̂ − ψ, but not in the context of
confidence bounds. The method fits well within the general framework that
Hall (1992) has built for understanding bootstrap methods. We will first give
a direct definition of Hall’s percentile method together with its motivation,
illustrate it with an example and relate it to Efron’s percentile method. The
method is generally not transformation equivariant.

4.3.1 General Definition

Suppose X ∼ Pθ and we are interested in confidence bounds for the real
valued functional ψ = ψ(θ). We also have available the estimate θ̂ of θ and
estimate ψ by ψ̂ = ψ(θ̂). Instead of bootstrapping the distribution Gθ of ψ̂
we propose here to bootstrap the distribution Hθ of ψ̂ − ψ, i.e.,

Hθ(x) = Pθ(ψ̂ − ψ ≤ x) .

35



This can be done by simulating a bootstrap sample ψ̂?1, . . . , ψ̂
?
B and forming

ψ̂?1 − ψ̂, . . . , ψ̂?B − ψ̂ ,

whose empirical distribution function

ĤB(x) =
1

B

B∑
i=1

I
[ψ̂?i−ψ̂≤x]

,

for large B, approximates

H
θ̂
(x) = P

θ̂

(
ψ̂? − ψ̂ ≤ x

)
.

Here ψ̂ is held fixed within the probability statement P
θ̂
(· · ·) and the term

ψ̂? = ψ(θ̂(X?)) is random with X? generated from the probability model P
θ̂
.

The bootstrap method here consists of treating H
θ̂
(x) as a good approxi-

mation to Hθ(x), the latter being unknown since it usually depends on the
unknown parameter θ. Of course, ĤB(x) will serve as our bootstrap approxi-
mation to H

θ̂
(x) and thus of Hθ(x). The accuracy of the first approximation

(ĤB(x) ≈ H
θ̂
(x)) can be controlled by the bootstrap sample size B, but the

accuracy of H
θ̂
(x) ≈ Hθ(x) depends on the accuracy of θ̂ as estimate of the

unknown θ. The latter accuracy is usually affected by the sample size, which
often is governed by other considerations beyond the control of the analyst.
Hall’s percentile method gives the 100(1 − α)% upper confidence bound for
ψ as

ψ̂HU = ψ̂ −H−1

θ̂
(α) ,

and similarly the 100(1− α)% lower confidence bound as

ψ̂HL = ψ̂ −H−1

θ̂
(1− α) .

The remainder of the discussion will focus on upper bounds, since the dis-
cussion for lower bounds would be entirely parallel.
The above upper confidence bound is motivated by the exact 100(1 − α)%
upper bound

Û = ψ̂ −H−1
θ (α) ,

since

Pθ(Û > ψ) = Pθ
(
ψ̂ −H−1

θ (α) > ψ
)

= 1− Pθ
(
ψ̂ − ψ ≤ H−1

θ (α)
)

= 1−Hθ

(
H−1
θ (α)

)
= 1− α .
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However, Û is not a true confidence bound, since it typically depends on
the unknown θ through H−1

θ (α). The bootstrap step consists in sidestepping
this problem by approximating H−1

θ (α) by H−1

θ̂
(α). For large enough B,

we can obtain H−1

θ̂
(α) to any accuracy directly from the bootstrap sample

of the Di = ψ̂?i − ψ̂. Simply order the Di, i.e., find its order statistics
D(1) ≤ D(2) ≤ . . . ≤ D(B) and, for ` = Bα, take the `th value D(`) as
approximation of H−1

θ̂
(α). If ` is not an integer interpolate between the

appropriate bracketing values of D(k) and D(k+1). Note that it is not required
that we know the analytical form of Hθ. All we need to know is how to
create new bootstrap samples X?

i from P
θ̂

and thus estimates ψ̂?i and finally

Di = ψ̂?i − ψ̂.
In the exceptional case, where H−1

θ (α) is independent of θ, we have H−1

θ̂
(α) =

H−1
θ (α) = H−1(α) and then the resulting confidence bounds have indeed

exact coverage probabilities, if we allow B →∞.
The basic idea behind this method is to form some kind of pivot, i.e., a
function of the data and the parameter of interest, which has a distribution
independent of θ. This would be successful if indeed Hθ did not depend on
θ. The distribution of ψ̂ will typically depend on θ, but it is hoped that
it depends on θ only through ψ = ψ(θ). Further, it is hoped that this
dependence is of a special form, namely that the distribution of ψ̂ depends
on ψ only as a location parameter, so that the distribution of ψ̂ − ψ is free
of any unknown parameters.
Treating ψ as a location parameter is often justifiable on asymptotic grounds,
i.e., for large samples, but may be very misplaced in small samples. In small
samples there is really no compelling reason for focussing on the location
pivot ψ̂ − ψ as a general paradigm. For example, in the normal variance ex-
ample discussed earlier and revisited below it would be much more sensible to
consider the scale pivot σ̂2/σ2 instead of the location pivot σ̂2−σ2. Similarly,
when dealing with a random sample from the bivariate normal population
of Example 4, parametrized by θ = (µ1, µ2, σ1, σ2, ρ) and with the correla-
tion coefficient ρ = ψ(θ) as the parameter of interest, it would make little
sense, except in very large samples, to treat ρ as a location parameter for the
maximum likelihood estimate ρ̂.
The focus on ψ̂−ψ as the proper pivot for Hall’s percentile method is mainly
justified on asymptotic grounds. The reason for this is that most theoretical
bootstrap research has focused on the large sample aspects of the various
bootstrap methods.
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For other pivots one would have to make appropriate modifications in Hall’s
percentile method. This is presented quite generally in Beran (1987) and we
will illustrate it here with the scale pivot ψ̂/ψ, where it is assumed that the
parameter ψ is positive. Suppose the distribution function of ψ̂/ψ is Hθ(x)
then

1− α = Pθ
(
ψ̂/ψ > H−1

θ (α)
)

= Pθ
(
ψ < ψ̂/H−1

θ (α)
)

and replacing the unknown H−1
θ (α) by H−1

θ̂
(α) gives us the Beran/Hall per-

centile method upper bound for ψ, namely

ψ̂HU = ψ̂/H−1

θ̂
(α) .

From now on, when no further qualifiers are given, it is assumed that a lo-
cation pivot was chosen in Hall’s percentile method. This simplifies matters,
especially since it is not always easy to see what kind of pivot would be most
appropriate in any given situation, the above normal correlation example
being a case in point. Since large sample considerations give some support
to location pivots, this default is quite natural.

4.3.2 Example: Bounds for Normal Variances Revisited

Revisiting Example 2, with ψ = ψ(θ) = ψ(µ, σ) = σ2 as parameter of in-
terest, we use again maximum likelihood estimates for θ = (µ, σ). We are
interested in bounds for ψ(θ) = σ2. The distribution function of the location
pivot D = σ̂2 − σ2 is

Hθ(x) = Pθ (D ≤ x) = Pθ
(
σ̂2 ≤ x+ σ2

)
= P

(
V ≤ n+ nx/σ2

)
= χn−1

(
n+ nx/σ2

)
.

See Section 3.2.2 for the definition of V and χn−1. Thus

H−1
θ (α) = σ2

(
χ−1
n−1(α)

n
− 1

)

and thus

H−1

θ̂
(α) = σ̂2

(
χ−1
n−1(α)

n
− 1

)
,

resulting in the bound

σ̂2
HU = σ̂2 −H−1

θ̂
(α) = σ̂2

(
2− χ−1

n−1(α)

n

)
.
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Again we should remind ourselves that this analytic form of H−1

θ̂
(α) is not

required in order to compute the upper bound via the Hall percentile method.
However, it facilitates the analysis of the coverage rates of the method in this
example. This coverage rate can be expressed as

Pθ
(
σ̂2
HU ≥ σ2

)
= Pθ

(
σ̂2

(
2− χ−1

n−1(α)

n

)
≥ σ2

)

= P

(
V ≥ n2

2n− χ−1
n−1(α)

)
= 1− χn−1

(
n2

2n− χ−1
n−1(α)

)
.

Figure 1a is a repeat of Figure 1 (without asymptotes) with the coverage error
of the Hall percentile method added. There is little difference between the
Hall and Efron percentile methods in this particular example. Note that the
rate is again of order 1/

√
n, which happens quite generally under regularity

conditions, see Hall (1992). The coverage error rates of the corresponding
confidence intervals, not shown here, are again of order 1/n.

4.3.3 Relation to Efron’s Percentile Method

In this subsection we will show that the two percentile methods (Efron’s and
Hall’s) agree when the sampling distribution Gθ(x) of ψ̂ is continuous and
symmetric around ψ, i.e., when

Gθ(ψ + x) = 1−Gθ(ψ − x) for all x.

In terms of the sampling distribution Hθ(x) of ψ̂−ψ this symmetry condition
is expressed as

Hθ(x) = 1−Hθ(−x) for all x.

The relationship between Hθ and Gθ is the key to the equivalence of the two
percentile methods. Namely, we have

Hθ(x) = Pθ(ψ̂ − ψ ≤ x) = Pθ(ψ̂ ≤ x+ ψ) = Gθ(x+ ψ) .

Solving
1− α = H

θ̂
(x) = G

θ̂
(x+ ψ̂)

for x we get the following two representations for this (1 − α)-quantile x =
x1−α:

x1−α = H−1

θ̂
(1− α) = G−1

θ̂
(1− α)− ψ̂ .
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Figure 1a: Actual − Nominal Coverage Probability
of 95% Upper & Lower Bounds
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Hall’s percentile upper bound is

ψ̂HU = ψ̂ −H−1

θ̂
(α) = ψ̂ +H−1

θ̂
(1− α) ,

where the second equality results from the assumed symmetry of H
θ̂
. Making

use of the dual representation of the above x1−α we find

ψ̂HU = ψ̂ +G−1

θ̂
(1− α)− ψ̂ = G−1

θ̂
(1− α) ,

which is nothing but Efron’s percentile method upper bound.

4.4 Percentile-t Bootstrap

In this subsection we discuss the percentile-t bootstrap method for construct-
ing confidence bounds and intervals. It appears that the method was first
introduced by Efron (1981). The method is motivated by revisiting the ex-
ample of confidence bounds for the normal mean, covered in Section 4.1.2
under the assumption of a known variance. This is followed by a general
definition and some comments.

4.4.1 Motivating Example

Before giving a definition of the percentile-t method we revisit the example
in Section 4.1.2. This time we will assume that both mean and standard
deviation of the sampled normal population are unknown and are estimated
by the maximum likelihood estimates µ̂ and σ̂. If we were to apply Efron’s
percentile method to obtain the (1−α)-level upper confidence bound for the
mean µ, we would be taking the (1−α)-quantile of a large bootstrap sample
of estimates

(µ̂?1, . . . , µ̂
?
B) = (X̄?

1 , . . . , X̄
?
B) .

These are obtained from bootstrap samples X?
1, . . . ,X

?
B generated from the

N(µ̂, σ̂2) distribution. This (1−α)-quantile is obtained as the mth value X̄?
(m)

among the ordered bootstrap sample of estimates

X̄?
(1) ≤ . . . ≤ X̄?

(B) ,

where m = (1 − α)B. If m is not an integer one performs the usual inter-
polation. For large B this bound approximately equals the (1− α)-quantile
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of the bootstrap distribution of X̄?. This distribution is N(µ̂, σ̂2/n) and its
(1− α)-quantile is

µ̂zU(1− α) = X̄ + z1−α
σ̂√
n

with z1−α = Φ−1(1− α).

Hence Efron’s percentile method results in the same bound as in Section 3.1.2
with the only difference being that the previously assumed known σ0 is re-
placed by the estimate σ̂. The multiplier z1−α remains unchanged. Compare
this with the classical upper confidence bound given by

µ̂tU(1− α) = X̄ + tn−1(1− α)
σ̂√
n

√
n

n− 1
= X̄ + tn−1(1− α)

ŝ√
n
,

where tn−1(1 − α) is the (1 − α)-quantile of the Student t-distribution with

n−1 degrees of freedom. This t factor, together with the factor
√
n/(n− 1),

adjusts for the sampling variability of the estimate σ̂ and results in exact
coverage probability for any sample size n ≥ 2.
In this particular example Hall’s percentile method agrees with Efron’s, be-
cause the sampling distribution of µ̂ = X̄ is continuous and symmetric around
µ, see Section 3.3.3. In motivating the transition to the percentile-t method
we repeat the derivation in this specific case. Recall that in Hall’s percentile
method we appeal to the bootstrap distribution H

θ̂
(with θ̂ = (µ̂, σ̂)) of

µ̂? − µ̂ = X̄? − X̄

as an approximation to the sampling distribution Hθ of µ̂− µ = X̄ − µ. Ac-
cording to Hall’s percentile method, the (1−α)-level upper bound is obtained
by taking the α-quantile of H

θ̂
and forming

µ̂HU(1− α) = µ̂−H−1

θ̂
(α) = X̄ − zα

σ̂√
n

= X̄ + z1−α
σ̂√
n

= µ̂zU(1− α) .

Bootstrapping the distribution of X̄? or X̄?−X̄ certainly mimics the sampling
variability of X̄ relative to µ, but it does not capture the sampling variability
of the estimate σ̂, which explicitly is part of the formula for µ̂HU = µ̂zU . Note
that the percentile method (Hall’s or Efron’s) uses σ̂ only to obtain samples
from N(µ̂, σ̂2) and does not use the above formula to obtain µ̂HU = µ̂zU .
However, the formula is useful in showing explicitly what either of the two
percentile methods accomplishes in this example. Namely, the z-factor in
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the above formula indicates, that the percentile methods act as though σ̂
is equal to the true (unknown) standard deviation σ, in which case the use
of the z-factor would be most appropriate. Since σ̂ varies around σ from
sample to sample, this sampling variation needs to be accounted for in setting
confidence bounds.
The percentile-t method carries the pivoting step of Hall’s percentile method
(of bootstrapping X̄−µ) one step further by considering a Studentized pivot

T =
X̄ − µ

σ̂
.

If we knew the distribution function Kθ(x) of T we could obtain a (1 − α)
level upper confidence bound for µ as follows:

X̄ −K−1
θ (α)σ̂

since

1− α = P

(
X̄ − µ

σ̂
≥ K−1

θ (α)

)
= P

(
X̄ −K−1

θ (α)σ̂ ≥ µ
)
.

The subscript θ on K−1
θ (α) allows for the possibility that the distribution

of T may still depend on θ. In this particular example K is independent of
θ and thus X̄ − K−1(α)σ̂ is an exact (1 − α)-level upper confidence bound
for µ. To obtain K−1(α) we can either appeal to tables of the Student-t
distribution, because for this particular example we know that

K−1(α) = tn−1(α)σ̂/
√
n− 1 = −tn−1(1− α)σ̂/

√
n− 1 ,

or, in a more generic approach, we can simulate the distribution K of T by
generating samples from N(µ, σ2) for any θ = (µ, σ), since in this example
K is not sensitive to the choice of θ. However, for reasons to be explained in
the next section, we may as well simulate independent samples X?

1, . . . ,X
?
B

from N(µ̂, σ̂2) and generate T ?1 , . . . , T
?
B with T ?i = (X̄?

i − X̄)/σ̂?i computed
from the ith bootstrap sample X?

i . For very large B this simulation process
will approximate the bootstrap distribution K̂ = K of

T ? =
X̄? − X̄

σ̂?
.

The percentile-t method constructs the (1−α)-level upper confidence bound
as

µ̂tU = X̄ − K̂−1(α)σ̂ .
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For ` = αB we can consider the `th ordered value of T ?(1) ≤ . . . ≤ T ?(B), namely

T ?(`), as an excellent approximation to K̂−1(α). When αB is not an integer
one does the usual interpolation of the appropriate adjacent ordered values
T ?(k) and T ?(k+1).
By bootstrapping the distribution of the Studentized ratio T we hope that
we capture to a large extent the sampling variability of the scale estimate
used in the denominator of T . That this may not be completely successful is
reflected in the possiblity that the distribution Kθ of T may still depend on
θ.
The above discussion gives rise to a small excursion, which is not an integral
part of the percentile-tmethod, but represents a rough substitute for it. Since
X̄?

(m) ≈ µ̂zU(1 − α), Efron (1982) considered the following t-factor patch to
the Efron percentile method, namely

X̄ +
tn−1(1− α)

z1−α

√
n

n− 1

(
X̄?

(m) − X̄
)
,

with m = (1 − α)B. This patched version of the Efron percentile method
upper bound is approximately equal to the above µ̂tU(1−α), as is seen from

X̄?
(m) ≈ µ̂zU(1− α) = X̄ + z1−α

σ̂√
n

⇒ X̄?
(m) − X̄ ≈ z1−α

σ̂√
n

⇒ tn−1(1− α)

z1−α

√
n

n− 1

(
X̄?

(m) − X̄
)
≈ tn−1(1− α)

σ̂√
n

√
n

n− 1

and thus

X̄ +
tn−1(1− α)

z1−α

√
n

n− 1

(
X̄?

(m) − X̄
)
≈ µ̂tU(1− α) .

This idea of patching the Efron percentile method can be applied to other
situations as well, especially when estimates are approximately normal. The
effect is to widen the bounds in order to roughly protect the coverage confi-
dence. In this particular example the patch works perfectly in that it results
in the classical bound. The patch is easily applied, provided we have a reason-
able idea of the degrees of freedom to use in the t-factor correction. However,
Efron (1982) warns against its indiscriminate use. Note also that in apply-
ing the patch we lose the transformation equivariance of Efron’s percentile
method.
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4.4.2 General Definition

Suppose X ∼ Pθ and we are interested in confidence bounds for the real
valued functional ψ = ψ(θ). We also have available the estimate θ̂ of θ and
estimate ψ by ψ̂ = ψ(θ̂). Furthermore, it is assumed that we have some scale
estimate σ̂

ψ̂
, so that we can define the Studentized pivot

T =
ψ̂ − ψ

σ̂
ψ̂

.

In order for T to be a pivot in the strict sense, its distribution would have to
be independent of any unknown parameters. This is not assumed here, but
if this distribution Kθ depends on θ, it is hoped that it does so only weakly.
The (1− α)-level percentile-t upper bound for ψ is defined as

ψ̂tU = ψ̂ −K−1

θ̂
(α)σ̂

ψ̂
.

Here K−1

θ̂
(α) is obtained by simulating the distribution K

θ̂
of

T ? =
ψ̂? − ψ̂

σ̂?
ψ̂

.

This is done by simulating samples X?
1, . . . ,X

?
B from P

θ̂
, generating T ?1 , . . . , T

?
B,

with

T ?i =
ψ̂?i − ψ̂

σ̂?
ψ̂i

computed from the ith bootstrap sample X?
i . For ` = αB take the `th ordered

value T ?(`) of the order statistics

T ?(1) ≤ . . . ≤ T ?(B)

as a good approximation of K−1

θ̂
(α). When ` = αB is not an integer, perform

the usual interpolation between the appropriate adjacent order statistics T ?(k)
and T ?(k+1).
In the definition of the percentile-t upper bound the estimated quantile
K−1

θ̂
(α) was used instead of the more appropriate but unknown K−1

θ (α).

Replacing the unknown parameter θ by the estimate θ̂ has two motivations.
First, it is practical, because we know θ̂, and second, θ̂ is in the vicinity
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of the true, but unknown value of θ, and thus K−1

θ̂
(α) is likely to be more

relevant than taking any value of θ in K−1
θ (α) and solely appealing to the

insensitivity of Kθ with respect to θ.
The above definition of percentile-t bounds is for upper bounds, but by
switching from α to 1 − α we are covering 1 − α lower bounds as well.
Combining (1 − α)-level upper and lower bounds we obtain (1 − 2α)-level
confidence intervals for ψ.

4.4.3 General Comments

The percentile-t bootstrap method appears to have improved coverage prop-
erties. In fact, under regularity conditions it can be shown (see Hall, 1988)
that the coverage error of one-sided percentile-t bounds is of order 1/n, in
contrast to the 1/

√
n rate in the case of Hall’s and Efron’s percentile or bias

corrected percentile method.
The method shares with Hall’s percentile method the drawback that it is
generally not transformation equivariant.
Also, Studentization makes most sense when ψ is a location parameter, but
that is not always the case. In Example 4, with ψ = ρ, we can hardly treat ρ
as a location parameter and Studentization has performed poorly here. The
z-transform has been suggested as the appropriate cure for this problem,
namely applying the percentile-t method to the transformed parameters z =
1
2
log{(1 + ρ)/(1− ρ)} and corresponding estimates. The confidence bounds

for z are then backtransformed to confidence bounds for ρ. However, this is
a very problem specific fix and not useful as a general bootstrap tool.
A further disadvantage of the percentile-t method is the source of its bet-
ter coverage properties, namely the explicit requirement of an appropriate
scale estimate for Studentization. Such a scale estimate, to serve its purpose,
should be distributionally proportional to the standard deviation of the orig-
inal estimate ψ̂. Section 3 discusses several schemes for getting variance
estimates of estimates, of which the bootstrap method is the most versatile.
If we do employ bootstrap variance estimates in order to accomplish the Stu-
dentization, then that would require an extra level of simulations for each of
the T ?i to be generated. In effect, this would amount to some form of double
bootstrap, which is the topic of discussion in the next section, although not
from the percentile-t perspective.
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5 Double Bootstrap Confidence Bounds

This section introduces two closely related double bootstrap methods for
constructing confidence bounds. Single bootstrapping amounts to generat-
ing B bootstrap samples, where B is quite large, typically B = 1, 000, and
computing estimates for each such bootstrap sample. In double bootstrap-
ping each of these B bootstrap samples spawns itself a set of A second order
bootstrap samples. Thus, all in all, A · B samples will be generated with
the attending data analyses to compute estimates, typically A · B + B of
them. If A = B = 1000 this amounts to 1, 001, 000 such analyses and is thus
computationally very intensive. This is a high computational price to pay,
especially when the computation of estimates θ̂(X) is costly to begin with. If
that cost grows with the sample size of X, one may want to limit its use only
to analyses involving small sample sizes, but that is the area where coverage
improvement makes most sense anyway. Before these methods will be used
routinely, progress will need to be made in computational efficiency. We hope
that some time soon clever algorithms will be found that reduce the effort of
A · B simulations to k · B, where k is of the order of ten. Such a reduction
would make these double bootstrap methods definitely the preferred choice
as a general tool for constructing confidence bounds.
It appears that methods based on double bootstrap approaches are most suc-
cessful in maintaining the intended coverage rates for the resulting confidence
bounds. A first application of the double bootstrap method to confidence
bounds surfaced in the last section when discussing the possibility of boot-
strap scale estimates to be used in the bootstrapped Studentized pivots of
the percentile-t method. Here we first discuss Beran’s (1987) method, which
is based on the concept of a root (a generalization of the pivot concept) and
the prepivoting idea. The latter invokes an estimated probability integral
transform in order to obtain improved pivots, which then are bootstrapped.
It is shown that Beran’s method is equivalent to Loh’s (1987) calibration
of confidence coefficients. This calibration uses the bootstrap method to
estimate the coverage error with the aim of correcting for it. The second it-
erated bootstrap method, proposed by Scholz (1992), automatically finds the
proper natural pivot when such pivots exist. This yields confidence bounds
with essentially exact coverage whenever these are possible.
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5.1 Prepivot Bootstrap Methods

This subsection introduces the concept of a root, motivates the use of roots
by showing how confidence bounds are derived from special types of roots,
namely from exact pivots. Then single bootstrap confidence bounds, based
on roots, are introduced and seen to be a simple extension of Hall’s percentile
method. These confidence sets are based on an estimated probability integral
transform. This transform can be iterated, which suggests the prepivoting
step. The effect of this procedure is examined analytically in a special exam-
ple, where it results in exact coverage. Since analysis is not always, feasible
it is then shown how to accomplish the same by an iterated bootstrap simu-
lation procedure. This is concluded with remarks about the improved large
sample properties of the prepivot methods and with some critical comments.

5.1.1 The Root Concept

Suppose X ∼ Pθ and we are interested in confidence bounds for the real
valued functional ψ = ψ(θ). We also have available the estimate θ̂ of θ and
estimate ψ by ψ̂ = ψ(θ̂). Beran (1987) introduces the concept of a root. This
is a function R = R(X, ψ) = R(X, ψ(θ)) of θ (through ψ(θ)) and the data
X. If the distribution function

Fθ(r) = Pθ(R ≤ r) = Pθ (R(X, ψ(θ)) ≤ r)

of such a root does not depend on θ, then R is a pivot in the strict sense.
The idea behind pivots is to play off the double dependence on θ in the above
probability statement, namely through Pθ and ψ(θ), so that no dependence
on θ remains. Such pivots are not always possible. In fact, they are the
exception and not the rule. It was the possible dependence of Fθ on θ, which
led Beran to introduce this broader terminology of root, and we follow his
example at least in this section. Before describing the use of such roots for
constructing confidence bounds, we will discuss the procedure in the case of
strict pivots.

5.1.2 Confidence Sets From Exact Pivots

Pivots have long been instrumental in finding confidence bounds. In this
subsection we will assume that Fθ(r) = F (r) is independent of θ. Let r1−α
be such that F (r1−α) = 1− α or r1−α = F−1(1− α). Now let

C(X, 1− α) = {ψ : R(X, ψ) ≤ r1−α} ,
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then C(X, 1−α) can be considered a (1−α)-level confidence set for ψ. This
results from

Pθ (ψ ∈ C(X, 1− α)) = Pθ (R(X, ψ) ≤ r1−α) = F (r1−α) = 1− α .

Typically, when R(X, ψ) is monotone in ψ, the set C(X, 1−α) will be some
kind of interval, infinite on the right or left, which is equivalent to either a
lower or upper confidence bound for ψ. When R(X, ψ) is first decreasing and
then increasing in ψ, we will usually obtain a bounded confidence interval
for ψ.
Often the distribution F is known analytically for certain pivots and the
quantiles rα are tabulated. As an example, consider Example 2, where we
are interested in confidence bounds for ψ = ψ(µ, σ) = µ. Then

R =
√
n
X̄ − ψ

S
, with X̄ =

1

n

n∑
i=1

Xi and S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 ,

is a pivot with distribution function given by the tabulated Student-t distri-
bution with n− 1 degrees of freedom. Following the above generic recipe for
C(X, 1 − α) with r1−α = tn−1(1 − α) we get the following lower confidence
bound for ψ

X̄ − tn−1(1− α)
S√
n
.

Upper bounds can be obtained by changing R to −R and intervals can be
obtained by changing R to |R|.
In some situations the pivot distribution F can not be determined analyt-
ically. Then the only recourse is simulation. As an example consider the
case where X = (X1, . . . , Xn) is a random sample from the extreme value
distribution

H(x) = 1− exp
(
− exp

(
x− a

b

))
for −∞ < x <∞ ,

where a ∈ R and b > 0 are the unknown parameters, i.e., θ = (a, b). Such
a random sample can also be considered as a log-transform of a random
sample from a Weibull distribution with scale parameter κ = exp(a) and
shape parameter β = 1/b. If â and b̂ are the maximum likelihood estimates
of a and b, one can treat

R1 =
â− a

b̂
and R2 =

b

b̂
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as appropriate pivots for a and b, respectively. However, their distribution
is not practically obtainable by analytical methods. By simulating R1 and
R2 for many random samples generated from one specifice extreme value
distribution (it does not matter which, because of the pivot property) one
can obtain accurate estimates of these pivot distributions. Bain (1978) has
tabulated the simulated quantiles of these pivots. In a sense these can be
considered as a forerunner of the bootstrap method.

5.1.3 Confidence Sets From Bootstrapped Roots

Here we assume that the distribution Fθ of R may still depend on θ. One can
then use the bootstrap approach and estimate Fθ by F

θ̂
. We do not need to

know the functional form of Fθ, i.e., we don’t have to plug an estimate θ̂ for
θ into Fθ in order to obtain F

θ̂
.We can instead simulate a bootstrap sample

X?
1, . . . ,X

?
B from P

θ̂
, in which case we only need to know how to plug in θ̂

into Pθ to get P
θ̂

and how to generate samples from it. From this bootstrap
sample compute the corresponding bootstrap sample of roots(

R(X?
1, ψ̂), . . . , R(X?

B, ψ̂)
)
,

where ψ̂ = ψ(θ̂). Note that we have replaced all appearances of θ by θ̂, i.e.,
in the distribution P

θ̂
generating the bootstrap samples X?

i and in ψ̂ = ψ(θ̂).
For large B this bootstrap sample of roots will give an accurate description
of F

θ̂
(·), namely

1

B

B∑
i=1

I
[R(X?

i ,ψ̂)≤x] −→ F
θ̂
(x) as B →∞ .

By sorting the bootstrap sample of roots we can, by the usual process, get a
good approximation to the quantile r1−α(θ̂), which is defined by

F
θ̂

(
r1−α(θ̂)

)
= 1− α or r1−α(θ̂) = F−1

θ̂
(1− α) .

To get a bootstrap confidence set for ψ one replaces r1−α in C(X, 1 − α)
by r1−α(θ̂) or by its just suggested approximation. We will not distinguish
between the two. Thus we have the following bootstrap confidence set

CB(X, 1− α) =
{
ψ : R(X, ψ) ≤ r1−α(θ̂)

}
=
{
ψ : F

θ̂
(R(X, ψ)) ≤ 1− α

}
.

50



The second representation of CB shows that the construction of the confi-
dence set appeals to the probability integral transform. Namely, for con-
tinuous Fθ the random variable U = Fθ(R) has a uniform distribution on
the interval (0, 1) and then P (U ≤ 1 − α) = 1 − α. Unfortunately, we can
only use the estimated probability integral transform Û = F

θ̂
(R) and Û is

no longer distributed uniformly on (0, 1). In addition, its distribution will
usually still depend on θ. However, the distribution of Û should approximate
that of U(0, 1).
The above method for bootstrap confidence sets is nothing but Hall’s per-
centile method, provided we take as root the location root

R(X, ψ) = ψ̂ − ψ = ψ̂(X)− ψ .

Thus the above bootstrap confidence sets based on roots represent an exten-
sion of Hall’s percentile method to other than location roots.

5.1.4 The Iteration or Prepivoting Principle

Beran’s double bootstrap or prepivoting idea consists in treating

R1(X, ψ) = Û = F
θ̂
(R(X, ψ))

as another root and in applying the above bootstrap confidence set process
with R1(X, ψ) as root. Note that R1(X, ψ) depends on X in two ways, once
through θ̂ = θ̂(X) in F

θ̂
and once through X in R(X, ψ). We denote the

distribution function of R1 by F1θ. It is worthwhile to point out again the
double dependence of F1θ on θ, namely through Pθ and ψ(θ) in

F1θ(x) = Pθ (R1(X, ψ(θ)) ≤ x) .

The formal bootstrap procedure consists in estimating F1θ(x) by F
1θ̂

(x), i.e.,

by replacing θ with θ̂. When the functional form of F1θ is not known one
resorts again to simulation as will be explained later.
Denoting the (1− α)-quantile of F

1θ̂
(x) by

r1,1−α(θ̂) = F−1

1θ̂
(1− α)

we obtain the following confidence set for ψ

C1B(X, 1−α) =
{
ψ : R1(X, ψ) ≤ r1,1−α(θ̂)

}
=
{
ψ : F

1θ̂
(R1(X, ψ)) ≤ 1− α

}
,
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with nominal confidence level 1 − α. Again, the second form of the confi-
dence set C1B(X, 1−α) shows the appeal to the estimated probability integral
transform, since F1θ(R1(X, ψ)) is exactly U(0, 1), provided F1θ is continuous.
Actually we are dealing with a repeated estimated probability integral trans-
form since R1 already represented such a transform. It is hoped that this
repeated transform

R2(X, ψ) = F
1θ̂

(R1(X, ψ)) = F
1θ̂

(
F
θ̂
(R(X, ψ))

)
provides a closer approximation to the U(0, 1) distribution than the original
single transform

R1(X, ψ) = F
θ̂
(R(X, ψ)) .

Beran refers to the step of going from R(X, ψ) to R1(X, ψ) as prepivoting.
Of course, the above process, R(X, ψ) → R1(X, ψ) → R2(X, ψ), can in
principle be continued, but this is not very useful in practice, especially
when nested simulations are needed to carry out the iteration steps.

5.1.5 Calibrated Confidence Coefficients

The following third form of C1B(X, 1 − α) will not only be more useful in
the construction of C1B(X, 1 − α) via the bootstrap simulation, but also in
elaborating the connection to Loh’s calibration scheme, namely

C1B(X, 1− α) =
{
ψ : F

1θ̂
(R1(X, ψ)) ≤ 1− α

}
=

{
ψ : F

1θ̂

(
F
θ̂
(R(X, ψ))

)
≤ 1− α

}
=

{
ψ : R(X, ψ) ≤ F−1

θ̂

(
F−1

1θ̂
(1− α)

)}
,

i.e., we compare the original root R(X, ψ) against an adjusted or recalibrated
quantile. This recalibration idea was introduced independently by Loh (1987)
and was shown to be equivalent to Beran’s prepivoting by DiCiccio and
Romano (1988) in the case, where the uncalibrated intervals are the ordinary
bootstrap intervals CB(X, 1 − α). To see this, note that the exact coverage
of CB is

Pθ
(
F
θ̂
(R(X, ψ)) ≤ 1− α

)
= Pθ (R1(X, ψ) ≤ 1− α) = F1θ (1− α) .

By replacing θ by θ̂ in F1θ we are invoking the bootstrap principle and get
an estimated exact coverage of CB as F

1θ̂
(1 − α). The calibration idea is
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to choose the original nominal confidence level in the definition of CB, now
denoted by 1− α1, such that the estimated exact coverage of CB(X, 1− α1)
becomes 1− α, i.e.,

F
1θ̂

(1− α1) = 1− α or 1− α1 = F−1

1θ̂
(1− α) .

Thus the recalibrated bootstrap confidence set becomes

CB(X, 1− α1) =
{
ψ : F

θ̂
(R(X, ψ)) ≤ 1− α1

}
=

{
ψ : F

θ̂
(R(X, ψ)) ≤ F−1

1θ̂
(1− α)

}
=

{
ψ : R(X, ψ) ≤ F−1

θ̂

(
F−1

1θ̂
(1− α)

)}
= C1B(X, 1− α) ,

which establishes the equivalence.

5.1.6 An Analytical Example

Before going into the simulation aspects of the just described confidence
sets we will illustrate the method with Example 2, where one can track
analytically what happens. Here we are interested in confidence bounds for

ψ = ψ(θ) = ψ(µ, σ) = µ

and as estimates for µ and σ we consider the maximum likelihood estimates
µ̂ and σ̂. As root we consider the location root

R(X, µ) = µ̂− µ = X̄ − µ .

Analytically Fθ is found to be

Fθ(x) = Pθ
(
X̄ − µ ≤ x

)
= Φ

(√
nx

σ

)
.

This leads to

R1(X, µ) = F
θ̂
(R(X, µ)) = Φ

(√
nR(X, µ)

σ̂

)
= Φ

(√
n(X̄ − µ)

σ̂

)
.

Since

Tn−1 =

√
n(X̄ − µ)

σ̂
√
n/(n− 1)

=

√
n(X̄ − µ)

S
∼ Gn−1 ,
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where Gn−1 represents the Student-t distribution function with n−1 degrees
of freedom, we find that

F1θ(x) = Pθ (R1(X, µ) ≤ x) = P
(
Φ
(√

n/(n− 1) Tn−1

)
≤ x

)
= Gn−1

(√
(n− 1)/n Φ−1(x)

)
.

In this specific case Fθ still depends on θ, namely on σ, but F1θ is independent
of θ. Thus

F1θ(x) = F
1θ̂

(x) = F1(x)

and its (1− α)-quantile is

r1,1−α = r1,1−α(θ̂) = Φ

(√
n

n− 1
tn−1(1− α)

)
,

where tn−1(1−α) = G−1
n−1(1−α). The confidence set C1B(X, 1−α) can now

be derived as

C1B(X, 1− α) =

{
µ : R1(X, µ) ≤ Φ

(√
n

n− 1
tn−1(1− α)

)}

=

{
µ : Φ

(√
n(X̄ − µ)

σ̂

)
≤ Φ

(√
n

n− 1
tn−1(1− α)

)}

=

{
µ :
√
n
X̄ − µ

S
≤ tn−1(1− α)

}

=

{
µ : X̄ − S√

n
tn−1(1− α) ≤ µ

}

=

[
X̄ − S√

n
tn−1(1− α),∞

)
,

leading to the classical lower confidence bound for µ, with exact coverage
1− α. Of course, the above derivation appears rather convoluted in view of
the usual straightforward derivation of the classical bounds. This convoluted
process is not an intrinsic part of the prepivoting method and results only
from the analytical tracking of the prepivoting method. When prepivoting is
done by simulation, see Section 5.1.7, the derivation of the confidence bounds
is conceptually more straightforward, and all the work is in the simulation
effort.
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A similar convoluted exercise, still in the context of Example 2 and using the
prepivot method with the location root R(X, σ2) = σ̂2−σ2, leads to the lower
bound nσ̂2/χ2

n−1(1 − α). This coincides with the classical lower confidence
bound for σ2, with exact coverage 1 − α. Here χ2

n−1(1 − α) is the (1 − α)-
quantile of the chi-square distribution with n − 1 degrees of freedom. Here
matters would have been even better had we used the scale pivot R(X, σ2) =
σ̂2/σ2 instead. In that case the simple bootstrap confidence set CB(X, 1−α)
would immediately lead to the classical bounds and bootstrap iteration would
not be necessary. This particular example shows that the choice of root
definitely improves matters.
It turns out that the above examples can be generalized and in doing so the
demonstration of the exact coverage property becomes greatly simplified.
However, the derivation of the confidence bounds themselves may still be
complicated.
The exact coverage in both the above examples is just a special case of the
following general result. In our generic setup let us further assume that

R1(X, ψ) = F
θ̂
(R(X, ψ))

is an exact pivot with continuous distribution function F1, which is indepen-
dent of θ. This pivot assumption is satisfied in both our previous normal
examples and it is the reason behind the exact coverage there as well as in
this general case. Namely,

C1B(X, 1− α) =
{
ψ : F1

(
F
θ̂
(R(X, ψ))

)
≤ 1− α

}
has exact coverage since

U = F1

(
F
θ̂
(R(X, ψ))

)
has the U(0, 1) distribution.

5.1.7 Prepivoting by Simulation

When analytical methods fail in determining F
1θ̂

or F
θ̂
, we can still do so by

bootstrap simulation methods. This was already illustrated in Section 5.1.3
for F

θ̂
, but for F

1θ̂
a nested simulation is needed.

In order to approximate F
1θ̂

(x) we will simulate X?
1, . . . ,X

?
B from P

θ̂
and

compute a bootstrap sample of roots

R1

(
X?

1, ψ(θ̂)
)
, . . . , R1

(
X?
B, ψ(θ̂)

)
,
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where we postpone for the moment the discussion of how to compute each
such root. Note that θ̂ has taken the place of θ in ψ(θ̂) and in P

θ̂
, which

generated the bootstrap sample.
By the LLN we have that

1

B

B∑
i=1

I
[R1(X?

i ,ψ(θ̂))≤x] −→ F
1θ̂

(x) as B →∞ .

As for the computation of each R1

(
X?
i , ψ(θ̂)

)
, we will need to employ a

second level of bootstrap sampling. Recall that

R1 (X, ψ(θ)) = F
θ̂
(R (X, ψ(θ)))

and thus
R1

(
X?
i , ψ(θ̂)

)
= F

θ̂?i

(
R
(
X?
i , ψ(θ̂)

))
,

where θ̂?i = θ̂(X?
i ), with X?

i generated by P
θ̂
.

For any θ̂?i generate a second level bootstrap sample

X??
ij , j = 1, . . . , A

and compute the corresponding bootstrap sample of original roots

R
(
X??
ij , ψ

(
θ̂?i
))
, j = 1, . . . , A .

By the LLN we have that

1

A

A∑
j=1

I
[R(X??

ij ,ψ(θ̂?i ))≤x]
−→ F

θ̂?i
(x) as A→∞

and thus

R̂1i =
1

A

A∑
j=1

I
[R(X??

ij ,ψ(θ̂?i ))≤R(X?
i ,ψ(θ̂))]

−→ F
θ̂?i

(
R
(
X?
i , ψ(θ̂)

))
= R1

(
X?
i , ψ(θ̂)

)
as A→∞ .

Thus, for largeA we can consider R̂1i as a good approximation toR1

(
X?
i , ψ(θ̂)

)
.

In the same vein we can, for large B and A, consider

R̂2(x) =
1

B

B∑
i=1

I
[R̂1i≤x]

=
1

B

B∑
i=1

I
[R1(X?

i ,ψ(θ̂)≤x]
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as a good approximation of F
1θ̂

(x). In particular, by sorting the R̂1i we can
obtain their (1−α)-quantile γ̂ = r̂1(1−α) by the usual method and treat it
as a good approximation for γ = F−1

1θ̂
(1−α). Sorting the first level bootstrap

sample
R(X?

1, ψ̂), . . . , R(X?
B, ψ̂)

we can find their γ̂-quantile r̂γ̂ as a good approximation to

rγ(θ̂) = F−1

θ̂
(γ) = F−1

θ̂

(
F−1

1θ̂
(1− α)

)
and we may then consider

Ĉ1B(X) =
{
ψ : R(X, ψ) ≤ r̂γ̂

}
as a good approximation to C1B(X, 1− α) for large A and B. In fact, under
some general regularity conditions, legitimizing the double limit A→∞ and
B →∞, one has

Ĉ1B(X) −→ C1B(X, 1− α) as A→∞, B →∞ .

5.1.8 Concluding Remarks

The examples in Section 5.1.6 show that the coverage properties of the prepiv-
oting bootstrap method improved over that of Hall’s percentile method. In
fact, in these particular examples we wound up with exact coverage prob-
abilities. This exactness is special to these examples and to the general-
ization given in Section 5.1.6. However, Beran (1987) shows under fairly
broad conditions (namely X = (X1, . . . , Xn) being a random sample, the
root R(X, ψ) =

√
n(ψ̂ − ψ) being asymptotically normal N(0, σ2(θ)), and

some more regularity conditions) that the coverage error of C1B(X, 1− α) is
of order 1/n. Further, the coverage error of C1B(X, 1 − α), when using the
Studentized root

√
n(ψ̂ − ψ)/σ(θ̂), is of order 1/n3/2. Thus the bootstrap

iteration in the prepivot method definitely improves matters.
Just as Hall’s percentile method generally is not transformation equivariant,
one cannot generally expect this property to hold for the prepivoting method
either.
Aside from the simulation and computational burden another minor draw-
back of the prepivoting method is that nothing is said about the choice of
the root. Sometimes roots, like the location root ψ̂ − ψ or the scale root
ψ̂/ψ, are quite natural but at other times that is not the case. For example,
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when ψ = ρ is the bivariate normal correlation in Example 4, one can hardly
treat ρ as location or scale parameter and either of the above two roots is
inappropriate. There is of course a natural pivot for ρ, but it is very compli-
cated and difficult to compute. The next section presents a modification of
the double bootstrap method which gets around the need of choosing a root
by automatically generating a canonical root as part of the process.

5.2 The Automatic Double Bootstrap

This section presents a modification of the double bootstrap method. This
method, due to Scholz (1992), gets around the need for choosing a root, by
automatically generating a canonical root as part of the process. It is not
necessary to know the form of the root. If this canonical root is indeed an
exact pivot, this modified double bootstrap method will yield exact coverage
confidence bounds. We will introduce the method first in the context of tame
pivots and then extend it to general exact pivots and show that the resulting
confidence bounds are transformation equivariant. We examine the prepiv-
oting connection and then present a case study that examines the sensitivity
of the method to the choice of starting estimates. Finally we discuss the case
when exact pivots do not exist and we suggest that the automatic double
bootstrap procedure should still work well in an approximate sense. This is
illustrated with the classical Behrens-Fisher problem.

5.2.1 Exact Confidence Bounds for Tame Pivots

Suppose X ∼ Pθ and we are interested in confidence bounds for the real
valued functional ψ = ψ(θ). We also have available the estimate θ̂ of θ and
estimate ψ by ψ̂ = ψ(θ̂). Throughout this subsection it is assumed that we
deal with a special type of pivot R, namely a “tame pivot,” a name suggested
to me by Antonio Possolo. A tame pivot is a function R of ψ̂ and ψ only,
with R(ψ̂, ψ) having distribution function F independent of θ. Further, we
assume this pivot function R to have the following monotonicity properties:

(i) R(ψ̂, ψ) ↘ in ψ for fixed ψ̂

(ii) R(ψ̂, ψ) ↗ in ψ̂ for fixed ψ.

Note that these assumptions do not preclude the presence of nuisance param-
eters. However, the role of such nuisance parameters is masked in that they
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neither appear in the pivot nor influence its distribution F . As such, these
parameters are not really a nuisance. The following two examples satisfy the
above assumptions and in both cases nuisance parameters are present in the
model.
In the first example we revisit Example 4. Here we are interested in confi-
dence bounds for the correlation coefficient ψ = ψ(θ) = ρ. Fortuitously, the
distribution function Hρ(r) of the maximum likelihood estimate ρ̂ is contin-
uous, depends only on the parameter ρ, and is monotone decreasing in ρ for
fixed r (see Lehmann 1986, p.340). Further,

R(ρ̂, ρ) = Hρ(ρ̂) ∼ U(0, 1)

is a pivot. Thus (i) and (ii) are satisfied. This example has been exam-
ined extensively in the literature and Hall (1992) calls it the “smoking gun”
of bootstrap methods, i.e., any good bootstrap method better perform rea-
sonably well on this example. For example, the percentile-t method fails
spectacularly here, mainly because Studentizing does not pivot in this case.
This question was raised by Reid (1981) in the discussion of Efron (1981).
In the second example we revisit Example 2. Here we are interested in
confidence bounds on ψ = ψ(θ) = σ2. Using again maximum likelihood
estimates we have that

R(ψ̂, ψ) =
ψ̂

ψ
=
σ̂2

σ2

is a pivot and satisfies (i) and (ii).
If we know the pivot distribution function F and the functional form of R,
we can construct exact confidence bounds for ψ as follows. From

Pθ
(
R(ψ̂, ψ) ≤ F−1(1− α)

)
= 1− α

we obtain via monotonicity property (i)

Pθ

(
ψ ≥ R−1

ψ̂

(
F−1(1− α)

))
= 1− α ,

where ψ̂L = R−1

ψ̂
(F−1(1− α)) solves

R(ψ̂, ψ) = F−1(1− α) or F
(
R(ψ̂, ψ)

)
= 1− α

for ψ. Hence we have in ψ̂L an exact 100(1 − α)% lower confidence bound
for ψ. The dependence of ψ̂L on F and R is apparent.

59



It turns out that it is possible in principle to get the same exact confidence
bound without knowing F or R, as long as they exist. This is done at the
expense of performing the double bootstrap. Here exactness holds provided
both bootstrap simulation sample sizes tend to infinity.
The procedure is as follows. First obtain a bootstrap sample of estimates
ψ̂?1, . . . , ψ̂

?
B by the usual process from P

θ̂
. By the LLN we have

ĜB

(
y|θ̂
)

=
1

B

B∑
i=1

I
[ψ̂?i≤y]

−→ P
θ̂

(
ψ̂? ≤ y

)
as B →∞ .

Using this empirical distribution function ĜB

(
y|θ̂
)

we are able to approx-

imate P
θ̂

(
ψ̂? ≤ y

)
to any accuracy by just taking B large enough. With

the understanding of this approximation we will thus use ĜB

(
y|θ̂
)

and

P
θ̂

(
ψ̂? ≤ y

)
interchangeably.

From monotonicity property (ii) we then have

P
θ̂

(
ψ̂? ≤ y

)
= P

θ̂

(
R(ψ̂?, ψ̂) ≤ R(y, ψ̂)

)
= F

(
R(y, ψ̂)

)
.

Next, given a value θ̂?i and ψ̂?i = ψ(θ̂?i ), we obtain a second level bootstrap
sample of estimates

ψ̂??i1 , . . . , ψ̂
??
iA from P

θ̂?i
.

Exploiting again the monotonicity property (ii) we have

P
θ̂?i

(
ψ̂??i ≤ y

)
= P

θ̂?i

(
R(ψ̂??i , ψ̂

?
i ) ≤ R(y, ψ̂?i )

)
= F

(
R(y, ψ̂?i )

)
,

which, for large A, can be approximated by the empirical distribution func-
tion of ψ̂??i1 , . . . , ψ̂

??
iA, i.e., by

Ĝ1A

(
y|θ̂?i

)
=

1

A

A∑
j=1

I
[ψ̂??ij ≤y]

.

By the LLN this converges to P
θ̂?i

(
ψ̂??i ≤ y

)
, as A→∞. Thus, by taking A

sufficiently large and using y = ψ̂, we can simulate

Ĝ1A

(
ψ̂|θ̂?1

)
, . . . , Ĝ1A

(
ψ̂|θ̂?B

)
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and regard them as equivalent proxy for

F
(
R(ψ̂, ψ̂?1)

)
, . . . , F

(
R(ψ̂, ψ̂?B)

)
.

Sorting these values we find the (1 − α)-quantile by the usual process. The
corresponding ψ̂? = ψ̂?i = ψ̂?L approximately solves

F
(
R(ψ̂, ψ̂?)

)
≈ 1− α .

This value ψ̂?L is approximately the same as our previous ψ̂L, provided A and
B are sufficiently large.
The above procedure can be reduced to the following: Find that value θ̂?

and ψ̂? = ψ(θ̂?), for which

P
θ̂?

(
ψ̂?? ≤ ψ̂

)
= F

(
R(ψ̂, ψ̂?)

)
≈ 1− α .

Start with a value ψ̂?1, say ψ̂?1 = ψ̂, and take a convenient value θ̂?1 ∈ ψ−1(ψ̂?1)
so that ψ(θ̂?1) = ψ̂?1. Using a second level bootstrap sample of size A, evaluate
or approximate

F1 = F
(
R(ψ̂, ψ̂?1)

)
= P

θ̂?1

(
ψ̂?? ≤ ψ̂

)
by Ĝ1A

(
ψ̂|θ̂?1

)
.

This is then iterated by trying new values of ψ̂?, i.e., ψ̂?1, ψ̂
?
2, . . .. Since

F
(
R(ψ̂, ψ̂?)

)
↘ in ψ̂?

one should be able to employ efficient root finding algorithms for solving

F
(
R(ψ̂, ψ̂?)

)
= 1− α ,

i.e., use far fewer than the originally indicated AB bootstrap iterations. It
seems reasonable that kA iterations will be sufficient with A ≈ 1000 and
k ≈ 10 to 20.
Note that in this procedure we only need to evaluate Ĝ1A

(
ψ̂|θ̂?i

)
, which in

turn only requires that we know how to evaluate the estimates ψ̂, ψ̂?, or
ψ̂??. No knowledge of the pivot function R or its distribution function F is
required. For the previously discussed bivariate normal correlation example,
there exists a tame pivot. Therefore we either can, through massive simula-
tion of computationally simple calculations of ρ̂, obtain the exact confidence
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bound through the above bootstrap process, or in its place use the compu-
tationally difficult analytical process of evaluating the distribution function
Hρ(x) of ρ̂ and solving

Hρ (ρ̂) = α

for ρ = ρ̂U . Then

Pρ (ρ ≤ ρ̂U) = Pρ (Hρ (ρ̂) ≥ α) = 1− α .

5.2.2 The General Pivot Case

For the general pivot case we assume that the indexing parameter can be
reparametrized in the form θ = (ψ, η), i.e., the quantity ψ of interest is just
a particular real valued component of θ and the remainder η of θ acts as a
vector of nuisance parameters. Again we have estimates θ̂ = (ψ̂, η̂) and we
denote the distribution function of ψ̂ by

Dψ,η(y) = Pθ
(
ψ̂ ≤ y

)
.

Motivated by the probability integral transform result, Dψ,η(ψ̂) ∼ U(0, 1) for
continuous Dψ,η, we make the following general pivot assumption:

(V ) Dψ,η̂

(
ψ̂
)

is a pivot, i.e., has a distribution function H which does not

depend on unknown parameters, and Dψ,η̂

(
ψ̂
)
↘ in ψ for fixed ψ̂ and

η̂.

The tame pivot case examined in the previous section satisfies (V ) if F is
continuous. Namely,

Dθ(y) = Pθ
(
ψ̂ ≤ y

)
= Pθ

(
R(ψ̂, ψ) ≤ R(y, ψ)

)
= F (R(y, ψ))

and
Dψ,η̂(ψ̂) = F (R(ψ̂, ψ)) ∼ U(0, 1)

is a pivot and is decreasing in ψ. Here η̂ does not affect Dψ,η̂(ψ̂).
Example 2 of a normal random sample illustrates the situation of estimated
nuisance parameters. Here we are interested in confidence bounds for the
p-quantile ψ = ψ(θ) = µ + zpσ, where zp is the standard normal p-quantile.
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We can think of θ as reparametrized in terms of ψ and σ and again we use
maximum likelihood estimates ψ̂ and σ̂ for ψ and σ. We have that

ψ̂ − ψ

σ̂
and

ψ̂ − ψ

σ

are both pivots with respective c.d.f.’s G1 and G2 and

Dθ(y) = Pθ
(
ψ̂ ≤ y

)
= G2

(
y − ψ

σ

)
.

Thus

Dψ,σ̂(ψ̂) = G2

(
ψ̂ − ψ

σ̂

)
∼ G2

(
G−1

1 (U)
)
,

where U ∼ U(0, 1).
This example generalizes easily. Assume that there is a function R(ψ̂, ψ, η)
which is a pivot, i.e., has distribution function G2, and is decreasing in ψ
and increasing in ψ̂. Suppose further that R(ψ̂, ψ, η̂) is also a pivot with
distribution function G1. Then again our general pivot assumption (V ) is
satisfied. This follows from

Dψ,η(y) = Pψ,η
(
ψ̂ ≤ y

)
= Pψ,η

(
R(ψ̂, ψ, η) ≤ R(y, ψ, η)

)
= G2 (R(y, ψ, η))

and thus
Dψ,η̂

(
ψ̂
)

= G2

(
R
(
ψ̂, ψ, η̂

))
= G2

(
G−1

1 (U)
)

is a pivot which is decreasing in ψ.
Given the general pivot assumption (V ), it is possible to construct exact
lower confidence bounds for ψ as follows:

1− α = Pθ
(
Dψ,η̂(ψ̂) ≤ H−1(1− α)

)
= Pθ

(
ψ ≥ ψ̂L

)
,

where ψ̂L solves

Dψ,η̂(ψ̂) = H−1(1− α) or H
(
Dψ,η̂(ψ̂)

)
= 1− α (4)

for ψ = ψ̂L. This, however, requires knowledge of both H and D.
We observe that ψ̂L is transformation equivariant. To show this, let g be a
strictly increasing transform of ψ into τ = g(ψ). We use τ̂ = g(ψ̂) as our
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estimate of τ . Then the above procedure applied to τ̂ and with θ = (ψ, η)
reparametrized to ϑ = (τ, η) yields τ̂L = g(ψ̂L).
This is seen as follows. Denote the reparametrized probability model by P̃τ,η,
which is equivalent to Pg−1(τ),η. The distribution function of τ̂ is

D̃τ,η(y) = P̃τ,η (τ̂ ≤ y) = P̃τ,η
(
g
(
ψ̂
)
≤ y

)
= P̃τ,η

(
ψ̂ ≤ g−1(y)

)
= Pg−1(τ),η

(
ψ̂ ≤ g−1(y)

)
= Dg−1(τ),η

(
g−1(y)

)
,

so that
D̃τ,η̂ (τ̂) = Dg−1(τ),η̂

(
g−1

(
g
(
ψ̂
)))

= Dg−1(τ),η̂

(
ψ̂
)

is an exact pivot with same c.d.f. H as Dψ,η̂(ψ̂). Solving

1− α = H
(
D̃τ,η̂ (τ̂)

)
= H

(
Dg−1(τ),η̂

(
ψ̂
))

for τ = τ̂L yields
g−1 (τ̂L) = ψ̂L or τ̂L = g(ψ̂L) ,

as was to be shown.
By appropriate double bootstrapping we can achieve the same objective,
namely finding ψ̂L, without knowing H or D. The double bootstrap we
employ here is a slight variant of the commonly used one. There are two
parts to the procedure. The first part obtains H−1(1 − α) to any accuracy
for large enough A and B and the second consists of the iterative solution of
Equation (4).
We start by generating the first level bootstrap sample X?

1, . . . ,X
?
B from

Pψ0,η0 for some choice of ψ0 and η0. Typically, for reasons to be discussed

in Section 5.2.5, one would take (ψ0, η0) = (ψ̂, η̂). However, for now we will
stay with the arbitrary starting choice (ψ0, η0).
From these bootstrap data sets we obtain the first level bootstrap sample of
estimates, i.e.,

(ψ̂?i , η̂
?
i ) , i = 1, . . . , B .

For each i = 1, . . . , B obtain a second level bootstrap data sample X??
i1 , . . . ,X

??
iA

from Pψ0,η̂?i
(not from P

ψ̂?i ,η̂
?
i

as one might usually do it) and compute the cor-

responding second level bootstrap sample of estimates

(ψ̂??ij , η̂
??
ij ) , j = 1, . . . , A , i = 1, . . . , B .
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By the LLN , as A→∞, we have

D̂iA =
1

A

A∑
j=1

I
[ψ̂??ij ≤ψ̂

?
i ]
−→ Pψ0,η̂?i

(
ψ̂??i ≤ ψ̂?i

)
= Dψ0,η̂?i

(
ψ̂?i
)
∼ H .

The latter distributional assertion derives from the pivot assumption (V ) and
from the fact that (ψ̂?i , η̂

?
i ) arises from Pψ0,η0 . Again appealing to the LLN

we have
1

B

B∑
i=1

I
[D
ψ0 ,̂η

?
i
(ψ̂?i )≤y]

−→ H(y) as B →∞ ,

and thus we can consider
1

B

B∑
i=1

I
[D̂iA≤y]

as a good approximation to H(y). From this approximation we can obtain
H−1(1−α). This is done by sorting the sample D̂iA, i = 1, . . . , A and finding
its (1− α)-quantile by the usual process.
Now comes the second part of the procedure. For some value ψ1 (one could
start here with ψ1 = ψ̂) generate

X◦
1, . . . ,X

◦
N i.i.d. ∼ Pψ1,η̂

and get the bootstrap sample of resulting estimates

ψ̂◦11, . . . , ψ̂
◦
1N .

By the LLN we have

D̂◦
N(ψ1) =

1

N

N∑
i=1

I
[ψ̂◦1i≤ψ̂]

−→ Dψ1,η̂
(ψ̂) .

Using the monotonicity of Dψ,η̂(ψ̂) in ψ, a few iterations over ψ1, ψ2, . . .
should quickly lead to a solution of the equation

Dψ,η̂(ψ̂) ≈ D̂◦
N(ψ) = H−1(1− α) .

For large A,B,N this solution is practically identical with the exact lower
confidence bound ψ̂L. If this latter process takes k iterations we will have
performed AB + kN bootstrap iterations. This is by no means efficient and
it is hoped that future work will make the computational aspects of this
approach more practical.
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5.2.3 The Prepivoting Connection

We now examine the connection to Beran’s prepivoting approach and ,by
equivalence, also to Loh’s calibrated confidence sets, see Section 5.1.5, Sup-
pose we have a specified root function R(ψ̂, ψ) = R(ψ̂(X), ψ) with distribu-
tion function Fψ,η(x). This is somewhat more special than Beran’s general
root concept R(X, ψ). Suppose now that the following assumptions hold

(V ?) Fψ,η̂(R(ψ̂, ψ)) is a pivot,

R(ψ̂, ψ) ↗ in ψ̂ for fixed ψ and
Fψ,η̂(R(ψ̂, ψ)) ↘ in ψ for fixed ψ̂ and η̂.

Then (V ?) implies (V ), since

Dψ,η(x) = Pψ,η(ψ̂ ≤ x) = Pψ,η(R(ψ̂, ψ) ≤ R(x, ψ)) = Fψ,η(R(x, ψ))

and
Dψ,η̂(ψ̂) = Fψ,η̂(R(ψ̂, ψ))

is a pivot by assumption.
When F does not depend on ψ, i.e., when the root function is successful in
eliminating ψ from the distribution of R, then one can replace

Fψ,η̂(R(ψ̂, ψ)) ↘ in ψ for fixed ψ̂ and η̂

in (V ?) by the more natural assumption

R(ψ̂, ψ) ↘ in ψ for fixed ψ̂.

In contrast to the pivot assumption in (V ?), Beran’s prepivoting idea treats

F
ψ̂,η̂

(R(ψ̂, ψ))

as pivotal or nearly pivotal, its distribution being generated via bootstrap-
ping. The difference in the two approaches consists in how the subscript ψ
on F is treated. Often it turns out that F depends only on the subscript
η and the above distinction does not manifest itself. In those cases Beran’s
prepivoting will lead to exact confidence bounds as well, provided (V ?) holds.
For example, in the situation of Example 2 with ψ = µ+ zpσ and

R
(
ψ̂, ψ

)
= ψ̂ − ψ = µ̂+ zpσ̂ − (µ+ zpσ)
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as root, Beran’s prepivoting will lead to exact confidence bounds, since the
distribution of R depends only on the nuisance parameter η = σ.
In contrast, consider Example 4 with ψ = ρ. If we take the root R(ρ̂, ρ) =
ρ̂− ρ, then

Fρ(x) = Pρ(ρ̂− ρ ≤ x) = Hρ(x+ ρ)

with Hρ denoting the c.d.f. of ρ̂. Here the assumption (V ?) is satisfied since

Fρ(ρ̂− ρ) = Hρ(ρ̂)

is a pivot. However,
Fρ̂(ρ̂− ρ) = Hρ̂(ρ̂− ρ+ ρ̂)

appears not to be a pivot, although we have not verified this. This dif-
ference is mostly due to the badly chosen root. If we had taken as root
R(ρ̂, ρ) = Hρ(ρ̂), then the distinction would not arise. In fact, in that case R
itself is already a pivot. However, this particular root function is not trivial
and that points out the other difference between Beran’s prepivoting and
the automatic double bootstrap. In the latter method no knowledge of an
“appropriate” root function is required.
As a complementary example consider Example 2 with the root R =

√
n(s2−

σ2) for the purpose of constructing confidence bounds for σ2. Let χf denote
the c.d.f. of a chi-square distribution with f degrees of freedom. Then

Fµ,σ2(x) = Pµ,σ2

(√
n(s2 − σ2) ≤ x

)
= χn−1

(
(n− 1)

(
1 +

x√
nσ2

))
.

Clearly

Fµ̂,σ2(R) = χn−1

(
(n− 1)

(
1 +

√
n(s2 − σ2)√

nσ2

))

= χn−1

(
(n− 1)s2

σ2

)
∼ U(0, 1)

is a pivot which will lead to the classical lower bound for σ2. On the other
hand, the iterated root

R1,n(σ
2) = Fµ̂,s2(R) = χn−1

(
(n− 1)

(
1 +

√
n(s2 − σ2)√

ns2

))

= χn−1

(
(n− 1)

(
2− σ2

s2

))
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is a pivot as well, with distribution function

F1,n(x) = χn−1

(n− 1)

(
2− χ−1

n−1(x)

n− 1

)−1
 for 0 < x ≤ χn−1(2(n− 1))

and F1,n(0) = χn−1((n − 1)/2), F1,n(x) = 0 for x < 0 and F1,n(x) = 1 for
x ≥ χn−1(2(n− 1)). For γ ≥ χn−1((n− 1)/2) the set

B1,n =
{
σ2 : F1,n(R1,n) ≤ γ

}
=
[
(n− 1)s2/χ−1

n−1(γ),∞
)

yields the classical lower confidence bound, but for γ < χn−1((n− 1)/2) the
set B1,n is empty. This quirk was overlooked in Beran’s (1987) treatment of
this example. For large n the latter case hardly occurs, unless we deal with
small γ’s, i.e., with upper confidence bounds.

5.2.4 Sensitivity to Choice of Estimates

In this section we will use Example 2 with ψ = µ + zpσ to illustrate the
sensitivity of the pivot method and thus of the proposed automatic double
bootstrap method to the choice of starting estimates.
In this example it is instructive to analyze to what extent the form of the
estimate (ψ̂, σ̂) affects the form of the lower bound ψ̂L for ψ which results
from the pivot method.
It is obvious that the lower bound will indeed be different, if we start out with
location and scale estimates, which are different in character from that of the
maximum likelihood estimates. For example, as location scale estimates one
might use the sample median and range or various other robust alternatives.
Here we will analyze the more limited situation where we use as estimates of
ψ and σ

ψ̂ = X̄ + ks and σ̂ = rs = r

√√√√ n∑
i=1

(Xi − X̄)2/(n− 1)

for some known constants k and r > 0. In question here is the sensitivity
of the resulting automatic double bootstrap lower bound ψ̂L with respect to
k and r. This issue is similar but not the same as that of transformation
equivariance.
It turns out that ψ̂L does not depend on k or r, i.e., the result is always the
same, namely the classical lower confidence bound for ψ. For example, it does
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not matter whether we estimate σ by the m.l.e. or by s. More remarkable
is the fact that we could have started with the very biased starting estimate
ψ̂ = X̄, corresponding to k = 0, with the same final lower confidence bound.
It is possible that there is a general theorem hidden behind this that would
more cleanly dispose of the following convoluted argument for this result.
This argument fills the remainder of this section and may be skipped.
Recalling ψ = µ+ zpσ, one easily derives

Dψ,σ(x) = Pψ,σ
(
ψ̂ ≤ x

)
= Pψ,σ

(
X̄ + ks ≤ x

)
= Pψ,σ

(√
n(X̄ − µ)

σ
+

√
n(µ− x)

σ
≤ −ks

√
n/σ

)
= Gn−1,

√
n(µ−x)/σ(−k

√
n)

= Gn−1,
√
n(ψ−x)/σ−zp

√
n(−k

√
n) , (5)

where Gf,δ(x) denotes the noncentral Student-t distribution with f degrees
of freedom and noncentrality parameter δ.
Next note that

Dψ,σ̂(ψ̂) = G
n−1,

√
n(ψ−ψ̂)/σ̂−zp

√
n
(−k

√
n)

= Gn−1,−zp
√
n−V/r(−k

√
n) ,

where

V =

√
n(ψ̂ − ψ)

s
=

√
n(X̄ − µ− zpσ)

s
+ k

√
n

= k
√
n+ Tn−1,−zp

√
n

and Tf,δ is a random variable with distribution function Gf,δ(x). The distri-

bution function H of Dψ,σ̂(ψ̂) can be expressed more or less explicitly as

H(y) = P
(
Dψ,σ̂(ψ̂) ≤ y

)
= P

(
−zp

√
n− V/r ≥ δ(n− 1,−k

√
n, y)

)
,

where δy = δ(n− 1,−k
√
n, y) solves

Gn−1,δy(−k
√
n) = y .

Using the above representation for V we have

H(y) = P
(
Tn−1,−zp

√
n ≤ −rzp

√
n− rδy − k

√
n
)

= Gn−1,−zp
√
n

(
−
√
n(rzp + k)− rδ(n− 1,−k

√
n, y)

)
.
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Solving H(y1−α) = 1− α for y1−α = H−1(1− α) we get

tn−1,−zp
√
n,1−α = −

√
n(rzp + k)− rδ(n− 1,−k

√
n, y1−α)

or
−(
√
n(rzp + k) + tn−1,−zp

√
n,1−α)/r = δ(n− 1,−k

√
n, y1−α)

where tf,δ,1−α is the (1− α)-quantile of Gf,δ(x). Using the defining equation
for δy we get

H−1(1− α) = Gn−1,−(
√
n(rzp+k)+tn−1,−zp

√
n,1−α)/r(−k

√
n) .

Solving
H−1(1− α) = Dψ,σ̂(ψ̂)

or

Gn−1,−(
√
n(rzp+k)+tn−1,−zp

√
n,1−α)/r(−k

√
n) = G

n−1,
√
n(ψ−ψ̂)/σ̂−zp

√
n
(−k

√
n)

for ψ = ψ̂L we find

(
√
n(rzp + k) + tn−1,−zp

√
n,1−α)/r =

√
n(ψ̂ − ψ)/σ̂ + zp

√
n

or

ψ̂L = ψ = ψ̂ − ks− s√
n
tn−1,−zp

√
n,1−α = X̄ − s√

n
tn−1,−zp

√
n,1−α ,

which is the conventional 100(1− α)% lower confidence bound for ψ.

5.2.5 Approximate Pivots and Iteration

Previously it was shown that under the general pivot assumption (V ) the
automatic double bootstrap closes the loop as far as exact confidence bounds
are concerned. It is noteworthy in this double bootstrap procedure that
we have complete freedom in choosing (ψ0, η0). This freedom arises from
the pivot assumption. The pivot assumption is a strong one and usually
not satisfied. However, in many practical situations one may be willing to
assume that there is an approximate local pivot. By “local” we mean that
the statement

“Dψ,η̂(ψ̂) is approximately distribution free”
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holds in a neighborhood of the true unknown parameter θ. Since presumably
θ̂ is our best guess at θ, we may as well start our search for H−1(1− α) as
close as possible to θ, namely with θ0 = (ψ0, η0) = θ̂, in order to take greatest
advantage of the closeness of the used approximation. To emphasize this we
write

H
θ̂

(
Dψ,η̂(ψ̂)

)
= 1− α

as the equation that needs to be solved for ψ to obtain the 100(1− α)%
lower bound ψ̂L for ψ. Of course, the left side of this equation will typically
no longer have a uniform distribution on (0, 1). Following Beran (1987) one
could iterate this procedure further. If

H
θ̂

(
Dψ,η̂(ψ̂)

)
∼ H2,θ

with H
2,θ̂

(
H
θ̂

(
Dψ,η̂(ψ̂)

))
hopefully more uniform than H

θ̂

(
Dψ,η̂(ψ̂)

)
, one

could then try for an adjusted lower bound by solving

H
2,θ̂

(
H
θ̂

(
Dψ,η̂(ψ̂)

))
= 1− α

for ψ = ψ̂2,L. This process can be further iterated in obvious fashion, but
whether this will be useful in small sample situations is questionable. What
would such an iteration converge to in the specific situation to be examined
next?
As illustration of the application of our method to an approximate pivot
situation we will consider the Behrens-Fisher problem, which was examined
by Beran (1988) in a testing context from an asymptotic rate perspective.
Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples from respec-
tive N(µ, σ2

1) and N(ν, σ2
2) populations. Of interest are confidence bounds

for ψ = µ−ν. Since we do not assume σ1 = σ2 we are faced with the classical
Behrens-Fisher problem.
We will examine how the automatic double bootstrap or pivot method attacks
this problem. We can reparametrize the above model in terms of (ψ, η), where
µ = ψ + ν and η = (ν, σ1, σ2). As natural estimate of ψ we take ψ̂ = X̄ − Ȳ
and as estimate for η we take η̂ = (Ȳ , s1, s2), where s2

i is the usual unbiased
estimate of σ2

i . The distribution function of ψ̂ is

Dψ,η(x) = Pψ,η
(
X̄ − Ȳ ≤ x

)
= Φ

 x− ψ√
σ2

1/m+ σ2
2/n

 .
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The distribution function Hρ of

Dψ,η̂(ψ̂) = Φ

 ψ̂ − ψ√
s2
1/m+ s2

2/n


depends on the unknown parameters through

ρ = ρ(σ2
1, σ

2
2) =

nσ2
1

nσ2
1 +mσ2

2

.

Thus assumption (V ) is violated.
Traditional solutions to the problem involve approximating the distribution
function Gρ(x) = Hρ(Φ(x)) of

T =
ψ̂ − ψ√

s2
1/m+ s2

2/n

and in the process replace the unknown ρ by ρ̂ = ρ(s2
1, s

2
2). This is done

for example in Welch’s solution (Welch (1947) and Aspin (1949)), where Gρ

is approximated by a Student t-distribution function Ff (t) with f = f(ρ)
degrees of freedom with

f(ρ) =

(
ρ2

m− 1
+

(1− ρ)2

n− 1

)−1

.

As a second approximation step one then replaces the unknown ρ by ρ̂, i.e.,
one estimates f by f̂ = f(ρ̂). This leads to the following lower confidence
bound for ψ:

ψ̂WL = ψ̂ − F−1

f̂
(1− α)

√
s2
1/m+ s2

2/n .

Recall that in the first phase of the automatic double bootstrap method we
could start the process of finding Hρ with any (ψ0, η0). This would result
in Hρ0 . This is reasonable as long as H does not depend on unknown pa-

rameters. By taking as starting values (ψ0, η0) = (ψ̂, η̂) we wind up with
a determination of Hρ̂ instead. Thus the character of H is maintained and
is not approximated. The only approximation that takes place is that of
replacing the unknown ρ by ρ̂. Whether this actually improves the coverage
properties over those of the Welch solution remains to be seen. There is of
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course the possibility that the two approximation errors in Welch’s solution
cancel each other out to some extent.
The second phase of the pivot or automatic double bootstrap method stipu-
lates that we solve

1− α = Hρ̂

(
Dψ,η̂(ψ̂)

)
= Gρ̂

 ψ̂ − ψ√
s2
1/m+ s2

2/n


for ψ = ψ̂L, which yields the following 100(1− α)% lower bound for ψ

ψ̂L = ψ̂ −G−1
ρ̂

(1− α)
√
s2
1/m+ s2

2/n .

Beran (1988) arrives at exactly the same bound (although in a testing con-
text) by simple bootstrapping. However, he started out with the Studentized
test statistic T , which thus is one step ahead in the game. It is possible to
analyze the true coverage probabilities for ψ̂L and ψ̂WL, although the eval-
uation of the analytical formulae for these coverage probabilities requires
substantial numerical effort.
These analytical formulae are derived by using a well known conditioning
device, see Fleiss (1971) for a recent account of details. The formula for the
exact coverage probability for ψ̂L is as follows

Kρ(1− α) = Pρ
(
ψ̂L ≤ ψ

)
=

∫ 1

0
b(w)Fg

(
G−1
ρ̂(w)

(1− α)
√
ga1(ρ)w + ga2(ρ)(1− w)

)
dw

with

g = m+ n− 2 , a1(ρ) =
ρ

m− 1
, a2(ρ) =

1− ρ

n− 1
.

b(w) =
Γ(α+ β)

Γ(α)Γ(β)
wα−1(1− w)β−1I[0,1](w)

is the beta density with α = (m− 1)/2 and β = (n− 1)/2 and

ρ̂(w) =
wρ(n− 1)

wρ(n− 1) + (1− w)(1− ρ)(m− 1)
.

G−1
ρ (p) is the inverse of

Gρ(x) = Pρ(T ≤ x) =
∫ 1

0
b(u)Fg

(
x
√
ga1(ρ)u+ ga2(ρ)(1− u)

)
du .
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The corresponding formula for the exact coverage of ψ̂WL is

Wρ(1− α) = Pρ
(
ψ̂WL ≤ ψ

)
=

∫ 1

0
b(w)Fg

(
F−1
f(ρ̂(w))

(1− α)
√
ga1(ρ)w + ga2(ρ)(1− w)

)
dw .

When ρ = 0 or ρ = 1 and for any (m,n) one finds that the coverage prob-
abilities are exactly equal to the nominal values 1− α, i.e., Kρ(1− α) =
Wρ(1− α) = 1− α. This is seen most directly from the fact that in these
cases T ∼ Fm−1 and T ∼ Fn−1, respectively.
Figure 3 displays the exact coverage probabilities Gρ(.95) and Wρ(.95) for
equal sample sizes m = n = 2, 3, 5 as a function of ρ ∈ [0, .5]. The full graph
is symmetric around ρ = .5 for m = n. It is seen that both procedures
are highly accurate even for small samples. Mostly the double bootstrap
based bounds are slightly more accurate than Welch’s method. However,
for ρ near zero or one there is a reversal. Note how fast the curve reversal
smoothes out as the sample sizes increase. Figure 4 shows the rate at which
the maximum coverage error for both procedures tends to zero for m = n =
2, . . . , 10, 15, 20, 30, 40, 50. It confirms the rate results given by Beran (1988).
The approximate asymptotes are the lines going through (0, 0) and the last
point, corresponding to m = n = 50. It seems plausible that the true
asymptotes actually coincide.
It may be of interest to find out what effect a further bootstrap iteration
would have on the exact coverage rate. The formulas for these coverage rates
are analogous to the previous ones with G−1

ρ̂(w)
(1− α) and F−1

f(ρ̂(w))
(1− α)

replaced by appropriate iterated inverses, adding considerably to the com-
plexity of numerical calculations. We conjecture that such an iteration will
increase the number of oscillations in the coverage curve. This may then ex-
plain why further iterations may lead to highly irregular coverage behavior.
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Figure 3: Coverage Probabilities of 95% Lower Bounds
in the Behrens-Fisher Problem
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Figure 4: Maximum Coverage Error of 95% Lower Bounds
in the Behrens-Fisher Problem
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5.3 A Case Study

In this section we examine the small sample performance of various bootstrap
methods in the context of Example 2. In particular, we examine the situation
of obtaining confidence bounds for a normal percentile ψ = µ + zpσ. Using

the notation introduced in Section 5.2.4 we take θ̂ = (ψ̂, σ̂) as estimate of
θ = (ψ, η) = (ψ, σ), with

ψ̂ = X̄ + ks and σ̂ = rs

for some known constants k and r > 0. We will make repeated use of the
following expression for the bootstrap distribution of ψ̂?

P
ψ̂,σ̂

(
ψ̂? ≤ x

)
= D

ψ̂,σ̂
(x) = G

n−1,
√
n(ψ̂−x)/σ̂−zp

√
n
(−k

√
n) , (6)

which follows from Equation (5) after replacing parameters by estimates.
In the following subsections we will examine the true small sample cover-
age probabilitites of confidence bounds and equal tailed intervals for Efron’s
and Hall’s percentile methods, for the bias corrected percentile method, the
percentile-t method, and the various double bootstrap methods.

5.3.1 Efron’s Percentile Method

According to Efron’s percentile method we take the α-quantile of the boot-
strap distribution of ψ̂? as 100(1− α)% lower bound ψ̂L for ψ. The (1− α)-
quantile serves as the corresponding upper bound ψ̂U for ψ, and together
these two bounds serve as a 100(1− 2α)% confidence interval for ψ.
If we denote by δγ = δγ(k, n) the δ which solves

Gn−1,δ(−k
√
n) = γ,

and using (6) we can represent the above bounds as follows

ψ̂L = ψ̂ − σ̂√
n

(
δα(k, n) + zp

√
n
)

= X̄ + k′s

with k′ = k − rzp − rδα(k, n)/
√
n. A corresponding expression is obtained

for the upper bound

ψ̂U = ψ̂ − σ̂√
n

(
δ1−α(k, n) + zp

√
n
)

= X̄ + k′′s
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with k′′ = k − rzp − rδ1−α(k, n)/
√
n.

From (5) the actual coverage probabilities of these bounds are obtained as

Pψ,σ
(
ψ̂EL ≤ ψ

)
= Gn−1,−zp

√
n

(
rδα(k, n) + rzp

√
n− k

√
n
)
,

Pψ,σ
(
ψ̂EU ≥ ψ

)
= 1−Gn−1,−zp

√
n

(
rδ1−α(k, n) + rzp

√
n− k

√
n
)

and

Pψ,σ
(
ψ̂EL ≤ ψ ≤ ψ̂EU

)
= Gn−1,−zp

√
n

(
rδα(k, n) + rzp

√
n− k

√
n
)

−Gn−1,−zp
√
n

(
rδ1−α(k, n) + rzp

√
n− k

√
n
)
.

Figure 5 shows the behavior of the coverage error of the 95% lower bound
(with r = 1 and k = z.10) for ψ = µ+z.10σ against the theoretical rate 1/

√
n.

The actual size of the error is quite large even for large n. Also, the 1/
√
n

asymptote is approximated well only for moderately large n, say n ≥ 20.
Figure 6 shows the corresponding result for the upper bound. Note that the
size of the error is substantially smaller here. Finally, Figure 7 shows the
coverage error of the 95% equal tailed confidence interval for ψ against the
theoretical rate of 1/n. The asymptote is reasonably approximated for much
smaller n here.

5.3.2 Hall’s Percentile Method

According to Hall’s percentile method we take

ψ̂HL = ψ̂ − x?1−α

as 100(1−α)% level lower bound for ψ. Here x?1−α is the (1−α)-quantile of

the bootstrap distribution for ψ̂? − ψ̂. The corresponding 100(1− α)% level
upper bound is

ψ̂HU = ψ̂ − x?α ,

and jointly these two bounds serve as a 100(1− 2α)% confidence interval for
ψ.
From Equation (6) we obtain

P
ψ̂,σ̂

(
ψ̂? − ψ̂ ≤ x

)
= Gn−1,−x

√
n/σ̂−zp

√
n(−k

√
n) .

Thus we have
x?1−α = −σ̂

(
δ1−α(k, n)/

√
n+ zp

)
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Figure 5: Coverage Error of Lower Confidence Bounds Using
Efron’s Percentile Method with X̄ + zp s Estimating ψ = µ+ zp σ

in a Normal Population, p = .1 and Confidence γ = .95
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Figure 6: Coverage Error of Upper Confidence Bounds Using
Efron’s Percentile Method with X̄ + zp s Estimating ψ = µ+ zp σ

in a Normal Population, p = .1 and Confidence γ = .95
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Figure 7: Coverage Error of Confidence Intervals Using Efron’s
Percentile Method with X̄ + zp s Estimating ψ = µ+ zp σ
in a Normal Population, p = .1 and Confidence γ = .95
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and thus

ψ̂HL = ψ̂ + σ̂
(
δ1−α(k, n)/

√
n+ zp

)
= X̄ + s

(
k + rzp + rδ1−α(k, n)/

√
n
)

= X̄ + k′s

with k′ = k + rzp + rδ1−α(k, n)/
√
n.

From Equation 5 the actual coverage probability of ψ̂HL is

Pψ,σ
(
ψ̂HL ≤ ψ

)
= Gn−1,−zp

√
n(−k

√
n− rzp

√
n− rδ1−α(k, n)) .

Similarly one finds as actual coverage for the upper bound

Pψ,σ
(
ψ̂HU ≥ ψ

)
= 1−Gn−1,−zp

√
n(−k

√
n− rzp

√
n− rδα(k, n))

and for the equal tailed interval

Pψ,σ
(
ψ̂HL ≤ ψ ≤ ψ̂HU

)
= Gn−1,−zp

√
n(−k

√
n− rzp

√
n− rδ1−α(k, n))

−Gn−1,−zp
√
n(−k

√
n− rzp

√
n− rδα(k, n)) .

Figures 8-10 show the qualitative behavior of the coverage error of these these
bounds when using k = z.10, r = 1, and γ = .95. The error is moderately
improved over that of Efron’s percentile method but again sample sizes need
to be quite large before the theoretical asymptotic behavior takes hold. A
clearer comparison between Hall’s and Efron’s percentile methods can be
seen in Figures 11 and 12

5.3.3 Bias Corrected Percentile Method

The respective 100(1− α)% lower and upper confidence bounds by the bias
corrected bootstrap method are defined as

ψ̂bcL = D−1

ψ̂,σ̂
(Φ (2u0 + zα))

and
ψ̂bcU = D−1

ψ̂,σ̂
(Φ (2u0 + z1−α)) ,

where
u0 = Φ−1

(
D
ψ̂,σ̂

(ψ̂)
)

= Φ−1
(
Gn−1,−zp

√
n(−k

√
n)
)
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Figure 8: Coverage Error of Lower Confidence Bounds Using
Hall’s Percentile Method with X̄ + zp s Estimating ψ = µ+ zp σ

in a Normal Population, p = .1 and Confidence γ = .95
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Figure 9: Coverage Error of Upper Confidence Bounds Using
Hall’s Percentile Method with X̄ + zp s Estimating ψ = µ+ zp σ

in a Normal Population, p = .1 and Confidence γ = .95
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Figure 10: Coverage Error of Confidence Intervals Using Hall’s
Percentile Method with X̄ + zp s Estimating ψ = µ+ zp σ
in a Normal Population, p = .1 and Confidence γ = .95
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and Φ denotes the standard normal distribution function. When u0 = 0 these
bounds reduce to Efron’s percentile bounds. Since x = ψ̂bcU solves

D
ψ̂,σ̂

(x) = G
n−1,

√
n(ψ̂−x)/σ̂−zp

√
n
(−k

√
n) = Φ (2u0 + z1−α) = γ(1− α)

we can express ψ̂bcU as follows

ψ̂bcU = ψ̂ − σ̂
(
δγ(1−α)(k, n) + zp

√
n
)
/
√
n = X̄ + skU

with kU = k − rzp − rδγ(1−α)(k, n)/
√
n.

The corresponding expression for the bias corrected lower bound is

ψ̂bcL = ψ̂ − σ̂
(
δγ(α)(k, n) + zp

√
n
)
/
√
n = X̄ + skL

with

γ(α) = Φ (2u0 + zα) and kL = k − rzp − rδγ(α)(k, n)/
√
n .

From (5) the respective exact coverage probabilities are obtained as

Pψ,σ
(
ψ̂bcL ≤ ψ

)
= Gn−1,−zp

√
n(−kL

√
n) ,

Pψ,σ
(
ψ̂bcU ≥ ψ

)
= 1−Gn−1,−zp

√
n(−kU

√
n) ,

and for the equal tailed interval

Pψ,σ
(
ψ̂bcL ≤ ψ ≤ ψ̂bcU

)
= Gn−1,−zp

√
n(−kL

√
n)

= −Gn−1,−zp
√
n(−kU

√
n) .

Figure 11 compares the qualitative behavior of upper and lower confidence
bounds by the bias corrected percentile method, Efron’s percentile method,
and Hall’s percentile method. The comparison is again made against the
theoretical rate 1/

√
n, which is appropriate for all three methods. Bias cor-

rection appears to improve over both the other percentile methods. However,
for small sample sizes the magnitude of the actual coverage error is the more
dominant feature. The asymptotes are again approached only for large n.
The differences in coverage error become small relative to the actual coverage
error for large n. Figure 12 portrays the corresponding coverage properties
for equal tailed confidence intervals against the relevant rate of 1/n. The
above observations apply here as well.
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Figure 11: Coverage Error of Confidence Bounds Comparing
Percentile Methods and Bias Correction with X̄ + zp s Estimating
ψ = µ+ zp σ in Normal Population, p = .1 and Confidence γ = .95
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Figure 12: Coverage Error of Confidence Intervals Comparing
Percentile Methods and Bias Correction with X̄ + zp s Estimating
ψ = µ+ zp σ in a Normal Population, p = .1 and Confidence γ = .95
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5.3.4 Percentile-t and Double Bootstrap Methods

Using T = (ψ̂−ψ)/σ̂ as the Studentized ratio in the percentile-t method will
result in the classical confidence bounds and thus there will be no coverage
error. This arises because T is an exact pivot.
If we take R = ψ̂ − ψ as a root in Beran’s prepivoting method, we again
arrive at the same classical confidence bounds. This was already pointed out
in Section 5.2.3 and is due to the fact that the distribution of R only depends
on the nuisance parameter σ.
The automatic double bootstrap also arrives at the classical confidence bounds
as was already examined in Section 5.2.4. Thus the automatic double boot-
strap succeeds here without having to make a choice of scale estimate for
Studentization or of a root for prepivoting.
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